
SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-1

Software Overview

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 5
LIST OF FIGURES .. 6
1 Introduction ... 8

1.1 Where to Get More Information ... 8
2 Introducing cnMIPS (Cavium Networks MIPS) .. 9
3 Introducing the Simple Executive API ... 10
4 Runtime Environment Choices for cnMIPS Cores ... 13

4.1 Performance Difference Between Simple Executive and Linux 14
4.2 Simple Executive .. 14
4.3 SMP Linux .. 15

4.3.1 Linux: embedded_rootfs File System .. 16
4.3.2 Linux: Debian File System .. 17
4.3.3 Linux Application Support ... 17
4.3.4 Cavium Networks Ethernet Driver ... 18
4.3.5 Simple Executive API Calls From Linux ... 18
4.3.6 CPU Affinity ... 20
4.3.7 Linux on Small Systems (Limited MBytes of Memory) .. 20
4.3.8 Running Multiple Linux Kernels on the OCTEON Processor 20

4.4 Hybrid Systems: Simple Executive and Linux Co-Existing .. 20
4.5 System Initialization ... 21
4.6 The Hardware Simulator ... 21
4.7 Other Runtime Environments ... 21

5 Combinations of Runtime Environments on One Chip .. 21
5.1 One-Core Runtime Choices .. 22
5.2 Multicore Runtime Choices .. 23

5.2.1 Easiest Configurations to Implement .. 23
5.2.2 Intermediate Configurations ... 23
5.2.3 Advanced Configurations ... 24

5.3 Application Entry Point and Startup Code ... 25
5.4 Booting SE-S or SE-UM Applications ... 27
5.5 Booting One ELF File on Multiple Cores: Load Sets ... 27

5.5.1 Starting SE-S Applications With the bootoct Command ... 28
5.5.2 Starting Linux With the bootoctlinux Command ... 29
5.5.3 Starting SE-UM Applications With the oncpu Command ... 29

5.6 Booting Different ELF Files ... 32

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.7 Synchronizing Multiple Cores .. 32
5.7.1 Synchronizing Cores in the Same Load Set ... 33
5.7.2 Synchronizing Cores in Different Load Sets .. 33
5.7.3 SMP Linux Synchronization ... 34
5.7.4 Multiple SE-S or SE-UM ELF Files (Not Recommended) .. 34

6 Software Architecture ... 36
6.1 Control-Plane Versus Data-Plane Applications .. 36
6.2 Event-driven Loop (Polling) Versus Interrupt-Driven Loop .. 37
6.3 Using Work Groups in Packet Processing .. 38

6.3.1 Work Groups .. 38
6.3.2 Configuring the Per-Core Group Mask in the SSO Scheduler 39

6.4 Pipelined Versus Run-To-Completion Software Architecture ... 45
6.4.1 Comparing Run-To-Completion and Traditional Pipelining .. 45
6.4.2 A Quick Look at Packet Processing Math .. 46
6.4.3 Run-To-Completion .. 49
6.4.4 Traditional Pipelining ... 51
6.4.5 Modified Pipelining .. 52

6.5 Other Software Architecture Issues .. 54
6.5.1 Scaling .. 54
6.5.2 Code Locality: Reducing Icache Misses .. 55
6.5.3 Load-Balancing ... 57

6.6 Example: linux-filter .. 57
7 Application Binary Interface (ABI) .. 62

7.1 ABI Choices .. 62
7.1.1 EABI (OCTEON_TARGET=cvmx_64): SE-S 64-Bit .. 62
7.1.2 N64 (OCTEON_TARGET=linux_64): SE-UM 64-Bit .. 62
7.1.3 N32 (OCTEON_TARGET=cvmx_n32): SE-S 32-Bit .. 62
7.1.4 N32 (OCTEON_TARGET=linux_n32): SE-UM 32-Bit... 63
7.1.5 O32 (linux_o32) (Not Recommended) ... 63
7.1.6 Linux uclibc (linux_uclibc).. 63
7.1.7 Choosing the OCTEON_TARGET .. 63

7.2 64-Bit Porting Issues ... 63
8 Tools ... 66

8.1 GNU Cross-Development Toolchain ... 66
8.1.1 The Cavium Networks-Specific cvmx_shared Section .. 66
8.1.2 Link Addresses ... 68
8.1.3 Simple Executive Development Tools ... 68
8.1.4 Linux Development Tools .. 69

8.2 Native Tools (Run on the Target) ... 69
8.2.1 Native tools and Simple Executive ... 69
8.2.2 Native tools and Linux .. 69

9 Physical Address Map and Caching on the OCTEON Processor ... 70
9.1 Physical Address Map .. 70
9.2 System Memory (DRAM) Addresses ... 72
9.3 I/O Space Addresses ... 72
9.4 Caching ... 74

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-3

9.5 Special L2 Cache Features: Partitioning and Locking .. 76
10 Virtual Memory .. 76

10.1 Virtual Address Translation .. 77
10.1.1 Mapping .. 77
10.1.2 The Translation Look-Aside Buffer (TLB) .. 78
10.1.3 Wired TLB Entries ... 78

10.2 Generic MIPS Virtual Memory Map .. 78
10.3 MIPS Virtual Memory Address Translation ... 79

10.3.1 Segments ... 80
10.3.2 Privilege Level (Mode) and Segments ... 81

10.4 Mapped and Unmapped Segments ... 82
10.4.1 Unmapped Segments .. 82
10.4.2 Mapped Segments ... 85
10.4.3 Addresses Versus Pointers .. 87

10.5 Virtual Memory onCavium Networks MIPS (cnMIPS) ... 88
10.6 Cavium Networks-Specific cvmseg Segment .. 89
10.7 Accessing Application-Private System Memory .. 90
10.8 Summary of Virtual Address Space on cnMIPS .. 90

11 Allocating and Using Bootmem Global Memory ... 94
11.1 Using Global Bootmem .. 94
11.2 The malloc() and free() Functions and FPA Buffers ... 96
11.3 The cvmx_shared Section and FPA Buffers ... 97

11.3.1 The cvmx_shared Section is Not Always Shared ... 97
11.3.2 The cvmx_shared Section Should be Kept Small ... 99

11.4 Using Named Blocks to Share Memory Between Different Load Sets 100
12 Accessing Bootmem Global Memory (Buffers) ... 102

12.1 Accessing Bootmem Global Memory From SE-S Applications 104
12.1.1 SE-S 64-Bit Bootmem Access .. 104
12.1.2 SE-S 32-Bit Bootmem Access .. 104

12.2 Accessing Bootmem Global Memory From Linux Kernel: 64-Bit 104
12.3 Accessing Bootmem Global Memory from SE-UM Applications 105

12.3.1 SE-UM 64-Bit Bootmem Access .. 105
12.3.2 SE-UM 32-Bit Bootmem Access .. 105

12.4 Bootmem Size in Different Access Methods .. 106
12.5 Using cvmx_ptr_to_phys() and cmvx_phys_to_ptr() Functions 107

13 Accessing I/O Space ... 107
13.1 Accessing I/O Space from SE-S Applications .. 107

13.1.1 SE-S 64-Bit I/O Space Access .. 107
13.1.2 SE-S 32-Bit I/O Space Access .. 107

13.2 Accessing I/O Space from Linux Kernel: 64-Bit .. 107
13.3 Accessing I/O Space from SE-UM Applications ... 107

13.3.1 SE-UM 64-Bit I/O Space Access ... 107
13.3.2 SE-UM 32-Bit I/O Space Access ... 108

14 Simple Executive Standalone (SE-S) Memory Model ... 108
14.1 Simple Executive Application Space .. 109
14.2 Simple Executive System Memory Access .. 109

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

14.2.1 Mapping of System Memory .. 109
14.3 Simple Executive I/O Space Access ... 113
14.4 Simple Executive Virtual Memory Configuration Options .. 113

14.4.1 CVMX_USE_1_TO_1_TLB_MAPPINGS .. 113
14.4.2 CVMX_NULL_POINTER_PROTECT ... 114

14.5 SE-S 32-Bit Applications ... 114
15 Linux Memory Model ... 117

15.1 Configuring Linux and the Effect on the Memory Model .. 117
15.1.1 Linux cvmseg (IOBDMA and Scratchpad) Size ... 117
15.1.2 SE-UM 64-Bit: Direct Access to I/O Space Via xkphys .. 118
15.1.3 SE-UM 64-Bit: Direct Access to System Memory Via xkphys 118
15.1.4 SE-UM 32-bit: Reserving a Pool of Free Memory .. 118

15.2 Linux Kernel Space and Simple Executive API Calls .. 120
15.3 Linux Memory Configuration Steps ... 120
15.4 Linux Kernel-Mode Virtual Address Space on the OCTEON Processor 124
15.5 Linux 64-bit User-Mode Virtual Address Space for OCTEON 126
15.6 Linux 32-Bit Virtual Address Space for OCTEON .. 127

16 Downloading and Booting the ELF File ... 129
16.1 Bootloader Memory Model .. 130

16.1.1 The Reserved Download Block .. 131
16.1.2 ELF File Maximum Download Size ... 131
16.1.3 The Reserved Linux Block ... 133

16.2 Booting the Same SE-S ELF File on Multiple Cores ... 135
16.3 Downloading and Booting Multiple ELF Files .. 137

16.3.1 Downloading by Re-using One Reserved Download Block 137
16.3.2 Downloading Using Two Different Reserved Download Blocks 138

16.4 Protection from Booting Multiple Applications on the Same Core 140
17 SDK Code Conventions .. 140

17.1 Register Definitions and Accessing Registers .. 140
17.1.1 Register Definitions .. 140
17.1.2 Register Typedefs ... 141
17.1.3 Accessing Registers Using Register Definitions and Data Structures 142

17.2 The cvmx_sysinfo_t Typedef .. 144
17.3 OCTEON Models ... 145

18 Bootloader Historical Information .. 145
18.1 Backward Compatibility for Linux ELF Files Built Under SDK 1.6 147

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-5

 LIST OF TABLES
Table 1: Types of Cavium Networks-Specific Instructions .. 9
Table 2: OCTEON Hardware Units Overview .. 11
Table 3: Additional Simple Executive Support ... 12
Table 4: SE-S Application Entry Point and Startup .. 26
Table 5: Linux SE-UM Application Entry Point and Startup .. 27
Table 6: Setting the Cores’s Group Mask in the SSO ... 40
Table 7: Key ABI Differences ... 64
Table 8: SE-S ABIs (N32, EABI64), Data Type Lengths, and Toolchain 64
Table 9: SE-UM ABIs (N32, N64), Data Type Lengths, and Toolchain .. 65
Table 10: Other ABI (O32), Data Type Lengths, and Toolchain .. 65
Table 11: Simplified View of I/O Space ... 73
Table 12: The 64-Bit Virtual Address Segments ... 91
Table 13: The 32-Bit Virtual Address Segments ... 92
Table 14: Bootmem Allocator Functions in SDK 1.8 ... 95
Table 15: Summary of Access to System Memory and I/O Space .. 103
Table 16: Configuration Choices and Resultant Global Memory Limits 106
Table 17: Cavium Networks-Specific Linux menuconfig Options .. 120
Table 18: Accessing Register Fields .. 143

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

 LIST OF FIGURES
Figure 1: Simple Executive Hardware Abstraction Layer (HAL) ... 10
Figure 2: Using Simple Executive API from Different Runtime Environments 13
Figure 3: Simple Executive Standalone Application (SE-S) ... 14
Figure 4: Simple Executive calls from Kernel Mode .. 15
Figure 5: Simple Executive User-Mode (SE-UM) Application .. 15
Figure 6: One Core Runtime Choices .. 22
Figure 7: Easiest Multicore Configurations ... 23
Figure 8: Intermediate Multicore Configurations .. 24
Figure 9: Advanced Multicore Configurations .. 25
Figure 10: SE-S Load Set .. 27
Figure 11: SE-UM Load Set .. 28
Figure 12: Booting SE-S Applications With the Bootoct Command .. 29
Figure 13: SE-UM Applications Started With oncpu on Multiple Cores 31
Figure 14: Hybrid Load Sets .. 32
Figure 15: Multiple SE-S ELF Files (Not Recommended) ... 35
Figure 16: Multiple SE-UM ELF Files (Not Recommended) ... 35
Figure 17: SE-S Used for Both Control-Plane and Data-Plane Applications 36
Figure 18: Linux for Control-Plane and SE-S for Data-Plane Applications 37
Figure 19: The First Two Words of the Work Queue Entry .. 38
Figure 20: Each Core May Accept Work from Any and All Groups .. 39
Figure 21: Cores Can Receive Work Based on Their Group Mask .. 41
Figure 22: A Core is Idle if No Suitable Work is Available ... 42
Figure 23: Scheduling Previously Descheduled Work .. 44
Figure 24: Packet Processing Math ... 47
Figure 25: Run-To-Completion Versus Traditional Pipelining ... 49
Figure 26: Simplified Run-To-Completion Architecture .. 50
Figure 27: Scaling Run-To-Completion Architecture ... 51
Figure 28: Traditional Pipelining ... 52
Figure 29: Modified Pipelining ... 53
Figure 30: Modified Pipelining: Using Groups to Load Balance ... 53
Figure 31: Scaling the Data Plane ... 55
Figure 32: Using Code Locality to Reduce Icache Misses .. 56
Figure 33: Example: Linux-filter Drops a Broadcast IP Packet ... 59
Figure 34: Example: Linux-filter Forwards a Non-Broadcast IP Packet 61
Figure 35: Simplified Physical Address Map .. 71
Figure 36: Simplified View of Cache “miss” and “hit” .. 74
Figure 37: Prefetch Commands Used to Bypass Some Caches ... 75
Figure 38: Multiple Programs Have the Same Virtual Addresses ... 77
Figure 39: Generic MIPS Memory Map .. 79
Figure 40: 64-Bit Virtual Address: Segment Selector and SEGBITS ... 80
Figure 41: 32-Bit Virtual Address: Segment Selector and SEGBITS .. 81
Figure 42: The xkphys Window to Physical Address Space ... 83
Figure 43: The Small kseg0 Window to Physical Address Space .. 84
Figure 44: kseg0 and kseg1 Access the Same Memory ... 85

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-7

Figure 45: 64-Bit Virtual Address Translation on MIPS ... 86
Figure 46: 32-Bit Virtual Address Translation on MIPS ... 87
Figure 47: OCTEON 64-Bit Virtual Address Space – Summarized ... 93
Figure 48: OCTEON 32-Bit Virtual Address Space - Summarized .. 94
Figure 49: Named and Unnamed Memory Blocks .. 96
Figure 50: cvmx_shared: Same and Different Load Sets ... 97
Figure 51: cvmx_shared: Inefficient SE-S Configuration .. 98
Figure 52: cvmx_shared: Inefficient SE-UM Configuration .. 99
Figure 53: Sharing Memory Between Different Load Sets ... 101
Figure 54: Simple Executive Size Limitation if 1:1 Mapping is Used .. 111
Figure 55: SE-S 64-Bit Virtual Memory Map ... 112
Figure 56: SE-S 32-Bit Virtual Memory Map ... 116
Figure 57: Linux Kernel Virtual Address Space ... 125
Figure 58: Linux 64-Bit SE-UM Virtual Address Space for OCTEON .. 127
Figure 59: Linux 32-Bit SE-UM Virtual Application Space on OCTEON 129
Figure 60: Creating an In-Memory Image ... 130
Figure 61: Downloading to the Reserved Download Block .. 132
Figure 62: The Bootloader Creates the In-memory Image .. 133
Figure 63: The Reserved Linux Block ... 134
Figure 64: Bootloader Memory Usage in SDK 1.7 and Above ... 135
Figure 65: The Power of One Load Set ... 136
Figure 66: Downloading Multiple ELF Files – Same Download Block 138
Figure 67: Downloading Two ELF Files Using Two Download Blocks 140
Figure 68: Bootloader Memory Usage in SDK 1.6 and Below ... 146

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

1 Introduction
This chapter provides a software overview. Additionally, certain hardware and software
architecture topics are covered in this chapter.

The chapter will introduce the following topics:

• cnMIPS cores
• Simple Executive API (HAL)
• Different runtime environment choices such as standalone or user-mode, and combinations
• Software architecture issues
• Application Binary Interfaces (ABIs) supported
• Tools: cross-development and native toolchains
• Physical address map and caching on the OCTEON processor
• Virtual memory, including different views depending on runtime environment
• Bootmem global memory: how to allocate and access it.
• Shared memory
• Bootloader
• Software Development Kit (SDK) code conventions: registers and typedefs

This information is needed to understand the next chapter: the SDK Tutorial. The SDK Tutorial
chapter provides details on how to boot and run applications. Two examples are run: hello and
linux-filter.

This chapter is not designed to replace the documentation provided with the SDK, but merely to
provide a high-level overview of the software provided with the SDK. Throughout the chapter
relevant SDK documents are referenced to help the reader find more detailed information. See the
SDK Tutorial chapter for information on how to access the SDK documentation. Note that if the
information in the SDK conflicts with information in this chapter, it may be due to the SDK being
more current than this chapter. The information provided with the SDK should be considered to be
more accurate because the SDK documentation is updated with each release.

Before reading this chapter, please read the Packet Flow chapter. This chapter will provide
background information on the basic hardware units and how they interact. This information is
necessary to understand the Simple Executive API.

1.1 Where to Get More Information
The SDK comes with a large amount of documentation in html format. This documentation is
located in the docs directory in the installed SDK. See the SDK Tutorial chapter for
information on how to extract the SDK and locate the documentation.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-9

2 Introducing cnMIPS (Cavium Networks MIPS)
Each OCTEON processor may contain between 1 and N cnMIPS cores, depending on the
OCTEON model. When this chapter was written N = 16. In the future, the number of cores
available may be higher.

The cnMIPS (Cavium Network MIPS) cores use the MIPS64 v2 instruction set, supporting both
32-bit and 64-bit processing.

Cavium Networks has added some custom instructions to accelerate common networking
operations, such as bit test branch instructions or bit-field insert/extract. Because of these added
instructions, only the tools provided with the SDK should be used to build software which will run
on the OCTEON processor. When using the tools provided with the SDK, the optimizer uses these
instructions automatically. The table below briefly describes the added functions. See the
OCTEON Hardware Reference Manual (HRM) for more information. Note: there are about 3
pages of Cavium Networks instructions listed in the HRM.

Hardware floating point instructions are not implemented. Floating point instructions can be
implemented by using the “soft float” option on the compiler (gcc hello.c -msoft-float
–o hello).

Table 1: Types of Cavium Networks-Specific Instructions
Instruction Categories

Unsigned byte add.
Bit-test branches
Cache manipulation instruction
Instructions to use the in-core 3DES coprocessor (must have the Security Engine)
Instructions to use the in-core AES coprocessor
Instructions to use the in-core CRC coprocessor
Instructions to use the Galois Field Multiplier
Instructions to use the in-core HSH coprocessor
Instructions to use the in-core KASUMI coprocessor
Instructions to use the in-core LLM coprocessor
Register-direct 64-bit multiply
Signed-bit field extract and clear/insert instructions
Instructions to move data to/from Cavium Networks-specific multiplier registers
Prefetch, Don't Write Back , Prepare for Store
Count the number of ones in a 32-bit (POP) or 64-bit (DPOP) variable
64-bit cycle counter. Fast SSO Switch access
32-bit and 64-bit store atomic add instructions

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Instruction Categories

Set on equal; set on non-equal instructions
Memory reference ordering instructions (SYNCIOBDMA, SYNCS, SYNCW, SYNCWS)
Unaligned load/store instructions
Large multiply instructions

3 Introducing the Simple Executive API
The Simple Executive provides a Hardware Abstraction Layer (HAL) in the form of an Application
Programming Interface (API) to the underlying hardware units. This API is a very thin layer of
simple functions which access the CPU registers. It also provides some convenience routines for
block initialization. The API can be used from both kernel and user mode.

Figure 1: Simple Executive Hardware Abstraction Layer (HAL)

The Simple Executive API is used to access the hardware units:

• Basic units: FPA, IPD, PIP, SSO, and PKO
• Intermediate units: FAU and TIM
• Advanced units: LLM, ZIP, RNG, DFA, KEY, CIU, etc.

The following table provides an overview of the hardware units. Convenient access to these
hardware units is provided by Simple Executive function calls and macros. Note that different
chips have different features, so not all APIs are supported on all chips. In particular, DFA
(Deterministic Finite Automaton – used in pattern matching) and LLM (Low Latency Memory –
used to support DFA functions) are not provided on all chips.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-11

Table 2: OCTEON Hardware Units Overview
Note that different OCTEON models have different features: some hardware units are not
available on all models.
Basic Hardware Units
FPA The Free Pool Allocator Unit manages up to 8 pools of free buffers which may be

requested by other hardware units. The most common uses of the buffers are for
Packet Data Buffers and Work Queue Entry Buffers.

PIP The Packet Input Processing Unit receives the packet data from the Packet
Interfaces, and perform basic error checking on the data.

IPD The Input Packet Data Unit works together with the PIP to allocate needed buffers,
and process the packet data. The IPD fills in the Work Queue Entry Buffer and the
Packet Data Buffer. It then submits the Work Queue Entry Buffer to the SSO's
QoS Input Queues. Requires FPA Packet Input Buffers and Work Queue Entry
Buffers.

SSO The Schedule/Synchronization/Order Unit maintains the QoS Input Queues, and
manages scheduling work to cores. It also maintains the work order, and provides
the support needed for packet-linked atomic locking.

PKO The PKO manages packet output. Cores submit command words to its Output
Queues. These command words include a pointer to the packet data to be
transmitted. The cores then "ring" a doorbell to notify the PKO how many
command words were written to the Output Queue. The PKO DMAs the packet
data from the Packet Data Buffer to its internal memory, and sends it from there to
the Packet Interfaces. This operation requires an FPA pool of Command Buffers.

Intermediate Hardware Units
FAU Fetch and Add Unit - a 2 KB register file supporting read, write, atomic fetch and

add, and atomic update operations. This unit can be accessed from both the cores
and the PKO. The cores use the FAU for general synchronization purposes.

TIM Timers - requires FPA timer pool.
Advanced Hardware Units
CIU The Central Interrupt Unit controls the routing of interrupt sources to the cores,

including mailbox and watchdog interrupts. Any interrupt source may be routed to
any core.

DFA Deterministic Finite Automata (DFA) unit, used for regular expressing parsing and
acceleration. The chip must have the DFA hardware Unit.

LLM Low Latency Memory - used for storing DFA graphs. The chip must have the DFA
hardware unit, and the user-supplied LLM (Low Latency Memory).

ZIP Compression/decompression unit. The chip must have the ZIP hardware unit.
RNG Random Number Generator
KEY 8K of on-chip memory for holding security keys. This memory can be cleared

using an external hardware pin.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Simple Executive API also includes functions and macros for:

• System memory allocation (bootmem)
• Synchronization between cores
• Spinlocks
• Reader-writer locks
• Atomic set, add, compare and store operations
• Barrier functions

Table 3: Additional Simple Executive Support

Note that different OCTEON models have different features: some functions are not supported
on all models.
Synchronization Support

Packet-linked Locks Packet-linked locks are implemented by the SSO, and provide
ATOMIC access to critical regions.

Basic Spinlocks Non-recursive spinlocks.
Recursive Spinlocks Recursive spinlocks
Atomic Operations Atomic set, add, compare and store operations.

Reader/Writer locks Multiple cores may hold read locks, while write locks are
exclusive.

Barrier Functions
Barrier function which causes each core to wait until all cores
reach the same instruction. (All cores running the same
application.)

Coremask Functions Coremask functions to select the first core to do the application
initialization.

Memory Management Support

Scratchpad access functions Access core-local scratch pad memory (CVMSEG). Scratch pad
used for local variables and for the results of IOBDMAs.

Bootmem functions Used to allocate shared aligned memory. Usually used to allocate
the memory used in FPA pools.

Utility Functions
cvmx_user_app_init() Mandatory function to initialize the Simple Executive application.

cvmx_get_core_num() Queries a MIPS-standard register on the core to get the core
number this instance.

cvmx_phys_to_ptr() Convert physical address into a pointer containing a virtual
address.

cvmx_ptr_to_phys() Convert a pointer containing a virtual address into a physical
address.

cvmx_sysinfo_get() Access the global cvmx_sysinfo data structure (for instance, to
synchronize cores)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-13

More information about the Simple Executive functions and macros may be found in the SDK
document “OCTEON Simple Executive Overview”.

Simple Executive functions and macros may be used either to create a standalone Simple Executive
application, or may be called from drivers or applications running on an operating system kernel
such as Linux. For instance, after the Linux kernel is booted, a Cavium Networks Ethernet driver
may be started. This driver uses the Simple Executive API to configure the OCTEON hardware.
Simple Executive User-Mode applications may also be started from Linux.

Both 32-bit and 64-bit modes are supported, although 64-bit mode should be used whenever
possible.

Figure 2: Using Simple Executive API from Different Runtime Environments

4 Runtime Environment Choices for cnMIPS Cores
There are several choices for runtime environment. The three supplied by Cavium Networks are
Simple Executive standalone mode, Linux, and the hardware simulator.

When running Simple Executive on multiple cores, the same ELF file is usually run on all of the
cores. These cores are all started from one load command. The cores share the .text and read-only
data (.rodata) sections. They also share cvmx_shared variables, and memory allocated with
bootmem_alloc.

When running Linux on multiple cores (SMP), there is one kernel running, not one kernel per core.
Linux applications are scheduled to run on different cores.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Simple Executive may be run on some of the cores, while Linux is run on the other cores (a hybrid
system). In this case, the two ELF files are booted using two separate boot commands. The set of
cores to run the program on is specified as an argument to the boot command.

Linux and Simple Executive both use the bootmem functions to allocate and free memory. Shared
memory may be shared between the Linux and Simple Executive applications if the named block
bootmem_alloc functions are used.

4.1 Performance Difference Between Simple Executive and Linux
Simple Executive run in standalone mode provides the lowest overhead and the greatest potential
for scaling.

When running Simple Executive applications as Linux user-mode applications, although the
OCTEON hardware has been configured to allow access to both hardware and memory without
performance penalties, your application may still have noticeably slower performance than if it was
run in standalone mode. Cache misses, TLB misses, and bus contention are more likely when
running as a Linux user-mode application due to the large amounts of code and data needed for
Linux. The Linux scheduler timer interrupt also periodically transfers focus to other tasks. The
exact performance difference is application-dependent.

4.2 Simple Executive
Simple Executive provides an API to the hardware units. Simple Executive may be run Standalone
(SE-S), or as a user-mode (SE-UM) application on an operating system such as Linux. When run
as a user-mode application, different application startup code (main()) is called, and there are
other minor porting items to consider.

All cores running a Simple Executive application which are started from the same load command
share the cvmx_shared data section. For more information, see Section 8.1.1 – “The Cavium
Networks-Specific cvmx_shared Section”. They also share the .text and read-only data (.rodata).
They also share memory allocated with bootmem_alloc.

The following figure shows a representation of a core running Simple Executive in Standalone
(SE-S) mode.

Figure 3: Simple Executive Standalone Application (SE-S)

Simple Executive calls may be made from kernel mode. For example, the Cavium Networks
Ethernet driver, which runs on Linux, makes Simple Executive calls.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-15

Figure 4: Simple Executive calls from Kernel Mode

The following figure shows a representation of a core running Simple Executive as a User-Mode
application.

Figure 5: Simple Executive User-Mode (SE-UM) Application

To use all available memory, SE-UM applications should be compiled for 64-bit mode. 32-bit
mode is sometimes used, but can only access a limited amount of physical memory.

SE-S supports a single instance per core (there is no scheduler running). Note than an SE-S
instance is not as complex as a process.

SE-S is very fast compared to SE-UM. There are no context switches, and all memory is mapped
for fast access.

To get the maximum performance from the OCTEON processor: Whenever possible, design the
application to use a 64-bit Simple Executive application.

