
Cavium Networks OCTEON Plus CN50XX
Hardware Reference Manual

Contents of this document are subject to change without notice.

The exact features and specifications may change prior to the V1.0 manual revision.

CN50XX-HM-0.99E PRELIMINARY

Cavium Networks Proprietary and Confidential DO NOT COPY
July 2008

PUBLISHED BY
Cavium Networks
805 East Middlefield Road
Mountain View, CA 94043
Phone: 650-623-7000
Fax: 650-625-9751
Email: sales@caviumnetworks.com
Web: http://www.caviumnetworks.com

© 2003-2008 by Cavium Networks

All rights reserved. No part of this manual may be reproduced in any form, or transmitted by any means,
without the written permission of Cavium Networks.

Cavium Networks makes no warranty about the use of its products, and reserves the right to change this
document at any time, without notice. Whereas great care has been taken in the preparation of this manual,
Cavium Networks, the publisher, and the authors assume no responsibility for errors or omissions.

OCTEON™ is a trademark of Cavium Networks.

MIPS® and MIPS64® are registered trademarks of MIPS Technologies. cnMIPS™ is a trademark of MIPS
Technologies; Cavium is a licensee of cnMIPS™.

All other trademarks or service marks referred to in this manual are the property of their respective owners.

Table of Contents
Preface... 33
Chapter 1 Introduction ... 39

OCTEON Plus CN50XX ... 39
Overview .. 40

1.1 Principles of Operation .. 43
1.1.1 CPU Cores ... 43
1.1.2 Coherent Multicore and I/O L2/DRAM Sharing ... 43
1.1.3 Core Partitioning .. 43
1.1.4 Flexible Packet/Control Interfacing... 43
1.1.5 In-line Packet-Processing Hardware Acceleration 44
1.1.6 Hardware-Assisted Dynamic Memory Allocation/Deallocation 44
1.1.7 Hardware Work Queuing, Scheduling, Ordering, and Synchronization 44
1.1.8 Essential Quality of Service (QoS) Functions Implemented in Hardware.. 45
1.1.9 Security Features.. 45
1.1.10 Coprocessor Accelerators.. 46
1.1.11 Debug Support .. 46

1.2 CN50XX System Applications ... 46

1.3 Remaining Chapters .. 47
1.3.1 Coherent Memory Bus (CMB), Level-Two Cache Controller (L2C),

and DRAM Controller... 47
1.3.2 I/O Bus and I/O Bridge ... 47
1.3.3 CPU Cores ... 47
1.3.4 Packet Order / Work Unit (POW) .. 47
1.3.5 Free Pool Unit (FPA) .. 47
1.3.6 Packet Input Processing/Input Packet Data Unit (PIP/IPD) 47
1.3.7 Packet Output Unit (PKO)... 48
1.3.8 PCI Unit .. 48
1.3.9 Timer Unit (TIM).. 48
1.3.10 Central Interrupt Unit (CIU)... 48
1.3.11 Boot Bus Unit.. 48
1.3.12 RGMII/GMII/MII Unit (GMX) ... 48
1.3.13 TDM/PCM Unit... 48
1.3.14 GPIO Unit ... 49
1.3.15 UART Unit .. 49
1.3.16 TWSI Unit ... 49
1.3.17 System Management Interface (SMI).. 49
1.3.18 Random Number Generator (RNG/RNM) ... 49
1.3.19 SPI/MPI Unit .. 49
1.3.20 USB Unit... 49
1.3.21 Electrical Specifications ... 49
1.3.22 AC Characteristics.. 49
1.3.23 Mechanical Specifications .. 49
1.3.24 Signal Descriptions... 50
1.3.25 Ball Assignments .. 50

1.4 Configuration and Status Registers (CSRs) .. 50
1.4.1 CSR Field Types ... 52

Chapter 2 Coherent Memory Bus, Level-2 Cache Controller, DRAM Controller 53
2.1 Coherent Memory Bus (CMB) ... 54
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 3

Table of Contents
2.1.1 CMB Overview .. 54
2.1.2 CMB Buses .. 54
2.1.3 CMB Description... 54
2.1.4 CMB Memory Coherence Support ... 55
2.1.5 CMB Transactions .. 58

2.2 Level-2 Cache Controller (L2C) ... 60
2.2.1 L2 Cache and Data Store ... 60
2.2.2 L2C Memory Coherence ... 61
2.2.3 L2 Cache Indexing (Set Selection) ... 62
2.2.4 L2 Cache Replacement and Way-Partitioning .. 63
2.2.5 L2 Cache-Block Locking ... 64
2.2.6 Cache-Block Flush and Unlocking... 65
2.2.7 Memory Input Queue Arbitration.. 66
2.2.8 COMMIT and FILL Bus Arbitration ... 66
2.2.9 L2C ECC Codes ... 67

2.3 DRAM Controller (LMC) ... 68
2.3.1 Main Memory DRAM Addressing.. 71
2.3.2 DRAM Part Addressing.. 71
2.3.3 DRAM Transaction Examples.. 72
2.3.4 DRAM Programming .. 78
2.3.5 DRAM Refreshes... 78
2.3.6 DRAM Scheduler Performance .. 78
2.3.7 DRAM Chip Selects and ODT .. 79
2.3.8 DRAM Controller Initialization ... 80
2.3.9 DDR Clock-Speed Programming Tables.. 83
2.3.10 DRAM ECC Codes ... 83

2.4 L2C Registers ... 84
L2C_CFG .. 85
L2T_ERR .. 86
L2D_ERR .. 87
L2D_FADR ... 87
L2D_FSYN0 ... 88
L2D_FSYN1 ... 88
L2C_DBG ... 89
L2C_LFB0 .. 90
L2C_LFB1 .. 91
L2C_LFB2 .. 91
L2C_LFB3 .. 91
L2C_DUT .. 92
L2C_LCKBASE .. 93
L2C_LCKOFF .. 94
L2C_SPAR0 .. 94
L2C_SPAR4 .. 94
L2C_PFCTL ... 95
L2C_PFC(0..3) .. 97
L2D_BST0 .. 98
L2D_BST1 .. 98
L2D_BST2 .. 99
L2D_BST3 .. 99
L2D_FUS0 .. 100
L2D_FUS1 .. 100
L2D_FUS2 .. 101
L2D_FUS3 .. 101
L2C_BST0 .. 103
L2C_BST1 .. 103
L2C_BST2 .. 104

2.5 LMC Registers ... 105
 4 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
LMC_MEM_CFG0 ... 106
LMC_MEM_CFG1 ... 109
LMC_CTL ... 111
LMC_DDR2_CTL ... 113
LMC_FADR .. 115
LMC_COMP_CTL .. 115
LMC_WODT_CTL .. 116
LMC_ECC_SYND .. 117
LMC_IFB_CNT_LO ... 117
LMC_IFB_CNT_HI .. 118
LMC_OPS_CNT_LO .. 118
LMC_OPS_CNT_HI ... 118
LMC_DCLK_CNT_LO ... 118
LMC_DCLK_CNT_HI .. 119
LMC_RODT_CTL .. 119
LMC_DELAY_CFG .. 119
LMC_CTL1 ... 120
LMC_DUAL_MEMCFG ... 121
LMC_RODT_COMP_CTL ... 123
LMC_PLL_CTL .. 123
LMC_PLL_STATUS .. 124
LMC_BIST_CTL .. 124
LMC_BIST_RESULT ... 124

Chapter 3 I/O Busing, I/O Bridge (IOB) and
Fetch and Add Unit (FAU) ... 125

3.1 CN50XX I/O Busing ... 126
3.1.1 I/O Busing Overview... 126
3.1.2 I/O Bus Flow Examples .. 127

3.2 IOB Architecture .. 129
3.2.1 IOB Architecture Overview.. 129

3.3 Don’t-Write-Back Engine ... 130

3.4 Fetch and Add Unit (FAU) ... 130

3.5 Fetch-and-Add Operations ... 132
3.5.1 Load Operations.. 132
3.5.2 IOBDMA Operations .. 134
3.5.3 Store Operations ... 136

3.6 IOB Registers ... 137
IOB_FAU_TIMEOUT .. 138
IOB_CTL_STATUS .. 138
IOB_INT_SUM ... 138
IOB_INT_ENB ... 139
IOB_PKT_ERR ... 139
IOB_INB_DATA_MATCH ... 139
IOB_INB_CONTROL_MATCH ... 140
IOB_INB_DATA_MATCH_ENB ... 140
IOB_INB_CONTROL_MATCH_ENB ... 140
IOB_OUTB_DATA_MATCH ... 140
IOB_OUTB_CONTROL_MATCH ... 141
IOB_OUTB_DATA_MATCH_ENB ... 141
IOB_OUTB_CONTROL_MATCH_ENB ... 141
IOB_BIST_STATUS .. 142

Chapter 4 cnMIPS™ Cores ... 143
Overview .. 144

4.1 Summary of cnMIPS Core Features .. 144
4.1.1 MIPS64 Version 2.0 Implementation .. 144
4.1.2 Cavium-Specific Architectural Additions .. 145
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 5

Table of Contents
4.1.3 Full Privileged Architecture (i.e. Coprocessor 0) Support 146
4.1.4 Full EJTAG Version 3.10 Support ... 147

4.2 cnMIPS Core Non-Privileged State ... 148

4.3 Cavium-Specific Instruction Summary ... 149

4.4 cnMIPS Core Instruction Set Summary ... 151

4.5 cnMIPS Core Virtual Addresses and CVMSEG ... 156

4.6 Physical Addresses ... 157

4.7 IOBDMA Operations .. 160

4.8 cnMIPS Core-Memory Reference Ordering ... 161

4.9 cnMIPS Core CSR Ordering .. 162

4.10 cnMIPS Core Write Buffer ... 163

4.11 cnMIPS Core Coprocessor 0 Privileged Registers .. 165
Index Register ... 167
Random Register ... 167
EntryLo0, EntryLo1 Registers ... 167
 Context Register .. 168
PageMask Register .. 168
PageGrain Register ... 168
Wired Register ... 169
HWREna Register .. 169
BadVAddr Register .. 169
Count Register ... 169
EntryHi Register .. 169
Compare Register .. 170
Status Register ... 170
IntCtl Register ... 171
SRSCtl Register ... 171
Cause Register ... 171
Exception Program Counter .. 172
PRId Register ... 172
EBase Register ... 172
Config Register ... 172
Config1 Register ... 173
Config2 Register ... 173
Config3 Register ... 174
WatchLo Register ... 174
WatchHi Register ... 174
XContext Register .. 175
Debug Register ... 175
Debug Exception Program Counter Register ... 176
Performance Counter Control Register .. 176
Performance Counter Counter Register ... 178
ErrorEPC .. 178
DESAVE Register .. 178