4.3 SMP Linux
SMP (Symmetric Multi-Processing) Linux may be run on one or more cores. The file system is
either the tiny embedded root file system (embedded_rootfs) or the large Debian file system.
Usually, embedded_rootfs is used because it will fit into on-board flash. In some circumstances,
such as during development, the larger Debian file system may be desired. The Debian file system
must be used from either Compact Flash, or NFS.

When Linux is booted, the boot command (bootoctlinux) has an optional argument (mem)
which is used to set the amount of memory allocated to Linux. The default is 512 MBytes. Setting
“mem=0” will allow the kernel to use all the memory on the board. Note that setting “mem=0” will
leave no bootmem available for applications running on other cores to allocate. The Linux driver
will still allocate skbuff memory and populate the FPAs needed to send and receive packets.

Note: The default SDK configuration requires around 230 MBytes of system memory. Linux can
be run with as little as 8 MBytes when the file system is in flash or Compact Flash.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.1 Linux: embedded_rootfs File System
When running Linux with the embedded root file system (embedded_rootfs), the root file system is
a RAM disk (in memory only). In this case, the ELF file is either stored in on-board flash, or
downloaded from a host.

Note that when the system is powered off or reset, the ELF file is no longer in memory. It
must be reloaded from flash or downloaded from a host.

The embedded root file system is used when there are no devices attached to the OCTEON
processor to store the root file system for download to OCTEON. (For instance, if the ELF file
cannot be loaded over the network or from an external device such as Compact Flash.) The Linux
examples in the SDK Tutorial chapter will use embedded_rootfs.

Typically, the embedded root file system contains only the minimum number of files needed. To
save space, the small utility set “BusyBox” is used instead of the normal Linux utilities. The
BusyBox component in the embedded root file system is controlled by the makefile:
$OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/busybox.mk.

There is one utility called /bin/busybox. The file is symbolically linked to other names to
allow you to call the other “utilities”. When the utility is called by a different name, such as cat,
it executes that function. BusyBox can be tailored to exclude any unneeded functions. This
reduces the executable size, saving space.

The BusyBox.txt file has a list of the included “functions” (which then act as utilities).
From the BusyBox.txt file:

“COMMANDS
 Currently defined functions include:

 [, [[, addgroup, adduser, adjtimex, ar, arping, ash, awk,
 basename, bbconfig, bunzip2, busybox, bzcat, cal, cat, catv,
 chattr, chgrp, chmod, chown, chroot, chvt, cksum, clear, cmp,
 comm, cp, cpio, crond, crontab, cut, date, dc, <text
omitted>”

Note that some utility options are not supported by these functions: options not usually needed in
the embedded environment are not included. The exact options supported are detailed in the
BusyBox.txt file.

More details may be found on the net at http://www.busybox.net/about.html or in
$OCTEON_ROOT/linux/embedded_rootfs/build/busybox-
1.2.1/docs/BusyBox.txt.

4.3.1.1 Adding Examples to embedded_rootfs
The example applications were added to Linux embedded_rootfs by instructions in package
makefile $OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/sdk-
examples.mk.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

http://www.busybox.net/about.html

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-17

For detailed directions on adding an application to the embedded root file system, see the SDK
document “Linux on the OCTEON” in the section “How to add a Package”.

4.3.2 Linux: Debian File System
When running Linux with the Debian file system, the root file system is on a Compact Flash card.
Other than some minor changes, the Cavium Networks version of Debian is a distribution from
http://www.debian.org/, with some minor changes. Cavium Networks has not modified the utilities
provided by Debian. If problems with the utilities occur, contact Debian for assistance.

When using the Debian file system, the kernel is booted off the Compact Flash card with the boot
command option root=/dev/cfa2. This tells the kernel that the root file system is on the
second partition on the Compact Flash card. Once the kernel has booted, the root file system is
located on the Compact Flash Card. (Note that the “root” file system is mounted as “/” when the
kernel is booted. In the Linux directory structure “/” is the “root” directory. All other directory
paths are relative to this point.)

The Debian file system is useful for the large variety of programs provided.

For more information on running Debian Linux on the OCTEON processor, see the SDK Tutorial
chapter, and the SDK document “Running Debian GNU/Linux on OCTEON”.

4.3.3 Linux Application Support
Both 32-bit and 64-bit Linux applications are supported by the cross development toolchain. Since
OCTEON is a 64-bit processor, running in 64-bit mode is faster and more efficient, but is not
required.

Note: The kernel is always in 64-bit mode.

To run an application as a Linux user-mode application, the application may be added either to
embedded_rootfs, or to the Debian file system. Note that running SE-UM applications over NFS is
not recommended. (See the note in Section 4.3.4 – “Cavium Networks Ethernet Driver”.)

Linux applications may make Simple Executive API calls. These Simple Executive files are not
supported under Linux:

• cvmx-interrupt.c
• cvmx-interrrupt-handler.S
• cvmx-malloc.c
• cvmx-app-init.c (this file is replaced with cvmx-app-init-linux.c)

When building an application using the Makefiles provided with the example code, if the target is a
Linux target, the file $OCTEON_ROOT/exectutive/cvmx.mk will make the appropriate
changes to the object files used in the build.

These applications also may not call cvmx_malloc() functions or cvmx_zone() functions.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

http://www.debian.org/

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.4 Cavium Networks Ethernet Driver
A Cavium Networks Ethernet driver module is available to support Ethernet using either the GMII,
RGMII, SGMII interfaces, SPI4 (with a SPI4000 daughter card), or XAUI. Different OCTEON
models support different devices. The GMII, RGMII, and SGMII ports are Ethernet devices “eth0”
through “ethN”. SPI4000 ports are devices “spi0” through “spiN”. XAUI devices are “xaui0”
through “xauiN”. (N is the maximum number of devices supported by the system.)

To add the Cavium Networks Ethernet driver, use the modprobe command. (Note that the POW
unit has been renamed to SSO in documentation, but is still referred to as POW in software.)
Arguments to the modprobe command include:

• pow_receive_group: only packets with this group number are received by the kernel.
The default is “15”.

• pow_send_group: Linux creates a virtual Ethernet device not connected to any
physical ports, named “pow0”. This device will accept work from the POW receive group
and transmit using the POW send group. In the linux-filter example, this group is
set to “14”. The linux-filter example is discussed in more detail in Section 6.6 –
“Example: linux-filter”.

An example where modprobe is used is presented in the SDK Tutorial chapter.

Note: When the Cavium Networks Ethernet driver is in use, applications must not
reconfigure the OCTEON hardware. The Ethernet driver configures the SSO, FPA, CIU,
PIP, IPD, PKO, and FAU (the Fetch and Add Unit). Some examples such as “passthrough”
also configure the hardware units. Running both the Cavium Networks Ethernet driver and
an example which initializes the hardware will cause the crash and reset with an error
similar to the following text:

Version: Cavium Networks OCTEON SDK version 1.7.2, build 244
Warning: Enabling FPA when FPA already enabled.
Fpa pool 0(Packet Buffers) already has 928 buffers. Skipping setup.
Fpa pool 1(Work Queue Entries) already has 960 buffers. Skipping setup.
Fpa pool 2(PKO Command Buffers) already has 124 buffers. Skipping setup.
Interface 1 has 4 ports (RGMII)

Similarly, if the file system is NFS-mounted, then the Cavium Networks Ethernet driver is
loaded. Running a program such as the example program passthough over NFS will not
work because passthough will reconfigure the OCTEON hardware and NFS will stop
working.

More details may be found in the SDK document “Linux on the OCTEON” in the section “Kernel
Ethernet Drivers”.

4.3.5 Simple Executive API Calls From Linux
Linux kernel and applications may both make Simple Executive API calls. When Simple
Executive calls are made from Linux user space, the process is referred to as a Simple Executive
User-Mode application (SE-UM).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-19

According to the SDK documentation, applications using the Simple Executive libraries under
Linux userspace must rename their main() function to match the prototype below. This allows
Simple Executive to perform needed memory initialization and process creation before the
application runs.

extern int appmain(int argc, const char *argv[]);

When building examples with the provided Makefiles, the file $OCTEON_ROOT/common.mk
will redefine the word “main” to “appmain” if a Linux target is specified, for example:

ifeq (${OCTEON_TARGET},linux_64)
 PREFIX=-linux_64
 CFLAGS_GLOBAL += -DOCTEON_TARGET=${OCTEON_TARGET} -mabi=64 -
march=octeon
-msoft-float -Dmain=appmain

This is why the linux-filter example does not contain two different main() calls (the
string “main” becomes main() for SE-S applications, and appmain() for SE-UM applications).

The following are some of the key points to remember when writing applications to run both under
the SE-S and SE-UM environments:

• Use #ifdef __linux__ to make SE-UM-specific changes to the code.
• Be careful to use cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). The Simple

Executive 1:1 TLB mappings allow you to be sloppy and interchange physical addresses
with virtual address. This isn't true under Linux.

• If you're talking directly to hardware, be careful. The normal Linux protections are
circumvented. If you do something bad, Linux won't save you.

• Most hardware can only be initialized once. Unless you're very careful this also means
your SE-UM application can only run once.

The linux-filter example, which runs both as SE-S and SE-UM, includes some examples
showing use of the #ifdef __linux__ test, for example:

// if running on Linux, include file which contains definitions required
// for compatibility with the POSIX standard
#ifdef __linux__
#include <unistd.h>
#endif

The SDK Tutorial chapter contains a table showing the available example applications, and
whether they may be run on Linux. Examples of Linux applications which use Simple Executive
API calls may be found in the /examples directory after Linux is booted on the OCTEON
processor.

More details may be found in the SDK document “Linux Userspace on the OCTEON” in the
section “Running Simple Executive Applications under Linux”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.6 CPU Affinity
Use the oncpu Linux utility to control which core or set of cores the SE-UM application will run
on.

A SE-UM application should never call sched_setaffinity(), unlike a generic Linux
application which may call sched_setaffinity() to control the cores it uses.

Note: SE-UM applications are not full Linux apps and should limit themselves to the
features supplied by the Simple Executive.

Details on using the oncpu utility with SE-UM applications are provided in Section 5.5.3 –
“Starting SE-UM Applications With the oncpu Command”.

4.3.7 Linux on Small Systems (Limited MBytes of Memory)
To run Linux on a small system (256 MBytes or less), see the directions in the SDK document
“Linux on Small OCTEON Systems”.

4.3.8 Running Multiple Linux Kernels on the OCTEON Processor
More than one Linux kernel can be run on the OCTEON processor. For more information, see the
SDK document “Linux on the OCTEON” in the section “Booting Two Separate Kernels on an
EBT3000”.

4.4 Hybrid Systems: Simple Executive and Linux Co-Existing
Linux may be run on a subset of the cores while Simple Executive is running on a different subset
of cores.

More details may be found in the SDK document “Linux on the OCTEON” in the section “Co-
existing with Simple Executive Applications”. Here are the general guidelines provided in that
chapter:

1. Allocate shared memory using the bootmem allocator functions. These functions provide
the needed locking so that two applications will not get the same memory.

2. Keep core dependencies generic. Instead of allocating cores by core ID, use
cvmx_sysinfo_get() to get the bitmask of cores actually running your application.
Use the cvmx_sysinfo_t field “core_mask” to determine how many cores are
running your application, and use cvmx_coremask_first_core() to select the core
for initialization tasks. An example of using these functions may be found in the FPA
chapter (in Volume 2).

3. Choose a single application to perform hardware initialization. Many initialization tasks
must only be performed once. When designing a hybrid system, choose which single
instance is responsible for initialization.

4. Use OCTEON hardware for inter-application communication. Both the SSO (via groups)
and the Fetch and Add Unit (FAU) can be used to provide fast hardware-based messaging.

Hybrid systems may also consist of other configurations.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-21

Note that Linux does not support booting SE-S. SE-S ELF files must be started from the
bootloader.

4.5 System Initialization
Note that only one operating system or SE instance is responsible for initialization.

When running only SE-S applications (in one load set), the first core in the load set is responsible
for system initialization.

When running Linux and SE-S, normally the Linux kernel initializes the hardware through the
Ethernet driver. Simple Executive applications must wait until this initialization is done before
continuing. SE-UM applications which also initialize the hardware (such as passthough) must
not be run at the same time as the Cavium Networks Ethernet driver is running.

See Section 5.7 – “Synchronizing Multiple Cores” for more information.

4.6 The Hardware Simulator
The third runtime environment supplied by Cavium Networks is the Hardware Simulator.
The simulator is useful when actual hardware is not available and it is also very useful for
performance tuning. Performance tuning is most easily done using the tool Viewzilla. This
tool analyzes the output of the simulator, so making sure the code will run on the simulator as well
as on actual hardware is recommended for performance-critical applications.

See the whitepaper “OCTEON_Performance_Tuning” for more information.

All of the examples provided with the SDK run on the simulator.

4.7 Other Runtime Environments
In addition to the three runtime environments supplied by Cavium Networks, several open-source
and proprietary operating systems are available. Contact your Cavium Networks representative for
an updated list of choices.

5 Combinations of Runtime Environments on One Chip
The following figures show chips running combinations of runtime environments, without showing
the control-plane/data-plane configuration.

Note: these figures are intended to show the flexibility of the OCTEON processor. A specific
design does not have to exactly match the figures shown below.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.1 One-Core Runtime Choices
The following choices are available if the OCTEON model has only one core:

Figure 6: One Core Runtime Choices

SE-S

One core runs a Simple Executive
Standalone (SE-S) application

Linux

One core runs Linux with Cavium Networks
Ethernet Driver

One core runs another OS with Simple
Executive User-Mode application.

Choices If Only One Core is Available

LinuxSE-
UM

One core runs a Simple Executive User-
Mode (SE-UM) application on Linux

Driver

One core runs another OS

Another
OS

Driver

SE-
UM

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-23

5.2 Multicore Runtime Choices
The following figures show different runtime choices for the OCTEON processor.

5.2.1 Easiest Configurations to Implement
The following configurations are the easiest to implement.

Figure 7: Easiest Multicore Configurations

5.2.2 Intermediate Configurations
The following configurations in the midrange of complexity to implement.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 8: Intermediate Multicore Configurations

Linux

SMP Linux or other SMP-
capable OS (single copy)

Linux Linux SE-S SE-S SE-S SE-S SE-S

Example of 8-core hybrid system: 3 cores run Linux, 5 cores run a Simple
Executive Standalone (SE-S) application

Intermediate Multicore Implementations

Note: Only a few cores of the maximum possible cores are shown in this example.

LinuxLinux

SMP Linux (single
copy)

SE-
UM

Example of 2-core system running Linux on cores 0 and 1 and an application
such as linux-filter runs as a Simple Executive User-Mode (SE-UM)
application on core 1 (started by the oncpu command). .

Driver

Driver

Note: Although Linux is usually run on core 0, this is not a requirement.

5.2.3 Advanced Configurations
The following configurations require advanced OCTEON processor knowledge, and careful
resource management.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-25

Figure 9: Advanced Multicore Configurations

Non-
SMP
OS

Example of 8-core hybrid system: 8 cores may run 3 different Linux instances
(advanced). Note only 1 Cavium Networks Ethernet driver may be run. (This
configuration is not recommended.)

Advanced Multicore Implementations (More Complex Resource Sharing)

Linux

SMP
Linux (single copy)

Linux Linux SE-S SE-S SE-S

Linux

SMP
Linux (Instance 1)

Linux Linux Linux

SMP
Linux (Instance 2)

Linux Linux Linux

SMP
Linux (Instance 3)

Linux

Note: Only a few cores of the maximum possible cores are shown in this example.

Non-
SMP
OS

Example of 8-core simple system running a non-SMP OS: 8 separate
instances of another OS

Non-SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Example of 8-core hybrid system: 3 cores run Linux or another SMP OS; 2
cores run a non-SMP OS; 3 cores run SE-S

LinuxLinux

SMP Linux (single copy)

Linux Linux Linux Linux Linux LinuxSE-
UM

Example of 8-core simple system running Linux with 2 Simple Executive User-
Mode (SE-UM) applications: a single Linux instance runs on 8 cores. An
application such as linux-filter runs as a Simple Executive (SE-UM)
application on cores 1 and 4 (started by the oncpu command).

SE-
UM

Driver

Driver

Driver

Driver

5.3 Application Entry Point and Startup Code
An application such as linux-filter may be compiled as either an SE-S or SE-UM
application without modification.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The code executed when the application is started is not the same: when SE-S is the build target,
the file cvmx-app-init.o is linked into the target. When Linux SE-UM is the build target,
the file cvmx-app-init-linux.o is included instead. The makefile
$OCTEON_ROOT/executive/cvmx.mk is responsible for making this change.

ifeq (linux,$(findstring linux,$(OCTEON_TARGET)))
OBJS_$(d) += \
 $(OBJ_DIR)/cvmx-app-init-linux.o
else
OBJS_$(d) += \
 $(OBJ_DIR)/cvmx-interrupt.o \
 $(OBJ_DIR)/cvmx-interrupt-handler.o \
 $(OBJ_DIR)/cvmx-app-init.o \
 $(OBJ_DIR)/cvmx-malloc.o
endif

Additionally, main() is renamed to appmain() if the example is build as a Linux SE-UM
application. The makefile $OCTEON_ROOT/common.mk is responsible for making this change.
See Section 4.3.5 – “Simple Executive API Calls From Linux”

The following two tables are a simplified view of the application entry point and startup functions.

The following table shows a simplified view of SE-S application entry point and startup functions.

Table 4: SE-S Application Entry Point and Startup
Simple Executive Standalone (SE-S) Entry Point and Startup Functions

__cvmx_app_init() Application entry point. Defined in cvmx-app-init.c.

main()
Defined in applicaton code such as linux-filter.c. Called
after __cvmx_app_init().

cvmx_user_app_init() Called by main(), defined in cvmx-app-init.c.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-27

The following table shows a simplified view of Linux SE-UM application entry point and startup
functions.

Table 5: Linux SE-UM Application Entry Point and Startup
Simple Executive User-Mode (SE-UM) Entry Point and Startup Functions

main() Application entry point. Defined in cvmx-app-init-linux.c.

appmain()
Defined in application code such as linux-filter.c : "main" is
aliased to "appmain" by common.mk.

cvmx_user_app_init() Called by appmain(), defined in cvmx-app-init-linux.c.

5.4 Booting SE-S or SE-UM Applications
To boot Simple Executive applications:

• for SE-S applications: bootoct bootloader command
• for SE-UM applications: oncpu Linux command or invoke the application from the

command line (for example ./linux-filter)

These commands may be used to boot on one or more cores. In the following section, booting on
more than one core is discussed. Details of the oncpu command are provided in that section.

5.5 Booting One ELF File on Multiple Cores: Load Sets
Usually one Simple Executive application is run on multiple cores, booted by the same load
command:

• for SE-S applications, using the same bootoct bootloader command for all relevant cores
• for SE-UM applications, using the same oncpu Linux command for all relevant cores

All cores booted by the same load command are in the same load set. The following figure shows
cores running Simple Executive Standalone in a load set.

Figure 10: SE-S Load Set

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following figure shows cores running two Simple Executive User-Mode processes in a load
set.

Figure 11: SE-UM Load Set

Load sets are discussed in more detail in Section 8.1.1.2 – “The cvmx_shared Section”

5.5.1 Starting SE-S Applications With the bootoct Command
Starting Simple Executive Standalone applications with the bootoct command is
straightforward. An example is provided in the SDK Tutorial chapter. This command is discussed
in more detail in Section 16.2 – “Booting the Same SE-S ELF File on Multiple Cores”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-29

Figure 12: Booting SE-S Applications With the Bootoct Command

O
ne

 L
oa

d
Se

t

Create instance 3

5.5.2 Starting Linux With the bootoctlinux Command
Linux may be started with the bootoctlinux command is straightforward. An example is
provided in the SDK Tutorial chapter. This command is discussed in more detail in Section 5.5.2 –
“Starting Linux With the bootoctlinux Command”.

5.5.3 Starting SE-UM Applications With the oncpu Command
Usually the oncpu utility may be used to start a SE-UM application on Linux. The oncpu utility
takes as arguments the core or coremask and name of the application to start. (The words CPU and
Core are equivalent.)

oncpu <core> command
or
oncpu <coremask> command

Core is a decimal number from 0 to one less than the number of cores in the system; Coremask
must be a hexadecimal number specified as 0xXXXX. Core 0 is represented by the lowest bit in the
mask.

Note: oncpu takes a virtual core number. This number can be different from the hardware core
number. For instance, if SMP Linux is running on cores 4, 5, and 6, the kernels virtual core
numbers are 0, 1, and 2.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

To start a SE-UM application on core 5, the command would be:

oncpu 1 application

To start the application on all 3 cores, the command would be:

oncpu 0x7 application

In the traditional Linux use of oncpu, if the coremask contains more than one core, then the
process may run on any of the cores in the coremask. This is a way of limiting the process to a
subset of the available cores.

When oncpu is used to start a SE-UM application on multiple cores, the SE-UM application
begins to run on only one core. Once the process begins to run, main() (defined in the Simple
Executive source file cvmx-app-init-linux.c) will fork() one instance of the SE-UM
application for each additional core, and use sched_setaffinity() to bind each process to
one core. The result is one SE-UM process for each core. This is very different from traditional
Linux applications where only one process is run on the cores in the coremask. See the next figure
for an illustration of the difference between using traditional Linux processes and SE-UM
processes with oncpu.

The set of processes created by one oncpu command is referred to as a load set. This set of
processes shares the text, read-only data, and cvmx_shared sections. They also have set-awareness
via the sysinfo data structure. This benefit is lost if multiple oncpu commands are used to start
the same process on multiple cores. More information is provided on these features later in this
chapter.

Note that while linux-filter is a good example of how oncpu may be used, the example
named-block is not a good example. In the named-block code, once the forked process
begins to run a test is made:

if (!cvmx_coremask_first_core(cvmx_sysinfo_get()->core_mask))
 return 0;

This test causes each program which is not the running on the first core to return without doing
anything.

The processes may be seen using the ps –ef command on the target.

Note: If you run a SE-UM application without oncpu it will run on all cores under the
control of Linux. The default coremask contains all cores under the control of Linux. This
is therefore equivalent to calling oncpu with a coremask of all cores.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-31

Figure 13: SE-UM Applications Started With oncpu on Multiple Cores

Using the oncpu command to start SE-UM Applications

After booting Linux, the oncpu command may be used to start SE-UM applications.

When more than one core is specified in the coremask argument to oncpu, one instance of
the SE-UM application will be run on each specified core.

This special processing begins when the SE-UM application begins to run on a core. The
function main() will fork() until a copy of the SE-UM process is running on every core
which has the corresponding bit set in the coremask. The main() will call the function
sched_setaffinity() to bind each SE-UM process to one core.

The set of SE-UM processes started by one load command is called a load set. All cores in
the load set share .text, read-only data (.rodata), and the cvmx_shared section.

All cores in the load set have set-awareness through the sysinfo data structure.

If the SE-UM application is started from the command line (for instance:
target# ./linux-filter), then main() will start one instance of the SE-UM application
on each SMP Linux core.

An example of using the oncpu command is presented in the SDK Tutorial chapter.

Details may be found in the SDK document “Linux Userspace on the OCTEON” in the section
“Controlling Core Affinity With oncpu”.

Sub-set of Cores specified by Coremask

One Load Set

Sub-set of Cores specified by Coremask

Traditional oncpu use: WITHOUT A SE APPLICATION: oncpu 0xE non-SE_app

LinuxLinux

SMP Linux (single copy)

SE-
UM
P1Driver

Linux
SE-
UM
P2

Linux
SE-
UM
P3

Cavium Networks result of using oncpu WITH a SE-UM application: oncpu 0xE SE_app

N cores and N SE-UM processes.

The SE-UM main() calls fork()
to fork (N-1) processes, and calls
sched_setaffinity() to bind
each SE-UM process to a core.

Linux

SMP Linux (single copy) N cores, 1 process may
run on any of N cores
specified in the coremask.Linux P Linux Linux

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.6 Booting Different ELF Files
If the system is a hybrid system with both Simple Executive and Linux, the Linux ELF file is
started separately on a different set of cores than the Simple Executive ELF file. Although Linux
can start a Simple Executive User-Mode Application, the most efficient way to run Simple
Executive is Standalone to avoid overhead added by Linux.

Figure 14: Hybrid Load Sets

One Load Set One Load Set

Linux

SMP Linux or other SMP-capable
OS (single copy). The SE-UM

processes started with one oncpu
command are in the same load set.

Linux Linux SE-S SE-S SE-S SE-S SE-S
Driver

SE-
UM

SE-
UM

All SE-S instances started with one bootloader
command are in the same load set.

Note that the Cavium Networks
Ethernet driver is not in the same load
set as the SE-UM applications.

Load Sets: Cores Loaded with the Same Load Command

The SDK Tutorial includes an example of booting two different ELF files (SMP Linux and
linux-filter), and also an example of running linux-filter as a Simple Executive User-
Mode Application.

If multiple load sets are used, as shown in the figure above, load the application on core 0 last.
Once the application is loaded onto on core 0, the other cores come out of reset and begin to run
their applications.

5.7 Synchronizing Multiple Cores
Synchronization between cores is critical, especially at system start-up when one core initializes
the hardware, and the other cores must wait until the initialization is complete.

There are three different synchronization environments, depending on how the cores were loaded:

1. Between cores in the same load set
2. Between cores in different load sets
3. SMP Linux cores

This section will provide more detail on these differences.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-33

5.7.1 Synchronizing Cores in the Same Load Set
The first synchronization environment is between cores started by the same load command, a “load
set”. The sysinfo data structure for each of these cores includes common synchronization
information.

All system initialization should be done by one core only, usually the first core in the core mask for
the application (if all cores are in the same load set). For SE-S or SE-UM applications which are in
the same load set, the function cvmx_barrier_sync() will cause the other cores to wait until
the initialization is complete.

For example, the following code from the passthrough example checks whether the code is
running on the first core in the core mask. If so, then the code initializes the hardware.

sysinfo = cvmx_sysinfo_get();
coremask_passthrough = sysinfo->core_mask;

/*
* Elect a core to perform boot initializations, as only
* one core should perform this function.
*
* cvmx_coremask_first_core returns 1 if this code is running on the first
* core in the core mask.
*/
if (cvmx_coremask_first_core(coremask_passthrough))
{
 if ((result =
 application_init_simple_exec(packet_termination_num+64)) != 0)
 {
 printf("Simple Executive initialization failed.\n");
 printf("TEST FAILED\n");
 return result;
 }
}
/* Wait until all cores in the given core mask have reached */
/* this point in the program execution before proceeding. */
cvmx_coremask_barrier_sync(coremask_passthrough);
 . . .

5.7.2 Synchronizing Cores in Different Load Sets
The second synchronization problem is between cores started by different load commands. In this
case, some special techniques are used. It is not possible to use bootmem global memory
(discussed in Section 11 – “Allocating and Using Bootmem Global Memory”) to create a shared
spinlock to use in initial synchronization because as of SDK 1.7.3, there is no function which
allocates the memory and atomically initializes it to a specific value. Thus there is no way to
initialize a spinlock for SE-S applications.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

A common technique is to have the initializing core initialize IPD last. The other cores can check
to see if the IPD has been enabled, as in the following code from the linux-filter example:

printf("Waiting for ethernet module to complete
initialization...\n\n\n");
cvmx_ipd_ctl_status_t ipd_reg;
do
{
 ipd_reg.u64 = cvmx_read_csr(CVMX_IPD_CTL_STATUS);
} while (!ipd_reg.s.ipd_en);

If there is further local initialization after the hardware initialization, the initializing application
could send a message via “work” to the waiting application. The waiting application could wait for
the IPD initialization, then perform the get_work operation to get the message that initialization
is now complete.

5.7.3 SMP Linux Synchronization
When running Linux on multiple cores, the cores all jump to the start address of the kernel, then
look at the core number. If the code is not running on the first core, the code spins waiting for the
first core to finish initializing the hardware and then change a variable in memory which will bring
all the other cores out of the loop at the same time.

5.7.4 Multiple SE-S or SE-UM ELF Files (Not Recommended)
The following configuration will work, but is not recommended. In this configuration, two
separate SE-S ELF files are booted, creating two different load sets. The two different load sets
will not share the sysinfo data structure, making it difficult to synchronize the cores, adding
coding complexity. In addition to this problem, more system memory is consumed because the
different load sets cannot share the .text and read-only data (.rodata) segments of the code. For
more information, see Section 11.3.1 – “The cvmx_shared Section is Not Always Shared”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-35

Figure 15: Multiple SE-S ELF Files (Not Recommended)

Pipelining can be done without dividing the packet processing into different programs, one per
core. Pipelining can be done with only one Simple Executive ELF file as shown in Figure 29 –
“Modified Pipelining”.

Similarly, multiple SE-UM ELF files are also not recommended, for the same reasons.

Figure 16: Multiple SE-UM ELF Files (Not Recommended)

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

6 Software Architecture
When designing the software, it helps to separate two basic types of processing: normal packet
processing (fast path), and exception processing (slow path).

Depending on the number of cores available, different configurations of cores devoted to either fast
path or slow path processing can be used to optimize throughput.

This is a brief discussion of the issues and choices.

6.1 Control-Plane Versus Data-Plane Applications
Application functions may be divided into two categories: control plane (slow path), and data
plane (fast path). The control plane usually handles exceptions. The data plane handles normal
packet processing.

SE-S applications may be used for both control plane and data plane. SE-S applications provide
the lowest overhead and highest potential for scaling. The next best solution (a typical solution) is
SE-UM for control plane and SE-S for data plane.

If necessary, SE-UM applications may be used for both control plane and data plane. This solution
is sometimes necessary if there is only one core, and the application cannot be ported to Simple
Executive.

The fastest multicore solution is to run one Simple Executive load set on all the cores. Note
that only ONE Simple Executive ELF file has been downloaded to run on multiple cores,
even if some cores are responsible for slow path and others responsible for fast path
processing.

When running multicore applications, only one core does the initialization routine.

 Figure 17: SE-S Used for Both Control-Plane and Data-Plane Applications

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-37

Or Linux may run on one or more cores, with Simple Executive on the others.

Figure 18: Linux for Control-Plane and SE-S for Data-Plane Applications

6.2 Event-driven Loop (Polling) Versus Interrupt-Driven Loop
There are two different models for receiving packets to process: an event-driven loop (polling) or
an interrupt-driven loop.

An event-driven loop looks like:
while (there is work do do)
{
 do the work
}

Typically, OCTEON programmers design software to use the event-driven loop. The Cavium
Networks Ethernet Driver uses a hybrid of an interrupt-driven and event loop. In this loop, the
driver sleeps when there is no work to do. When there is more work to do, an interrupt is sent to
the driver. Then the driver processes all the work available until there is no more work to do.

The following code fragment shows the event-driven loop used in linux-filter when the code
is run as a SE-S application:

while(1)
{
/* In standalone CVMX, we have nothing to do if there isn't work,
so use the WAIT flag to reduce power usage */
 cvmx_wqe_t *work = cvmx_pow_work_request_sync(CVMX_POW_WAIT);
 if (work == NULL)
 continue;
 . . .

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following code fragment shows an event-driven loop used in linux-filter when the code
is run as a SE-UM application. Note that this code performs the get_work operation, bypassing
the Cavium Networks Ethernet Driver.

while (1)
 {
 cvmx_wqe_t *work = cvmx_pow_work_request_sync(CVMX_POW_NO_WAIT);
 if (work == NULL)
 {
 /* Yield to other processes since there is no work to do */
 usleep(0);
 continue;
 }
 . . .

The event-driven loop is a higher performance processing architecture than the interrupt-driven
loop. In an event-driven loop, when the core is ready for work and work is available, it gets the
work; when there is no work, the core loops looking for work to do. When using an interrupt-
driven loop, there may be a delay between work available and the process being notified. SSO
(POW) interrupts are configured based either on a time counter or the quantity of work available
for a particular group (via the POW_WQ_INT_CNT registers). Instead of looping looking for
work, the interrupt-handler thread exits, then is called again when the interrupt occurs. This not
only can result in work being processed less quickly, but also results in more context switches,
costing unnecessary system overhead.

The Cavium Networks Ethernet driver uses a modified interrupt-driven loop: once the interrupt
occurs, the receive function performs the get_work operation to receive up to 60 packets, then
exits. This is done to prevent the transmit function from being starved for CPU time. This code is
also not as efficient as an event-driven loop. The Cavium Networks Ethernet driver code is located
in $OCTEON_ROOT/linux/kernel_2.6/linux/drivers/cavium-ethernet.

6.3 Using Work Groups in Packet Processing
Work Groups were previously mentioned in the Packet Flow chapter.

6.3.1 Work Groups
The Work Queue Entry data structure was introduced in the Packet Flow chapter. This data
structure contains a field “Grp” which stands for Group (Work Group). The group number is set
by the PIP/IPD Unit, based on the settings of its configuration register when the packet is received.
Group values range from 0-Y where Y is one less than the number of groups supported by the
OCTEON model.

Figure 19: The First Two Words of the Work Queue Entry

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-39

6.3.2 Configuring the Per-Core Group Mask in the SSO Scheduler
When a core performs a get_work operation, the request goes to the SSO Scheduler.

The SSO Scheduler maintains a per-core group mask. This group mask has one bit set for each
group the core will accept work from. Cores may accept work from any or all work groups. When
the scheduler receives the get_work request, it will schedule the highest priority WQE which is,
based on its group, schedulable to the core.

Cores may receive work from any and all groups. Multiple cores may receive work from the same
work group. This technique provides easy load-balancing, and also allows the creation of a special
type of work, such as monitoring information, which can be processed by only one core.

Figure 20: Each Core May Accept Work from Any and All Groups

The simplest way to set the core’s group mask is by using the Simple Executive function
cvmx_pow_set_group_mask(). The arguments to this function are the core number and the
group_mask for the core. An example of using this function is presented in the SDK Tutorial
chapter.

The cvmx_pow_set_group_mask() function modifies the per-core SSO (POW) registers:
POW_PP_GRP_MSK(N), where N represents the core number: on a 16-core system N ranges
from 0-15. (“PP” stands for “packet processor”, which simply means “core”.)

Inside the POW_PP_GRP_MSK(N)register, the field GRP_MASK is used to control which groups
the core accepts work from. Each bit in the GRP_MSK represents a group: if bit 0 in the mask is
set, group 1 work is accepted, and so on. There are Y groups. Typically (but not always), N = Y
(the number of groups matches the number of cores in the system). Each group is represented by a
bit in the mask. Group 0 is represented by 1 << 0. Group 15 is represented by 1 << 15.

When the core performs the get_work operation, only work with a group number corresponding
to a bit set in the core’s GRP_MSK is returned.

In the following table, core 0 is configured to only receive work with group number 15. Core 1 is
configured to receive work from groups 0 and 14. (The linux-filter example uses this
configuration.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 6: Setting the Cores’s Group Mask in the SSO

Group Mask [GRP_MSK)] Notes

Group 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

C
o
r
e
.
.
.

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Only group 15 work
is schedulable to this
core.

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Only groups 0 and 14
work is schedulable
to this core.

2
3

Once the group mask is set, the scheduler will only return the highest-priority work which can be
scheduled to this core.

The cores may also be configured to accept work from a limited set of QoS Input Queues, and to
adjust the priority of the QoS Input Queues they accept work from. Inside the
POW_PP_GRP_MSK(N)register, the fields QOS[N]_PRI (one for each QoS priority) is used to
control the QoS Input Queue priority for the core. A value of 0xF prevents the core from
receiving work for that QoS level.

In the following figure, the core will receive the first schedulable group 0 work in from the highest
priority QoS Input Queue (as viewed from the core’s QOS[N]_PRI field). This is a highly
simplified view of SSO scheduling based on groups.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-41

Figure 21: Cores Can Receive Work Based on Their Group Mask

Note that the core may be idle if there is work to do, but none of it is in a work group accepted by
the core. Part of load-balancing is making sure the cores are as busy as possible. The core in the
next figure can be configured to accept work from more groups.

SSO UNIT

QoS Input Queues
Next
WD

G2

G0

G1

G3

G0

G1

G0G0

G0 G1

G0G2

G0

G1G3

G2 G0

G0G1

G0 QoS 0
Queue

Queue
Heads

QoS 1
Queue

QoS 2
Queue

QoS 3
Queue

QoS 4
Queue

QoS 5
Queue

QoS 6
Queue

QoS 7
Queue

The Cores can Receive New Work from Any or All Groups, Depending on their Group Mask

The first schedulable G0 Work Descriptor is returned by the scheduler, in this example the WD is from QoS 0 Queue. Note
that the scheduling algorithm is highly simplified in this figure.

Core N
only

accepts
G0 work

1 get_work()3

2

SSO Scheduler 4 WQE pointer

from
Group 0 (G0)

Chosen by
the scheduler
for this core.

The scheduler
will only return
work which is in
a work group
the core
accepts. If no
suitable work is
found, the
scheduler
returns NULL.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 22: A Core is Idle if No Suitable Work is Available

SSO UNIT

QoS Input Queues
Next
WD

G2

G2

G1

G3

G2

G1

G1G2

G1 G1

G2G2

G1

G1G3

G2 G1

G3G1

G1 QoS 0
Queue

Queue
Heads

QoS 1
Queue

QoS 2
Queue

QoS 3
Queue

QoS 4
Queue

QoS 5
Queue

QoS 6
Queue

QoS 7
Queue

A Core is Idle if No Suitable Work is Available
If no G0 work is found, the scheduler returns NULL. Note that the scheduling algorithm is highly simplified in this figure.

Note that in this simplified drawing, only the group (G) field In the work descriptor is show. G1 represents Group 1.

Core N
only

accepts
G0 work

1 get_work()

4 NULL

3 NULL

2

SSO Scheduler

The scheduler
will return NULL
if no suitable
work is found.

Groups may be used for many purposes: they are a flexible tool.

The PIP/IPD assigns the initial group number. After the work is assigned to a core, the core may
change the group number by performing the swtag_desched operation.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-43

6.3.2.1 Passing Work From One Core to Another Core
The following steps are used to pass work from one core to another core:

1. The swtag_desched operation deschedules the work from the core. The work remains
in the In-Flight Queue so that ordering properties are maintained.

2. The corresponding Work Descriptor (WD) is unscheduled from the core and its state is set
to Descheduled.

3. Once the WD is the head of its In-Flight Queue, a pointer to it is stored in the Descheduled-
Now-Ready List (DS-Now_Ready List). The WD can now be scheduled to a new core.
(There is one DS-Now-Ready List per group. These lists contain only pointers to WDs
which are ready to be rescheduled because each is the head of its In-Flight Queue.)

4. A new core will receive the now-ready WD when the core performs the get_work
operation and the SSO schedules now-ready WD to the core.

The DS-Now-Ready List has a higher priority than the QoS Input Queue, which allows now-ready
in-flight work to complete prior to new work.

This technique may be used to pass a packet from one core to another. For example, in linux-
filter, groups are used to pass messages between data-plane and control-plane cores. This
example is presented in Section 6.6 – “Example: linux-filter”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 23: Scheduling Previously Descheduled Work

SSO UNIT

QoS Input Queues
QoS
Next
WD

G2

G0

G1

G3

G0

G1

G0G0

G0 G1

G0G2

G0

G1G3

G2 G0

G0G1

G0 QoS 0
Queue

Queue
Heads

QoS 1
Queue

QoS 2
Queue

QoS 3
Queue

QoS 4
Queue

QoS 5
Queue

QoS 6
Queue

QoS 7
Queue

Scheduling Previously Descheduled Work

Note: In this example only the group field (G) of the Work Descriptors (WD) are shown, and only one
core is shown.
Note: This view of the SSO Scheduler is simplified: the details of the configurable scheduling
algorithm are not shown.

Core N
only

accepts
G0 work

1 get_work()

4

In this example, core N only accepts work from group 0.

SSO Scheduler Steps Shown in this Figure:
1. Core N performs the get_work() operation, accepting work only from group 0 (G0).
2. If the Group 0 Descheduled-Now-Ready List (DS-Now-Ready List) is not empty, the scheduler

removes the entry from the DS-Now-Ready List and uses the corresponding
Work Descriptor (WD) in step 4. The scheduler goes to step 4. (As shown in the figure.)

3. Else there are no entries on the G0 Ready List. The scheduler now examines the Next WD entries
for the QoS Queues according to a configurable scheduling algorithm, looking for a WD which is
suitable for the core. If the scheduler finds a suitable WD, it removes it from the QoS Queue.
The scheduler goes to step 4.

4. If a suitable WD was found in either the DS-Now-Ready List or the QoS queues, the scheduler
assigns the WD to the core and returns the WQE pointer to the core.
Else (no suitable WD) was found, the scheduler returns NULL.

In-Flight Queues

G0G1

Chosen by
the scheduler
for this core.

2
 C

he
ck
 H
er
e

Fi
rs
t

3 Check Here Last

Head

SSO Scheduler
First check DS-Now-
Ready List(s), then, if
needed, check QoS

queues.

G0G0

Descheduled-Now-
Ready Lists (one list per

group)

G0 DS-Now-Ready List

G1 DS-Now-Ready List

GN DS-Now-Ready List

There is one
Descheduled
-Now-Ready
list per group.
When a
Descheduled
WD is the
head of its In-
Flight Queue,
a pointer to it
is put on a
DS-Now-
Ready List.
The WD is
now ready to
be
scheduled to
a new core.Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-45

6.4 Pipelined Versus Run-To-Completion Software Architecture
The OCTEON processor supports traditional pipeline, run-to-completion, and modified pipeline
architectures. On some processors, system constraints can force the architecture into a pipelined
model. For example, some processors can only run a limited number of instructions per core due
to limited instruction memory per core. The OCTEON processor does not have this limitation.

Example software architectures supported include:

1. Run-to-completion: In run-to-completion architecture, each core performs all the functions,
and the packet stays on the same core as it moves through the series of functions.

2. Traditional pipeline: In traditional pipeline architecture, each core handles one function
and the packet moves through the pipeline, changing cores as needed to pass through the
series of functions. The stages of the pipeline are bound to specific cores. On the
OCTEON processor, when each core completes its part of the processing, it changes the
packet’s work group to a new value, and performs the swtag_desched operation to send
the packet to the next core in the pipeline. The next core receives the packet when it
performs the get_work operation.

3. Modified pipeline: On the OCTEON processor, because there is no limitation on code size,
a modification of the traditional pipeline architecture can be used. A modified pipeline is
one where any core can process any stage of the pipeline: the stages are not bound to
specific cores. This modified architecture provides better load-balancing and scaling
capabilities than traditional pipelining.

6.4.1 Comparing Run-To-Completion and Traditional Pipelining
Pipelining can be very nearly as efficient as run-to-completion, measured from a strict performance
viewpoint.

The problems arise when writing and maintaining the software: pipe length adjustment, higher
context switching overhead, and the need to re-tune the system after adding new functionality:

• For best performance, the processing time of each pipe stage must be about the same
length, or else everything will stack up at the entry to the slowest stage. While that problem
can be mitigated by adding cores to the slower stages (in modified pipelining), it's a long
path to tune. In the future, when new functionality is added to a pipe stage then
performance degrades, and the system must be re-tuned.

• Pipelining adds context switches (in this case, SSO tag switches) to each packet's path. A
simple run-to-completion model can have 2-3 tag switches. Any pipeline model will have
at least one tag switch per pipe stage plus ordinary overhead which will still probably be
needed.

• Passing the packet from core to core will decrease utilization of the L1 data cache: each
core will have to fault in new cache lines as it picks up a new packet. If the same core had
continued operating on the packet, the data would still be in the L1 Dcache. The packet
will probably still be in the L2 cache, but this is not as efficient as having it in the L1
Dcache. See Section 9.4 – “Caching” for a brief introduction to caching on the OCTEON
processor.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

• Due to the extra cycles spent in the context switch passing the packet from core to core,
traditional pipelined architectures depend on optimizing the L1 instruction cache usage.
The instruction/code size must be small enough to fit into the L1 instruction cache to avoid
wasting cycles on cache misses.

A simpler run-to-completion model does not have the scaling and maintenance complexity, or the
additional overhead of the pipelined model.

6.4.2 A Quick Look at Packet Processing Math
The following example uses a 750 MHz processor, and Ethernet packets with an IMIX average
frame size of 353.8 bytes per frame.

To process packets at a line rate of 3.3 Mfps (Million frames per second), which is about 10 Gbps
of Ethernet traffic when the bytes times per frame is 374 byte times per frame, there are only 299.2
ns per frame to complete packet processing. Every cycle is precious at this speed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-47

Figure 24: Packet Processing Math

ݏ݁݉ܽݎ݂ 7 כ ݏ݁ݐݕܾ 64
݁݉ܽݎ݂ 1 ݏ݁݉ܽݎ݂ 4 כ ݏ݁ݐݕܾ 570

݁݉ܽݎ݂ 1 כ ݁݉ܽݎ݂ 1 כ ݏ݁ݐݕܾ 1518
݁݉ܽݎ݂ 1

ݏ݁݉ܽݎ݂ 12 ൌ 353.8
ݏ݁ݐݕܾ

݁݉ܽݎܨ

ݏ݁ݐݕܾ 354 ݏ݁ݐݕܾ 8 ݏ݁ݐݕܾ 12 ൌ ݁݉ܽݎ݂ ݎ݁ ݏ݁݉݅ݐ ݁ݐݕܾ 374

݁ݐܴܽ ݁݊݅ܮ
݁ݖ݅ݏ ݁݉ܽݎܨ ܦܨܵ & ݈ܾ݁݉ܽ݁ݎܲ ܩܨܫ

ݏݐܾ݅ 10,000,000,000
ݏ 1 כ

݁ݐݕܾ 1
ݏݐܾ݅ 8 כ

݁݉ܽݎ݂ 1
ݏ݁ݐݕܾ 374 ൌ ݏ݂ܯ 3.342

1
݁ݐܽݎ ݁݉ܽݎܨ ൌ

݀݊ܿ݁ݏ 1
ݏ݂ܯ 3.342 ൌ 299.2

ݏ݊
 ݁݉ܽݎ݂

1
ݕܿ݊݁ݑݍ݁ݎܨ ൌ

ݏ 1
ݏ݈݁ݕܿ ܯ 750 ൌ 1.3333

ݏ݊
 ݈݁ܿݕܿ

݁݉ܽݎܨ ݎ݁ ݁݉݅ܶ ݈ܾ݈݁ܽ݅ܽݒܣ
݀݅ݎ݁ܲ ݈݁ܿݕܥ ൌ

ݏ݊ 299.2
݁݉ܽݎ݂ 1 כ

݈݁ܿݕܿ 1
ݏ݊ 1.333 ൌ 224

ݏ݈݁ܿݕܿ ܷܲܥ
݁݉ܽݎ݂

݁݉ܽݎ݂ ݎ݁ ݏ݈݁ܿݕܿ ܷܲܥ
݈݁ܿݕܿ ݎ݁ ݏ݊݅ݐܿݑݎݐݏ݊ܫ ൌ

ݏ݈݁ܿݕܿ ܷܲܥ 224
݁݉ܽݎ݂ 1 כ

ݏ݊݅ݐܿݑݎݐݏ݊݅ 1.3
݈݁ܿݕܿ ܷܲܥ 1 ൌ 291

ݏ݊݅ݐܿݑݎݐݏ݊݅
݁݉ܽݎ݂

Calculating Instructions per Packet
As shown in the math below, the number of instructions used to process one packet before the next is received can be
small. Every cycle is precious at this speed.

Assumptions:

1. 10 Gpbs Line Rate (10,000,000,000 bits per second)
2. Data traffic is Ethernet
3. Assumed cnMIPS Instructions Per Cycle (IPC) is 1.3 MIPS/MHz (See Note 1)
4. OCTEON Processor with cnMIPS cores each running at 750 MHz

IMIX Average Frame Size:

That rounds to 354 bytes per frame.

Each frame at the IMIX average size requires 374 byte times:

IMIX Average Frame Size + Preamble & SFD + Inter-frame Gap

(Preamble is 7 bytes, Start Frame Delimiter (SFD) is one byte.)

The frame rate is thus:

The available frame processing time, therefore, is:

From this, we can see how many CPU cycles are available per frame. Each core clock cycle period is:

And the CPU cycles available are:

Last, the number of cnMIPS instruction per frame assuming an IMIX average, is

Note 1: The number of instructions executed per cycle may vary greatly depending on the application, compiler
optimizations, cache sizes and cache utilization, and the locality of the code.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In a traditional pipeline, that means the first stage has to accept a packet every 224 cycles (on a 750
MHz core). There are a total of 3,584 core cycles (16 cores * 224 cycles in each stage) to complete
packet processing on this packet (this extra processing time introduces a latency in packet
processing). For example, assume the number of instructions per cycle is 1.3. At 1.3 instructions
per cycle, 224 cycles is roughly 291 instructions per pipeline stage.

In this tight timeframe (10 Gbps), there is little time to do very much packet processing. To move
the packet down the pipeline, the first core performs a swtag_desched operation to pass the
WQE pointer to the next core. The receiving core performs a get_work operation to receive the
WQE pointer. This is repeated for each stage in the pipeline. Spending unnecessary cycles on
extra operations should be avoided if possible in order to achieve performance goals.

The run-to-completion model minimizes cycles spent on switches. Each core has 3,584 core cycles
before it needs to accept another packet (assuming no switches occur).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-49

Figure 25: Run-To-Completion Versus Traditional Pipelining

Note that as packet size increases, the packet rate drops dramatically. It is easier to keep up with
the line rate when using larger packet sizes. There is a fixed per-packet overhead. Using a larger
packet size will reduce the amount of overhead for the same data transfer.

6.4.3 Run-To-Completion
In run-to-completion architecture, each data-plane core runs the same application. Each core may
receive new work and process it to completion. One core cannot stall packet processing for the
system, only for the single packet involved.

Run-to-Completion

Switch

Switch

Switch

Run To
Completion

Core 0

Core 1

Core 2

Core 3

Wasted
Cycles

Stage 1

Core 0

Stage 2

Stage 3

Stage 4

Traditional Pipelining

Core 3

Run-To-Completion is Useful for High Performance Packet Processing Where Every Cycle Counts

The code is divided into stages. Each
stage takes the same amount of time.
To move through packet processing, the
packet is switched from core to core
down the pipeline.

Each core receives the
packet, processes it,

and transmits it.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 26: Simplified Run-To-Completion Architecture

Run-to-completion is easy to scale, as shown in the following figures. Simply add cores.

Packet

2

Packet

1

Pa
ck

et

0

Pac
ke

t

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-51

Figure 27: Scaling Run-To-Completion Architecture

Note that the run-to-completion model also keeps cores busy: if there is something to do, a core
will get the work and do it.

Pac
ke

t

15

Packet 12
Packet

11 Packet

10

Packet
9

Packet
8

Packet

7

Packet

6

Packet 4

Pa
ck

et

3Pa
ck

et

2

Pa
ck

et

1

Pa
ck

et

0

Work groups and tag types can be used to route packets to specific cores.

In the figures above, no switches are shown. It is not unusual to use 2-3 switches in the run-to-
completion model (for instance, the switch to the ATOMIC tag type to use packet-linked locking).
Switches may or may not move the WQE to a different core.

Switches and work groups may be also used to send work between the control plane and data
plane.

6.4.4 Traditional Pipelining
A simplified view of traditional pipelining is that each core handles part of packet processing, and
the packet is passed from one core to the next until processing is complete.

On the OCTEON processor, this might be handled by having each core receive only one group.
After each core completes its part of the packet processing, it performs the swtag_desched

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

operation (changing the packet’s work group number) to pass the packet to the next core. In
traditional pipelining, each core will only accept work from one group.

Figure 28: Traditional Pipelining

ge
t_
wo
rk
()

Note that it can be more efficient for one core to get a packet, and do packet processing all the way
to completion instead of using stages. This will conserve the extra cycles spent on the
switch_desched operation. This example is merely being used to illustrate the capability for
modified pipelining. Run-to-completion is typically a higher performance architecture.

6.4.5 Modified Pipelining
If a pipelining architecture must be used on the OCTEON processor, the recommended architecture
is the modified pipelining architecture.

To use modified pipelining, cores may process more than one stage of packet processing. This is
easy to implement by modifying the per-core group masks in the SSO.

In this model, each core can run the same application. After the get_work operation returns a
WQE pointer to the core, the core can execute the appropriate function based on the packet’s work
group.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-53

Figure 29: Modified Pipelining

S1

g
e
t
_
w
o
r
k
(
)

S1

The core’s group mask can easily be modified to add or subtract groups. This makes load-
balancing and adding new functionality simpler than the traditional pipelining model. This
technique also allows cores to be in the same load set, with the shared data and synchronization
advantages provided by a single load set.

Figure 30: Modified Pipelining: Using Groups to Load Balance

To

P
K
O
O
u
tp
u
t

Q
ue
u
e

g
e
t
_
w
o
r
k
(
)

Gro
up

 0

Grou
p 1

Grou
p 2

Group 3

S2
S2

Note that modified pipelining, like traditional pipelining, has the disadvantage of cycles spent on
swtag_desched and get_work operations. Load balancing is also still a problem when new
functionality is added. The run-to-completion model is usually the easiest architecture to load-
balance and scale.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

S
E

R
W

 O
V

W

 OCTEON Programmer’s Guide

3-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

V
IE

6.5 Other Software Architecture Issues

6.5.1 Scaling
A key software architecture goal is to create software which scales well. Scaling refers to adding
cores to a system to improve throughput. This is often needed as the system throughput needs
increase over time.

In traditional pipelined processing, there is one function to a core: a static core allocation. This
hard-coded architecture is difficult to tune for performance, to load-balance, and to scale.

Both run-to-completion and modified pipelining scale well. By using groups and tag types,
software architecture can be created which scales well, is easy to tune for performance, and is easy
to load-balance. A well-designed system will easily scale when cores are added.

Key elements of a well-designed system:

1. Locking: eliminate locks or minimize critical sections. Use packet-linked locks (via
ATOMIC tags) when possible.

2. Cluster data which accessed at the same time into the same cache line so the core won’t
stall waiting for data. This is discussed in more detail in the OCTEON Performance Tuning
Whitepaper. Clustering data can reduce contention on the shared bus by one third, or about
33%.

3. Use a polling (event-driven) loop instead of an interrupt-driven loop

In the following figure, the data-plane cores are scaled up from 1 to 7 cores. In the next section,
the example linux-filter is discussed briefly. This is an example of an architecture designed
for scaling: by running linux-filter on a load set of multiple cores, performance can be
added to the data plane without changing the code.

Note that performance improvement from scaling depends on how much processing can be done in
parallel versus how much processing must be serialized. For more details, see “Amdahl's Law” at
http://www.wikipedia.org/. Designing an architecture which maximizes parallel processing will
result in the best performance improvement with scaling.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

http://www.wikipedia.org/

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-55

Figure 31: Scaling the Data Plane

More information on scaling and performance tuning can be found in the OCTEON Performance
Tuning Whitepaper.

6.5.2 Code Locality: Reducing Icache Misses
On some large, very high-performance applications, reducing L1 Instruction Cache (Icache) misses
can result in a significant performance improvement in some applications. This can be
accomplished by improving code locality.

Each MIPS instruction is 4 bytes long. The size of the Icache varies with OCTEON model. If the
Icache is 32 KBytes, then 8,192 instructions will fit into the Icache. Each cache line is 128 bytes
(32 sequential instructions).

Once the core loads a set of instructions into Icache, if it continues to run only that set of
instructions, the performance cost of Icache misses is 0.