4.11.1 Cavium Networks-Specific Coprocessor 0 Registers..................................... 179
CacheErr (Icache) .. 179
CacheErr (Dcache) ... 179
TagLo Register (Icache) ... 180
TagLo Register (Dcache) .. 180
DataLo Register (Icache) ... 180
DataLo Register (Dcache) .. 181
TagHi Register .. 181
DataHi Register (Icache) ... 181
DataHi Register (Dcache) .. 182
CvmCtl Register ... 182
CvmMemCtl Register .. 184
CvmCount Register .. 185
 6 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
Multicore Debug Register .. 186

4.12 cnMIPS™ Core EJTAG DRSEG Registers ... 186
Debug Control Register (DCR) .. 187
Instruction Breakpoint Status (IBS) Register ... 187
Instruction Breakpoint Address (IBA0...3) Register 187
Instruction Breakpoint Address Mask (IBM0...3) Register 187
Instruction Breakpoint ASID (IBASID0...3) Register 188
Instruction Breakpoint Control (IBC0...3) Register 188
Data Breakpoint Status (DBS) Register ... 188
Data Breakpoint Address (DBA0...3) Register ... 188
Data Breakpoint Address Mask (DBM0...3) Register 189
Data Breakpoint ASID (DBASID0...3) Register ... 189
Data Breakpoint Control (DBC0...3) Register .. 189
Data Breakpoint Value (DBV0...3) Register .. 189

4.13 cnMIPS™ Core EJTAG TAP Registers ... 190
Device ID Register Format .. 190
Implementation Register Format (TAP Instruction IMPCODE) 190
Data Register (TAP Instruction DATA, ALL, or FASTDATA) 191
Address Register (TAP Instruction ADDRESS or ALL) 191
EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL) 191
PC Sample Register Format (TAP Instruction PCSAMPLE) 191
EJTAG Boot Indication ... 192
Bypass Register .. 192
Fastdata Register ... 192

4.14 cnMIPS Core Pipelines ... 193

4.15 Special MUL Topics .. 194

4.16 COP2 Latencies .. 196

4.17 cnMIPS Core Hardware Debug Features .. 197
4.17.1 Multicore Debug Support ... 198
4.17.2 System Debug Characteristics ... 199

4.18 cnMIPS Core Load-Linked / Store-Conditional .. 200

4.19 cnMIPS Core Exceptions .. 200

Chapter 5 Packet Order / Work Unit (POW) .. 205
Overview .. 206

5.1 POW Work Flow, Operations, and Ordering .. 207

5.2 Software Architecture Example ... 213
5.2.1 Defragmentation ... 216
5.2.2 IPSEC Decryption... 216
5.2.3 Lookup ... 216
5.2.4 Process... 217
5.2.5 IPSEC Encrypt.. 217
5.2.6 Output Queue.. 217

5.3 POW Internal Architecture ... 217

5.4 Work-Queue Entry Format .. 220

5.5 Core and Fetch-and-Add Pending Switch Bits ... 221

5.6 POW Interrupts .. 222

5.7 POW QOS Features .. 225
5.7.1 Thresholds... 225
5.7.2 Scheduling... 225

5.8 POW Debug Visibility .. 227

5.9 POW Performance Considerations .. 228

5.10 Forward Progress Constraints ... 229

5.11 POW Operations ... 231
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 7

Table of Contents
5.11.1 Load Operations.. 231
5.11.2 IOBDMA Operations .. 238
5.11.3 Store Operations ... 238

5.12 POW ECC Codes .. 239

5.13 POW Registers ... 240
POW_PP_GRP_MSK0/1 .. 241
POW_WQ_INT_THR(0..15) ... 241
POW_WQ_INT_CNT(0..15) ... 243
POW_QOS_THR(0..7) .. 243
POW_QOS_RND(0...7) ... 245
POW_WQ_INT ... 245
POW_WQ_INT_PC .. 246
POW_NW_TIM .. 246
POW_ECC_ERR ... 248
POW_NOS_CNT .. 249
POW_PF_RST_MSK .. 249
POW_WS_PC(0..15) ... 249
POW_WA_PC(0..7) ... 249
POW_IQ_CNT(0..7) .. 249
POW_WA_COM_PC .. 250
POW_IQ_COM_CNT ... 250
POW_TS_PC .. 250
POW_DS_PC .. 250
POW_BIST_STAT .. 251

Chapter 6 Free Pool Unit (FPA) ... 253
Overview .. 254

6.1 Free Pool Unit Operations ... 256
6.1.1 Load Operations.. 256
6.1.2 IOBDMA Operations .. 257
6.1.3 Store Operations ... 257

6.2 FPA Registers .. 258
FPA_INT_SUM .. 259
FPA_INT_ENB ... 260
 FPA_CTL_STATUS .. 261
FPA_QUE(0..7)_AVAILABLE ... 261
FPA_BIST_STATUS .. 262
FPA_QUE(0..7)_PAGE_INDEX .. 262
FPA_QUE_EXP .. 262
FPA_QUE_ACT .. 263

Chapter 7 Packet Input Processing/Input Packet Data Unit (PIP/IPD) 265
Overview .. 266

7.1 Input Ports .. 266

7.2 Input Packet Formats and Pre-IP Parsing ... 266
7.2.1 Packet Instruction Header ... 268
7.2.2 PCI Instruction-to-Packet Conversion... 270
7.2.3 Parse Mode and Skip Length Selection ... 271
7.2.4 PIP/IPD L2 Parsing and Is_IP Determination.. 272
7.2.5 Pre-IP Parsing Summary ... 272
7.2.6 Packet Input CRC... 274
7.2.7 Packet Length Checks .. 274
7.2.8 Legal SKIP Values.. 276

7.3 Packet Buffering ... 277

7.4 Packet Scheduling .. 282
7.4.1 RAWFULL and RAWSCHED Packets ... 282
7.4.2 QOS.. 282
 8 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
7.4.3 Grp ... 282
7.4.4 TT... 283
7.4.5 Tag ... 283

7.5 Work-Queue Entry ... 284

7.6 Input Packet Data Unit (IPD) Quality of Service ... 301

7.7 PIP/IPD Per-QOS Admission Control ... 303

7.8 PIP Registers .. 306
PIP_BIST_STATUS ... 307
PIP_INT_REG .. 308
PIP_INT_EN .. 309
PIP_STAT_CTL ... 309
PIP_GBL_CTL ... 310
PIP_GBL_CFG ... 311
PIP_SFT_RST .. 312
PIP_IP_OFFSET .. 313
PIP_TAG_SECRET .. 313
PIP_TAG_MASK .. 314
PIP_TODO_ENTRY ... 314
PIP_DEC_IPSEC(0..3) ... 314
PIP_RAW_WORD .. 314
PIP_QOS_VLAN(0..7) .. 315
PIP_QOS_WATCH(0..7) .. 315
PIP_FRM_LEN_CHK0/1 ... 315
PIP_PRT_CFG(0..2, 32/33) .. 316
PIP_PRT_TAG(0..2, 32/33) .. 317
PIP_QOS_DIFF(0..63) ... 318
PIP_TAG_INC(0..63) ... 318

7.8.1 PIP Statistics Counters .. 319
PIP_STAT0_PRT(0..2, 32/33) .. 319
PIP_STAT1_PRT(0..2, 32/33) .. 319
PIP_STAT2_PRT(0..2, 32/33) .. 319
PIP_STAT3_PRT(0..2, 32/33) .. 320
PIP_STAT4_PRT(0..2, 32/33) .. 320
PIP_STAT5_PRT(0..2, 32/33) .. 320
PIP_STAT6_PRT(0..2, 32/33) .. 320
PIP_STAT7_PRT(0..2, 32/33) .. 320
PIP_STAT8_PRT(0..2, 32/33) .. 321
PIP_STAT9_PRT(0..2, 32/33) .. 321

7.8.2 PIP Inbound Statistics Registers ... 322
PIP_STAT_INB_PKTS(0..2, 32/33) ... 322
PIP_STAT_INB_OCTS(0..2, 32/33) ... 322
PIP_STAT_INB_ERRS(0..2, 32/33) ... 322

7.9 IPD Registers .. 323
IPD_1ST_MBUFF_SKIP ... 324
IPD_NOT_1ST_MBUFF_SKIP ... 324
IPD_PACKET_MBUFF_SIZE ... 324
IPD_CTL_STATUS .. 325
IPD_WQE_FPA_QUEUE .. 326
IPD_PORT(0..2, 32/33)_BP_PAGE_CNT .. 326
IPD_SUB_PORT_BP_PAGE_CNT ... 326
IPD_1ST_NEXT_PTR_BACK ... 327
IPD_2ND_NEXT_PTR_BACK .. 327
IPD_INT_ENB ... 327
IPD_INT_SUM ... 328
IPD_SUB_PORT_FCS ... 328
IPD_QOS(0..7)_RED_MARKS .. 328
IPD_PORT_BP_COUNTERS_PAIR(0..2, 32/33) .. 329
IPD_RED_PORT_ENABLE .. 329
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 9

Table of Contents
IPD_RED_QUE(0..7)_PARAM .. 330
IPD_PTR_COUNT ... 330
IPD_BP_PRT_RED_END .. 331
IPD_QUE0_FREE_PAGE_CNT .. 331
IPD_CLK_COUNT ... 331
IPD_PWP_PTR_FIFO_CTL .. 331
IPD_PRC_HOLD_PTR_FIFO_CTL .. 332
IPD_PRC_PORT_PTR_FIFO_CTL ... 332
IPD_PKT_PTR_VALID .. 332
IPD_WQE_PTR_VALID .. 333
IPD_BIST_STATUS ... 333

Chapter 8 Packet Output Processing Unit (PKO) .. 335
Overview .. 336

8.1 Output Ports ... 337

8.2 Output Packet Format and TCP/UDP Checksum Insertion 338

8.3 PKO Output Queue .. 339

8.4 PKO Commands ... 340

8.5 PKO Queue Arbitration Algorithm ... 346

8.6 PKO Don’t-Write-Back (DWB) Calculation .. 348

8.7 PKO Performance ... 349

8.8 PKO Operations .. 349
8.8.1 Store Operations ... 349

8.9 PKO Registers .. 351
PKO_REG_FLAGS .. 352
PKO_REG_READ_IDX .. 352
PKO_REG_CMD_BUF .. 352
PKO_REG_GMX_PORT_MODE ... 353
PKO_REG_QUEUE_MODE .. 353
PKO_REG_BIST_RESULT ... 353
PKO_REG_ERROR .. 354
PKO_REG_INT_MASK ... 354
PKO_REG_DEBUG0 ... 354
PKO_REG_DEBUG1 ... 354
PKO_REG_DEBUG2 ... 354
PKO_REG_DEBUG3 ... 355
PKO_REG_QUEUE_PTRS1 .. 355
PKO_MEM_QUEUE_PTRS .. 355
PKO_MEM_QUEUE_QOS .. 357
PKO_MEM_COUNT0 .. 357
PKO_MEM_COUNT1 .. 358
PKO_MEM_DEBUG0 .. 358
PKO_MEM_DEBUG1 .. 358
PKO_MEM_DEBUG2 .. 359
PKO_MEM_DEBUG3 .. 359
PKO_MEM_DEBUG4 .. 359
PKO_MEM_DEBUG5 .. 360
PKO_MEM_DEBUG6 .. 360
PKO_MEM_DEBUG7 .. 361
PKO_MEM_DEBUG8 .. 361
PKO_MEM_DEBUG9 .. 361
PKO_MEM_DEBUG10 .. 362
PKO_MEM_DEBUG11 .. 362
PKO_MEM_DEBUG12 .. 362
PKO_MEM_DEBUG13 .. 363