For example, to take code locality to an extreme and reduce Icache misses to 0, the code is
logically divided into functions which are small enough to fit into each core’s Icache. This
division results in instruction locality: the same instructions to stay in the cache, eliminating cache

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

misses. Work groups may be used to route the packet to different cores as needed. Note that
performance analysis is needed to weigh the benefit of code locality versus the cost of any
additional switches.

This extreme type of code locality can only be accomplished with only SE-S applications, not SE-
UM applications. In the case of SE-UM applications, once the Linux Kernel runs (for instance,
due to a timer interrupt), the kernel will displace the application code from the Icache.

Figure 32: Using Code Locality to Reduce Icache Misses

One Load Set

32 KByte
Icache

Core
running
Group 0

Core
running
Group 1

Core
running
Group 2

Core
running
Group 3

32 KByte
Icache

32 KByte
Icache

32 KByte
Icache

Group 0 Code
(8192

instructions)

Group 1 Code
(8192

instructions)

Group 2 Code
(8192

instructions)

Group 3 Code
(8192

instructions)

The same SE-S program is running on all the cores.

Each core only accesses a small part of the code, and does not access the other parts if possible. To
accomplish this, the code is logically divided into functions which are small enough to fit into each core's
Icache. This division results in instruction locality: the same instructions to stay in the cache, eliminating
cache misses.

Work groups may be used to route the packet to different cores as needed.

Each MIPS instruction is 4 bytes long.

A 32 KByte Icache can fit 8192
instructions (32KBytes / 4 bytes per
instruction).

Using Instruction Locality to Minimize Icache Misses

SE-S
in-memory

image
code

Load Icache only onceLoad Icache only onceLoad Icache only once

Load Icache only once

In the figure above, the cores are all in the same load set (running the same ELF file) but accept
different groups and perform the different functions which match the group number. Each core
may accept more than one group (perform more than one function).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-57

In a less extreme situation, performance can be improved by increasing code locality while running
a larger amount of code which does not fit in the Icache. For example, functions which are defined
in the same source file are kept together by the linker. This may increase the possibility that they
will share a cache block with another function needed by the same core. Similarly, when deciding
which cores will perform which functions it is a good idea to look for opportunities to increase
locality.

See Section 9.4 – “Caching” for a brief introduction to the L1 Cache.

6.5.3 Load-Balancing
Load-balancing is tuning the system so each core is working to its fullest capability. In a
traditional pipelined system, load-balancing consists of making sure each processor uses the same
amount of packet processing time, so one processor cannot stall the pipeline.

In the modified pipelining or the run-to-completion architecture which use the concept of work
groups, load-balancing becomes simpler. For instance, in modified pipelining, the work can be
divided into processing stages, with each stage represented by a group. To add more power to a
processing stage, allow more cores to accept work with the group corresponding to the impacted
stage. Similarly, underutilized cores may accept work from more work groups. This is shown in
the figures in Section 6.4.5 – “Modified Pipelining”.

In the run-to-completion architecture, the different flows may be spread across the cores. For
example, the PIP/IPD may be configured to assign the group number based on the tuple hash
instead of the port number.

6.6 Example: linux-filter
An example of a design separating control path and data path, using a hybrid system is the
examples/linux-filter example. This example shows a different use of work groups than
modified pipelining: work groups are used to communicate between the data plane and control
plane.

In this example, a Simple Executive application runs on one or more cores. Linux is also running
on one or more cores. The cores running the Simple Executive application (filter) receive all
incoming packets, check the packet type, and only send packets which are not IP broadcast to
Linux.

Note that an ideal control path will only handle packets which are exceptions. In linux-
filter, the control path is given packets which are not exceptions. This example is simplified
and is intended only to illustrate packet filtering by a SE-S application, and passing packets
between the control and data path. It is not intended for unmodified use in packet processing.

This program uses the idea of Work Groups to separate cores belonging to the fast path from those
belonging to the slow path. Additionally, groups are used to identify the next processing phase.
This example may be used as the base for an application which does similar processing.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In this example, Simple Executive (fast path) cores accept work for group 0 (new packet), and
group 14 (response to packet received and processed by Linux). Linux cores (slow path) accept
work for group 15.

The next two figures show linux-filter processing, without showing the rest of the OCTEON
processor, or the connections between the hardware blocks. The packet interfaces are not shown in
these figures. Although these figures show only two cores, many more cores may run linux-
filter or Linux simultaneously.

In the first figure, the core receives an IP Broadcast Ping packet. The Simple Executive
application, linux-filter, running on the fast path cores drops the packet (does not send it to
the slow path (Linux) cores.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-59

Figure 33: Example: Linux-filter Drops a Broadcast IP Packet

The hardware units and data plane cores perform a large amount of packet processing
without requiring any action from the cores running the control plane. Processing is shown in
steps 1-4, below.

OCTEON HOST

Data Plane

SSO - Schedule/
Synchronization

/Order

PKO – Packet
Output Unit

1. Ping
(broadcast)

2. add_wo
rk – group 0 3. get_work result – group 0

Data Plane: Cores 1 and 2
Running linux-filter as a SE-
S application: accepts work for
groups 0 and 14

Note that either data-plane core
can handle the packet processing.

Control Plane

Control Plane: Core 0
Running: Linux Operating
System
The control plane does not need
to process this packet: it is
offloaded.

SE-S

SE-S

linux-filter: Offloading the Control Plane

Linux
Driver

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the

SSO.
Step 3: A data-plane core calls get_work() and receives

the packet.
Step 4: The data-plane core tests the packet: Test if packet

((broadcast) && (IP)) = TRUE, therefore discards
packet by calling
cvmx_pip_free_packet_data() and
cvmx_fpa_free() to free Packet Data Buffer and
Work Queue Entry.

RX

TX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-60 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In the following figure, the Simple Executive application, linux-filter, accepts a non-
broadcast ping packet, and forwards the packet to Linux. Linux sends a reply via linux-
filter.

The exact details on how to run and test this example are presented in the SDK Tutorial chapter.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-61

Figure 34: Example: Linux-filter Forwards a Non-Broadcast IP Packet

The hardware units and data plane cores perform a large amount of packet processing without requiring any
action from the cores running the control plane. Processing is shown in steps 1-12, below.

OCTEON HOST

Data Plane

SSO - Schedule/
Synchronization

/Order

PKO – Packet
Output Unit

1. Ping
(not broadcast)

2.
 ad

d_w
ork

–

gro
up

0

3. get_work result – group 0

5. a
dd_w

ork
- grou

p 15

6. get_work result –

group 15

8. add_work -
group 14

9.
get_

work
 res

ult
– grou

p 14

11
.
To
 P
KO
 C
om
ma
nd
 Q
ue
ue

12. Ping reply

Data Plane: Cores 1 and 2
Running linux-filter as
a SE-S application: accepts
work for groups 0 and 14

Note that either data-plane
core can handle the packet
processing.

Control Plane

Control Plane: Core 0
Running: Linux Operating System
accepts work for group=15

SE-S

SE-S

linux-filter: Forwarding a Packet to the Control Plane

Linux
Driver

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the SSO.
Step 3: Data-plane core calls get_work() and receives the packet.
Step 4: Data-plane core tests the packet: Test if packet ((broadcast) &&

(IP)) = FALSE. Send packet to Linux.
Step 5: Data-plane core changes the group to 15 and sends the packet to

the SSO
Step 6: Control-plane core calls get_work() and receives the packet.
Step 7: Control-plane core processes the ping request and replies, using

Group 14
Step 8: Control-plane core sends the packet to the SSO.
Step 9: Data-plane calls get_work() and receives the packet.
Step 10: Data-plane receives the ping reply
Step 11: Data-plane core sends packet to PKO for transmit.
Step 12: PKO sends ping reply.

RX

TX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-62 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

7 Application Binary Interface (ABI)
Several Application Binary Interfaces (ABIs) are supported for Simple Executive and Linux
applications. Simple Executive and Linux applications may be compiled for 32-bits or 64-bits.
The 64-bit mode is usually the highest performing choice. Note that the Linux Kernel is always
64-bit; only the Linux applications may be compiled for 32-bit mode.

To select the ABI, use the makefile option OCTEON_TARGET, as in “make linux-filter
OCTEON_TARGET=linux_64”. The different choices for OCTEON_TARGET can be seen in the
file $OCTEON_ROOT/common.mk.

For Simple Executive, the preferred ABI is EABI. For Linux, the preferred ABI is linux_64.

All the ABIs create ELF-format files.

7.1 ABI Choices
There are several ABI choices available. Which ABI is used depends on whether the application is
64-bit or 32-bit, and whether the application is run as a SE-S or SE-UM application. The target is
the ELF executable file.

7.1.1 EABI (OCTEON_TARGET=cvmx_64): SE-S 64-Bit
The Simple Executive applications are created with this ABI. The matching toolchain is
“mipsisa64-octeon-elf-*”. This ABI supports 64-bit registers and address space. This
ABI is the default for Simple Executive.

7.1.2 N64 (OCTEON_TARGET=linux_64): SE-UM 64-Bit
The 64-bit Linux applications are created with this ABI. The matching toolchain is “mips64-
octeon-linux-gnu-*” with the “-mabi=64” option. This ABI supports 64-bit registers
and address space. This ABI is the default for Linux kernel and user space. The resulting binary is
in ELF64 format.

For example, linux-filter can be compiled with this option. The resultant target file is
$OCTEON_ROOT/examples/linux-filter/linux-filter-linux_64. This file may
be added to the embedded rootfs. When vmlinux.64 is booted, the file is automatically included in
the /examples directory on the target, and has been renamed from
linux-filter-linux_64 to linux-filter.

7.1.3 N32 (OCTEON_TARGET=cvmx_n32): SE-S 32-Bit
Simple Executive 32-bit applications are created with this ABI.

The same ABI is used for SE-UM 32-bit applications, but the toolchain is different for SE-S 32-bit
applications:

• The N32 toolchain for Simple Executive is “mipsisa64-octeon-elf-*” with the
“-mabi=n32” command line option. This ABI supports 64-bit registers and 32-bit

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-63

address space. The resulting binary is in ELF32 format, whose symbol table is in DWARF
format.

7.1.4 N32 (OCTEON_TARGET=linux_n32): SE-UM 32-Bit
Simple Executive Linux User Mode 32-bit (SE-UM 32-bit) applications are created with this ABI.
The same ABI is used for SE-S 32-bit applications, but the toolchain is different for SE-UM 32-bit
applications:

• The N32 toolchain for Linux is “mips64-octeon-linux-gnu-*” with the
“-mabi=n32” option.

Note: SE-UM 32-bit applications are useful for compatibility with older code. Applications using
large data structures may also get a benefit from pointers being smaller and taking less room. The
downside is that there is much less memory available to 32-bit applications. These 32-bit Linux
applications must use reserve32, a special region of free memory which is low enough to have
32-bit physical addresses (the “shallow end” of the memory pool). 32-bit SE-S applications do not
use reserve32.

7.1.5 O32 (linux_o32) (Not Recommended)
The older O32 ABI is in ELF32 format with the symbol table in .mdebug (dot mdebug) format. All
registers are treated as 32 bits. The 64-bit types are split into two separate registers.

Although the Cavium Networks compilers can compile o32 applications, they cannot link them: no
o32 libraries are provided. To build o32 applications (which will NOT take advantage of Cavium
Networks-specific instructions), use the Debian compiler.

7.1.6 Linux uclibc (linux_uclibc)
Linux applications are built with the smaller uclibc instead of glibc. The uclibc library is 32-bit
only.

7.1.7 Choosing the OCTEON_TARGET
Linux code requiring large amounts of memory and the fastest possible access to OCTEON
hardware should use the N64 ABI.

Linux code requiring many data structures dealing with pointers, but requiring only occasional
hardware access should use the N32 ABI.

Some older applications and binaries may still use the O32 ABI, but it is recommended that they be
upgraded to the N32 ABI.

A detailed discussion of Linux ABIs is located in the SDK document “Linux Userspace on the
OCTEON”.

7.2 64-Bit Porting Issues
The key difference from a software porting perspective is in the following variables:

1) Size of long

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2) Size of (void *)

With N32, be alert to automatic sign extension when loading 32-bit values into 64-bit registers.
The N32 registers are 64 bits, but sizeof(void *) = 32 bits, so when loading a 32-bit value
into a 64-bit register, it is automatically sign extended.

The following tables provide the ABIs, data type length and toolchain information for SE-S and
SE-UM applications, as well as information on the older O32 ABI.

Table 7: Key ABI Differences
(the most useful values are highlighted)

Data Type O32 N32 N64 and
EABI64

int 32 bits 32 bits 32 bits
long 32 bits 32 bits 64 bits
long long 64 bits 64 bits 64 bits
pointer 32 bits 32 bits 64 bits
register 32 bits 64 bits 64 bits

Table 8: SE-S ABIs (N32, EABI64), Data Type Lengths, and Toolchain
(the most useful values are highlighted)

Application Type SE-S
32-bit

SE-S
64-bit

Data Type N32 (see Note
1)

EABI64

int 32 bits 32 bits
long 32 bits 64 bits
long long 64 bits 64 bits
pointer (void *) 32 bits 64 bits
register 64 bits 64 bits
Toolchain mipsisa64-octeon-elf-*
Note 1: Function calls are not ABI-conformant in this
toolchain.

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-65

Table 9: SE-UM ABIs (N32, N64), Data Type Lengths, and Toolchain
(the most useful values are highlighted)

Application Type SE-UM
32-bit

SE-UM
64-bit

Data Type N32 N64
int 32 bits 32 bits
long 32 bits 64 bits
long long 64 bits 64 bits
pointer (void *) 32 bits 64 bits
register 64 bits 64 bits
Toolchain mips64-octeon-linux-gnu-*

Table 10: Other ABI (O32), Data Type Lengths, and Toolchain
(the most useful values are highlighted)

Application Type Other
32-bit

Data Type O32
int 32 bits
long 32 bits
long long 64 bits
pointer (void *) 32 bits
register 32 bits (see Note 1)
Toolchain Debian
Note 1: Registers are not 64-bits, unlike the
other ABIs.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Two key things to remember when writing portable code:
1. Use stdint.h data types. Data types, such as uint64_t, are defined in this file in a

portable way. This is the most important priority in writing portable code. In the executive
and in examples, stdint.h is included indirectly: they include cvmx.h which includes
executive/cvmx_platform.h which includes stdint.h.

2. When using printf() to print pointers, use “%p”.

Note: Be careful to use the functions cvmx_ptr_to_phys() and
cvmx_phys_to_ptr() when converting between physical addresses and virtual
addresses. 90% of porting problems come from mistakenly using casts on physical and
virtual addresses.

8 Tools
This section provides a quick overview of some of the tools. Tools are discussed in further detail
in the SDK Tutorial chapter.

8.1 GNU Cross-Development Toolchain
Cross-development tools are tools run on the host machine to build object files which will run on
the target machine.

In the tools/bin directory, there are two sets of tools including the cross compiler, linker, and
libraries. One set is prefixed “mipsisa64-octeon-elf”; the other set is prefixed “mips64-
octeon-linux-gnu”. These tools have been modified to support OCTEON-specific
instructions to achieve maximum runtime performance, and support the Cavium Networks-specific
section: cvmx_shared.

8.1.1 The Cavium Networks-Specific cvmx_shared Section
Cavium Networks toolchains support a cvmx_shared section, used to share small amounts of
memory between cores started from the same load command.

8.1.1.1 Sections
When object files are created by the compiler, they are divided into different sections. Four
common sections are .text, .rodata, .data, and .bss. The .text section is read-only executable code,
.rodata is read-only data, .data is initialized data, and .bss is uninitialized data (which is initialized
to 0 when the section is loaded). Because the .text section of an object file is read-only, multiple
instances of the same object file may share this information in memory, which conserves system
memory. This also allows the bootloader to collect sections with similar access permissions into
the same block of memory (for instance .text and .rodata which are both read-only) allowing the
system to use fewer TLB entries to map the program. (See Section 10 – “Virtual Memory”.)

The sections can be seen with the objdump command. Most of these sections can be ignored by
the programmer. There is one which the programmer needs to be aware of, however, and that is
the cvmx_shared section.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-67

host$ mipsisa64-octeon-elf-objdump -h fpa
fpa: file format elf32-bigmips

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reginfo 00000018 10000000 10000000 0001c058 2**2
 CONTENTS, READONLY, LINK_ONCE_DISCARD
 1 .init 00000028 10000018 10000018 00001018 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .text 00016058 10000040 10000040 00001040 2**3
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 3 .fini 00000020 10016098 10016098 00017098 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 4 .rodata 00003368 100160b8 100160b8 000170b8 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .eh_frame 00000404 10019420 10019420 0001a420 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 .ctors 00000010 12000000 12000000 0001b000 2**3
 CONTENTS, ALLOC, LOAD, DATA
 7 .dtors 00000010 12000010 12000010 0001b010 2**3
 CONTENTS, ALLOC, LOAD, DATA
 8 .jcr 00000008 12000020 12000020 0001b020 2**3
 CONTENTS, ALLOC, LOAD, DATA
 9 .data 00000f88 12000028 12000028 0001b028 2**3
 CONTENTS, ALLOC, LOAD, DATA
 10 .sdata 000000a8 12000fb0 12000fb0 0001bfb0 2**3
 CONTENTS, ALLOC, LOAD, DATA
 11 .sbss 000000a0 12001058 12001058 0001c058 2**3
 ALLOC
 12 .bss 00000458 120010f8 120010f8 0001c058 2**3
 ALLOC
 13 .cvmx_shared_bss 000012b0 14000000 14000000 0001c058 2**3
 ALLOC

<The remaining sections are not shown here.>

8.1.1.2 The cvmx_shared Section
Both SE-S and SE-UM applications support the cvmx_shared section, a Cavium Networks-specific
section which is used to provide a shared data space for applications started with the same boot
(load) command or one oncpu command.

When cores are in the same load set, shared variables can be created at compile time by specifying
the CVMX_SHARED attribute. Variables declared with the CVMX_SHARED attribute are put
into a special section in the compiled file: .cvmx_shared_bss.

If the cvmx_shared section is large, the ELF file will also be large. This can cause problems, for
instance during load time. For example, when running very large SE-S programs (which will
consume above the virtual address 0x20000000) 1:1 mappings cannot be used. As an
alternative, when large amounts of shared memory are desired, the variable stored in the
cvmx_shared section should be only a pointer. At application initialization time, the initializing
core can use the bootmem functions to allocate shared memory from memory outside the 256
MByte program space. The initializing core can then put the address of the allocated memory into

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

the CVMX_SHARED pointer. This will keep the application size small, while allowing a large
amount of shared memory.

Usage of a CVMX_SHARED variable may be seen in the linux-filter example code:

CVMX_SHARED int intercept_port = 0;

The cvmx_shared (.cvmx_shared_bss) section can be seen with the objdump utility:

host$ mipsisa64-octeon-elf-objdump -h linux-filter
passthrough: file format elf32-tradbigmips

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reginfo 00000018 10000000 10000000 00036cd0 2**2
 CONTENTS, READONLY, LINK_ONCE_DISCARD
 <text omitted>
 13 .cvmx_shared_bss 00001358 14000000 14000000 00036cd0 2**3
 ALLOC
<more text follows>

Note: The bss (Block Started by Symbol) section is the name of the data section which contains
static variables which will initialized to zero by the ELF loader when it loads the program.

8.1.2 Link Addresses
Link addresses and section sizes for a specific application can be seen using the objdump utility.

For example, when linux-filter is built as a SE-S application:

host$ mipsisa64-octeon-elf-objdump -h linux-filter

linux-filter: file format elf32-tradbigmips

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reginfo 00000018 10000000 10000000 0001b6d8 2**2
 CONTENTS, READONLY, LINK_ONCE_DISCARD
 1 .init 00000028 10000018 10000018 00000098 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .text 000155b8 10000040 10000040 000000c0 2**3

8.1.3 Simple Executive Development Tools
The mipsisa64-octeon-elf-* tools are used to build Simple Executive Applications.

8.1.3.1 C/C++ Runtime Support for Simple Executive
The C/C++ runtime support for Simple Executive is specified in the SDK document “OCTEON
Simple Executive Overview”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-69

8.1.4 Linux Development Tools
The mips64-octeon-linux-gnu-* tools are used to build Linux Applications.

The cross-development tools are discussed in more detail in the SDK Tutorial chapter.

8.2 Native Tools (Run on the Target)
Native tools are those which may be run on the target instead of on the development host.

8.2.1 Native tools and Simple Executive
Simple Executive does not have a file system. Only one application runs. Thus there are no native
tools.

8.2.2 Native tools and Linux
Native tools are provided with both embedded_rootfs and Debian.

8.2.2.1 The embedded_rootfs Native Tools
Native Linux tools are usually located in /bin, /sbin, and /usr/bin.

8.2.2.2 Debian Native Tools
Two toolchains are provided with the Debian file system:

- The Debian native toolchain
- A Cavium Networks toolchain, optimized for the OCTEON processor.

These toolchains are used for native compiling.
The Cavium Networks native toolchain supports both 32-bit and 64-bit Linux applications. This
toolchain implements the Cavium Networks-specific instruction set. See the OCTEON Hardware
Reference Manual for instruction set details.

To compile O32 applications, use the Debian toolchain. Note that these applications cannot use the
Cavium Networks-specific instruction set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-70 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

9 Physical Address Map and Caching on the OCTEON
Processor

A brief introduction to hardware issues such as the physical address map and the concept of
caching is provided in this section.

9.1 Physical Address Map
There are two key elements in the physical address map:

1. System memory (DRAM)
2. I/O space

Out of 64 possible Physical Address Bits (PABITS), only 49 bits (PABITS=49) are used to access
the physical address space. These are bits <48:0>.

A simplified physical address map is shown in the next figure. Exact details may be found in the
OCTEON Hardware Reference Manual.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-71

Figure 35: Simplified Physical Address Map

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

9.2 System Memory (DRAM) Addresses
System memory (DRAM) is located starting at address 0 (zero). The amount of memory on the
board is a design option. The default Linux configuration supplied with the SDK requires 230
MBytes of memory, so a minimum of 256 MBytes of system memory is recommended for this
configuration. If less than 256 MBytes of system memory is available, see Section 4.3.7 – “Linux
on Small Systems (Limited MBytes of Memory)” for instructions on how to configure Linux to
require less system memory.

Note: The bootloader uses the first MByte of system memory. This space is needed even
after the bootloader exits. This space is used by the bootmem functions.

There are up to three regions of system memory: DRAM Region 0, DRAM Region 1, and DRAM
Region 2. (These regions are sometimes labeled as DR0, DR1, and DR2.) The actual memory
map will vary depending on the amount of DRAM installed in the target board.

If physical address bit 48 is 0, the access is to system memory (DRAM). Out of the 49 PABITS,
36 bits (<35:0>) are architected to access all of system memory.

9.3 I/O Space Addresses
The I/O space contains the OCTEON processor configuration and status registers for the various
hardware units and also contains the PCI configuration, I/O and memory space.

If physical address bit 48 is 1, the access is to I/O space.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-73

Table 11: Simplified View of I/O Space
Physical Addresses

I/O Space Addressed
FROM TO

0x1 F000 0000 0000 0x1 F00F FFFF FFFF FAU Operations
0x1 6000 0000 0000 0x1 6700 0000 03FF SSO (POW)
0x1 5200 0000 0000 0x1 5200 0003 FFFF PKO doorbell store operations
0x1 4F00 0000 0000 0x1 4F00 0000 07FF IPD
0x1 4000 0000 0000 0x1 4000 0000 07FF RNG Load/IOBDMA operations
0x1 3800 0000 0000 0x1 3800 0000 0007 ZIP doorbell store operations
0x1 3700 0000 0000 0x1 3707 FFFF FFFF DFA NCB type CSRs and operations
0x1 2800 0000 0000 0x1 2F0F FFFF FFFF FPA Pools Allocate/Free operations
0x1 2000 0000 0000 0x1 2000 0000 1FFF KEY Memory operation
0x1 1F00 0000 0000 0x1 1F0F FFFF FFFF NPI NCB type CSRs, doorbells
0x1 1B00 0000 0000 0x1 1E0F FFFF FFFF PCI Bus Memory space
0x1 1A00 0000 0000 0x1 1A0F FFFF FFFF PCI Bus IO space
0x1 1900 0000 0000 0x1 190F FFFF FFFF PCI Bus Config/IACK/Special space
0x1 1800 F000 0000 0x1 1800 F000 07FF IOB
0x1 1800 B800 0000 0x1 1800 B800 03FF ASX1
0x1 1800 B000 0000 0x1 1800 B000 03FF ASX0
0x1 1800 A800 0000 0x1 1800 A800 00FF TRA
0x1 1800 A000 0000 0x1 1800 A000 1FFF PIP
0x1 1800 9800 0000 0x1 1800 9800 07FF SPX1, SRX1, and STX1
0x1 1800 9000 0000 0x1 1800 9000 07FF SPX0, SRX0, and STX0
0x1 1800 8800 0000 0x1 1800 8800 007F LMC
0x1 1800 8000 0000 0x1 1800 8000 07FF L2C
0x1 1800 5800 0000 0x1 1800 5800 1FFF TIM
0x1 1800 5000 0000 0x1 1800 5000 1FFF PKO
0x1 1800 4000 0000 0x1 1800 4000 000F RNM
0x1 1800 3800 0000 0x1 1800 3800 00FF ZIP
0x1 1800 3000 0000 0x1 1800 3000 07FF DFA
0x1 1800 2800 0000 0x1 1800 2800 01FF FPA
0x1 1800 2000 0000 0x1 1800 2000 001F KEY
0x1 1800 1000 0000 0x1 1800 1000 1FFF GMX1
0x1 1800 0800 0000 0x1 1800 0800 1FFF GMX0
0x1 1800 0000 0000 0x1 1800 0000 1FFF MIO BOOT, LED, FUS, TWSI, UART,

SMI
0x1 0700 0000 0000 0x1 0700 0000 08FF CIU and GPIO
(Note this is an example of I/O Space. I/O space details are OCTEON model-specific.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-74 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

9.4 Caching
On the OCTEON processor, caching only applies to system memory (DRAM) accesses, not I/O
space. Caching is used to improve system performance by providing core-local or chip-local fast
memory which is used to cache (save a copy) of recently accessed data. This improves
performance because accesses to on-chip cached system memory are lower latency than accesses to
the external system memory (DRAM).

Caches on the OCTEON processor:

• Level-1 Data cache (Dcache) (per core)
• Level-1 Instruction cache (Icache) (per core)
• Level-2 (L2) cache (one shared by all the cores)

The following figure is a simplified view of a data load access, showing the difference between a
cache miss and a cache hit.

Figure 36: Simplified View of Cache “miss” and “hit”

R
ea

d
R

eq
ue

st

L
oa

d

R
ea

d
R

eq
ue

st

L
oa

d

L
oa

d
to

 L
1

C
ac

he

L
oa

dR
ea

d
R

eq
ue

st

(M
is

s)

R
ea

d
R

eq
ue

st

(M
is

s)

Note that the sizes of the L1 and L2 caches are limited. The specific sizes depend on the OCTEON
model. The size of the L1 Dcache is also affected by the amount of Dcache set aside for cvmseg.

L
oa

d
to

 L
1

C
ac

he
L

oa
d

to
 L

2
C

ac
he

R
ea

d
R

eq
ue

st

R
ea

d
R

eq
ue

st

(M
is

s)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-75

(The Cavium Networks-specific segment cvmseg is discussed in Section 10.6 – “Cavium
Networks-Specific cvmseg Segment”.)

System memory stores are always cached.

The data returned by load instructions is usually cached in both L1 and L2 caches. As a
performance improvement, prefetch commands may be used. Prefetch commands hide the fetch
latency by requesting the data before it is needed. A normal prefetch loads the data into both the
L1 and L2 caches. Some customers may wish to completely bypass the cache when accessing
memory, especially when debugging hardware issues, however this is not an option. Special
prefetch instructions are available which may bypass some, but not all, of the caches. Prefetch
commands are not discussed in detail here. The following figure illustrates the prefetch instruction
choices available.

Figure 37: Prefetch Commands Used to Bypass Some Caches

CVMX_PREFETCH_NOTL2
(address, offset)

(Bypass L2 Cache)

CVMX_PREFETCH
(address, offset)

(Normal Prefetch)

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A

D
LO

A
D

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A

D

CVMX_PREFETCH_L2
(address, offset)

(Fetch only to L2, not L1)

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A

D

Prefetch Commands Used to Bypass Some Caches

Prefetching into the L1 cache, bypassing the L2 cache, is useful to avoid “polluting” the shared L2
cache with data needed by only one core. This option should only be used if the data is read-only.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-76 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Prefetching into the L2 cache (but not the L1 cache) is only useful if the data will be needed by a
core other than the one issuing the prefetch.

9.5 Special L2 Cache Features: Partitioning and Locking
The L2 cache controller provides two features that may be used in performance tuning:
partitioning and locking.

Both partitioning and locking can be used to prevent one core from starving the other cores by
causing excessive L2 traffic and causing other cores cache blocks to be evicted.

Partitioning can split the cache up into core-specific regions, so each core can only cause evictions
from its own region.

Locking can be used to make a particular region of memory resident in the L2 cache, so it cannot
be evicted. This feature is also used to speed access to this memory region for all cores.

See the OCTEON Hardware Reference Manual for more details.

10 Virtual Memory
The goal of virtual memory is to make accessing physical memory and I/O space safer and more
convenient.

Safety is provided when a process may only write to its own memory, not the memory of other
processes. Because the user addresses are all mapped, the operating system can prevent the user
from accessing memory inappropriately.

Convenience is provided so that, when the program is compiled, the linker may select the same
hard-coded virtual address as starting address for each program. The hardware and operating
system work together to translate identical virtual addresses into unique physical addresses, as
shown in the following figure.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-77

Figure 38: Multiple Programs Have the Same Virtual Addresses

Translated by TLB

Translated by TLB

10.1 Virtual Address Translation
In the traditional view of virtual addresses, addresses are always translated by the operating system
working together with the MMU. This translation is referred to as mapping.

10.1.1 Mapping
There is a translation (mapping) between the physical and virtual address. Physical memory is
mapped when accesses to it go through this translation process. This mapping allows multiple
Linux applications to have the same starting address. Each virtual starting address is mapped to a
different physical address. This is done so that when the file is compiled, the program addresses
can be resolved at compile time instead of at load time.

Mapping requires, at a minimum, entries into a Translation Look-aside Buffer (TLB). Simple
Executive Standalone applications use only the TLB for mapping; Linux uses a more complex
memory management system (page tables and TLB miss handler). In this chapter, it is only
necessary to know about the TLB.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-78 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10.1.2 The Translation Look-Aside Buffer (TLB)
The Translation Look-aside Buffer (TLB) is used to store a limited number of virtual-to-physical
address mappings. There are either 32 or 64 entries in the TLB, depending on the OCTEON
model. Each of these entries is a double entry. The 32-entry TLB can store 64 mappings. The 64-
entry TLB can store 128 mappings. The sizes of the mapped pages may vary from 4 KBytes to 256
MBytes (all sizes which are powers of 2 in this range are allowed).

TLB entries contain an Address Space ID (ASID) (similar to a process ID (PID)). This identifies
which process owns the TLB entry.

There is one TLB per core. It is shared by all the processes running on the core. In the Simple
Executive, there is only one process per core, so TLB use is very simple. On Linux, many
processes compete for the TLB entries.

10.1.3 Wired TLB Entries
Some entries in the TLB may be made permanent and not replaced by newer values. When a
mapping is permanently saved in the TLB, the entry is considered to be “wired”.

Wired TLB entries may increase performance when the same page is accessed frequently: TLB
miss exceptions will not occur for accesses within the wired region.

Wired TLB entries may also harm performance by reducing the number of TLB entries available
for the other processes.

To determine the affect of wired TLB entries for the application, use profiling and performance
tuning tools after the application has been written.

10.2 Generic MIPS Virtual Memory Map
The generic MIPS virtual memory map is shown in the figure below. The 64-bit address space
contains a 32-bit compatibility region.

In the figure below, the xkphys segment is highlighted. This segment is particularly important
because 64-bit software may use this segment to accesses physical memory and I/O space without
mapping the virtual addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-79

Figure 39: Generic MIPS Memory Map

10.3 MIPS Virtual Memory Address Translation
MIPS virtual memory is divided into segments, not all segments are mapped (see Section 10.4 –
“Mapped and Unmapped Segments”), and the MMU is streamlined.

Virtual address translation depends on:

1. The number of address bits in the address space: 64-bit or 32-bit address space
2. The segment addressed
3. The privilege level (mode): kernel, supervisor, or user

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-80 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10.3.1 Segments
In MIPS architecture, the address space is divided into segments: it is not an undifferentiated
virtual address space.

10.3.1.1 Segments: 64-Bit Virtual Address Map
In the 64-bit virtual address map, the high two bits of the virtual address (<63:62>) are used to
select one of four segments. These address bits are always translated by the hardware, not the
operating system.

Of the remaining 62 bits in the virtual address, some of the high bits are ignored if the processor
does not support that many virtual address bits within a segment (SEGBITS).

On the OCTEON processor, SEGBITS equals 49, so only bits <48:0> of the virtual address define
the address space within the segment. The remaining bits (<61:49>) are ignored.

Figure 40: 64-Bit Virtual Address: Segment Selector and SEGBITS

10.3.1.2 Segments: 32-Bit Virtual Address Map
In the 32-bit virtual address map:

• If the high bit (<31>) is 0, then the segment is useg. Within useg, the other 31 bits are not
used as a segment selector.

• If the high bit (<31>) is 1, then 2 more bits are used as segment selectors (<30-29>).

The following figure illustrates the segment selector and SEGBITS for a 32-bit virtual address.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-81

Figure 41: 32-Bit Virtual Address: Segment Selector and SEGBITS

10.3.2 Privilege Level (Mode) and Segments
There are three “modes” (privilege levels): user, supervisor, and kernel. The two most important
modes are user and kernel (most Operating Systems ignore supervisor mode). Applications usually
run in user mode. The kernel and drivers run in kernel mode.

On traditional processors, any virtual page can be mapped as any mode, and the mode bits are
stored as part of the TLB entry. On MIPS, the virtual address space is divided into segments which
are designed to correspond to the different runtime modes. For example:

• processes running in user mode use xuseg
• the kernel uses xkseg

Segments are also accessible to processes running in a higher mode, so xuseg is accessible to the
kernel and drivers: they can access all legal addresses in the 64-bit or 32-bit virtual memory map.

In general, the user processes are restricted to xuseg (useg) addresses (any access outside xuseg will
cause a trap). The Cavium Networks Linux port offers configurable options which may allow 64-
bit user processes to access xkphys I/O or memory addresses. In addition, both 64-bit and 32-bit
processes may access a special Cavium Networks-specific segment, cvmseg, which is in xkseg (or
kseg3 for 32-bit processes) virtual address segment.

The address space is divided into segments. Depending on the mode, different segments are visible
to the process:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-82 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In 64-bit MIPS:

• User mode segments: useg (on the OCTEON processor xkphys may optionally be accessed
in user mode by SE-UM 64-bit applications)

• Supervisor mode: useg, xsseg (usually not used)
• Kernel mode segments: xuseg, xsseg, xkseg, xkphys

In 32-bit MIPS:

• User mode segments: useg
• Supervisor mode segment: useg, sseg (usually not used)
• Kernel mode segments: useg, sseg, kseg3, kseg0, kseg

10.4 Mapped and Unmapped Segments
Depending on which segment is selected, MIPS also may interpret the SEGBITS part of the virtual
address differently than traditional processors. On some traditional processors, all the virtual
addresses are always mapped (translated by the operating system or TLB).

10.4.1 Unmapped Segments

10.4.1.1 64-Bit Virtual Address Space: xkphys
On the OCTEON processor, both 64-bit kernel-mode processes and 64-bit user-mode processes
may access physical memory and I/O space through the xkphys segment.

On MIPS, xkphys addresses are not mapped, and are never translated by the operating system or
TLB. The xkphys addresses provide a “window” into the physical address space. The high bits are
stripped off the virtual address, and the low PABITS (Physical Address BITS) are used as a
physical address. On the OCTEON processor, PABITS is 49: bits <48:0>, matching the number
of SEGBITS (49).

Note that the I/O space is selected if bit 48 of the physical address is “1”. Physical memory is
selected if bit 48 of the physical address is “0”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-83

Figure 42: The xkphys Window to Physical Address Space

W
in

do
w

 to
 I/

O
 S

pa
ce

 a
nd

Sy

st
em

 M
em

or
y

th
ro

ug
h

xk
ph

ys

10.4.1.2 32-Bit Virtual Address Space: kseg0 and kseg1
The 32-bit kernel-mode processes have a small window into physical address space though kseg0.
This window is not large enough to reach the I/O space, and it can only reach the first 256 MBytes
of DRAM (DRAM Region 0).

32-bit Simple Executive Standalone applications run in kernel mode and access physical memory
through kseg0 addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-84 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 43: The Small kseg0 Window to Physical Address Space

Note that kseg0 and kseg1 access the same system memory. In the generic MIPS memory map,
kseg0 accesses are cached, and kseg1 accesses are uncached. In the software provided with the
OCTEON SDK, kernel-mode accesses to system memory are made through kseg0, not kseg1.
Accesses to system memory on the OCTEON processor are always cached, even those made
through kseg1.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-85

Figure 44: kseg0 and kseg1 Access the Same Memory

32-bit Simple Executive User-Mode (SE-UM 32-bit) applications cannot access kseg0. Instead,
they access system memory through memory mapped into useg (the reserve32 area). The
reserve32 area is discussed in detail in Section 12.3.2 – “SE-UM 32-Bit Bootmem Access”.

10.4.2 Mapped Segments
On some traditional processors, the Memory Management Unit (MMU) consists of a TLB and
hardware page tables which the operating system can read and write.

On MIPS, the MMU consists only of the TLB: page tables are optional and are implemented
entirely in software.

When a program accesses a page which should be mapped, but the mapping is not found in the
TLB, a TLB miss exception occurs. This exception causes the hardware to jump to a hardware
vector and run a page fault handler. The page fault handler looks up the page in the page table,
checks access permissions, and if access is allowed, it adds the mapping to the TLB, evicting a
prior mapping if needed. Then the page access is retried and the access succeeds.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-86 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following figure shows simplified address translation for the different segments in the 64-bit
virtual memory map.

Figure 45: 64-Bit Virtual Address Translation on MIPS

Kernel Mapped
xkseg

The kernel loads
and runs from
this segment.

Kernel
Unmapped

xkphys
A “window”

into the physical
address space.

Supervisor
Mapped

xsseg
(usually not

used)

User Mapped
xuseg
User

applications load
and run from
this address

segment.

TLB – for Mapped Regions. If mapping is
not resident a TLB miss occurs. On Linux,

the kernel looks up the mapping in the
software page tables, and puts the mapping
into the TLB, then the page access is tried

again, this time succeeding.

Vi
rtu

al
 a

dd
re

ss

V
irt

ua
l a

dd
re

ss

Vi
rtu

al
 a

dd
re

ss

S
ys

te
m

 M
em

or
y

A
dd

re
ss

System Memory

V
irt

ua
l

ad
dr

es
s

The lower 49 bits
(<48:0>) of the

virtual address are
used as the physical

address.

I/O Space

Bit 48 used to select
System Memory or

I/O Space

P
hy

si
ca

l
A

dd
re

ss

Syst
em M

emory
Address

I/O
 S

pa
ce

A
dd

re
ss

Software Page Tables
(Only on Linux, not on

Simple Executive.
Simple Executive maps
all of system memory in

the TLB and does not
have a TLB miss

handler).

TLB Miss

TLB Fill

Bits <63:62> select the segment: xuseg, xsseg, xkseg, or xkphys.

64-Bit Virtual Address Translation on MIPS

00 01 11 10

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-87

Figure 46: 32-Bit Virtual Address Translation on MIPS

10.4.3 Addresses Versus Pointers
In this document, the word pointer refers to a C or C++ data type which holds a virtual address,
NULL, or an invalid address. The word address refers to a physical address.

The addresses used by a program are always virtual addresses. Virtual addresses are not the same
as physical addresses, even if their 64-bit values are the same. Virtual addresses are always
interpreted differently by the hardware (segment selector, ignored bits, and SEGBITS). C and C++
programs must therefore always use virtual addresses (pointers), not physical addresses, when
accessing memory. Because of this requirement, the Simple Executive API functions such as

Kernel Mapped
kseg3

The kernel loads
and runs from
this segment.

Kernel
Unmapped

kseg0
A “window”

into the physical
address space.

Supervisor
Mapped

sseg
(usually not

used)

User Mapped
useg
User

applications load
and run from
this address

segment.

TLB – for Mapped Regions. If mapping is
not resident, a TLB miss occurs. On

Linux, the kernel looks up the mapping in
the software page tables, and puts the
mapping into the TLB, then the page

access is tried again, this time succeeding.

Vi
rtu

al
 a

dd
re

ss

V
irt

ua
l a

dd
re

ssVirtual address

S
ys

te
m

 M
em

or
y

A
dd

re
ss

System Memory

Vi
rtu

al

ad
dr

es
s

The lower 30 bits
(<29:0>) of the

virtual address are
used as the physical

address.

I/O Space

Select System
Memory Only

P
hy

si
ca

l
Ad

dr
es

s

Syst
em M

emory
Address

(256 M
Byte

s o
nly)

Software Page Tables
(Only on Linux, not on

Simple Executive.
Simple Executive maps
all of system memory in

the TLB and does not
have a TLB miss

handler).

TLB Miss

TLB Fill

Bits <31:29> select the segment: useg, sseg, kseg3, kseg0, or kseg1.

Kernel
Uncached
Unmapped

kseg1
A “window”

into the physical
address space

(not used)

Access I/O space is
through inline
assembly code.

32-Bit Virtual Address Translation on MIPS

1011001111100XX

Virtu
al

ad
dre

ss

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-88 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

cvmx_fpa_alloc() use pointer arguments and return values, not addresses. These pointers
contain virtual addresses which can be directly used by the application without further conversion.

At the hardware level, transactions requiring addresses use physical addresses. For instance, the
“allocate” and “free” operations use the physical address of the buffer in DRAM, not a virtual
address. The FPA is a hardware unit: it has no concept of the TLB or of virtual address space.

When accessing hardware registers directly, be aware that addresses sent and returned are physical,
not virtual addresses. API functions to convert between the two types of addresses are provided:
cvmx_ptr_to_phys() and cvmx_phys_to_ptr().

10.5 Virtual Memory onCavium Networks MIPS (cnMIPS)
The virtual memory on the cnMIPS cores varies from the generic MIPS virtual memory map in the
following areas:

• Caching
1. System memory accesses are always cached, even those made through kseg1 addresses.
2. I/O memory accesses are never cached.

• Mapping
1. I/O memory is never mapped unless explicitly mapped by the user.

In addition, the following virtual memory features were added:

• Special Access to xkphys for Linux Users
1. 64-bit Linux applications may optionally access system memory and I/O space via

xkphys addresses. This is a kernel configuration option. This option is discussed in
more detail in Section 12.3 – “Accessing Bootmem Global Memory from SE-UM
Applications”. Access to xkphys I/O Space or System Memory is controlled by a bit in
the Coprocessor 0 (COP0) register CvmMemCtl (fields XKIOENAU and XKMEMENAU).

2. 32-bit Linux applications may optionally reserve a pool of free memory which has
physical addresses low enough for 32-bit applications to use. This memory is mapped
into useg. An example where this is needed is when using FPA buffers: the function
cvmx_fpa_alloc() returns the address of the allocated buffer, which must fit in 32
bits. This option is discussed in more detail in Section 12.3 – “Accessing Bootmem
Global Memory from SE-UM Applications”.

a. This pool of reserved memory may optionally be mapped to ALL 64-bit and
32-bit processes on all cores running the same Linux kernel.

• The cvmseg segment

1. There is a Cavium Networks-specific cvmseg segment. This segment is used for local
scratchpad memory and for IOBDMA operations such as
cvmx_fpa_alloc_async(). This special segment is discussed in more detail in
Section 10.6 – “Cavium Networks-Specific cvmseg Segment” and in Section 11.3 –
“The cvmx_shared”. Access to xkphys I/O space or system memory is controlled by a
bit in the Coprocessor 0 (COP0) register CvmMemCtl [fields CVMSEGENAU,
CVMSEGENAK, and LMEMSZ].

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-89

2. Linux User applications are allowed to access cvmseg (in kseg3) when doing cvmseg
access operations. Running in kernel mode is not required. No special configuration is
needed for this permission.

10.6 Cavium Networks-Specific cvmseg Segment
Part of the per-core data cache (Dcache) may be set aside for IOBDMA operations and scratchpad
memory. The amount of Dcache used for cvmseg is set when either Simple Executive or Linux is
configured.

Note that since space for cvmseg comes from Dcache, keeping the size of cvmseg to a
minimum will help system performance by leaving more Dcache blocks available for the
application.

The special cvmseg memory is be configured at build time for both Simple Executive applications
and Linux.

It consists of two segments:

• CVMSEG LM
• CVMSEG IO

The CVMSEG LM memory consists of up to 54 cache blocks taken from the Dcache for this
purpose (typically, only 2 or 4 cache blocks are used). Each cache block (cache line) is 128 bytes.

CVMSEG IO has only one valid address: 0xFFFF FFFF FFFF A200. A store instruction to
this address starts an IOBDMA operation.

The data written in the IOBDMA instruction includes the CVMSEG LM offset (scratchpad location)
where the result of the IOBDMA operation should be stored.

For example: cvmx_fpa_alloc_async() will start an IOBDMA operation which will get the
address of a free buffer from the FPA, and store the buffer’s address in the CVMSEG LM
(scratchpad) memory.

The IOBDMA operations are asynchronous (the program does not wait for the result). When the
program is ready to use the buffer, it issues a SYNCIOBDMA operation to make sure all the
IOBDMA operations for that core have completed, and then retrieves the returned buffer address
from the scratchpad.

Note: If an illegal address is provided in an IOBDMA instruction, or the requested number
of bytes will exceed the allocated cache lines in CVMSEG LM, but within the range shown in
the virtual address map, then the adjacent Dcache memory may be overwritten. (An address
error will occur, but stores to these illegal addresses may not be stopped by the hardware, so
they may corrupt the Dcache.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-90 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The cvmseg addresses are in the kseg3 address range, and are treated specially by the cnMIPS
cores. (Although cvmseg is in xkseg when using a 64-bit address space, it is referred to as being
kseg3. The 64-bit address space contains the compatibility space, so kseg3 exists in the 64-bit
address space, inside of xkseg.) When configured into the system (the default), load and store
instructions access cvmseg. Otherwise, the access is a normal kseg3 reference. Access to cvmseg
is controlled by a bit in the Coprocessor 0 (COP0) register cvmctl.

When running Linux, the scratchpad memory is saved and restored on context switches.

10.7 Accessing Application-Private System Memory
Each application has private system memory. This private system memory is mapped into the
application’s virtual address space.

SE-S applications run in kernel mode, but are mapped into the xuseg or useg virtual address space,
depending on whether they are 64-bit or 32-bit applications.

SE-UM applications run in user mode and are mapped into the xuseg or useg virtual address space,
depending on whether they are 64-bit or 32-bit applications.

The Linux Kernel runs in kernel mode and is mapped into xkseg. It is always 64-bit.

10.8 Summary of Virtual Address Space on cnMIPS
The MIPS virtual address space is divided into segments. The 64-bit virtual address space contains
a 32-bit compatibility mode address space.

The MIPS memory management unit is simplified, and consists only of a TLB. Page tables are
optionally implemented in software.

Mapped: A virtual address is ‘mapped” when access is through a TLB entry.

Cached: When a virtual address accesses system memory, the system memory is “cached” if it is
stored in the L1 and/or L2 cache for fast access. On the OCTEON processor, all system memory
accesses are cached.

In general, user-mode processes cannot access kernel-mode virtual address space. On the
OCTEON processor, there are some exceptions to this rule and the generic MIPS virtual memory
map.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-91

Table 12: The 64-Bit Virtual Address Segments
Segment Generic MIPS OCTEON cnMIPS

 Mapped Segments Mapped Segments
xuseg The xuseg segment is the user address

space (mapped).
SE-S 64-bit applications run in kernel-
mode, but are mapped into xuseg.)

xsseg The xsseg segment is the supervisor
address space (usually not used)
(mapped).

The xsseg segment is usually not used in
OCTEON cnMIPS.

xkseg The xkseg segment is in the kernel
address space (mapped).

The xkseg segment contains the
OCTEON-specific cvmseg segment.
User-Mode access is allowed to cvmseg.

 Unmapped Segments Unmapped Segments
xkphys The xkphys segment is in the kernel

address space. It is an unmapped
address space: a window into the
physical address space: system
memory and I/O space.

SE-UM 64-bit applications may be
allowed access to xkphys addresses. SE-
S 64-bit applications always have access
to xkphys addresses (they run in kernel-
mode). Accesses to system memory are
always cached. Accesses to I/O space
are never cached.

Note: The Linux kernel always runs in 64-bit mode. SE-UM and SE-S applications may run in
either 64-bit or 32-bit mode. SE-S applications always run in kernel-mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-92 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 13: The 32-Bit Virtual Address Segments

Segment Generic MIPS OCTEON cnMIPS
 Mapped Segments Mapped Segments

useg The useg segment is the user address
space (mapped).

OCTEON SE-S 32-bit applications run in
kernel-mode, but are mapped into useg.

sseg The sseg segment is the supervisor
address space (usually not used)
(mapped)

This segment is usually not used.

kseg3 The kseg3 segment is in the kernel
address space (mapped)

User-Mode access is allowed only to
cvmseg in this segment.

 Unmapped Segments Unmapped Segments
kseg0 The kseg0 segment is in the kernel

address space (unmapped, uncached)
Accesses to this segment access system
memory which is always cached on
OCTEON. SE-S 32-bit applications run in
kernel-mode and access system memory
through kseg0 addresses.

kseg1 The kseg1 segment is in the kernel
address space (unmapped, cache
attribute not defined)

Accesses to this segment accesses system
memory which is always cached on the
OCTEON processor.

Note: The Linux kernel always runs in 64-bit mode. Relative to a SE-UM 32-bit virtual address
space, cvmseg is in kseg3. SE-S applications always run in kernel-mode.

SE-S 64-bit applications run in kernel mode and are mapped to xuseg.
SE-S 32-bit applications run in kernel mode and are mapped into useg.
SE-UM 64-bit applications run in user mode and are mapped into xuseg.
SE-UM 32-bit applications run in user mode and are mapped into useg.
The Linux kernel is always 64-bit, runs in kernel mode, and is mapped into xkseg.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-93

Figure 47: OCTEON 64-Bit Virtual Address Space – Summarized

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-94 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 48: OCTEON 32-Bit Virtual Address Space - Summarized

11 Allocating and Using Bootmem Global Memory

11.1 Using Global Bootmem
Large chunks of system memory are needed to create the FPA buffer pools. After the pools are
created, the memory is usually shared between all cores on the processor, regardless of what in-
memory images the cores are running. For instance: both Linux kernel-mode and user-mode
processes, and Simple Executive Standalone processes read and write to Packet Data Buffers.

Processors may also need to allocate chunks of memory for other purposes.

At boot time, the bootloader creates a pool of all free memory, bootmem. This memory is managed
by the bootmem allocator functions. These functions provide the needed locking so that two
applications will not get the same memory, and return the appropriate virtual address of the
allocated memory region.

Note that memory allocated via these functions is uninitialized: it is not guaranteed to be all
zeroes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-95

Memory allocated via bootmem allocator functions is referred to as bootmem global memory.

The memory allocation functions are multicore safe: the free list will not become corrupted if
different cores may simultaneous requests.

Table 14: Bootmem Allocator Functions in SDK 1.8
Function Action

cvmx_bootmem_alloc() Allocate a chunk of contiguous system memory
(unnamed block). This memory cannot be freed.
If enough contiguous memory is available to
satisfy the request, the function returns a pointer to
the start of the block, otherwise returns 0.

cvmx_bootmem_alloc_address() Allocate a chunk of contiguous system memory
(unnamed block). This memory cannot be freed.
Specify the specific starting physical address
desired. If the requested address has not already
been allocated, and enough contiguous memory is
available, the function returns a pointer to the start
of the block, otherwise it returns 0.

cvmx_bootmem_alloc_named() Allocate a chunk of contiguous system memory
(named block), and name it. If the named block
has not already been created, and enough
contiguous memory is available to satisfy the
request, the function returns a pointer to the start
of the block, otherwise it returns 0. This memory
block can be freed.

cvmx_bootmem_alloc_named_address() Allocate a chunk of contiguous system memory
(block), and name it. Specify the specific starting
physical address desired. If the named block has
not already been created, and the requested
address has not already been allocated, and
enough contiguous memory is available, the
function returns a pointer to the start of the block,
otherwise it returns 0. This memory block can be
freed.

cvmx_bootmem_find_named_block() Find a named block which has already been
allocated. If the block is found, the function
returns a pointer to the start of the block,
otherwise it returns 0.

cvmx_bootmem_free_named() Free the entire named block, and free the name.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-96 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that some of the allocation functions allow processes to allocate memory, but not free it. To
be able to free the memory, named blocks must be used: cvmx_bootmem_alloc_named()
and cvmx_bootmem_alloc_named_address(). Note that
cvmx_bootmem_free_named() is for limited use to free temporary allocations, for instance
the bootloader uses this function to free the Reserved Download Block. This function should not
be used frequently: there is no memory defragmentation. If you need to free memory frequently,
do not use bootmem functions.

As shown in the figure below, chunks of allocated bootmem are stored as either named or un-
named blocks. The bootmem allocator functions are responsible for managing both unallocated
and allocated memory.

Figure 49: Named and Unnamed Memory Blocks

Bootmem Allocator Functions

Named
Block

Unnamed
Block

Allocated memory

Unallocated memory

Color Key

Named and Unnamed Blocks

Memory allocation functions access free system
memory and are used to create and use named

or unnamed blocks of memory.

Free System Memory

11.2 The malloc() and free() Functions and FPA Buffers
The C-library functions malloc() and free() only manage core-local memory. This memory
can not be used for FPA buffers. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-97

11.3 The cvmx_shared Section and FPA Buffers
There are two reasons why the cvmx_shared section may not be the best choice to create a large
amount of shared memory, for instance for FPA buffers: the memory is not always shared, and it
should be kept small to keep the ELF file and the in-memory image small.

11.3.1 The cvmx_shared Section is Not Always Shared
The cvmx_shared section provides shared memory between cores started with the same load
command (the same load set):

• for SE-S applications, the same bootoct bootloader command
• for SE-UM applications, the same oncpu Linux command

The cores started with the same load command are referred to as a load set. Note that each of the
Simple Executive applications is a process, not a thread: global variables are not shared between
cores.

The cvmx_shared section cannot be used to share memory between processes started with different
load commands (different load sets).

Figure 50: cvmx_shared: Same and Different Load Sets

As shown in the figure above, one oncpu command is used to start multiple SE-UM applications
on Linux so they will share the same load set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-98 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

As shown in the following figure, it is inefficient to load different SE-S applications because they
will not share common sections: they will be in different load sets.

Figure 51: cvmx_shared: Inefficient SE-S Configuration

Similarly, it is inefficient to start SE-UM applications with two different oncpu commands.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-99

Figure 52: cvmx_shared: Inefficient SE-UM Configuration

Linux

SMP Linux or other SMP-capable
OS (single copy). The SE-UM
processes were started with two
different oncpu commands.

Linux Linux
Driver

SE-
UM

SE-
UM

Shared text,
rodata, and

cvmx_shared
section.