Chapter 9 PCI Bus .. 365
Overview .. 366
 10 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
9.1 CN50XX PCI Features .. 366

9.2 CN50XX Addressing as a PCI Target .. 367
9.2.1 BAR0 - Memory-Mapped CSR Region ... 367
9.2.2 BAR1 - 32-Bit Memory-Mapped Region .. 368
9.2.3 BAR2 - 64-bit Memory-Mapped Region... 370
9.2.4 Expansion ROM .. 371

9.3 PCI Instruction Input From an External Host ... 371
9.3.1 PCI Instruction Format.. 371
9.3.2 PCI Input Packet .. 373
9.3.3 DPTR Formats .. 375

9.4 PCI Packet Output From CN50XX .. 377
9.4.1 Info-Pointer Mode ... 379
9.4.2 Buffer-Pointer-Only Mode .. 380

9.5 PCI DMA Engine Access From Cores ... 381
9.5.1 PCI DMA Instruction-Header Format... 382
9.5.2 PCI DMA Instruction Local-Pointer Format... 383
9.5.3 PCI DMA Instruction PCI Components and Processing 385
9.5.4 PCI DMA Instruction Fetching.. 386
9.5.5 PCI DMA Instruction Ordering and Completion .. 387
9.5.6 PCI DMA Engine Don’t-Write-Back Calculation .. 388
9.5.7 Host Output Queueing Via the PCI DMA Engine .. 388

9.6 PCI Memory Space Loads/Stores to BAR1/2 ... 389
9.6.1 Referencing L2/DRAM With CN50XX as a PCI Target................................ 389

9.7 CN50XX PCI Internal Arbiter ... 391

9.8 CN50XX PCI MSI Support ... 391

9.9 Endian Swapping ... 391
9.9.1 PASS_THRU MODE (== 0).. 391
9.9.2 64b_BYTE_SWAP Mode (== 1) .. 392
9.9.3 32b_BYTE_SWAP Mode (== 2) .. 393
9.9.4 32b_LW_SWAP Mode (== 3) .. 393

9.10 PC Bus Operations ... 394
9.10.1 Load/Store Operations ... 394
9.10.2 IOBDMA Operations .. 394
9.10.3 RSL Access Space (SubDID == 0) .. 394
9.10.4 PCI Config / IACK / Special Space (SubDID == 1).. 395
9.10.5 PCI I/O Space (SubDID == 2)... 396
9.10.6 Memory Space (SubDID == 3, 4, 5, 6).. 396
9.10.7 PCI-Related, NCB-Direct, PCICONFIG, and PCI_NCB CSR Access (SubDID ==

7) .. 397

9.11 PCI Reset Sequence .. 397
9.11.1 PCI Reset Sequence in Host Mode... 397
9.11.2 PCI Reset Sequence in Non-Host Mode... 399

9.12 PCI Checklist .. 401

9.13 PCI Configuration Registers ... 403
PCI_CFG00 .. 404
PCI_CFG01 .. 404
PCI_CFG02 .. 405
PCI_CFG03 .. 405
PCI_CFG04 .. 405
PCI_CFG05 .. 405
PCI_CFG06 .. 406
PCI_CFG07 .. 406
PCI_CFG08 .. 406
PCI_CFG09 .. 406
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 11

Table of Contents
PCI_CFG10 .. 406
PCI_CFG11 .. 407
PCI_CFG12 .. 407
PCI_CFG13 .. 407
PCI_CFG15 .. 407
PCI_CFG16 .. 408
PCI_CFG17 .. 409
PCI_CFG18 .. 409
PCI_CFG19 .. 410
PCI_CFG20 .. 411
PCI_CFG21 .. 411
PCI_CFG22 .. 412
PCI_CFG58 .. 413
PCI_CFG59 .. 413
PCI_CFG60 .. 414
PCI_CFG61 .. 414
PCI_CFG62 .. 414
PCI_CFG63 .. 414

9.14 PCI Bus Registers .. 415
9.14.1 PCI_NCB-Type Registers ... 417

PCI_BAR1_INDEX(0...31) ... 417
PCI_READ_CMD_6 ... 417
PCI_READ_CMD_C ... 418
PCI_READ_CMD_E ... 418
PCI_CTL_STATUS_2 .. 419
NPI_MSI_RCV ... 422
PCI_INT_ENB2 ... 423
PCI_INT_SUM2 ... 424

9.14.2 PCI-Type Registers ... 426
PCI_WIN_WR_ADDR .. 426
PCI_WIN_RD_ADDR .. 426
PCI_WIN_WR_DATA .. 427
PCI_WIN_WR_MASK ... 427
PCI_WIN_RD_DATA ... 427
PCI_INT_SUM ... 427
PCI_INT_ENB ... 429
PCI_PKTS_SENT0/1 ... 429
PCI_PKT_CREDITS0/1 ... 430
PCI_PKTS_SENT_INT_LEV0/1 ... 430
PCI_PKTS_SENT_TIME0/1 .. 430
PCI_DBELL0/1 .. 430
PCI_INSTR_COUNT0/1 .. 431
PCI_DMA_CNT0/1 ... 431
PCI_DMA_INT_LEV0/1 .. 431
PCI_DMA_TIME0/1 ... 431
PCI_MSI_RCV ... 431

9.15 NPI Registers .. 432
NPI_RSL_INT_BLOCKS ... 433
NPI_DBG_SELECT ... 433
NPI_CTL_STATUS .. 434
NPI_INT_SUM ... 434
NPI_INT_ENB ... 436
NPI_MEM_ACCESS_SUBID(3..6) ... 438
NPI_PCI_READ_CMD .. 438
NPI_NUM_DESC_OUTPUT0/1 .. 438
NPI_BASE_ADDR_INPUT0/1 .. 439
NPI_SIZE_INPUT0/1 .. 439
PCI_READ_TIMEOUT .. 439
NPI_BASE_ADDR_OUTPUT0/1 ... 439
 12 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
NPI_PCI_BURST_SIZE .. 440
NPI_BUFF_SIZE_OUTPUT0/1 ... 440
NPI_OUTPUT_CONTROL .. 441
NPI_LOWP_IBUFF_SADDR .. 441
NPI_HIGHP_IBUFF_SADDR ... 441
NPI_LOWP_DBELL .. 442
NPI_HIGHP_DBELL ... 442
NPI_DMA_CONTROL ... 443
NPI_PCI_INT_ARB_CFG .. 443
NPI_INPUT_CONTROL ... 444
NPI_DMA_LOWP_COUNTS .. 444
NPI_DMA_HIGHP_COUNTS ... 444
NPI_DMA_LOWP_NADDR ... 445
NPI_DMA_HIGHP_NADDR ... 445
NPI_P0/1_PAIR_CNTS .. 445
NPI_P0/1_DBPAIR_ADDR .. 445
NPI_P0/1_INSTR_CNTS ... 446
NPI_P0/1_INSTR_ADDR .. 446
NPI_WIN_READ_TO ... 446
DBG_DATA .. 446
NPI_PORT_BP_CONTROL ... 447
NPI_PORT32/33_INSTR_HDR ... 447
NPI_BIST_STATUS .. 448

Chapter 10 Timer ... 449
Overview .. 450

10.1 Timer Features ... 450

10.2 Timer Support ... 451

10.3 Software Responsibilities ... 452

10.4 Timer Registers ... 454
TIM_REG_FLAGS ... 455
TIM_REG_READ_IDX .. 455
TIM_REG_BIST_RESULT .. 455
TIM_REG_ERROR .. 456
TIM_REG_INT_MASK .. 456
TIM_MEM_RING0 .. 456
TIM_MEM_RING1 .. 457
TIM_MEM_DEBUG0 .. 457
TIM_MEM_DEBUG1 .. 457
TIM_MEM_DEBUG2 .. 458

Chapter 11 Central Interrupt Unit (CIU) ... 459
Overview .. 460

11.1 Central Interrupt Collection and Distribution ... 460

11.2 Per-Core Mailbox Registers ... 464

11.3 Per-Core Watchdog Timers .. 465

11.4 Four General Timers .. 466

11.5 Core Availability and Reset ... 467

11.6 Core Debug-Mode Observability .. 467

11.7 Core Debug-Interrupt Generation ... 468

11.8 Core Non-Maskable Interrupt Generation .. 468

11.9 Chip Soft-Reset Initiation .. 468

11.10CIU Registers ... 469
CIU_INT(0..3,32)_SUM0 ... 470
CIU_INT_SUM1 .. 470
CIU_INT(0..3,32)_EN0 .. 471
CIU_INT(0..3,32)_EN1 .. 471
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 13

Table of Contents
CIU_INT0/1_SUM4 ... 472
CIU_INT0/1_EN4_0 ... 473
CIU_INT0/1_EN4_1 ... 473
CIU_TIM(0..3) .. 474
CIU_WDOG0/1 ... 474
CIU_PP_POKE0/1 ... 474
CIU_MBOX_SET0/1 .. 475
CIU_MBOX_CLR0/1 .. 475
CIU_PP_RST .. 475
CIU_PP_DBG ... 475
CIU_GSTOP ... 475
CIU_NMI .. 476
CIU_DINT .. 476
CIU_FUSE ... 476
CIU_BIST ... 476
CIU_SOFT_BIST ... 476
CIU_SOFT_RST ... 477
CIU_SOFT_PRST .. 477
CIU_PCI_INTA .. 477

Chapter 12 Boot Bus .. 479
Overview .. 480

12.1 Boot-Bus Addresses .. 481

12.2 Boot-Bus Address Matching and Regions ... 481

12.3 Boot-Bus Reset Configuration and Booting .. 482

12.4 Boot-Bus Region Timing .. 483
12.4.1 Static-Timed Read Sequences .. 485
12.4.2 Static-Timed Write Sequences ... 490
12.4.3 Static-Timed Page-Read Sequences... 493
12.4.4 Dynamic-Timed Sequences .. 497

12.5 Boot-Bus Request Queuing .. 498

12.6 Boot-Bus Connections .. 499

12.7 Boot-Bus Operations .. 500
12.7.1 Load Operations.. 500
12.7.2 IOBDMA Operations .. 501
12.7.3 Store Operations ... 502