Shared text,
rodata, and

cvmx_shared
section.

cvmx_shared: Inefficient
SE-UM Configuration

Note that there are no shared sections
between different load sets.

11.3.2 The cvmx_shared Section Should be Kept Small
It is not a good idea to use cvmx_shared to contain large amounts of shared memory. It is best to
keep the size of the loaded ELF file small. The current (SDK 1.8) maximum ELF file download
size is 256 MBytes. Also, some Simple Executive Standalone applications must fit into 256
MBytes of virtual memory (if 1:1 mapping is used). If a large cvmx_shared section has been
created, the ELF file may not fit into virtual memory, causing the bootloader to fail. See Figure 54
– “Simple Executive Size Limitation if 1:1 Mapping is Used”.

The best use of cvmx_shared is to create a pointer to shared memory, then allocate the memory on
startup, and put the address into the cvmx_shared pointer. This keeps the size of the cvmx_shared
section small, while still providing a large amount of shared memory. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-100 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

11.4 Using Named Blocks to Share Memory Between Different Load
Sets

To share system memory between cores running different load sets, use the named block bootmem
allocator functions: cvmx_bootmem_alloc_named(),
cvmx_bootmem_find_named_block(name)), etc.

By using named blocks, two different load sets such as Simple Executive and Linux may easily
share memory:

• Both cores call cvmx_bootmem_alloc_named() to allocate memory and name it.
• The first core to make the function call creates the named memory block; all other cores

which call the same function with the same named block will get a return value of “0”,
which tells them that the named block has already been created.

• If the return value is “0”, they call cvmx_bootmem_find_named_block(name)) to
get the address of the existing named block.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-101

Figure 53: Sharing Memory Between Different Load Sets
Isolated Processes Can Use Bootmem Functions to Share Memory

Load Set 1: Data PathLoad Set 0: Control
Path

CORE 1 –
SE-S

Fast path

CORE 2 –
SE-S

Fast path

Named Block

The first core to call cvmx_bootmem_alloc_named() creates the named
block, and a pointer to the named block is returned. All other cores call the same
function, and receive a return value of 0. Then they call
cvmx_bootmem_find_named_block(), providing the name of the block, and
receive a pointer to it in return.

The core running the Linux kernel is not shown in this picture.

SE-UM

Free System Memory Managed by the Bootmem Allocator

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-102 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following code is from $OCTEON_ROOT/examples/queue/queue.c.

/**
 * Gets a pointer to a named bootmem allocated block,
 * allocating it if necessary. This function is called
 * by all cores, and they will all get the same address.
 *
 * @param size size of block to allocate
 * @param name name of block
 *
 * @return Pointer to shared memory (physical address)
 * NULL on failure
 */
void *get_shared_named_block(uint64_t size, char *name)
{
 void *ptr = cvmx_bootmem_alloc_named(size, 128, name);
 if (!ptr)
 {
 /* Either this core did not allocate it, or the allocation
request
 ** cannot be satisfied. Look up the block, and if that fails,
 ** then the allocation cannot be satisfied
 **/
 if (cvmx_bootmem_find_named_block(name))
 ptr = cvmx_phys_to_ptr(
 cvmx_bootmem_find_named_block(name)->base_addr);
 }

 return(ptr);
}

An example use of named blocks is to create a spinlock shared between different load sets.

12 Accessing Bootmem Global Memory (Buffers)
A simple example of accessing memory happens in packet processing. One process allocates
memory for the FPA pools, divides it into buffers, and gives the buffers to the FPA to manage.
The PIP/IPD automatically allocates Work Queue Entry Buffers and Packet Data Buffers. Any
core can perform the get_work operation, which returns a Work Queue Entry Buffer. Now the
core must access the buffer.

The most important thing to know about accessing memory is to use the functions
cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). If these functions are used, all the
complexity in the following discussion is hidden from the user.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-103

Table 15: Summary of Access to System Memory and I/O Space

Runtime
Environment

Virtual
Address
Space

Run
Mode

Application
-Private
Memory

Bootmem
Global

Memory

I/O
Space
Access

Notes

SE-S: 64-bit no 1:1
mapping 64 bit kernel

mode
xuseg (See

Note 1) xkphys xkphys
Preferred

configuration - safest
for porting.

SE-S: 64-bit with
1:1 mapping 64 bit kernel

mode
xuseg (See

Note 1) xuseg xkphys

Using 1:1 mapping
can result in porting

problems if
cvmx_phys_to_ptr()

and
cvmx_ptr_to_phys()

are not used.

SE-S: 32-bit no 1:1
mapping 32 bit kernel

mode
useg (See
Note 1) kseg0

inline
assembly

code

This is the preferred
configuration: safest
for porting, but only

256 MBytes of
memory are

addressable through
kseg0.

SE-S: 32-bit with
1:1 mapping 32 bit kernel

mode
useg (See
Note 1) useg

inline
assembly

code

Using 1:1 mapping
can result in porting

problems if
cvmx_phys_to_ptr()

and
cvmx_ptr_to_phys()

are not used.
Linux kernel and

drivers 64 bit kernel
mode xkseg xkphys xkphys

Linux SE-UM: 64-
bit 64 bit user

mode xuseg xkphys xkphys

Kernel configuration
option provides xkphys

access to user-mode
processes.

Linux SE-UM: 32-
bit 32 bit user

mode useg
useg

(reserve32
)

inline
assembly

code

A reserve32 region is
mapped into the

address space of the
process. Each

application is limited
to 2 GBytes of virtual

address space.

Note 1: Although SE-S applications are run in kernel-mode, they use the xuseg or useg address space for
application-private memory, depending on whether the application is 64-bit or 32-bit.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-104 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

12.1 Accessing Bootmem Global Memory From SE-S Applications

12.1.1 SE-S 64-Bit Bootmem Access
64-bit SE-S applications may access bootmem global memory through either xkphys addresses or
xuseg addresses.

12.1.1.1 SE-S 64-Bit: Access Via xkphys (NO 1:1 Mapping)
SE-S applications run in kernel mode which allows them access to the xkphys segment. In order to
select this option, when configuring the Simple Executive, set
CVMX_USE_1_TO_1_TLB_MAPPINGS to 0 (FALSE). No mapping step is needed because
xkphys accesses are not mapped.

12.1.1.2 SE-S 64-Bit: Access Via xuseg (1:1 Mapping)
If CVMX_USE_1_TO_1_TLB_MAPPINGS is 1 (TRUE), then all of system memory is mapped
into the process address space (xuseg) by cvmx_user_app_init(). All of bootmem global
memory is accessible to any SE-S application: a separate mapping step is not needed because it
has already been done.

This is discussed in more detail in Section 14.4 – “Simple Executive Virtual Memory
Configuration Options”.

12.1.2 SE-S 32-Bit Bootmem Access
32-bit SE-S applications may access bootmem global memory through either kseg0 addresses or
useg addresses.

12.1.2.1 SE-S 32-Bit: Access Via kseg0 (NO 1:1 Mapping)
SE-S applications run in kernel mode which allows them access to the kseg0 segment. In order to
select this option, when configuring the Simple Executive, set
CVMX_USE_1_TO_1_TLB_MAPPINGS to 0 (FALSE). No mapping step is needed because
kseg0 accesses are not mapped.

12.1.2.2 SE-S 32-bit: Access Via useg (1:1 Mapping)
If CVMX_USE_1_TO_1_TLB_MAPPINGS is 1 (TRUE), then all of system memory is mapped
into the TLB by cvmx_user_app_init(). The access is via useg. Note that the user will
only be able to access the low addresses (within the 2 GByte useg address range). A separate
mapping step is not needed because it has already been done by cvmx_user_app_init().

This is discussed in more detail in Section 14.4 – “Simple Executive Virtual Memory
Configuration Options”.

12.2 Accessing Bootmem Global Memory From Linux Kernel: 64-Bit
The Linux kernel-mode processes such as the kernel and drivers access bootmem global memory
via xkphys addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-105

12.3 Accessing Bootmem Global Memory from SE-UM Applications

12.3.1 SE-UM 64-Bit Bootmem Access
The 64-bit Simple Executive User-Mode applications access bootmem global memory via xkphys
addresses, not xuseg addresses. No mapping step is needed, because xkphys is a window to system
memory. This is a configurable kernel option.

12.3.2 SE-UM 32-Bit Bootmem Access
The 32-bit Simple Executive User-Mode applications must access bootmem global memory via
useg addresses, because xkphys addresses are outside the 32-bit virtual address space.

To allow the same code to be compiled as either a 32-bit or 64-bit application, some special
processing will happen, hidden from the user. Without this special processing, the 32-bit SE-UM
process would have to call mmap() to map the bootmem global memory into its address space.
The code would have to be changed to handle this case, and runtime performance would be
degraded.

The special processing involves setting aside the bootmem global memory during system start-up
to preserve the lowest memory addresses for the 32-bit process to allocate using the bootmem
functions.

• When the kernel is configured, a special reserve32 named block is specified. The size of
this named block is specified at configuration time.

• When the kernel is booted, it calls cvmx_bootmem_alloc_named() to allocate
bootmem global memory for the reserve32 named block. Because low memory addresses
are allocated first, this action preserves the low memory addresses.

• After the kernel initializes the rest of memory, it frees the reserve32 named block. The free
list now contains a chunk of contiguous memory with low addresses.

• The previously reserved memory is now available to be the first block of free memory
allocated by the bootmem allocator.

The user does not need to map reserve32 into the process virtual address space: when the
application runs, the Simple Executive function main() calls mmap() to map all of reserve32.
(Note that this mapping includes system memory which has not been allocated by the process: thus
the process has access to system memory which it does not own.)

Later when applications ask for memory there are two cases:
1. If a SE-UM 32-bit process calls cvmx_bootmem_alloc(), the function internally limits

the range of memory to the addresses range of the original reserve32 region. If enough
contiguous memory cannot be found, the request fails. Typically, the SE-UM 32-bit process is
responsible for allocating any shared memory which it needs to access, to guarantee that the
allocated memory is within its address range. For example, a SE-UM 32-bit application which
will use Packet Data Buffers must allocate the memory for them, and will usually initialize all
of the FPA pools.

2. If a SE-S or SE-UM 64-bit processes calls cvmx_bootmem_alloc(), the function will
attempt to get bootmem global memory from the address range in the original reserve32 block

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-106 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

simply because it is first in the free list. If there is not enough contiguous memory to satisfy
the request, the function will continue to search the free list for memory outside of the
reserve32 region.

This process will be discussed in more detail in Section 15.1.4 – “SE-UM 32-bit: Reserving a Pool
of Free Memory”.

12.4 Bootmem Size in Different Access Methods
The 32-bit and 64-bit applications have different amounts of bootmem available, depending on the
exact configuration.

The following table summarizes how system limits are affected by different configurations.

Table 16: Configuration Choices and Resultant Global Memory Limits

Application
Type Variations Virtual Address

Space - size
Load Image

Maximum Size

Bootmem
Global

Memory
Access

Bootmem Global
Memory Accessible

from the
Application

SE-S Applications

SE-S 64-bit NO 1:1 Mapping xuseg - "unlimited"
(see Note 4) "unlimited" xkphys ALL DRAM (see

Note 2)

SE-S 64-bit 1:1 mapping xuseg - "unlimited"
(see Note 4)

256 MBytes
(squeezed by

mapped memory)
xuseg ALL DRAM (see

Note 2)

SE-S 32-bit NO 1:1 Mapping useg - 2 GBytes
2 GBytes max

(see Note 1, Note
3)

kseg0 256 MBytes (See
Note 2)

SE-S 32-bit 1:1 mapping useg - 2 GBytes
256 MBytes
(squeezed by

mapped memory)
useg

no more than 2
GBytes (useg limit)

(see Note 2)
Linux SE-UM Applications

SE-UM 64-
bit N/A xuseg - "unlimited"

(see Note 4)
"unlimited" (see
Note 1, Note 3) xkphys ALL DRAM (see

Note 2)

SE-UM 32-
bit

reserve32 - not
wired useg - 2 GBytes 2 GBytes minus

reserve32 size
useg:

reserve32

Blocks of DRAM in
power of 2.

Application load size
must be than 2

GBytes. (See Note
2)

SE-UM 32-
bit reserve32 - wired useg - 2 GBytes 2 GBytes minus

reserve32 size
useg:

reserve32
512, 1024, or 1536

MBytes (see Note 2)
Notes
Note 1: Huge load images may encounter problems loading. The maximum load size shown here is not guaranteed.
Note 2: Bootmem size is limited by the amount of DRAM which is supported by and installed in the target system.
Note 3: The current (SDK 1.8) maximum ELF image download size is 256 MBytes. The loaded image
includes stack and bss, so the loaded image is larger than the ELF image file.
Note 4: Although there is a limit to the size of xuseg, for practical purposes it is "unlimited".

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-107

12.5 Using cvmx_ptr_to_phys() and cmvx_phys_to_ptr() Functions
If conversion is needed between pointers and physical addresses, use the functions
cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). This will allow the same code for both
SE-S and SE-UM applications, and reduce porting complexity.

Since not using these functions can cause big problems for customers, the warning is repeated here:

Note: Be careful to use the functions cvmx_ptr_to_phys() and
cvmx_phys_to_ptr() when converting between physical addresses and virtual
addresses. 90% of porting problems come from mistakenly using casts on physical and
virtual addresses.

13 Accessing I/O Space
Various cvmx functions are used to hide any complexity in accessing the I/O Space:

static void cvmx_write_csr (uint64_t csr_addr, uint64_t val)
static void cvmx_write_io (uint64_t io_addr, uint64_t val)
static uint64_t cvmx_read_csr (uint64_t csr_addr)
static void cvmx_send_single (uint64_t data)
static void cvmx_read_csr_async (uint64_t scraddr, uint64_t csr_addr)

This section describes how the different accesses occur (the hidden complexity). For a summary,
see Table 15 – “Summary of Access to System Memory and I/O Space”.

13.1 Accessing I/O Space from SE-S Applications

13.1.1 SE-S 64-Bit I/O Space Access
In Simple Executive Standalone (SE-S) applications run in kernel mode and access I/O space
through xkphys addresses.

13.1.2 SE-S 32-Bit I/O Space Access
In Simple Executive Standalone (SE-S) applications run in kernel mode and access I/O space
through inline assembly instructions. See Section 13.3.2 – “SE-UM 32-Bit I/O Space Access” for
more information.

13.2 Accessing I/O Space from Linux Kernel: 64-Bit
The Linux kernel-mode processes such as the kernel and drivers access I/O Space via xkphys
addresses.

13.3 Accessing I/O Space from SE-UM Applications

13.3.1 SE-UM 64-Bit I/O Space Access
The 64-bit Simple Executive User-Mode applications may access I/O Space via xkphys addresses.
This option is configured into the kernel.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-108 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

13.3.2 SE-UM 32-Bit I/O Space Access
I/O Space is accessed by using inline assembly instructions.

When using the functions cvmx_read_csr() and cvmx_write_csr(), all the complexity
described below is hidden from the user. The technical details are included here for readers who
need more detail.

Accessing I/O Space from 32-bit applications requires conversion between 32-bit pointers and 64-
bit address values.

In the N32 ABI (used to compile SE-S 32-bit and SE-UM 32-bit applications), pointers are 32-bit
values, and registers are 64-bit values. Since OCTEON hardware always uses 64 bits for memory
access, and registers are 64-bit values, inline assembly can be used to bypass the 32-bit pointer
limitation.

In O32 ABI (not recommended), pointers are 32-bit values, and registers (as viewed from the ABI)
are 32-bit values. Hardware registers are always physically 64-bit values; it is just the O32 ABI
that thinks they are only 32-bit values. Since O32 doesn't know about the 64-bit registers, it stores
all 64-bit values in two separate registers. If the stored value is an address, to access the address
quite a few assembly-language steps are needed:

1. Shift the high order bits into the upper bits of a register and add the lower bits.
2. Do the memory read, specifying the now 64-bit address in the 64-bit register.
3. Convert the 64-bit response into two 32-bit registers.
4. Make sure all registers touched are properly truncated to 32bits.
5. Return to C code.

A common error is forgetting step #4, because it is not obvious that you need to restore registers
which are no longer needed.

This is why O32 is slower than N32 when doing CSR access.

The functions cvmx_read64_uint() and cvmx_write_64_uint() handle the special
conversions required. The functions cvmx_read_csr() and cvmx_write_csr() are then
thin wrappers around these functions.

14 Simple Executive Standalone (SE-S) Memory Model
Simple Executive Standalone (SE-S) applications run in kernel mode. All of the system memory is
mapped, allowing Simple Executive applications full access to memory, including memory they do
not own. 64-bit SE-S applications may also freely access the I/O space by using xkphys addresses.
There are no context switches, and no TLB misses. SE-S applications are lightweight and fast.

On startup the bootloader and Simple Executive function cvmx_user_app_init() create a
kernel-mode address space where all address mapping is complete by the time the application
initialization routine completes. There are no expected TLB misses when running under SE-S:
there is no exception handler. A TLB miss will cause the system to crash, because there is no TLB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-109

miss handler for the hardware exception. The system would need to be reset or power cycled to
recover.

Note: Even when virtual addresses are used, SE-S applications can overwrite memory they
do not own because all system memory is mapped!

The file $OCTEON_ROOT/executive/cmvx.mk will include the file
$OCTEON_ROOT/executive/cvmx-app-init.c when a Simple Executive target is
specified on the “make” command line. This file includes the application initialization code
cvmx_user_app_init().

14.1 Simple Executive Application Space
Applications are loaded into xuseg or useg at virtual address 0x1000 0000.

There is some stack overflow protection. When the bootloader allocates memory for the stack, it
leaves the page below the stack unmapped, so that any access to this region will generate a TLB
exception.

14.2 Simple Executive System Memory Access
Hardware units only use physical, not virtual memory addresses. A function such as
cvmx_fpa_alloc() will convert the physical address into a virtual address as needed, returning
a pointer to the buffer.

To access the corresponding physical address, this address must be converted to a physical address.
Conversion functions are supplied by Simple Executive (cvmx_ptr_to_phys() and
cvmx_phys_to_ptr()).

14.2.1 Mapping of System Memory
System memory may optionally be mapped 1:1 to the user’s address space, so that physical address
0 is virtual address 0. This configuration is not recommended, however for historical reasons it is
currently the default.

The 1:1 mapping allowed for “lazy” address translation, but causes two problems:

1. Porting problems occurred when code was not written to use the cvmx_ptr_to_phys()
and cvmx_phys_to_ptr() functions. These functions hide pointer / address
conversions, creating highly portable code.

2. The size of the Simple Executive application’s runtime size was limited to 256 MBytes.
(Note the application’s in-memory image size is larger than the ELF file size because it
includes memory allocated for the stack and heap.)

The reason the in-memory image size is limited to 256 MBytes is because the Simple Executive
application will be loaded into the virtual memory map, squeezed between two blocks of system
memory (see figure below). If 1:1 mapping is not used, Simple Executive applications load at
0x1000 0000, but memory can be mapped anywhere instead of immediately above and below the
application, so the application can be larger than 256 MBytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-110 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following figure is shown using the 64-bit virtual address space for simplicity. A similar
problem exists in the 32-bit virtual address space.

If CVMX_USE_1_TO_1_TLB_MAPPINGS is defined to 1, then the application must fit inside of
256 MBytes (0x2000 0000).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-111

Figure 54: Simple Executive Size Limitation if 1:1 Mapping is Used

49-bit Physical Address Space (not
drawn to scale) – only system memory is

shown

0x0 0004 1000 0000

0x0 0004 1FFF FFFF

0x0 0000 2000 0000

0x0 0003 FFFF FFFF

0x0 0000 0000 0000

0x0 0000 1FFF FFFF

0x0 0000 1000 0000

0x0 0000 0FFF FFFF

(256 MByte
alignment gap
before the next
memory block.)

256 MBytes
Reserved for Boot

Bus

xuseg (not drawn
to scale)

64-bit Virtual Address Space (not drawn to
scale) – only xuseg is shown

0x3FFF FFFF FFFF FFFF

0x0000 0000 0000 0000

Simple Executive
Load Point is
0x1000 0000

DRAM Region 0
Mapped

DRAM Region 2
Mapped

DRAM Region 1
Mapped

Simple Executive
applications are linked
to load at virtual
address
0x1000 0000 (useg).
When 1:1 Mapping is
used, Simple Executive
is surrounded by
mapped memory, and
cannot be larger than
the 256 MByte Boot Bus
window.

Mapped 1-1

Mapped 1:1

Mapped 1:1

DRAM Region 2
(Up to 15.5

GBytes)

DRAM Region 0
(256 MBytes)

DRAM Region 1
(256 MBytes)

Simple Executive Size Limitation if 1:1 Mapping is Used

Not mapped,
creating a

window in the
virtual

memory map.

The Simple Executive application’s virtual memory map is shown in the figure below. If 1:1
mapping is not used, memory is not mapped into the user segment. Instead it is accessed either via
xkphys (for 64-bit applications), or via inline assembly code.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-112 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 55: SE-S 64-Bit Virtual Memory Map

kseg3

xkphys

xuseg

SE-S 64-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

0x0000 0000 0000 0000

Application Space
(256 Mbytes)

The size of the loaded application must
not exceed 256 MBytes.

Mapped and cached system memory:
First 256 MBytes of DRAM (the first

MByte is unmapped)

Unmapped and uncached
I/O Space

(accessed through xkphys) (discontiguous
where there is no matching I/O device)

SE-S 64-Bit Virtual Memory Map

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through xkphys) (discontiguous

where system memory is not present)

Mapped and cached system memory:
Second 256 MBytes of DRAM

Mapped and cached system memory:
Upper 15.5 GBytes of DRAM (as much as

is present)

0x0000 0000 1000 0000

0x0000 0000 1FFF FFFF

0x0000 0000 2000 0000

0x0000 0003 FFFF FFFF

0x0000 0004 1000 0000

0x0000 0004 1FFF FFFF

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

0x0000 0000 0FFF FFFF

The application will only have access to the part
of this space mapped in by the bootloader. This
space is mapped and cached. To get more than
256 MBytes, define
CVMX_USE_1_TO_1_MAPPINGS to 0. These
addresses are the same in both 32-bit and 64-bit
APIs.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1. To map the first 1 MBytes, define
CVMX_NULL_POINTER_PROTECT to 0.

Access to hardware unit CSRs (Configuration
and Status Registers).

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

This space is used for IOBDMA operations.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS is NOT
defined to 1.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-113

Virtual address “0” (the first 1 MByte) is usually unmapped. If virtual address “0” is unmapped, a
NULL pointer access will cause that core to crash because there is no TLB exception handler.
Memory may be accessed through xuseg (for example, 0x0000 0000 0020 0000) or through
xkphys (0x8000 0000 0020 0000). Accesses through xuseg are mapped. Accesses through
xkphys are unmapped. System memory is always cached, whether it is accessed through xuseg or
xkphys.

Note that although all of system memory is mapped to each application, it does not necessarily
belong to that application. It is possible to overwrite memory belonging to another application.
Careful coding is needed.

14.3 Simple Executive I/O Space Access
The hardware IO Space is accessed only via xkphys. The IO space is unmapped and uncached.
This IO space includes the configuration and status registers for the various hardware units.

14.4 Simple Executive Virtual Memory Configuration Options
Note that in the figure above, there are two compile-time defines:
CVMX_USE_1_TO_1_TLB_MAPPINGS and CVMX_NULL_POINTER_PROTECT.

General information on configuring Simple Executive may be found in the SDK document
“OCTEON SDK config and build system”.

14.4.1 CVMX_USE_1_TO_1_TLB_MAPPINGS
The value of CVMX_USE_1_TO_1_TLB_MAPPINGS is set to 1 by default.

The use of 1:1 TLB mappings is discouraged because it leads to many time-consuming bugs to
solve when porting code. SE-S code which uses 1:1 TLB mappings will function without use of
cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). When run as SE-UM, the code breaks.

The 1:1 TLB mappings value must be changed to 0 if the application exceeds 256 MBytes.

Note that fewer TLB entries are needed if 1:1 mapping is not used (except when
CVMX_NULL_POINTER_PROTECT is 1): each double TLB entry will map 512 MBytes of
memory.

In all cases, memory access should go through cvmx_ptr_to_phys() and
cvmx_phys_to_ptr() to safely convert between virtual and physical addresses. By using this
access routine, the address translation will occur as needed, transparent to the user.

14.4.1.1 Changing the Value of CVMX_USE_1_TO_1_TLB_MAPPINGS
To change the value of CVMX_USE_1_TO_1_TLB_MAPPINGS, configure
CVMX_CPPFLAGS_GLOBAL_ADD to contain the string
“-DCVMX_USE_1_TO_1_TLB_MAPPINGS=0”, as shown in the following bash shell script
(named “doit.sh”):

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-114 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

#!/bin/bash

source env-setup OCTEON_CN38XX # change this to the correct OCTEON_MODEL

export OCTEON_CPPFLAGS_GLOBAL_ADD="$OCTEON_CPPFLAGS_GLOBAL_ADD
 -DCVMX_USE_1_TO_1_TLB_MAPPINGS=0" # all one line, not
two lines

echo $OCTEON_CPPFLAGS_GLOBAL_ADD

Then “source” doit.sh:

host$ source ./doit.sh # Correct!
host$ echo $OCTEON_CPPFLAGS_GLOBAL_ADD
-DCVMX_USE_1_TO_1_TLB_MAPPINGS=0

This will cause the application initialization code to not setup 1:1 mappings, and also will direct
cvmx_phys_to_ptr() and cvmx_ptr_to_phys() to do the proper conversions.

Note: If you do not “source” doit.sh after the script exits, the values set when it was run will
no longer be set:

host$./doit.sh # Wrong!!! The file must be “sourced”
host$ echo $OCTEON_CPPFLAGS_GLOBAL_ADD
host$ # the variable is not set when doit.sh exits

14.4.2 CVMX_NULL_POINTER_PROTECT
CVMX_NULL_POINTER_PROTECT is also set to 1 by default. This setting causes an extra 12
TLB entries to be consumed. To recover the TLB entries, you can set this define to 0. If that
happens, NULL pointer accesses will not be rejected by the system. Since this space is reserved
for use by the bootloader, even after it exits, an accidental store to this area may create problems.

14.4.2.1 Changing the Value of CVMX_NULL_POINTER_PROTECT
This value can be changed by editing cvmx-config.h.

/************************* Config Specific Defines
************************/
#define CVMX_LLM_NUM_PORTS 1
#define CVMX_NULL_POINTER_PROTECT 0 // 0 = FALSE

Note this file is local to the application’s config directory. It will be automatically read when the
application is rebuilt.

14.5 SE-S 32-Bit Applications
Simple Executive Standalone applications do nothing special about memory allocation.
They assume the results from cvmx_bootmem_alloc() will be in the lower 2 GBytes of
memory. Most of the time that assumption is true because the boot memory allocator returns the

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-115

low addresses first, so higher addresses will not be returned for the first allocations (unless the
allocations are huge.) 32-bit applications currently must use range limits
(cvmx_bootmem_alloc_address() or cvmx_bootmem_alloc_named_address())
for allocations if they require 32-bit addressable memory. This requirement is expected to change
in a future SDK. At that time, the boomem allocation functions will not return memory which is
out of the process address range. Note that the range of addresses allocated will be from physical
address <address> to <address+size>.

Note that the 32-bit useg virtual address space is only 2 GBytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-116 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 56: SE-S 32-Bit Virtual Memory Map

kseg3

kseg0

useg

SE-S 32-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF BFFF

0x0000 0000

Application Space
(256 MBytes)

The size of the loaded application must
not exceed 256 MBytes.

Mapped and cached system memory:
First 256 MBytes of DRAM (the first

Mbyte is unmapped)

Unmapped and uncached
I/O Space (accessed through xkseg via in-

line assembly code.) (discontiguous
where there is no matching I/O device)

SE-S 32-Bit Virtual Memory Map

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through kseg0) (discontiguous
where system memory is not present).

Note only 256 MBytes of system memory
may be accessed via this segment because

the segment size is only 256 MBytes.

Mapped and cached system memory.
Only up to ((2 GBytes minus 512

MBytes) of possible 15.5 GBytes of
DRAM Region 3

0x1000 0000

0x1FFF FFFF

0x2000 0000

0x0000 0003 FFFF FFFF

0x0000 0004 1000 0000

0x0000 0004 1FFF FFFF

0x8000 0000

0x9FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF 8000

0xFFFF 9FFF

0xFFFF A000

0x0FFF FFFF

The application will only have access to the part
of this space mapped in by the bootloader. This
space is mapped and cached. To get more than
256 MBytes, define
CVMX_USE_1_TO_1_MAPPINGS to 0. These
addresses are the same in both 32-bit and 64-bit
APIs.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1. To map the first 1 Mbytes, define
CVMX_NULL_POINTER_PROTECT to 0.

Access to hardware unit CSRs (Configuration
and Status Registers).

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

This space is used for IOBDMA operations.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS is NOT
defined to 1.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1.

DRAM Region 2 is not accessible through
useg.

Most of DRAM Region 3 is not accessible
through useg.

0x7FFF FFFF

0x0000 0000 8FFF FFFF

*** Note 1: Some 64-bit addresses
(outside the 32-bit virtual memory map)
have been included in this figure. This is
because access to these areas is via
inline assembly instructions. ***

See Note 1

See Note 1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-117

15 Linux Memory Model
The Linux kernel is always 64 bits. The Cavium Networks Ethernet driver runs in kernel mode.
User-Mode applications run on the kernel may be either 64-bit or 32-bit applications.

When Simple Executive User-Mode (SE-UM) applications are run on Linux, access to system
memory is different than for SE-S applications.

Unless configured otherwise, 64-bit applications can only access system memory and I/O space
through mapped xuseg addresses, not xkphys addresses. This would require an extra mmap() step
before using allocated addresses, so the kernel should be configured to support xkphys access.

32-bit applications can never use xkphys addresses because they are outside the 32-bit virtual
address space. Unless configured otherwise, 32-bit applications would have to map system
memory before using it, which would require conditionalized code and would also hurt runtime
performance. Instead the kernel can be configured to support a reserve32 area of memory at
addresses accessible to 32-bit SE-UM applications.

Whenever possible, use 64-bit SE-UM applications. This will result in improved
performance, and simpler code: they can access the physical address space through xkphys
addresses, allowing access to I/O space and all of system memory.

When the application is compiled, the file $OCTEON_ROOT/executive/cmvx.mk will include
cvmx-app-init-linux.c instead of cvmx-app-init.c when a SE-UM target is
specified on the make command line. This will cause main() to be run for SE-UM. The
equivalent function for SE-S applications is cvmx_user_app_init(). The Linux-specific
main() will initialize the SE-UM applications.

15.1 Configuring Linux and the Effect on the Memory Model
Cavium Networks-specific options may be configured when the kernel is built. The exact details
of the Linux memory model is controlled by several configuration parameters which are set by
running “make menuconfig” in the $OCTEON_ROOT/linux/kernel_2.6/linux
directory.

There are five configuration options which affect the virtual memory map:

1. The size of cvmseg
2. Whether 64-bit applications can use xkphys addresses to access I/O space.
3. Whether 64-bit applications can use xkphys addresses to access system memory.
4. How much free memory should be reserved for 32-bit applications (reserve32).
5. Whether the reserve32 memory should be wired so all applications can access it.

15.1.1 Linux cvmseg (IOBDMA and Scratchpad) Size
The configuration variable CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE is used to set the
number of Dcache lines to reserve for scratchpad and IOBDMA use.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-118 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that specifying a large cvmseg will reduce the number of Dcache blocks available for process
use, which can degrade performance.

15.1.2 SE-UM 64-Bit: Direct Access to I/O Space Via xkphys
If the configuration variable CONFIG_CAVIUM_OCTEON_USER_IO is set to “1” (true), then 64-
bit applications may access I/O space thorough xkphys without switching to kernel mode.
Although these processes run in user mode, special access is allowed via bits in the COP2 cvmctl
register. This is a kernel configuration option.

This option is used to allow SE-S applications to be compiled as SE-UM applications without
changing the code.

15.1.3 SE-UM 64-Bit: Direct Access to System Memory Via xkphys
If the configuration variable CONFIG_CAVIUM_OCTEON_USER_MEM is set to “1” (true), then
64-bit applications may access system memory through xkphys without switching to kernel mode.
Note that xkphys memory accesses are not mapped, unlike xuseg accesses. Although these
processes run in user mode, special access is allowed via bits in the COP2 cvmctl register. This is a
kernel configuration option.

This option is used to allow SE-S applications to be compiled as SE-UM applications without
changing the code.

15.1.4 SE-UM 32-bit: Reserving a Pool of Free Memory
In Section 12.3.2 – “SE-UM 32-Bit Bootmem Access”, the problem of how a 32-bit SE-UM
application accesses system memory was introduced. Because a 32-bit SE-UM application can not
access system memory via xkphys addresses, it accesses system memory via a continuous block of
virtual addresses within the useg address range: reserve32. The reserve32 block is reserved by the
kernel, but this memory does not “belong” to the SE-UM application. When the SE-UM
application starts up, main() will mmap() reserve32 into the virtual address space of the
process. The application must use cvmx_bootmem_alloc() to allocate the memory.

Note that the application may access system memory which it does not “own” because the
entire reserve32 region is mapped to its address space. This can create a security problem
because protection from writing into un-owned system memory are absent.

If the configuration variable CONFIG_CAVIUM_RESERVE32 is set to a legal value, then the
reserve32 region will be set up by the kernel. This region is shared by all SE-UM applications,
both 32-bit and 64-bit.

The reserved32 region is needed to allow SE-S applications to be compiled as 32-bit SE-UM
applications without changing the code.

Note: This option is configured-in so that the kernel will reserve a contiguous block of
system memory for the reserve32 region. When using reserve32 in a hybrid system, boot
Linux first to make sure enough low memory is available for reserve32. The 32-bit
application is then responsible for hardware initialization (such as initializing the FPA).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-119

This is necessary so that buffer pointers, such as Packet Data Buffers, are created from
memory in the reserve32 region which is already mapped into the 32-bit address space.

After allocating memory, use the cvmx_phys_to_ptr() and cvmx_ptr_to_phys()
functions to convert between physical and virtual addresses as needed.

SE-UM 32-bit applications will allocate memory only from reserve32. SE-UM 64-bit applications
and 32-bit and 64-bit SE-S applications will have all of memory to allocate from, and may or may
not allocate memory from reserve32.

If the memory will be “wired” (described in the next section), then only a limited amount of
memory is available (512 MBytes, 1024 MBytes, or 1536 MBytes). Otherwise, the only restriction
is that the memory be a power of 2.

Note: Because 32-bit application space is limited to 2 GBytes, if 1.5 GBytes are set up in
reserve32, only 512 MBytes are left for the rest of the application.

The file /proc/octeon_info contains the physical address of the reserve32 region after the
kernel is booted if the memory was successfully allocated.

If there not enough memory for the reserve32 region, an error message is printed at boot time and
the physical addresses of the reserve32 region in /proc/octeon_info are set to zero, as if the
reserve32 region was not configured.

15.1.4.1 Using Wired TLB Entries for reserve32
CONFIG_CAVIUM_RESERVE32_USE_WIRED: map the free memory into every process (32-
bit and 64-bit) (including Linux binaries like bash).

Specifying wired TLB means that the mapping will stay resident in the TLB (cannot be evicted and
replaced by a different mapping).

When using this option, the amount of reserve32 is limited to the following choices: 512 MBytes,
1024 MBytes, or 1536 MBytes.
When using wired TLB entries, the entire reserve32 region is mapped into the address space of
every 32-bit and 64-bit application (including Linux binaries like bash) on all cores running the
same SMP Linux image (started from the same boot command).

Warning: Wired reserve32 presents a huge security risk for the system. Allowing
applications to access system memory or I/O space without switching to Kernel Mode will
allow one rogue application to corrupt system memory, which can result in difficult-to-debug
errors in unrelated applications.

For some applications, this option can result in a significant improvement in performance (up to 3
times faster). For example, mapping 512 MBytes using 4 KByte pages takes 131,072 entries (the
TLB has 128 entries (64 double entries)). When using wired TLB, 512 MByte pages are mapped,
resulting in only 1-3 TLB entries consumed, depending on the size of reserve32.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-120 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Warning: For some applications, this option can degrade performance because TLB entries
are consumed, causing more TLB misses as processes contend for fewer remaining entries.
The impact of this option on performance is application-dependent.

Use of this option should be delayed until the performance tuning phase of product development.

15.2 Linux Kernel Space and Simple Executive API Calls
The OCTEON Ethernet driver is an example of a kernel-space use of Simple Executive API calls.

The kernel may use the cvmx functions, but they are used differently than for Simple Executive
applications:

• There is no equivalent of appmain() (The main() function (for instance
in linux-filter.c) is aliased to appmain(), so the function
actually running instead of main() is appmain().)

• Each SE-UM instance is a single-threaded process.
• Global variables are shared
• The cvmx_shared section has no meaning (there is no other process to share memory with)

15.3 Linux Memory Configuration Steps
The following options are relevant to the userspace memory map and are all set via menuconfig.
There are more menuconfig options than are mentioned in this section. Only the options
affecting the memory map are mentioned here.

Table 17: Cavium Networks-Specific Linux menuconfig Options
Option Variable in autoconfig.h Default

Value Brief Descripton

Number of L1
cache lines
reserved for
CVMSEG
memory.

CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE 2

This memory is reserved for
CVMSEG LM, the dcache

lines set aside for IOBDMA
operations.

Allow User space
to access

hardware IO
directly.

CONFIG_CAVIUM_OCTEON_USER_IO 1 (yes)

64-bit applications can
access the OCTEON I/O

registers without switching
to kernel mode.

Allow User space
to access memory

directly
CONFIG_CAVIUM_OCTEON_USER_MEM 1 (yes)

64-bit applications can
access hardware buffers
(such as FPA buffers)

without switching to kernel
mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-121

Option Variable in autoconfig.h Default
Value Brief Descripton

Memory to
reserve for user
processes shared

region (MB).

CONFIG_CAVIUM_RESERVE32 0 Mb

The number of MBytes to
reserve so that 32-bit
applications can use

cvmx_bootmem_alloc(
) functions. Required for
32-bit applications to send

and receive packets directly.

Use wired TLB
entries to access

the reserved
memory region.

CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB #undef

When this option is set, the
reserve32 region is globally

mappped to all userspace
programs using wired TLB

entires. If
CONFIG_CAVIUM_RESE
RVE32 is NOT 0, then this
value will be automatically

defined.

When running “make menuconfig”, the memory configuration options are accessed via the
“Machine selection” sub-menu.

The first menuconfig screen looks similar to this:

Machine selection --->
Endianess selection (Big endian) --->
CPU selection --->
Kernel type --->
Code maturity level options --->
General setup --->
Loadable module support --->
Block layer --->
Bus options (PCI, PCMCIA, EISA, ISA, TC) --->
Executable file formats --->
Networking --->
Device Drivers --->
File systems --->
Profiling support --->
Kernel hacking --->
Security options --->
Cryptographic options --->
Library routines --->

To navigate this screen, use the arrow keys on the keyboard. The bottom of the screen provides
some options that can be selected with the TAB key. In the first screen, these options are “Select,

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-122 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Exit, and Help”. To select a highlighted option, press Enter when the option “Select” (at the
bottom of the screen) is highlighted.

To configure the Cavium Networks-specific options, select “Machine selection”. The next screen
will look similar to this (options discussed in this chapter are shown in bold red):

System type (Support for the Cavium Networks OCTEON reference board) ---
>
 [*] Enable OCTEON specific options
 [] Build the kernel to be used as a 2nd kernel on the same chip
 [*] Enable support for Compact flash hooked to the OCTEON Boot Bus
 [*] Enable hardware fixups of unaligned loads and stores
 [*] Enable fast access to the thread pointer
 [*] Support dynamically replacing emulated thread pointer accesses
 (2) Number of L1 cache lines reserved for CVMSEG memory
 [*] Lock often used kernel code in the L2
 [*] Lock the TLB handler in L2
 [*] Lock the exception handler in L2
 [*] Lock the interrupt handler in L2
 [*] Lock the 2nd level interrupt handler in L2
 [*] Lock memcpy() in L2
 [*] Allow User space to access hardware IO directly
 [*] Allow User space to access memory directly
 (0) Memory to reserve for user processes shared region (MB)
 [*] Use wired TLB entries to access the reserved memory region
 (5000) Number of packet buffers (and work queue entries) for the
Ethernet
 driver
 <M> POW based internal only Ethernet driver
 <*> OCTEON watchdog driver
 [] Enable enhancements to the IPSec stack to allow protocol offload.

When using menuconfig:

• Type “?” for help with a highlighted option.
• Items marked with [*] are “on”. To turn them to off, change the star to a space (“*”

becomes “ “).

To see the configured values, look in the file
linux/kernel_2.6linux/include/linux/autoconf.h. This file is created during
the build.

#define CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE 2
#define CONFIG_CAVIUM_OCTEON_USER_IO 1
#define CONFIG_CAVIUM_OCTEON_USER_MEM 1
#define CONFIG_CAVIUM_RESERVE32 0
#undef CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB

Items marked with [*] are “on”. To turn them to off, change the star to a space (“*” becomes “ ”).

Example: Change the amount of memory to reserve for user processes shared region, highlight the
line, and then select it using the choices at the bottom of the screen. The number is in MBytes, and

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-123

should be a power of 2 for optimal performance (if the memory is wired, then only the values 512
MBytes, 1024 MBytes, or 1536 MBytes are legal.) In this example, the value is changed from 0 to
512.

Note: if there isn't sufficient memory for the reserve32, the kernel fails the bootmem allocate step
during boot. It prints a message and the entries in /proc/octeon_info will be zero (as if
reserve32 was not configured).

After changing any needed items and exiting menuconfig, remake the kernel in the
linux/kernel_2.6/linux directory:

host$ sudo make kernel

(This build takes about 20 minutes.)

The file autoconf.h now has the new values, and
CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB is now defined:

host$ grep RESERVE32 autoconf.h
#define CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB 1
#define CONFIG_CAVIUM_RESERVE32 512

Note that this build is not the same as the make kernel command typed in the
$OCTEON_ROOT/linux directory. The top-level kernel build, which is run after this step, will
create a bootable ELF file. This process will be discussed later in this chapter.

Before this change, the file /proc/octeon_info contains:

host# cat /proc/octeon_info
32bit_shared_mem_base: 0x0
32bit_shared_mem_size: 0x0
32bit_shared_mem_wired: 0

When the new kernel is booted with the configuration change, the file
/proc/octeon_info contains:

host# cat /proc/octeon_info
32bit_shared_mem_base: 0x20000000
32bit_shared_mem_size: 0x20000000
32bit_shared_mem_wired: 1

An Example Linux Memory Configuration Error:
If reserve32 is being used, and the memory is “wired”, but the configured memory is not a legal
value or there is not enough free memory to fill the request, after the kernel is booted, the file
/proc/octeon_info will not show the configured shared memory. The incorrect values will
fail on boot and the configured size is set to 0 on failure:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-124 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

cat /proc/octeon_info
32bit_shared_mem_base: 0x0
32bit_shared_mem_size: 0x0
32bit_shared_mem_wired: 1

For a detailed discussion, see the SDK document “Linux Userspace on the OCTEON”.

15.4 Linux Kernel-Mode Virtual Address Space on the OCTEON
Processor

The following figure shows the Linux Kernel-Mode 64-bit Virtual Address Space for the
OCTEON processor. Processes running in kernel mode may access all segments.

The size of cvmseg is set during kernel configuration.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-125

Figure 57: Linux Kernel Virtual Address Space

kseg3

xkphys

xuseg

Linux Kernel-Mode 64-Bit Virtual Address Space (not drawn to scale).
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

0x0000 0000 0000 0000

Normal 64-bit Application Space

Unmapped and uncached I/O Space
(accessed through xkphys).

(discontiguous where there is no matching
I/O device.

Linux Kernel Virtual Address Space

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through xkphys) (discontiguous

where system memory is not present)

0x3FFF FFFF FFFF FFFF

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

This space is used for IOBDMA operations.
This space is saved/restored on context switch.

Access to hardware unit CSRs (Configuration
and Status Registers). Accessible in Kernel
Mode.

Accessible in Kernel Mode.

Normal 64-bit application address space, visible
to the kernel.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-126 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

15.5 Linux 64-bit User-Mode Virtual Address Space for OCTEON
The following figure shows the Linux User-Mode 64-bit Virtual Address Space for the OCTEON
processor. 64-bit applications may optionally access xkphys addresses. The size of cvmseg is set
during kernel configuration.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-127

Figure 58: Linux 64-Bit SE-UM Virtual Address Space for OCTEON

15.6 Linux 32-Bit Virtual Address Space for OCTEON
The following figure shows the Linux 32-bit Virtual Address Space for the OCTEON processor.
The kernel always runs in 64-bit mode. The size of cvmseg is set during kernel configuration.

kseg3

xkphys

xuseg

Linux SE-UM 64-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

0x0000 0000 0000 0000

Normal 64-bit Application Space

Unmapped and uncached I/O Space
(accessed through xkphys).

(discontiguous where there is no matching
I/O device.

Linux 64-Bit SE-UM Virtual Address Space for OCTEON

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through xkphys) (discontiguous

where system memory is not present)

0x3FFF FFFF FFFF FFFF

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

This space is used for IOBDMA operations.
This space is saved/restored on context switch.

Access to hardware unit CSRs (Configuration
and Status Registers). Accessible in Kernel
Mode. Accessible in 64-bit user mode if
CONFIG_CAVIUM_OCTEON_USER_IO is
true.

Accessible in Kernel Mode. Accessible in 64-bit
user mode if
CONFIG_CAVIUM_OCTEON_USER_MEM is
true.

Normal 64-bit application address space.

Physical memory may be accessed from this
space if it is allocated via the bootmem functions,
and mapped with mmap().

CVMSEG (in kseg3) can be accessed from user
mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-128 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that the Shared Memory Reserved Region is always reserved. If the kernel was configured
with CONFIG_CAVIUM_RESERVE32 set to a legal value, then the amount of memory specified
will be allocated and mapped into the user’s application space. If reserve32 is wired, the memory
is mapped to 0x8000 0000 (2 GB) minus the size of the memory region requested. If reserve32 is
not wired, the memory may be mapped anywhere in the processes address space.

Only trusted user applications should be allowed to access system memory without going through
the Kernel.

If CONFIG_CAVIUM_USE_WIRED_TLB is specified, then this memory is mapped to every
process running on the system. This may cause problems if a rogue process writes to this address,
corrupting memory. It also consumes TLB entries. If all processes do not need to access shared
memory, this option should not be used.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-129

Figure 59: Linux 32-Bit SE-UM Virtual Application Space on OCTEON

16 Downloading and Booting the ELF File
After the ELF file (either Linux or a SE-S program), it will need to be downloaded to the board and
booted. In this section, a quick overview of downloading and booting an ELF file is provided. The
SDK Tutorial chapter provides more detailed instructions.

kseg3

useg

Linux SE-UM 32-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF BFFF

0x0000 0000

Normal 32-bit Application Space

Unmapped and uncached
I/O Space (accessed through xkseg via in-

line assembly code.) (discontiguous
where there is no matching I/O device)

Linux 32-Bit SE-UM Virtual Address Space for OCTEON

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

CVMSEG – LM
(part of DCACHE)

reserve32
The amount of physical memory reserved

depends on the configuration. If wired
TLB is used, the memory is mapped at the

top of useg, otherwise it can be mapped
anywhere in useg.

0x7FFF 7FFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF 8000

0xFFFF 9FFF

0xFFFF A000

This space is used for IOBDMA operations.
This space is saved/restored on context switch.

Access to hardware unit CSRs (Configuration
and Status Registers).

See Note 1

To allocate system memory, use the bootmem
functions. The bootmem functions will allocate
the memory from the reserve32 pool of free
memory set aside for 32-bit processes. On
startup, mmap() is called to map the reserve32
region to the virtual address space of the process.
The allocated memory can be used immediately
after allocation because it has already been
mapped. Note that the reserve32 region must be
configured into the kernel, or it is not available.

The CVMSEG region (in kseg3) can be accessed
from user-mode.

This space is always reserved. It is usable by the
32-bit application if
CONFIG_CAVIUM_RESERVE32 is a legal
non-zero value. It wired TLB is configured, the
reserve32 system memory is begins at 2 GBytes
(0x8000 0000) minus
CONFIG_CAVIUM_RESERVE32) and ends at
0x7FFF FFFF. If wired TLB is not configured,
the reserve32 system memory can be mapped
anywhere in useg.

0x7FFF FFFF

0x7FFF 8000

*** Note 1: Some 64-bit addresses (outside the
32-bit virtual memory map) have been included
in this figure. This is because access to these
areas is via inline assembly instructions. ***

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-130 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 60: Creating an In-Memory Image

16.1 Bootloader Memory Model
Two memory areas are reserved by the bootloader: the Reserved Download Block, which is used
to download the application, and the Reserved Linux Block. These two areas may be seen with the
bootloader command namedprint.

Beginning with bootloader 1.7, the bootloader sets the location and size of the Reserved Download
Block based on available memory. For information on bootloaders prior to SDK 1.7, see Section
18 – “Bootloader Historical Information”.

The following output is from a 1.7 bootloader. The exact configuration selected by the bootloader
will vary depending on how much memory is installed in the target.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-131

target# namedprint
List of currently allocated named bootmem blocks:
Name: __tmp_load, address: 0x0000000020000000, size: 0x0000000006000000,
index: 0
Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x0000000008000000, index: 1
Name: __tmp_fpa_alloc_0, address: 0x000000000ffde800, size:
0x000000000001f400, index: 2
Name: __tmp_fpa_alloc_1, address: 0x000000000ffbe800, size:
0x0000000000020000, index: 3
Name: __tmp_fpa_alloc_2, address: 0x000000000fdca800, size:
0x00000000001f4000, index: 4
Name: cvmx_cmd_queues, address: 0x0000000008100000, size:
0x0000000000007800, index: 5

16.1.1 The Reserved Download Block
When downloading an ELF file, for instance over PCI, the ELF file is downloaded from the host
and stored in memory in a temporary location: the Reserved Download Block.

Note: If the ELF file is in on-board flash, this step is not needed. In that case, the bootloader will
read the ELF file from the on-board flash.

16.1.2 ELF File Maximum Download Size
In all ABIs, the created file is in ELF format. The current (SDK 1.8) maximum downloadable ELF
file size is 256 MBytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-132 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 61: Downloading to the Reserved Download Block
The ELF File is Downloaded to the

Reserved Download Block

OCTEON Board
System Memory

2. Reserved Download
Block: The ELF File is
downloaded to here.

1. ELF file downloaded

When the ELF file is
downloaded (for instance over

Ethernet or PCI), the
bootloader stores it

temporarily in the Reserved
Download Block. If the ELF
file is in flash, the Reserved
Download Block is not used.
Instead the ELF file is read

from flash when the cores are
booted.

After storing the ELF file in the Reserved Download Block, the bootloader reads the ELF file,
parses it, allocates system memory for the in-memory image, and creates the in-memory image(s)
in different system memory location(s). All of this processing is part of the boot command.

The bootloader creates the needed TLB entries to map the virtual to physical addresses for the in-
memory image. Note that the in-memory image is larger than the ELF file: memory is allocated
for the stack and heap.

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-133

Figure 62: The Bootloader Creates the In-memory Image
The Bootloader Creates the In-Memory Image

OCTEON Board

System Memory

4. The in-memory image
is created here: memory

has been allocated for
stack and heap. The

Virtual to physical
address map is stored in

the application’s TLB.

3
.

C
r
e
a
t
e

i
n
-
m
e
m
o
r
y

i
m
a
g
e

Note that until the in-
memory image

creation is complete,
there are two

“copies” of the file in
memory. When the
application running
on core 0 is booted,
the memory used for
Reserved Download
Block is reclaimed
and added to the

available free
memory.

2. Reserved Download
Block: The ELF File is
downloaded to here.

After the in-memory image is created, the Reserved Download Block memory may be reused to
download another ELF file. For instance, if the system will run both Linux and Simple Executive,
then first Simple Executive may be downloaded, and then the Linux (note that whichever is
running on core 0 should be loaded last). Both load commands may use the same Reserved
Download Block address.

If the ELF file is in flash, then the reserved downloading memory location is not used. The
bootloader will read the file from flash instead of the Reserved Download Block.

Once the application begins running (when the application running on core 0 is booted), the
memory used for Reserved Download Block is reclaimed and added to the available free memory.

16.1.3 The Reserved Linux Block
In addition to the Reserved Download Block, a block of memory is reserved for Linux: the
Reserved Linux Block. Unlike Simple Executive applications, which can be loaded anywhere in

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-134 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

memory, Linux is linked to run at specific physical addresses. A block of memory is reserved so
that when the Simple Executive application’s in-memory image is created, the bootloader will not
locate it in the area of memory Linux requires. If Linux is not loaded, this area of memory is
reclaimed. If Linux will not be run on the system, then the Linux reserved area size can be set to
zero. The only advantage to doing this is to eliminate the memory fragmentation caused when the
block is freed.

Figure 63: The Reserved Linux Block

start_addr

end_addr

The Reserved
Linux Block (the
Linux in-memory
image is loaded

here)

Part of Physical Address Space (not drawn to scale)

The Reserved Linux Block

Linux and other operating systems
are linked at a specific physical
address. Reserving this space
keeps those addresses available
even if other allocations (such as
loading a Simple Executive Stand-
alone (SE-S) ELF file) are done
before loading Linux.

This space is only needed if Linux
is used along with Simple
Executive Stand-alone (SE-S)
applications.

If Linux is not loaded, this area of
memory is freed to bootmem.

The values of start_addr and end_addr will depend on the amount of system memory is installed in
the target.

For example, if the target’s boot command namedprint shows the Reserved Linux Block is:

Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x0000000008000000, index: 1

Then the start address is 0x100000 (a 1 MByte offset), the size is 128 MBytes and:
end_addr = 0x80F FFFF
start_addr = 0x10 0000

In the following figure, the Reserved Download Block is not shown: the specific address and size
is configuration dependent. The size of the Reserved Linux Block is adjusted based on how much
memory is on the board, and the user can also configure it manually using bootloader environment
variables.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-135

Figure 64: Bootloader Memory Usage in SDK 1.7 and Above

0x0810 0000

Color Key

0x080F FFFF

0x1000 0000

Part of Physical Address Space (not drawn to scale)

Bootloader Memory Usage in SDK 1.7 and Above

Linux and other operating systems are linked at a
specific physical address. Reserving this space keeps
those addresses available even if other allocations (such
as loading a Simple Executive Stand-alone (SE-S) ELF
file) are done before loading Linux.

This space is only needed if Linux is used along with
Simple Executive Stand-alone (SE-S) applications.

If Linux is not loaded, this area of memory is freed to
bootmem.

0x0010 0000

0x000F FFFF

0x0000 0000

The Reserved Linux
Block (the Linux in-

memory image is
created here)

The remainder of
system memory. In

this example,
system memory size

= 256 MBytes. In this example, the system has 256 MBytes of system
memory. The default SDK configuration for Linux
requires 230 MBytes of system memory.

Low one Megabyte
(1 MByte)

Reserved for boot-time initialization, exception vectors,
bootloader code, debugger stub, debugger state. This
memory remains in use by the bootmem functions after
the application has started.

Allocated memory

Unallocated memory

16.2 Booting the Same SE-S ELF File on Multiple Cores
Typically, one SE-S application is booted on multiple cores. The cores share the read-only parts of
the in-memory image: the text and read only data. They also share cvmx_shared variables. These
cores are all booted from the same boot command by specifying all the cores in the coremask
argument to the boot command. Because of this, they are in the same load set.