12.8 Boot-Bus Registers ... 502
MIO_BOOT_REG_CFG0 ... 503
MIO_BOOT_REG_CFG(1..7) ... 504
MIO_BOOT_REG_TIM0 .. 505
MIO_BOOT_REG_TIM(1..7) ... 505
MIO_BOOT_LOC_CFG0/1 .. 506
MIO_BOOT_LOC_ADR ... 506
MIO_BOOT_LOC_DAT ... 506
MIO_BOOT_ERR ... 507
MIO_BOOT_INT .. 507
MIO_BOOT_THR ... 507
MIO_BOOT_COMP ... 508
MIO_BOOT_BIST_STAT .. 508

Chapter 13 CN50XX Packet Interface .. 509
Overview .. 510

13.1 Packet Interface Introduction .. 510

13.2 RGMII Features .. 512
13.2.1 Flow Control.. 512
13.2.2 Receive Preamble.. 514
13.2.3 Receive Packet Dropping.. 514
 14 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
13.2.4 Receive-Packet Inspection.. 516
13.2.5 Receive Link Status .. 517
13.2.6 Packet Transmission .. 517
13.2.7 Transmit-Packet Options ... 518
13.2.8 Collisions ... 518
13.2.9 Bursts .. 518

13.3 Errors/Exceptions ... 519
13.3.1 Receive Error/Exception Checks .. 519
13.3.2 Transmit Error/Exception Checks ... 521
13.3.3 Transmit Error Propagation .. 522

13.4 Link ... 522
13.4.1 Link Status.. 522
13.4.2 Link Status Changes .. 522
13.4.3 Configuration Based on Mode .. 523

13.5 Statistics ... 523

13.6 Loopback ... 524

13.7 Initialization ... 525

13.8 GMX Registers .. 526
GMX0_RX(0..2)_INT_REG .. 530
GMX0_RX(0..2)_INT_EN .. 531
GMX0_PRT(0..2)_CFG ... 531
GMX0_RX(0..2)_FRM_CTL ... 532
GMX0_RX(0..2)_FRM_CHK .. 534
GMX0_RX(0..2)_JABBER .. 534
GMX0_RX(0..2)_DECISION .. 535
GMX0_RX(0..2)_UDD_SKP ... 536
GMX0_RX(0..2)_STATS_CTL ... 536
GMX0_RX(0..2)_IFG .. 537
GMX0_RX(0..2)_RX_INBND ... 537
GMX0_RX(0..2)_PAUSE_DROP_TIME .. 537
GMX0_RX(0..2)_STATS_PKTS ... 538
GMX0_RX(0..2)_STATS_OCTS ... 538
GMX0_RX(0..2)_STATS_PKTS_CTL .. 538
GMX0_RX(0..2)_STATS_OCTS_CTL .. 539
GMX0_RX(0..2)_STATS_PKTS_DMAC .. 539
GMX0_RX(0..2)_STATS_OCTS_DMAC .. 539
GMX0_RX(0..2)_STATS_PKTS_DRP ... 540
GMX0_RX(0..2)_STATS_OCTS_DRP ... 540
GMX0_RX(0..2)_STATS_PKTS_BAD ... 540
GMX0_RX(0..2)_ADR_CTL ... 541
GMX0_RX(0..2)_ADR_CAM_EN ... 541
GMX0_RX(0..2)_ADR_CAM(0..5) .. 542
GMX0_TX(0..2)_CLK ... 542
GMX0_TX(0..2)_THRESH ... 542
GMX0_TX(0..2)_APPEND ... 543
GMX0_TX(0..2)_SLOT ... 543
GMX0_TX(0..2)_BURST .. 543
GMX0_SMAC(0..2) ... 543
GMX0_TX(0..2)_PAUSE_PKT_TIME ... 544
GMX0_TX(0..2)_MIN_PKT .. 544
GMX0_TX(0..2)_PAUSE_PKT_INTERVAL ... 545
GMX0_TX(0..2)_SOFT_PAUSE .. 545
GMX0_TX(0..2)_PAUSE_TOGO ... 546
GMX0_TX(0..2)_PAUSE_ZERO .. 546
GMX0_TX(0..2)_STATS_CTL .. 546
GMX0_TX(0..2)_CTL ... 546
GMX0_TX(0..2)_STAT0 ... 547
GMX0_TX(0..2)_STAT1 ... 547
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 15

Table of Contents
GMX0_TX(0..2)_STAT2 ... 547
GMX0_TX(0..2)_STAT3 ... 548
GMX0_TX(0..2)_STAT4 ... 548
GMX0_TX(0..2)_STAT5 ... 548
GMX0_TX(0..2)_STAT6 ... 549
GMX0_TX(0..2)_STAT7 ... 549
GMX0_TX(0..2)_STAT8 ... 549
GMX0_TX(0..2)_STAT9 ... 550
GMX0_BIST ... 550
GMX_RX_PRTS ... 550
GMX0_RX_BP_DROP(0..2) ... 550
GMX0_RX_BP_ON(0..2) .. 551
GMX0_RX_BP_OFF(0..2) .. 552
GMX0_TX_PRTS .. 552
GMX0_TX_IFG ... 552
GMX0_TX_JAM ... 552
GMX0_TX_COL_ATTEMPT ... 553
GMX0_TX_PAUSE_PKT_DMAC .. 553
GMX0_TX_PAUSE_PKT_TYPE ... 553
GMX0_TX_OVR_BP .. 553
GMX0_TX_BP .. 554
GMX0_TX_CORRUPT ... 554
GMX0_RX_PRT_INFO .. 554
GMX0_TX_LFSR .. 555
GMX0_TX_INT_REG ... 555
GMX0_TX_INT_EN ... 555
GMX0_NXA_ADR .. 556
GMX_BAD_REG .. 556
GMX_STAT_BP ... 556
GMX0_TX_CLK_MSK0/1 .. 556
GMX0_RX_TX_STATUS ... 557
GMX0_INF_MODE .. 557

13.9 ASX Registers ... 558
ASX0_RX_PRT_EN .. 558
ASX0_TX_PRT_EN .. 559
ASX0_INT_REG ... 559
ASX0_INT_EN ... 559
ASX0_RX_CLK_SET(0..2) ... 560
ASX0_PRT_LOOP .. 561
ASX0_TX_CLK_SET(0..2) ... 562
ASX0_TX_COMP_BYP .. 562
ASX0_TX_HI_WATER(0..2) .. 562
ASX0_GMII_RX_CLK_SET ... 563
ASX0_GMII_RX_DAT_SET ... 563
ASX0_MII_RX_DAT_SET ... 563

Chapter 14 PCM/TDM Interface .. 569
Overview .. 570

14.1 Signal Usage ... 571

14.2 Clocking ... 572
14.2.1 BCLK Generation ... 572
14.2.2 FSYNC Generation ... 573
14.2.3 BCLK Reception.. 573
14.2.4 FSYNC Reception ... 573
14.2.5 Examples BCLK/FSYNC Waveforms .. 574

14.3 TDM Engines .. 575
14.3.1 TDM Engine Configuration.. 576
14.3.2 DMA Engines .. 577

14.4 Initialization Sequence ... 581
 16 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
14.5 PCM/TDM Registers ... 582
PCM_CLK0/1_CFG .. 584
PCM_CLK0/1_GEN ... 585
PCM(0..3)_TDM_CFG .. 585
PCM(0..3)_DMA_CFG ... 586
PCM(0..3)_INT_ENA ... 586
PCM(0..3)_INT_SUM ... 587
PCM(0..3)_TDM_DBG ... 587
PCM0/1_CLK_DBG ... 587
PCM(0..3)_TXSTART ... 587
PCM(0..3)_TXCNT ... 587
PCM(0..3)_TXADDR .. 588
PCM(0..3)_RXSTART .. 588
PCM(0..3)_RXCNT ... 588
PCM(0..3)_RXADDR .. 588
PCM(0..3)_TXMSK0 .. 588
PCM(0..3)_TXMSK1 .. 589
PCM(0..3)_TXMSK2 .. 589
PCM(0..3)_TXMSK3 .. 589
PCM(0..3)_TXMSK4 .. 589
PCM(0..3)_TXMSK5 .. 589
PCM(0..3)_TXMSK6 .. 590
PCM(0..3)_TXMSK7 .. 590
PCM(0..3)_RXMSK0 .. 590
PCM(0..3)_RXMSK1 .. 590
PCM(0..3)_RXMSK2 .. 590
PCM(0..3)_RXMSK3 .. 591
PCM(0..3)_RXMSK4 .. 591
PCM(0..3)_RXMSK5 .. 591
PCM(0..3)_RXMSK6 .. 591
PCM(0..3)_RXMSK7 .. 591

Chapter 15 GPIO Unit ... 593
Overview .. 594

15.1 GPIO Operations .. 595
15.1.1 Reading the GPIO Bus ... 595
15.1.2 Writing the GPIO Bus .. 595
15.1.3 GPIO Interrupts.. 595

15.2 Glitch Filters ... 595

15.3 GPIO Registers ... 597
GPIO_BIT_CFG(0..15) ... 598
GPIO_RX_DAT .. 598
GPIO_TX_SET ... 598
GPIO_TX_CLR ... 598
GPIO_INT_CLR ... 599
GPIO_DBG_ENA ... 599
GPIO_BOOT_ENA ... 599
GPIO_XBIT_CFG(16..23) .. 599

Chapter 16 UART Interface .. 601
Overview .. 602

16.1 UART (RS232) Serial Protocol ... 603

16.2 UART Interrupts .. 604

16.3 UART AutoFlow Control .. 604
16.3.1 UART AutoRTS... 604
16.3.2 UART AutoCTS... 605
16.3.3 UART Programmable THRE Interrupt ... 606

16.4 UART Registers .. 607
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 17

Table of Contents
MIO_UART0/1 _RBR ... 608
MIO_UART0/1 _IER .. 609
MIO_UART0/1 _IIR ... 610
MIO_UART0/1 _LCR ... 611
MIO_UART0/1 _MCR .. 612
MIO_UART0/1 _LSR ... 614
MIO_UART0/1 _MSR .. 615
MIO_UART0/1 _SCR ... 615
MIO_UART0/1 _THR ... 616
MIO_UART0/1_FCR .. 617
MIO_UART0/1_DLL .. 618
MIO_UART0/1_DLH ... 618
MIO_UART0/1_FAR .. 619
MIO_UART0/1_TFR .. 619
MIO_UART0/1_RFW ... 619
MIO_UART0/1_USR .. 620
MIO_UART0/1_TFL .. 620
MIO_UART0/1_RFL .. 620
MIO_UART0/1_SRR .. 621
MIO_UART0/1_SRTS .. 621
MIO_UART0/1_SBCR .. 621
MIO_UART0/1_SFE .. 621
MIO_UART0/1_SRT .. 622
MIO_UART0/1_STT ... 622
MIO_UART0/1_HTX .. 622

Chapter 17 TWSI Interface ... 623
Overview .. 624

17.1 High-Level Controller as a Master .. 625

17.2 High-Level Controller as a Slave ... 627

17.3 Direct TWSI Core Usage .. 632
17.3.1 Master Transmit Mode... 632
17.3.2 Master Receive Mode.. 635
17.3.3 Slave Transmit Mode.. 636
17.3.4 Slave Receive Mode... 637
17.3.5 TWSI Core Flow Diagrams... 638

17.4 TWSI Control Registers ... 640
17.4.1 TWSI Slave Address Register .. 640
17.4.2 TWSI Slave Extended-Address Register ... 641
17.4.3 TWSI Data Register.. 641
17.4.4 TWSI Control Register ... 641
17.4.5 TWSI Status Register ... 643
17.4.6 TWSI Master Clock Register.. 645
17.4.7 TWSI Clock Control Register ... 645
17.4.8 TWSI Software Reset Register... 646

17.5 TWSI Registers ... 646
MIO_TWS_SW_TWSI .. 647
MIO_TWS_TWSI_SW .. 648
MIO_TWS_INT .. 649
MIO_TWS_SW_TWSI_EXT .. 650

Chapter 18 System Management Interface (SMI) ... 651
Overview .. 652

18.1 SMI/MDIO Interface .. 652

18.2 SMI Registers ... 654
SMI_CMD ... 655
SMI_WR_DAT .. 655
SMI_RD_DAT ... 655
 18 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
SMI_CLK .. 656
SMI_EN .. 656

Chapter 19 Random-Number Generator (RNG),
Random-Number Memory (RNM) ... 657
Overview .. 658

19.1 RNG/RNM Operations ... 660
19.1.1 RNG/RNM Load Operation .. 660
19.1.2 IOBDMA Operations .. 661

19.2 RNM Registers .. 662
RNM_BIST_STATUS .. 662
RNM_CTL_STATUS .. 662

Chapter 20 MPI/SPI Unit ... 663
Overview .. 664

20.1 Pin Usage .. 664

20.2 MPI/SPI Configuration ... 665
20.2.1 Clock Generation .. 665
20.2.2 Chip Select .. 665
20.2.3 SPI/MPI Style ... 666
20.2.4 Polling/Interrupt-Based Reception .. 666
20.2.5 Other Fields in MPI_CFG .. 666

20.3 MPI/SPI Usage ... 667
20.3.1 MPI_DAT(0..8) Registers.. 667
20.3.2 Using the MPI_TX Register ... 667
20.3.3 Using the MPI_STS Register ... 667

20.4 Examples ... 668
20.4.1 Example 1: Reading a Single Byte From Device Address 0x04 668
20.4.2 Example 2: Writing a Single Byte to Register 0x04...................................... 668
20.4.3 Example 3: Writing Ten Bytes to Registers 0x09–0x00 669
20.4.4 Example 4: Reading 17 Bytes From Registers 0x11–0x00 670

20.5 MPI/SPI Registers .. 670
MPI_CFG .. 672
MPI_STS .. 673
MPI_TX .. 673
MPI_DAT(0..8) ... 673

Chapter 21 USB Unit (USB) .. 675
Overview .. 676

21.1 Architecture .. 676
21.1.1 Host Architecture.. 676
21.1.2 Device Architecture .. 677
21.1.3 Address Map ... 678
21.1.4 USB Protocol and Transaction Handling .. 680
21.1.5 Endian Swapping.. 681

21.2 Initialization ... 681
21.2.1 Power On Reset and PHY Initialization.. 682
21.2.2 USB Core Initialization .. 683
21.2.3 Host Initialization... 684
21.2.4 Device Initialization.. 685

21.3 Modes of Operation ... 685
21.3.1 Slave Mode .. 685
21.3.2 Speed Mode ... 688

21.4 Interrupt Handler ... 688

21.5 Host-Mode Programming Model .. 690
21.5.1 Channel Initialization .. 690
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 19

Table of Contents
21.5.2 Halting a Channel... 691
21.5.3 Ping Protocol ... 691
21.5.4 Sending a Zero-Length Packet ... 692
21.5.5 Selecting the Queue Depth... 693
21.5.6 Handling Babble Conditions .. 693
21.5.7 Host Mode Slave Transactions... 694

21.6 Device Programming Model ... 698
21.6.1 Endpoint Initialization ... 698

21.7 Miscellaneous Topics .. 701
21.7.1 Data FIFO Allocation ... 701
21.7.2 Dynamic FIFO Allocation... 706
21.7.3 Power Saving Modes... 706
21.7.4 Reference Clocks ... 707
21.7.5 Crystal Oscillators .. 707

21.8 USB Registers ... 708
21.8.1 USBN Registers .. 708

USBN_INT_SUM ... 709
USBN_INT_ENB ... 710
USBN_CLK_CTL ... 712
USBN_USBP_CTL_STATUS .. 713
USBN_BIST_STATUS ... 715
USBN_CTL_STATUS .. 715
USBN_DMA_TEST .. 716
USBN_DMA0_INB_CHN(0..7) .. 716
USBN_DMA0_OUTB_CHN(0..7) .. 716

21.8.2 USBC Registers .. 717
USBC_GOTGCTL .. 719
USBC_ GOTGINT .. 720
USBC_ GAHBCFG .. 721
USBC_GUSBCFG .. 722
USBC_GRSTCTL ... 724
USBC_ GINTSTS ... 726
USBC_GINTMSK .. 729
USBC_GRXSTSRH .. 730
USBC_GRXSTSPH .. 730
USBC_GRXSTSRD .. 731
USBC_ GRXSTSPD ... 732
USBC_ GRXFSIZ ... 732
USBC_GNPTXFSIZ ... 733
USBC_GNPTXSTS .. 733
USBC_GSNPSID ... 734
USBC_GHWCFG1 ... 734
USBC_GHWCFG2 ... 734
USBC_GHWCFG3 ... 735
USBC_GHWCFG4 ... 736
USBC_HPTXFSIZ .. 737
USBC_DPTXFSIZ(1..4) ... 737
USBC_HCFG ... 737
USBC_HFIR ... 738
USBC_HFNUM .. 739
USBC_HPTXSTS ... 739
USBC_HAINT .. 740
USBC_HAINTMSK ... 740
USBC_HPRT .. 741
USBC_HCCHAR(0..7) ... 743
USBC_HCSPLT(0..7) ... 744
USBC_HCINT(0..7) ... 744
USBC_HCINTMSK(0..7) ... 745
 20 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
USBC_HCTSIZ(0..7) .. 745
USBC_DCFG .. 746
USBC_DCTL .. 747
USBC_DSTS .. 748
USBC_DIEPMSK ... 749
USBC_DOEPMSK ... 749
USBC_DAINT .. 750
USBC_DAINTMSK .. 750
USBC_DTKNQR1 .. 750
USBC_DTKNQR2/3/4 .. 751
USBC_DIEPCTL0 .. 751
USBC_DIEPCTL(1..4) ... 752
USBC_DIEPINT(0..4) .. 754
USBC_DIEPTSIZ0 ... 755
USBC_DIEPTSIZ(1..4) .. 755
USBC_DOEPCTL0 .. 756
USBC_DOEPCTL(1..4) .. 757
USBC_DOEPINT(0..4) .. 759
USBC_DOEPTSIZ0 ... 759
USBC_DOEPTSIZ(1..4) ... 760
USBC_PCGCCTL .. 760
USBC_NPTXDFIFO(0..7) .. 761

Chapter 22 Electrical Specifications ... 763
Overview .. 764

22.1 Absolute Maximum Ratings ... 764
22.1.1 Absolute Maximum Storage Temperatures .. 764

22.2 Recommended Operating Conditions .. 764
22.2.1 Supply Voltages for the Chip Core Voltage and External Interfaces 765
22.2.2 Supply Voltages for the On-Chip PLLs and DLLs.. 765
22.2.3 Reference Voltages.. 765

22.3 Power Sequencing ... 765
22.3.1 Power Up ... 765
22.3.2 Power Down .. 767

22.4 Power Consumption ... 768

22.5 DC Electrical Characteristics .. 769
22.5.1 2.5V CMOS Point-to-Point I/O for the RGMII/GMII/MII Interface............. 769
22.5.2 SSTL18 Bidirectional I/O for the DDR2 Memory Interface 770
22.5.3 3.3V CMOS Bidirectional and Point-to-Point I/O for the PCI/Miscellaneous Inter-

faces ... 771
22.5.4 GMII/RGMII Reference-Clock Differential Input ... 771

Chapter 23 AC Characteristics .. 773
23.1 Input Clocks .. 774

23.1.1 Reference-Clock Input .. 774

23.2 PCI Interface ... 774
23.2.1 PCI I/O Signal Timing .. 774

23.3 DDR2 SDRAM Interface .. 776
23.3.1 DDR2 SDRAM Bus-Cycle Commands ... 776
23.3.2 DDR2 SDRAM Read Operations.. 778
23.3.3 SDRAM Write Operations.. 779
23.3.4 SDRAM Autorefresh Operations ... 780
23.3.5 SDRAM Initialize and Mode Register Operations .. 781

23.4 RGMII Interface ... 782

23.5 GMII Interface .. 784

23.6 MII Interface ... 785

23.7 EEPROM Interface ... 786
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 21

Table of Contents
23.7.1 EEPROM Read Cycle.. 786
23.7.2 EEPROM Signal I/O Timing .. 787

23.8 Boot Bus Interface .. 788

23.9 JTAG Interface ... 789

23.10 MPI/SPI Interface ... 790

23.11 TWSI Interface ... 791

23.12 SMI/MDIO Interface .. 791

Chapter 24 Mechanical Specifications .. 793
Overview .. 794

24.1 Ball Grid Array Package Diagram .. 794

24.2 Package Thermal Specifications .. 796

24.3 Package Thermal Management Requirements .. 796

24.4 Thermal Definitions ... 797

24.5 Heat Sink Selection for CN50XX-BG564 .. 797

Chapter 25 Signal Descriptions .. 799
Overview .. 800

25.1 DRAM Interface Signals .. 801

25.2 PCI Interface Signals ... 802

25.3 Packet Interface Signals .. 803
25.3.1 GMII Interface Signals ... 804
25.3.2 MII Interface Signals ... 804
25.3.3 RGMII Interface Signals .. 805

25.4 General Purpose I/O (GPIO) Interface Signals ... 806
25.4.1 PCM/TDM Interface Signals .. 806
25.4.2 MPI/SPI Signals.. 806

25.5 Boot-Bus Signals ... 807

25.6 MDIO Interface Signals ... 807

25.7 Two-Wire Serial Interface (TWSI) Signals ... 807

25.8 Clock Signals ... 808

25.9 UART Interface Signals ... 808

25.10 EEPROM Signals ... 809

25.11 eJTAG/JTAG Signals ... 809

25.12 USB Signals .. 809

25.13 Miscellaneous Signals .. 810

25.14 Power/Ground/No Connect Signals .. 810

Chapter 26 Ball Assignments .. 811
Overview .. 812

26.1 CN50XX Ball Grid Array ... 812

26.2 CN50XX Signal Mapping ... 813

26.3 CN50XX Signals Sorted in Alphabetical Order .. 814

26.4 CN50XX Balls Sorted in Numerical Order .. 818

Appendix A Cavium Networks-Specific Core Instructions ... 823
4.1 Core Instructions .. 823

A.1 Cavium Networks-Specific Instruction Descriptions ... 826
Unsigned Byte Add BADDU 826
Branch on Bit Clear BBIT0 827
Branch on Bit Clear Plus 32 BBIT032 828
Branch on Bit Set BBIT1 829
Branch on Bit Set Plus 32 BBIT132 830
 22 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Table of Contents
Perform Cache Operation CACHE 831
Clear and Insert a Bit Field CINS 833
Clear and Insert a Bit Field Plus 32 CINS32 834
Load IV from 3DES Unit CVM_MF_3DES_IV 835
Load Key from 3DES Unit CVM_MF_3DES_KEY 836
Load Key from KASUMI Unit CVM_MF_KAS_KEY 836
Load Result from 3DES Unit CVM_MF_3DES_RESULT 837
Load Result from KASUMI Unit CVM_MF_KAS_RESULT 837
Load INP0 from AES Unit CVM_MF_AES_INP0 838
Load IV from AES Unit CVM_MF_AES_IV 839
Load Key from AES Unit CVM_MF_AES_KEY 840
Load Keylength from AES Unit CVM_MF_AES_KEYLENGTH 841
Load Result/Input from AES Unit CVM_MF_AES_RESINP 842
Load IV from CRC Unit CVM_MF_CRC_IV 843
Load IV from CRC Unit Reflected CVM_MF_CRC_IV_REFLECT 844
Load Length from CRC Unit CVM_MF_CRC_LEN 845
Load Polynomial from CRC Unit CVM_MF_CRC_POLYNOMIAL 846
Load Multiplier from GFM Unit CVM_MF_GFM_MUL 847
Load Polynomial from GFM Unit CVM_MF_GFM_POLY 848
Load Result/Input from GFM Unit CVM_MF_GFM_RESINP 849
Load Data from HSH Unit (narrow mode) CVM_MF_HSH_DAT 850
Load Data from HSH Unit (wide mode) CVM_MF_HSH_DATW 852
Load IV from HSH Unit (narrow mode) CVM_MF_HSH_IV 854
Load IV from HSH Unit (wide mode) CVM_MF_HSH_IVW 855
3DES Decrypt CVM_MT_3DES_DEC 857
3DES CBC Decrypt CVM_MT_3DES_DEC_CBC 858
3DES Encrypt CVM_MT_3DES_ENC 859
3DES CBC Encrypt CVM_MT_3DES_ENC_CBC 860
Load IV into 3DES Unit CVM_MT_3DES_IV 861
Load Key into 3DES Unit CVM_MT_3DES_KEY 862
Load Key into KASUMI Unit CVM_MT_KAS_KEY 862
Load Result into 3DES Unit CVM_MT_3DES_RESULT 863
Load Result into KASUMI Unit CVM_MT_KAS_RESULT 863
AES CBC Decrypt (part 1) CVM_MT_AES_DEC_CBC0 864
AES CBC Decrypt (part 2) CVM_MT_AES_DEC_CBC1 865
AES Decrypt (part 1) CVM_MT_AES_DEC0 867
AES Decrypt (part 2) CVM_MT_AES_DEC1 868
AES CBC Encrypt (part 1) CVM_MT_AES_ENC_CBC0 869
AES CBC Encrypt (part 2) CVM_MT_AES_ENC_CBC1 870
AES Encrypt (part 1) CVM_MT_AES_ENC0 872
AES Encrypt (part 2) CVM_MT_AES_ENC1 873
Load IV into AES Unit CVM_MT_AES_IV 875
Load Key into AES Unit CVM_MT_AES_KEY 876
Load Key Length into AES Unit CVM_MT_AES_KEYLENGTH 877
Load Result/Input into AES Unit CVM_MT_AES_RESINP 878
CRC for a Byte CVM_MT_CRC_BYTE 879
CRC for a Byte Reflected CVM_MT_CRC_BYTE_REFLECT 880
CRC for a Double-word CVM_MT_CRC_DWORD 881
CRC for a Double-word ReflectedCVM_MT_CRC_DWORD_REFLECT.................. 882
CRC for a Halfword CVM_MT_CRC_HALF 883
CRC for a Halfword Reflected CVM_MT_CRC_HALF_REFLECT 884
Load IV into CRC Unit CVM_MT_CRC_IV 885
Load IV into CRC Unit Reflected CVM_MT_CRC_IV_REFLECT 886
Load Length into CRC Unit CVM_MT_CRC_LEN 887
Load Polynomial into CRC Unit CVM_MT_CRC_POLYNOMIAL 888
Load Polynomial CVM_MT_CRC_POLYNOMIAL_REFLECT
into CRC Unit Reflected 889
CRC for Variable Length CVM_MT_CRC_VAR 890
CRC for Variable Length Reflected CVM_MT_CRC_VAR_REFLECT 891
CRC for a Word CVM_MT_CRC_WORD 892
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 23

Table of Contents
CRC for a Word Reflected CVM_MT_CRC_WORD_REFLECT 893
Load Multiplier into GFM Unit CVM_MT_GFM_MUL 894
Load Polynomial into GFM Unit CVM_MT_GFM_POLY 895
Load Result/Input into GFM Unit CVM_MT_GFM_RESINP 896
XOR into GFM Unit CVM_MT_GFM_XOR0 897
XOR and GF Multiply CVM_MT_GFM_XORMUL1 898
Load Data into HSH Unit (narrow mode) CVM_MT_HSH_DAT 900
Load Data into HSH Unit (wide mode) CVM_MT_HSH_DATW 902
Load IV into HSH Unit (narrow mode) CVM_MT_HSH_IV 904
Load IV into HSH Unit (wide mode) CVM_MT_HSH_IVW 905
MD5 Hash CVM_MT_HSH_STARTMD5 907
SHA-1 Hash CVM_MT_HSH_STARTSHA 909
SHA-256 Hash CVM_MT_HSH_STARTSHA256 911
SHA-512 Hash CVM_MT_HSH_STARTSHA512 913
KASUMI Encrypt CVM_MT_KAS_ENC 914
KASUMI CBC Encrypt CVM_MT_KAS_ENC_CBC 915
Multiply Doubleword to GPR DMUL 916
Count Ones in a Doubleword DPOP 917
Extract a Signed Bit Field EXTS 918
Extract a Signed Bit Field Plus 32 EXTS32 919
Load Multiplier Register MPL0 MTM0 920
Load Multiplier Register MPL1 MTM1 921
Load Multiplier Register MPL2 MTM2 922
Load Multiplier Register P0 MTP0 923
Load Multiplier Register P1 MTP1 924
Load Multiplier Register P2 MTP2 925
Count Ones in a Word POP 926
Prefetch PREF 927
Read Hardware Register RDHWR 929
Store Atomic Add Word SAA 931
Store Atomic Add Double Word SAAD 933
Set on Equal SEQ 935
Set on Equal Immediate SEQI 936
Set on Not Equal SNE 937
Set on Not Equal Immediate SNEI 938
Synchronize IOBDMAs SYNCIOBDMA 939
Synchronize Special SYNCS 940
Synchronize Stores SYNCW 942
Synchronize Stores Special SYNCWS 944
Unaligned Load Doubleword ULD 946
Unaligned Load Word ULW 949
Unaligned Store Doubleword USD 952
Unaligned Store Word USW 955
192-bit × 64-bit Unsigned Multiply and Add V3MULU 958
64-bit Unsigned Multiply and Add Move VMM0 959
64-bit Unsigned Multiply and Add VMULU 961

Appendix B Ordering Information ... 963
Glossary ... 965
Index ... 967
 24 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

List of Figures
Figure 1–1 CN50XX Block Diagram ... 41
Figure 1–2 CN50XX Signals.. 42
Figure 2–1 Coherent Memory Bus Diagram... 54
Figure 2–2 Fill .. 55
Figure 2–3 Store Without Invalidate .. 56
Figure 2–4 Store with Invalidate .. 56
Figure 2–5 Store ADD from Core or IOB.. 57
Figure 2–6 Load Reflection from Core .. 57
Figure 2–7 L2C Block Diagram... 61
Figure 2–8 LMC Block Diagram ... 69
Figure 2–9 Memory System Configuration... 70
Figure 2–10 SDRAM Physical Address... 71
Figure 2–11 Example of Two Consecutive Read Operations ... 73
Figure 2–12 Example of Two Back-to-Back Cache-Block Write Operations 76
Figure 2–13 Example of Cache-Line Read Operation Followed by Cache-Line Write Operation
77
Figure 2–14 Standard DDR2 Initialization Procedure .. 82
Figure 3–1 I/O Bus Block Diagram ... 126
Figure 3–2 I/O Bus Flows for a Packet Data Input.. 127
Figure 3–3 I/O Bus Flows for Packet Data Output .. 128
Figure 3–4 I/O Bus Flow: Memory Allocate.. 128
Figure 3–5 I/O Bus Flow: Memory Free.. 129
Figure 3–6 I/O Bridge Block Diagram .. 129
Figure 3–7 FAU Block Diagram.. 130
Figure 4–1 cnMIPS™ Core Block Diagram .. 144
Figure 4–2 49-bit Physical Address Format ... 157
Figure 4–3 64-bit IOBDMA Store Data Format ... 160
Figure 5–1 States of Work Flowing Through the POW ... 208
Figure 5–2 The POW States Visible to a Core.. 210
Figure 5–3 Architecture for the Firewall/VPN... 214
Figure 5–4 Software Execution Sequence... 215
Figure 5–5 Internal POW Architecture Components... 218
Figure 5–6 Format Requirements for the Work Queue Entry .. 220
Figure 6–1 FPA Free Memory Pointers .. 254
Figure 6–2 FPA Free Memory Pointers .. 255
Figure 7–1 Packet Input Format Modes ... 267
Figure 7–2 Packet Instruction Header Format (PKT_INST_HDR) 268
Figure 7–3 PCI Instruction to Packet Transformation .. 270
Figure 7–4 Supported L2 HDR Types in Skip-to-L2 Mode.. 272
Figure 7–5 Length-Check Algorithm .. 275
Figure 7–6 PIP/IPD Hardware Allocating Multiple Buffers.. 278
Figure 7–7 Format Of 64-bit Buffer Pointer... 279
Figure 7–8 Packet Alignment for IPv4 and IPv6 Packets ... 280
Figure 7–9 PIP/IPD Hardware Work-Queue Entry ... 285
Figure 7–10 Work-Queue Entry Format; Word 2 Cases.. 286
Figure 7–11 Work-Queue Entry Format; Word 4-15 Cases... 287
Figure 7–12 PIP/IPD Packet-Drop Probability... 305
Figure 8–1 PKO Conceptual Architecture .. 336
Figure 8–2 PKO Internal Architecture ... 336
Figure 8–3 Format Requirements for Packets ... 338
Figure 8–4 Structure of Output Queue... 339
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 25

List of Figures
Figure 8–6 Packet Segments Connected with Gather Mode.. 341
Figure 8–5 Usage of the Linked Packet Construction Mode.. 341
Figure 8–7 Format of Commands in the PKO Output Queues.. 343
Figure 9–1 Instruction Format.. 372
Figure 9–2 Input Packet Format... 373
Figure 9–3 Structure of a Gather Component .. 374
Figure 9–4 Buffer/Info Pointer Pair .. 378
Figure 9–5 Format Written to the Info Pointer.. 380
Figure 9–6 PCI DMA Instruction Format... 381
Figure 9–7 PCI DMA Instruction Header Format ... 382
Figure 9–8 Local Pointer Format .. 383
Figure 9–9 PCI Component Format Example When HDR.NR = 9 385
Figure 9–10 PCI Length Field Format.. 385
Figure 9–11 Example: Queue Linked-List Memory Chunks ... 386
Figure 9–12 PCI Reset Timing in Host Mode ... 398
Figure 9–13 PCI Reset Timing in Non-Host Mode... 400
Figure 10–1 CN50XX Timer .. 450
Figure 10–2 Bucket Data Structure .. 452
Figure 11–1 CN50XX Interrupt Distribution ... 461
Figure 11–2 PCI Interrupt Distribution ... 462
Figure 11–3 Input from NPI_RSL_INT_BLOCKS ... 463
Figure 12–1 Boot-Bus Hardware... 480
Figure 12–2 Static-Timed Read Sequence (not ALE, 8W) ... 486
Figure 12–3 Static-Timed Read Sequence (ALE, 8W).. 487
Figure 12–4 Static-Timed Read Sequence (not ALE, 16W) ... 488
Figure 12–5 Static-Timed Read Sequence (ALE, 16W).. 489
Figure 12–6 Static-Timed Write Sequence (not ALE, 8W) .. 490
Figure 12–7 Static-Timed Write Sequence (ALE, 8W)... 491
Figure 12–8 Static-Timed Write Sequence (not ALE, 16W) .. 492
Figure 12–9 Static-Timed Write Sequence (ALE, 16W)... 492
Figure 12–10 Static-Timed Page-Read Sequence (Four-Byte Page) (not ALE, 8W)............... 493
Figure 12–11 Static-Timed Page-Read Sequence (Four-Byte Page) (ALE, 8W)..................... 494
Figure 12–12 Static-Timed Page-Read Sequence (Eight-Byte Page) (not ALE, 16W) 495
Figure 12–13 Static-Timed Page-Read Sequence (Eight-Byte Page) (ALE, 16W).................. 496
Figure 12–14 Dynamic-Timed Read Sequence (not ALE, 8W) .. 497
Figure 12–15 Dynamic-Timed Write Sequence (not ALE, 8W) ... 498
Figure 12–16 Sample Boot-Bus Connection 1 (ALE, 16W) .. 499
Figure 12–17 Sample Boot-Bus Connection 2 (not ALE, 8W).. 499
Figure 12–18 Sample Boot-Bus Connection 3 (not ALE, 16W).. 499
Figure 13–1 GMII, MII, and RGMII Links ... 510
Figure 13–2 Packet Interface Operating Modes... 511
Figure 13–3 Receive FIFO Parameters... 513
Figure 13–4 Packet Formats.. 516
Figure 13–5 RGMII Loopback ... 524
Figure 13–6 RX FIFO Values .. 551
Figure 14–1 PCM/TDM Block Diagram .. 571
Figure 14–2 FSYNC Sampling .. 574
Figure 14–3 BCLK Waveforms.. 575
Figure 14–4 TDM-Engine Block Diagram .. 575
Figure 14–5 Data Sampling/Data Driving.. 577
Figure 15–1 GPIO Cell... 595
Figure 16–1 Serial Data Format ... 603
Figure 16–2 Receiver Serial Data Sample Points .. 603
Figure 16–3 AutoRTS Timing.. 605
Figure 16–4 AutoCTS Timing.. 605
Figure 17–1 TWSI Architecture .. 624
Figure 17–2 Supported TWS HLC Transaction Steps ... 624
Figure 17–3 Legend for Diagrams... 625
Figure 17–4 HLC as Master, Initial-Address Step... 626
Figure 17–5 HLC as Master, Address-Extension Step... 626
Figure 17–6 HLC as Master, Read-Bytes Step... 628
26 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

List of Figures
Figure 17–7 HLC as Master, Write-Bytes Step.. 629
Figure 17–8 HLC as Slave, Initial-Address Step ... 630
Figure 17–9 HLC as Slave, Address-Extension Step ... 630
Figure 17–10 HLC as Slave, Read/Write-Bytes Step ... 631
Figure 17–11 Master-Mode Flow Diagram... 638
Figure 17–12 Slave-Mode Flow Diagram.. 639
Figure 18–1 SMI/MDIO Transaction as Master... 652
Figure 18–2 SMI/MDIO Interface Read Timing Characteristics .. 653
Figure 18–3 SMI/MDIO Interface Write Timing Characteristics ... 654
Figure 19–1 RNG Diagram.. 659
Figure 20–1 MPI/SPI Overview... 664
Figure 20–2 MPI_CS and MPI_CFG[CSLATE].. 666
Figure 21–1 Bus Interface Block Diagram (Host Mode) .. 677
Figure 21–2 Bus Interface Block Diagram (Device Mode) ... 678
Figure 21–3 FIFO Mapping (Host Mode).. 679
Figure 21–4 FIFO Mapping (Device Mode)... 680
Figure 21–5 Clock and Reset Requirements... 682
Figure 21–6 Transaction-Level Operations (Slave Mode).. 687
Figure 21–7 USB Interrupt Handler... 689
Figure 21–8 FIFO Task Flow Diagrams (Slave Mode)... 694
Figure 22–1 Power Sequencing with PCI_HOST_MODE=1.. 766
Figure 22–2 Power Sequencing with PCI_HOST_MODE=0.. 767
Figure 23–1 PCI Signal Output Timing Diagram .. 775
Figure 23–2 PCI Signal Input Timing Diagram... 775
Figure 23–3 PCI Reset Timing Diagram... 775
Figure 23–4 Read with Autoprecharge Timing Diagram... 778
Figure 23–5 Write with Auto Precharge Timing Diagram .. 779
Figure 23–6 Auto Refresh Timing Diagram ... 780
Figure 23–7 Initialize and Mode Register Timing Diagram.. 781
Figure 23–8 RGMII Transmit Multiplexing and Timing Diagram 783
Figure 23–9 RGMII Receive Multiplexing and Timing Diagram .. 783
Figure 23–10 GMII Transmit Timing Diagram.. 784
Figure 23–11 GMII Receive Timing Diagram .. 784
Figure 23–12 MII Transmit Timing Diagram .. 785
Figure 23–13 MII Receive Timing Diagram ... 785
Figure 23–14 Initialize and Mode Register Timing Diagram.. 786
Figure 23–15 EEPROM AC Timing .. 786
Figure 23–16 EEPROM Signal I/O Timing Diagram... 788
Figure 23–17 JTAG Signal I/O Timing Diagram.. 789
Figure 23–18 MPI/SPI Signal I/O Timing Diagram... 790
Figure 23–19 TWSI Signal Parameters .. 791
Figure 24–1 564L-HSBGA Package Diagram (Top View).. 794
Figure 24–2 564-HSBGA Package Diagram (Bottom and Side Views)................................. 795
Figure 26–1 HSBGA Ball Assignment Diagram (Bottom View) ... 812
Figure 26–2 BGA Signal Map (Top View)... 813
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 27

List of Figures
28 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

List of Tables
Table 1 Revision History ... 34
Table 2 MIPS Publications.. 35
Table 3 Navigating Within a PDF Document .. 36
Table 1–1 CN50XX CSR Types... 52
Table 2–1 Coherent Memory Bus Transactions... 58
Table 2–2 L2T 23-Bit ECC Code... 67
Table 2–3 L2D 128-Bit ECC Code .. 67
Table 2–4 CN50XX Supported Memory Devices.. 68
Table 2–5 Bank Select... 72
Table 2–6 Column-Address Commands ... 75
Table 2–7 Recommended Parameters .. 78
Table 2–8 ODT Signals and Corresponding Chip Select/DIMM/Rank Signals 79
Table 2–9 Write ODT Configuration Variables ... 79
Table 2–10 Configuration of Read ODT Setting .. 80
Table 2–11 DRAM 64-Bit ECC Code .. 83
Table 2–12 Level 2 Cache Registers ... 84
Table 2–13 List of Selectable Events to Count .. 96
Table 2–14 LMC Registers.. 105
Table 2–15 Configuration of Read ODT Setting .. 123
Table 3–1 IOB Registers ... 137
Table 4–1 MIPS Publications.. 143
Table 4–2 CPU Visible State Resident in each cnMIPS Core... 148
Table 4–3 Summary of Cavium Networks-specific Instructions....................................... 149
Table 4–4 CPU Arithmetic Instructions... 151
Table 4–5 CPU Branch and Jump Instructions... 152
Table 4–6 CPU Instruction Control Instructions .. 152
Table 4–7 CPU Load, Store, and Memory Control Instructions 152
Table 4–8 CPU Logical Instructions... 153
Table 4–9 CPU Insert/Extract Instructions... 153
Table 4–10 CPU Move Instructions.. 153
Table 4–11 CPU Shift Instructions .. 153
Table 4–12 CPU Trap Instructions .. 154
Table 4–13 FPU Arithmetic Instructions... 154
Table 4–14 FPU Branch Instructions... 154
Table 4–15 FPU Compare Instructions.. 154
Table 4–16 FPU Convert Instructions ... 154
Table 4–17 FPU Load, Store, and Memory Control Instructions 154
Table 4–18 FPU Move Instructions.. 154
Table 4–19 Coprocessor Branch Instructions .. 154
Table 4–20 Coprocessor Execute Instructions ... 155
Table 4–21 Coprocessor Load and Store Instructions ... 155
Table 4–22 Coprocessor Move Instructions.. 155
Table 4–23 Privileged Instructions... 155
Table 4–24 EJTAG Instructions ... 155
Table 4–25 cnMIPS Core Physical Addresses.. 157
Table 4–26 Synchronization Instruction Ordering.. 162
Table 4–27 Coprocessor 0 Register Summary.. 165
Table 4–28 Performance Counter Control Register Events .. 176
Table 4–29 EJTAG DRSEG Registers Summary .. 186
Table 4–30 EJTAG TAP Registers Summary .. 190
Table 4–31 COP2 Latencies .. 196
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 29

List of Tables
Table 4–32 AES Unit Latencies ... 197
Table 4–33 MIPS Debug Features ... 197
Table 4–34 EJTAG Debug Features .. 197
Table 4–35 Breakpoint Match Behavior .. 198
Table 4–36 cnMIPS Core Exceptions ... 201
Table 5–1 POW Operations .. 211
Table 5–2 POW 11-Bit ECC Code .. 239
Table 5–3 POW Registers ... 240
Table 6–1 FPA Registers .. 258
Table 7–1 Receive Errors/Exceptions... 274
Table 7–2 SKIP Maximum Values (No Caveats Needed) ... 276
Table 7–3 SKIP Value Ranges (QOS L4 Watcher Caveat) ... 276
Table 7–4 SKIP Value Ranges (QOS DiffServ/Watcher Caveat)...................................... 277
Table 7–5 SKIP Maximum Values (All Caveats) .. 277
Table 7–6 PIP Registers.. 306
Table 7–7 IPD Registers ... 323
Table 8–1 PKO Registers.. 351
Table 9–1 Effective Size of BAR1 ... 369
Table 9–2 DPTR Formats ... 375
Table 9–3 PCI Configuration Registers ... 403
Table 9–4 PCI Registers (Available to Cores).. 415
Table 9–5 PCI Registers (Unavailable to Cores) ... 416
Table 9–6 NPI Registers ... 432
Table 9–7 NPI/PCI Register ... 433
Table 10-1 Timer Registers.. 454
Table 11–1 CIU Registers... 469
Table 12–1 Exception Vectors .. 481
Table 12–2 PCI Expansion-ROM Address Range ... 481
Table 12–3 Bus Operation .. 484
Table 12–4 Boot-Bus Timing Parameters.. 484
Table 12–5 Boot-Bus Fixed-Timing Parameters ... 485
Table 12–6 Boot-Bus Registers... 502
Table 13–1 Packet Interface Configuration... 510
Table 13–2 Flow Control for Transmitting Device.. 513
Table 13–3 Transmit-Packet Options .. 518
Table 13–4 Receive Errors/Exceptions... 519
Table 13–5 Transmit Errors/Exceptions.. 521
Table 13–6 Recommended Configuration Settings ... 523
Table 13–7 CN50XX Statistics Gathering ... 523
Table 13–8 GMX Registers ... 526
Table 13-9 GMX Decisions... 535
Table 13-10 ASX Registers .. 558
Table 14–1 Signal Functionality .. 571
Table 14–2 BCLK/FSYNC Generation... 572
Table 14–3 Sample BCLK Frequency .. 572
Table 14–4 Superframe Memory-Region Example.. 578
Table 14–5 LSB/MSB Bit Placement ... 578
Table 14–6 PCM/TDM Registers.. 582
Table 15–1 GPIO Dual-Function Signals .. 594
Table 15–2 GPIO Registers .. 597
Table 16–1 UART Registers ... 607
Table 17–1 Slave Internal-Address Register ... 630
Table 17–2 Validity Indication for Slave Reads .. 631
Table 17–3 TWSI_STAT Status Codes (after 7-Bit Address or First Part of 10-Bit Address)

632
Table 17–4 TWSI_STAT Status Codes (after Second Part of 10-Bit Address) 633
Table 17–5 TWSI_STAT Status Codes (after Repeated START Transmission)................ 634
Table 17–6 TWSI_STAT Status Codes (Master Receive Mode) ... 635
Table 17–7 TWSI_STAT Status Codes (Master Receive – Data Received)........................ 636
Table 17–8 TWSI_SLAVE_ADD Bit Description .. 640
Table 17–9 TWSI_SLAVE_EXTADD Bit Description... 641
30 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

List of Tables
Table 17–10 TWSI_CTL Bit Description.. 641
Table 17–11 TWSI Core-State Codes ... 644
Table 17–12 TWSI_CLK Bit Description ... 645
Table 17–13 TWSI_CLKCTL Bit Description .. 645
Table 17–14 TWSI Registers... 646
Table 18–1 SMI Registers ... 654
Table 19–1 RNM Registers ... 662
Table 20–1 MPI/SPI Signals ... 664
Table 20–2 MPI/SPI Registers .. 670
Table 21–1 Data FIFO Sizes in Host Mode.. 701
Table 21–2 Data FIFO Sizes in Device Mode... 702
Table 21–3 USBN Registers.. 708
Table 21–4 USBC Registers .. 717
Table 22–1 Voltage Absolute Maximum Ratings... 764
Table 22–2 Absolute Maximum Storage Temperatures .. 764
Table 22–3 Recommended Operating Temperatures (Commercial Grade)........................ 764
Table 22–4 Recommended Operating Supply Voltages... 765
Table 22–5 Power Supplies ... 765
Table 22–6 VREF Parameters .. 765
Table 22–7 CN50XX Core Power Supply Specification ... 768
Table 22–8 DDR2 Memory Interface Supply Current... 768
Table 22–9 USB 2.0 Interface (3.3V) Supply Current For Different Speed Modes (HS/FS/LS)

768
Table 22–10 PCI3/Miscellaneous Supply Current... 768
Table 22–11 RGMII/GMII/MII Supply Current Per Port.. 769
Table 22–12 On-Chip PLL/DLLs Supply Current ... 769
Table 22–13 2.5V CMOS Point-to-Point I/O for RGMII/GMII/MII Interface....................... 769
Table 22–14 SSTL18 Bidir I/O for DDR2 Memory Interface .. 770
Table 22–15 3.3V CMOS Point-to-Point I/O for PCI/Miscellaneous Interfaces 771
Table 22–16 GMII/RGMII Reference-Clock Differential Input... 771
Table 23–1 Reference-Clock Input.. 774
Table 23–2 PCI I/O Timing ... 774
Table 23–3 DDR SDRAM Bus Cycle Commands... 776
Table 23–4 DDR2 SDRAM Bus Cycle Commands... 776
Table 23–5 DDR2 SDRAM I/O Signal Timing ... 777
Table 23–6 RGMII Timing Parameters.. 782
Table 23–7 GMII Timing Parameters .. 784
Table 23–8 MII Timing Parameters ... 785
Table 23–9 EEPROM Read-Cycle Timing.. 786
Table 23–10 EEPROM ESK Signal Timing ... 787
Table 23–11 Delay Timing for Control Signals.. 787
Table 23–12 EEPROM Signal I/O Timing.. 787
Table 23–13 JTAG Signal I/O Timing Parameters.. 789
Table 23–14 MPI/SPI Signal I/O Timing Parameters ... 790
Table 23–15 TWSI Signal Parameters ... 791
Table 24–1 Thermal Package Specification for CN50XX .. 796
Table 25–1 CN50XX Interfaces... 799
Table 25–2 CN50XX Pin Types... 800
Table 25–3 DDR DRAM Interface Signals ... 801
Table 25–4 PCI Interface Signals ... 802
Table 25–5 Packet Interface Compensation Signals ... 803
Table 25–6 GMII Interface Signals .. 804
Table 25–7 MII Interface Signals ... 804
Table 25–8 RGMII Interface Signals.. 805
Table 25–9 GPIO Interface Signals .. 806
Table 25–10 PCM/TDM Interface Signals.. 806
Table 25–11 MPI/SPI Signals ... 806
Table 25–12 Boot-Bus Signals .. 807
Table 25–13 MDIO Interface Signals ... 807
Table 25–14 TWSI Signals .. 807
Table 25–15 Clock Signals .. 808
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 31

List of Tables
Table 25–16 UART Interface Signals ... 808
Table 25–17 EEPROM Interface Signals ... 809
Table 25–18 eJTAG/JTAG Signals ... 809
Table 25–19 USB Signals .. 809
Table 25–20 Miscellaneous Signals .. 810
Table 25–21 Power/Ground/No Connect Signals ... 810
32 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Preface

Preface
In this Preface
● List of Chapters
● Revision History
● Related Documentation
● Symbols Used
● User Comments
● Using Cavium Networks PDF Files
● About This Book
● MIPS Technologies
● Contact Us

List of Chapters
This book contains the following chapters:

1. Introduction
2. Coherent Memory Bus, Level-2 Cache Controller, DRAM Controllers
3. I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU)
4. cnMIPS™ Cores
5. Packet Order / Work Unit (POW)
6. Free Pool Unit (FPA)
7. Packet Input Processing/Input Packet Data Unit (PIP/IPD)
8. Packet-Output Processing Unit (PKO)
9. PCI Bus
10. Timer
11. Central Interrupt Unit (CIU)
12. Boot Bus
13. Packet Interface
14. PCM/TDM Interface
15. GPIO Unit
16. UART Interface
17. TWSI Interface
18. System Management Interface (SMI)
19. Random-Number Generator (RNG), Random-Number Memory (RNM)
20. MPI/SPI Unit
21. USB Unit (USB)
22. Electrical Specifications
23. AC Characteristics
24. Mechanical Specifications
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 33

25. Signal Descriptions
26. Ball Assignments
A. Cavium Networks-Specific Core Instructions

Revision History

The revision history is shown in Table 1.

Table 1 Revision History

Version Date Changes

0.99C 3/2008 ● In the Features section of the Introduction chapter, changed “8 million packets per second” to “2 million packets
per second”.

● Electrical Specifications, Chapter 22: in Table 22–10, added current information for the
miscellaneous I/O interfaces; in Table 22–11, added MII to the mix and removed the
separate MII table (Table 22-12); in Table 22-13 (now Table 22–12), adjusted the current
values for DDR_PLL_VDD33 and PLL_VDD33.

● In Table 25–3, added text to the description of DDR_PLL_VDD33; in Table 25–15, added text to the
description of DDR_PLL_VDD33.

● In Appendix B, replaced CN56XX ordering information with CN50XX information.

0.99D 6/2008 ● CMB/L2C/LMC, chapter 2:
in Section 2.3.8.1, moved the cross-reference to Section 2.3.9 into Step 2
in Section 2.5, changed the typical value of LMC_CTL1[SIL_MODE].

● POW, chapter 5:
in Section 5.6, corrected cross-reference to the temporary IQ executable interrupt threshold disable bit
in Section 5.13, updated the descriptions of POW_WQ_INT_THR(0..15)[TC_EN,TC_THR,IQ_THR],
POW_WQ_INT_CNT(0..15)[TC_CNT], POW_WQ_INT[IQ_DIS,WQ_INT].

● PIP, chapter 7:
in