To download the same application on multiple cores, specify the cores it should run on as an
argument to the boot command (bootoct, bootoctlinux, or bootelf): -coremask=<hex
value>.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-136 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 65: The Power of One Load Set

Cores 0-3
are not

shown in
this figure.

One Load Set

System Memory

SE-S –
Core 4

SE-S –
Core 5

SE-S –
Core 6

SE-S –
Core 7

In-Memory Image
Space

The Power of One Load Command
When SE-S cores are started with one bootloader command
(for example: bootoct 0 coremask=0xF0), they are all part of the same load set:

System memory is conserved because the cores share the read-only file sections:
text, and rodata
Cores share system memory through the cvmx_shared image file section
Cores have load set awareness through the sysinfo data structure, and can thus
synchronize easily. (The function cvmx_coremask_first_core() returns 1 if code is
running on the first core in the load set, in this case core 4).

Shared text, and rodata
sections

Reserved Download Block: The ELF
File is downloaded to here.

Core 4
Private
Memory

(read/write
data,

stack, bss)

Core 5
Private
Memory

(read/write
data,

stack, bss)

Core 6
Private
Memory

(read/write
data, stack,

bss)

Core 7
Private
Memory

(read/write
data, stack,

bss)

Lo
ad

Load Core0

Lo
ad

 C
or

e1

Lo
ad

 C
or

e2

Load Core3

One Load Command:
bootoct 0 coremask=0xF0

cvmx_shared
region (read/
write shared

memory)

Shared: r
ead-only

Shared: re
ad-onlyShared: re

ad-onlyShared: read-only

Shared: read-write

Shared: read-write

Shared: read-write

Load Shared

Shared: read-write

P
riv

at
e

Pr
iv

at
e

Pr
iv

at
e

Pr
iva

te

Load Shared

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-137

16.3 Downloading and Booting Multiple ELF Files
When downloading multiple ELF files it is important to be aware of what the command is doing.
If both downloads go to the same Reserved Download Block, one ELF file will over-write the
other unless the first ELF file has been booted before the second is downloaded. An alternative is
to use two different Reserved Download Block addresses, but they both have to be within the
bootloader’s Reserved Download Block. Using two separate Reserved Download Block addresses
is not recommended.

16.3.1 Downloading by Re-using One Reserved Download Block
To download both Linux and a Simple Executive application, the following commands might be
used (the example is for an 8 core system). Note that the bootloader for SDK 1.7 and higher, the
address argument should be “0” to take the default Reserved Download Block address.

Note: If the PCI target commands are in a script, add “sleep 1” between the first boot command
and the second download command. The bootloader needs some time to finish booting the first
application before the second ELF file is downloaded to the same space.

For example:

On a PCI target:
host$ oct-pci-load 0 testname/dl/vmlinux.64
host$ oct-pci-bootcmd "bootoctlinux 0 coremask=0xF0"
host$ oct-pci-load 0 testname/dl/linux-filter
host$ oct-pci-bootcmd "bootoct 0 coremask=0x0F"

On a Standalone Board:
target# dhcp
target# tftpboot 0 testname/dl/vmlinux.64
target# bootoctlinux 0 coremask=0xF0
target# tftpboot 0 testname/dl/linux-filter
target# bootoct 0 coremask=0x0F

NOTE: Notice that the application which will run on core 0 is booted last. Once this core is
booted, the other cores are taken out of reset and their applications run.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-138 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 66: Downloading Multiple ELF Files – Same Download Block

Multiple ELF Files may be Downloaded Using the Same
Reserved Download Block

OCTEON Board
System Memory

Reserved
Download Block: BOTH

ELF Files are
downloaded to here, one

at a time.

1. ELF file downloaded

3. ELF file downloaded

The first load set of in-
memory images are

created here.

2
.

b
o
o
t
o
c
t

The second load set of
in-memory images are

created here.

4
.

b
o
o
t
o
c
t
l
i
n
u
xNote: Load the

ELF file which
will run on core
0 last.

The same Reserved
Download Block can be
used to download
multiple ELF files.

In this example, SE-S is
downloaded, then Linux.

16.3.2 Downloading Using Two Different Reserved Download Blocks
As an alternative, two separate Reserved Download Block addresses may be used to download
both Linux and a Simple Executive application. This is not recommended unless both addresses
are within the bootloader’s Reserved Download Block. It is far simpler to re-use the download
block. The following commands might be used (the example is for an 8 core system). Note that in
this case, the “boot” does not have to happen before the second download.

First, get the start address of the Reserved Download Block. In the Minicom session to the
bootloader, type

target# namedprint

This will show you the Reserved Download Block: “__tmp_load”. In this example, the start
address is 0x20000000, and the length is 96 MBytes (0x6000000).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-139

The exact start address and size will depend on your configuration. The bootloader detects the
amount of memory you have and sets the values appropriately.

target# namedprint
List of currently allocated named bootmem blocks:
Name: __tmp_load, address: 0x0000000020000000, size: 0x0000000006000000,
index:
0
Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x000000000800000
0, index: 1

Since both ELF files must fit in the same Reserved Download Block, care must be taken.
Using two separate Reserved Download Blocks is not recommended due to the effort involved
in ensuring the two loaded ELF files do not overlap, and do not exceed the area reserved by
the bootloader. Maintenance problems can occur as the ELF file sizes change and the size
of the load addresses need to also change. Errors can occur from miscalculation or a
change in the ELF file size when the space allocated for each download is not changed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-140 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 67: Downloading Two ELF Files Using Two Download Blocks
Using Two Separate Reserved Download Blocks is

Not Recommended

OCTEON Board
System Memory

First Reserved
Download Block: The

FIRST ELF file is
downloaded to here.

1. ELF file downloaded

Second Reserved
Download Block: The
SECOND ELF file is
downloaded to here.

2. ELF file downloaded

The first load set of in-
memory images are

created here.

The second load set of
in-memory images are

created here.

3
.

b
o
o
t
o
c
t

4
.

b
o
o
t
o
c
t
l
i
n
u
x

Using two separate
Reserved Download
Blocks is not
recommended:

The images must
not overlap
The images must
not exceed the
reserved area.
Maintenance
problems can
occur with image
sizes change.

16.4 Protection from Booting Multiple Applications on the Same Core
The bootloader will issue a warning if the user tries to boot multiple applications on the same core:

target# bootoct 0x20000000 coremask=0xD0
ERROR: Can't load code on core twice! (provided coremask overlaps
previously loaded coremask

17 SDK Code Conventions

17.1 Register Definitions and Accessing Registers

17.1.1 Register Definitions
Registers are defined in cvmx-csr-addresses.h. Each one is assigned the appropriate virtual
address in the include file. The register name in the Hardware Reference Manual will become a

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-141

name (in all upper case) which is used to access the register. This name is pre-pended with
“CVMX” (for example: CVMX_FPA_CTL_STATUS).

Where more than one pool has a register with a similar name, the API convention is to use a macro
with an X in the name. The argument to the macro is the pool number. The macro will use the
pool number to calculate the address of the matching register. This allows the code to easily access
the matching register for different pools. The macro will take a pool number as an argument. For
example: CVMX_FPA_QUEX_PAGE_INDEX(2) will access the same register as
CVMX_FPA_QUE2_PAGE_INDEX.

Some of the FPA registers defined in cvmx-csr-addresses.h are:

CVMX_FPA_CTL_STATUS
CVMX_FPA_INT_ENB
CVMX_FPA_INT_SUM
CVMX_FPA_QUE_ACT
CVMX_FPA_QUE_EXP
CVMX_FPA_QUEX_AVAILABLE(offset)
CVMX_FPA_QUEX_PAGE_INDEX(offset)
CVMX_FPA_FPFX_MARKS(offset)
CVMX_FPA_FPFX_SIZE(offset)

17.1.2 Register Typedefs
To access a field inside the register, instead of the entire register, read the register into a data
structure, then access the field. The data structures are defined in cvmx-csr-typedefs.h.
The register data structures are given the same name as the register, except they are all lower case.
The typedefs end in the characters “_t”. The register data structure fields will also have names
matching the Hardware Reference Manual names (see Table 18: “Accessing Register Fields”).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-142 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Here is an example register data structure typedef for the FPA_CTL_STATUS register (known to
the Simple Executive as CVMX_FPA_CTL_STATUS, with the register data structure typedef
cvmx_fpa_ctl_status_t).

/**
 * cvmx_fpa_ctl_status
 *
 * FPA_CTL_STATUS = FPA's Control/Status Register
 *
 * The FPA's interrupt enable register.
 */
typedef union
{
 uint64_t u64;
 struct cvmx_fpa_ctl_status_s
 {
#if __BYTE_ORDER == __BIG_ENDIAN
 uint64_t reserved_18_63 : 46;
 uint64_t reset : 1;
 uint64_t use_ldt : 1;
 uint64_t use_stt : 1;
 uint64_t enb : 1;
 uint64_t mem1_err : 7
 uint64_t mem0_err : 7
#else
 uint64_t mem0_err : 7;
 uint64_t mem1_err : 7;
 uint64_t enb : 1;
 uint64_t use_stt : 1;
 uint64_t use_ldt : 1;
 uint64_t reset : 1;
 uint64_t reserved_18_63 : 46;
#endif
 } s;
 struct cvmx_fpa_ctl_status_s cn3020;
 struct cvmx_fpa_ctl_status_s cn30xx;
 struct cvmx_fpa_ctl_status_s cn31xx;
 struct cvmx_fpa_ctl_status_s cn36xx;
 struct cvmx_fpa_ctl_status_s cn38xx;
 struct cvmx_fpa_ctl_status_s cn38xxp2;
 struct cvmx_fpa_ctl_status_s cn56xx;
 struct cvmx_fpa_ctl_status_s cn58xx;
} cvmx_fpa_ctl_status_t;

17.1.3 Accessing Registers Using Register Definitions and Data Structures
To read a register, call the function cvmx_read_csr(). Give this function the name of the
register or register macro (such as CVMX_FPA_QUEX_PAGE_INDEX(pool)). Use
cvmx_write_csr() to write the register.

To access a field inside the register, not the entire register, read the register into a data structure,
then access the field. The data structures are defined cvmx-csr-typedefs.h.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-143

Example 1: Read from a register, modify a field, and then write to the register:
In this example, we read the CVMX_FPA_CTL_STATUS register, write a “1” to the Enable field
(setting the Enable bit), and then write the new value to the register. This enables the FPA.

 cvmx_fpa_ctl_status_t status;

 status.u64 = cvmx_read_csr(CVMX_FPA_CTL_STATUS);
 status.s.enb = 1;
 cvmx_write_csr(CVMX_FPA_CTL_STATUS, status.u64);

Example 2: Read from a register using the register macro, which requires a pool number:

In the case of CVMX_FPA_QUEX_AVAILABLE, the pool number is provided as an argument.
This number is then used in calculating the FPA_QUEn_AVAILABLE address for this pool. For
example:

cvmx_fpa_quex_available_t queue_size_register;

 // Ask FPA the number of buffers available
 // using the data structure defined in cvmx-csr-typedefs.h

 printf("\nReading the FPA register to see how many buffers”
 “ are available.\n");
 queue_size_register.u64 =

cvmx_read_csr(CVMX_FPA_QUEX_AVAILABLE(CVMX_MY_POOL));

// que_siz, a bit field, is declared uint64_t, but is modified by the
// compiler to be a unsigned int, thus is printed %u instead of %lu
printf("The number of buffers available in MY POOL = %u\n",
 queue_size_register.s.que_siz);

Table 18: Accessing Register Fields

Register Field
Name

Access from SDK: typedef
(union)For example:

cvmx_fpa_available_t avail;

Field (N is one
of pool 0-7) For

example:
avail.s.que_siz

FPA_CTL_STATUS ENB cvmx_fpa_ctl_status_t s.enb
FPA_FPFn_SIZE FPF_SIZ cvmx_fpa_fpf0_size_t s.fpf_siz

FPA_FPFn_MARKS FPF_RD cvmx_fpa_fpf_marks_t s.fpf_rd
FPA_FPFn_MARKS FPF_WR cvmx_fpa_fpf_marks_t s.fpf_wr

FPA_INT_ENB FED0_SBE cvmx_fpa_int_enb_t s.fed0_sbe
FPA_INT_ENB FED0_DBE cvmx_fpa_int_enb_t s.fed0_dbe
FPA_INT_ENB FED1_SBE cvmx_fpa_int_enb_t s.fed1_sbe

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-144 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Register Field
Name

Access from SDK: typedef
(union)For example:

cvmx_fpa_available_t avail;

Field (N is one
of pool 0-7) For

example:
avail.s.que_siz

FPA_INT_ENB FED1_DBE cvmx_fpa_int_enb_t s.fed1_dbe
FPA_INT_ENB Qn_UND cvmx_fpa_int_enb_t s.qN_und
FPA_INT_ENB Qn_COFF cvmx_fpa_int_enb_t s.qN_coff
FPA_INT_ENB Qn_PERR cvmx_fpa_int_enb_t s.qN_perr

FPA_INT_SUM FED0_SBE cvmx_fpa_int_sum_t s.fed0_sbe
FPA_INT_SUM FED0_DBE cvmx_fpa_int_sum_t s.fed0_dbe
FPA_INT_SUM FED1_SBE cvmx_fpa_int_sum_t s.fed1_sbe
FPA_INT_SUM FED1_DBE cvmx_fpa_int_sum_t s.fed1_dbe
FPA_INT_SUM Qn_UND cvmx_fpa_int_sum_t s.qN_und
FPA_INT_SUM Qn_COFF cvmx_fpa_int_sum_t s.qN_coff
FPA_INT_SUM Qn_PERR cvmx_fpa_int_sum_t s.qN_perr

FPA_QUEn_PAGES_AVAILABLE QUE_SIZ cvmx_fpa_quex_available_t s.que_siz

FPA_QUEn_PAGE_INDEX PG_NUM cvmx_fpa_quex_page_index_t s.pg_num
FPA_QUE_EXP EXP_INDX cvmx_fpa_que_exp_t s.exp_indx
FPA_QUE_EXP EXP_QUE cvmx_fpa_que_exp_t s.exp_que
FPA_QUE_ACT ACT_INDX cvmx_fpa_que_act_t s.act_indx
FPA_QUE_ACT ACT_QUE cvmx_fpa_que_act_t s.act_que

17.2 The cvmx_sysinfo_t Typedef
The cvmx_sysinfo_t data structure is private to each process. The data in it was copied from
the global info from the bootloader.

This data structure is accessed by the Simple Executive API function cvmx_sysinfo_get().

The cvmx_sysinfo_get() function is used in the passthrough example to determine
whether the application is running on the simulator:

if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
{

The cvmx_sysinfo_get() function is used in the linux-filter example to determine
whether the application is running on the first core in the load set:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-145

cvmx_sysinfo_t *sysinfo = cvmx_sysinfo_get();

/* Have one core do the hardware initialization */
if (cvmx_get_core_num() == sysinfo->init_core)
{

Information in this structure is also used to synchronize cores in the same load set. See Section 5.7
– “Synchronizing Multiple Cores”.

17.3 OCTEON Models
OCTEON models are defined in $OCTEON_ROOT/executive/octeon-model.h. The
choices for the env_setup command line are in $OCTEON_MODEL/octeon-model.txt.

18 Bootloader Historical Information
The bootloader’s memory map changed with SDK 1.7. If the bootloader on the board is older than
1.7, it should be upgraded.

Along with this upgrade, commands used to boot the board have changed. In particular, instead of
specifying a specific download address such as 0x21000000, the value “0” is used, allowing the
bootloader to select the download address.

This historical information is provided for persons who need to make these modifications to a
previously developed product, and need to understand the technical differences between pre 1.7
bootloaders and post 1.7 bootloaders.

The version command is used to find out whether the bootloader was compiled by SDK 1.6 or
newer. After SDK 1.6, a change was made to how the bootloader loads ELF files in memory,
affecting the commands used to load the ELF files.

To find out if your board was built with SDK 1.7 or higher, use the bootloader command
version, typed in the Minicom session to the bootloader.

The following bootloader command shows a bootloader built with SDK 1.7.3:

target# version
U-Boot 1.1.1 (U-boot build #: 194) (SDK version: 1.7.3-264) (Build time:
Jun 13)

As shown when discussing bootloader 1.7 and above, there are two memory areas which are
reserved by the bootloader: the Reserved Download Block, and the Reserved Linux Block. These
two areas may be seen with the bootloader command namedprint.

On bootloader 1.6 and lower, the size and location of both the Reserved Download Block (15
MBytes) and the Reserved Linux Block (80 MBytes) are fixed. (On bootloader 1.7 and higher, the
bootloader sets the location and size of the Reserved Download Block based on available memory.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-146 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In SDK 1.6 and lower, the Reserved Download Block and Reserved Linux Block were located in
the bottom 256 MBytes of memory (DDR0) as shown in the following figure:

Figure 68: Bootloader Memory Usage in SDK 1.6 and Below

ELF files larger than 15 MBytes would not fit into the Reserved Download Block.
To solve this problem a different physical address, usually 0x21000000 was specified on the “oct-
pci-load” command line. However, this address is out of the memory range for systems with only
256 MBytes (0x10000000).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-147

For example the ELF file for Linux, vmlinux.64, is about 69 MBytes, not 15 MBytes, so it will not
fit in the SDK 1.6 default Reserved Download Block.

host$ ls –l vmlinux.64
-rwxr-xr-x 1 testname software 71500064 Jul 14 16:00 vmlinux.64

Note that 15 MBytes, shown by “ls –l” is 15,728,640. Clearly vmlinux.64 is too big to fit.

To solve these problems, SDK 1.7 and higher allow the bootloader to evaluate the amount of
memory available on the system and select suitable addresses.

18.1 Backward Compatibility for Linux ELF Files Built Under SDK 1.6
Linux compiled under SDK 1.6 and lower will load and run on a 1.7 bootloader because the
Reserved Linux Block includes the SDK 1.6 Linux link addresses if the board has at least 256
MBytes of memory.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-148 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

	1 Introduction
	1.1 Where to Get More Information

	2 Introducing cnMIPS (Cavium Networks MIPS)
	3 Introducing the Simple Executive API
	4 Runtime Environment Choices for cnMIPS Cores
	4.1 Performance Difference Between Simple Executive and Linux
	4.2 Simple Executive
	4.3 SMP Linux
	4.3.1 Linux: embedded_rootfs File System
	4.3.1.1 Adding Examples to embedded_rootfs

	4.3.2 Linux: Debian File System
	4.3.3 Linux Application Support
	4.3.4 Cavium Networks Ethernet Driver
	4.3.5 Simple Executive API Calls From Linux
	4.3.6 CPU Affinity
	4.3.7 Linux on Small Systems (Limited MBytes of Memory)
	4.3.8 Running Multiple Linux Kernels on the OCTEON Processor

	4.4 Hybrid Systems: Simple Executive and Linux Co-Existing
	4.5 System Initialization
	4.6 The Hardware Simulator
	4.7 Other Runtime Environments

	5 Combinations of Runtime Environments on One Chip
	5.1 One-Core Runtime Choices
	5.2 Multicore Runtime Choices
	5.2.1 Easiest Configurations to Implement
	5.2.2 Intermediate Configurations
	5.2.3 Advanced Configurations

	5.3 Application Entry Point and Startup Code
	5.4 Booting SE-S or SE-UM Applications
	5.5 Booting One ELF File on Multiple Cores: Load Sets
	5.5.1 Starting SE-S Applications With the bootoct Command
	5.5.2 Starting Linux With the bootoctlinux Command
	5.5.3 Starting SE-UM Applications With the oncpu Command

	5.6 Booting Different ELF Files
	5.7 Synchronizing Multiple Cores
	5.7.1 Synchronizing Cores in the Same Load Set
	5.7.2 Synchronizing Cores in Different Load Sets
	5.7.3 SMP Linux Synchronization
	5.7.4 Multiple SE-S or SE-UM ELF Files (Not Recommended)

	6 Software Architecture
	6.1 Control-Plane Versus Data-Plane Applications
	6.2 Event-driven Loop (Polling) Versus Interrupt-Driven Loop
	6.3 Using Work Groups in Packet Processing
	6.3.1 Work Groups
	6.3.2 Configuring the Per-Core Group Mask in the SSO Scheduler
	6.3.2.1 Passing Work From One Core to Another Core

	6.4 Pipelined Versus Run-To-Completion Software Architecture
	6.4.1 Comparing Run-To-Completion and Traditional Pipelining
	6.4.2 A Quick Look at Packet Processing Math
	6.4.3 Run-To-Completion
	6.4.4 Traditional Pipelining
	6.4.5 Modified Pipelining

	6.5 Other Software Architecture Issues
	6.5.1 Scaling
	6.5.2 Code Locality: Reducing Icache Misses
	6.5.3 Load-Balancing

	6.6 Example: linux-filter

	7 Application Binary Interface (ABI)
	7.1 ABI Choices
	7.1.1 EABI (OCTEON_TARGET=cvmx_64): SE-S 64-Bit
	7.1.2 N64 (OCTEON_TARGET=linux_64): SE-UM 64-Bit
	7.1.3 N32 (OCTEON_TARGET=cvmx_n32): SE-S 32-Bit
	7.1.4 N32 (OCTEON_TARGET=linux_n32): SE-UM 32-Bit
	7.1.5 O32 (linux_o32) (Not Recommended)
	7.1.6 Linux uclibc (linux_uclibc)
	7.1.7 Choosing the OCTEON_TARGET

	7.2 64-Bit Porting Issues

	8 Tools
	8.1 GNU Cross-Development Toolchain
	8.1.1 The Cavium Networks-Specific cvmx_shared Section
	8.1.1.1 Sections
	8.1.1.2 The cvmx_shared Section

	8.1.2 Link Addresses
	8.1.3 Simple Executive Development Tools
	8.1.3.1 C/C++ Runtime Support for Simple Executive

	8.1.4 Linux Development Tools

	8.2 Native Tools (Run on the Target)
	8.2.1 Native tools and Simple Executive
	8.2.2 Native tools and Linux
	8.2.2.1 The embedded_rootfs Native Tools
	8.2.2.2 Debian Native Tools

	9 Physical Address Map and Caching on the OCTEON Processor
	9.1 Physical Address Map
	9.2 System Memory (DRAM) Addresses
	9.3 I/O Space Addresses
	9.4 Caching
	9.5 Special L2 Cache Features: Partitioning and Locking

	10 Virtual Memory
	10.1 Virtual Address Translation
	10.1.1 Mapping
	10.1.2 The Translation Look-Aside Buffer (TLB)
	10.1.3 Wired TLB Entries

	10.2 Generic MIPS Virtual Memory Map
	10.3 MIPS Virtual Memory Address Translation
	10.3.1 Segments
	10.3.1.1 Segments: 64-Bit Virtual Address Map
	10.3.1.2 Segments: 32-Bit Virtual Address Map

	10.3.2 Privilege Level (Mode) and Segments

	10.4 Mapped and Unmapped Segments
	10.4.1 Unmapped Segments
	10.4.1.1 64-Bit Virtual Address Space: xkphys
	10.4.1.2 32-Bit Virtual Address Space: kseg0 and kseg1

	10.4.2 Mapped Segments
	10.4.3 Addresses Versus Pointers

	10.5 Virtual Memory onCavium Networks MIPS (cnMIPS)
	10.6 Cavium Networks-Specific cvmseg Segment
	10.7 Accessing Application-Private System Memory
	10.8 Summary of Virtual Address Space on cnMIPS

	11 Allocating and Using Bootmem Global Memory
	11.1 Using Global Bootmem
	11.2 The malloc() and free() Functions and FPA Buffers
	11.3 The cvmx_shared Section and FPA Buffers
	11.3.1 The cvmx_shared Section is Not Always Shared
	11.3.2 The cvmx_shared Section Should be Kept Small

	11.4 Using Named Blocks to Share Memory Between Different Load Sets

	12 Accessing Bootmem Global Memory (Buffers)
	12.1 Accessing Bootmem Global Memory From SE-S Applications
	12.1.1 SE-S 64-Bit Bootmem Access
	12.1.1.1 SE-S 64-Bit: Access Via xkphys (NO 1:1 Mapping)
	12.1.1.2 SE-S 64-Bit: Access Via xuseg (1:1 Mapping)

	12.1.2 SE-S 32-Bit Bootmem Access
	12.1.2.1 SE-S 32-Bit: Access Via kseg0 (NO 1:1 Mapping)
	12.1.2.2 SE-S 32-bit: Access Via useg (1:1 Mapping)

	12.2 Accessing Bootmem Global Memory From Linux Kernel: 64-Bit
	12.3 Accessing Bootmem Global Memory from SE-UM Applications
	12.3.1 SE-UM 64-Bit Bootmem Access
	12.3.2 SE-UM 32-Bit Bootmem Access

	12.4 Bootmem Size in Different Access Methods
	12.5 Using cvmx_ptr_to_phys() and cmvx_phys_to_ptr() Functions

	13 Accessing I/O Space
	13.1 Accessing I/O Space from SE-S Applications
	13.1.1 SE-S 64-Bit I/O Space Access
	13.1.2 SE-S 32-Bit I/O Space Access

	13.2 Accessing I/O Space from Linux Kernel: 64-Bit
	13.3 Accessing I/O Space from SE-UM Applications
	13.3.1 SE-UM 64-Bit I/O Space Access
	13.3.2 SE-UM 32-Bit I/O Space Access

	14 Simple Executive Standalone (SE-S) Memory Model
	14.1 Simple Executive Application Space
	14.2 Simple Executive System Memory Access
	14.2.1 Mapping of System Memory

	14.3 Simple Executive I/O Space Access
	14.4 Simple Executive Virtual Memory Configuration Options
	14.4.1 CVMX_USE_1_TO_1_TLB_MAPPINGS
	14.4.1.1 Changing the Value of CVMX_USE_1_TO_1_TLB_MAPPINGS

	14.4.2 CVMX_NULL_POINTER_PROTECT
	14.4.2.1 Changing the Value of CVMX_NULL_POINTER_PROTECT

	14.5 SE-S 32-Bit Applications

	15 Linux Memory Model
	15.1 Configuring Linux and the Effect on the Memory Model
	15.1.1 Linux cvmseg (IOBDMA and Scratchpad) Size
	15.1.2 SE-UM 64-Bit: Direct Access to I/O Space Via xkphys
	15.1.3 SE-UM 64-Bit: Direct Access to System Memory Via xkphys
	15.1.4 SE-UM 32-bit: Reserving a Pool of Free Memory
	15.1.4.1 Using Wired TLB Entries for reserve32

	15.2 Linux Kernel Space and Simple Executive API Calls
	15.3 Linux Memory Configuration Steps
	15.4 Linux Kernel-Mode Virtual Address Space on the OCTEON Processor
	15.5 Linux 64-bit User-Mode Virtual Address Space for OCTEON
	15.6 Linux 32-Bit Virtual Address Space for OCTEON

	16 Downloading and Booting the ELF File
	16.1 Bootloader Memory Model
	16.1.1 The Reserved Download Block
	16.1.2 ELF File Maximum Download Size
	16.1.3 The Reserved Linux Block

	16.2 Booting the Same SE-S ELF File on Multiple Cores
	16.3 Downloading and Booting Multiple ELF Files
	16.3.1 Downloading by Re-using One Reserved Download Block
	16.3.2 Downloading Using Two Different Reserved Download Blocks

	16.4 Protection from Booting Multiple Applications on the Same Core

	17 SDK Code Conventions
	17.1 Register Definitions and Accessing Registers
	17.1.1 Register Definitions
	17.1.2 Register Typedefs
	17.1.3 Accessing Registers Using Register Definitions and Data Structures

	17.2 The cvmx_sysinfo_t Typedef
	17.3 OCTEON Models

	18 Bootloader Historical Information
	18.1 Backward Compatibility for Linux ELF Files Built Under SDK 1.6

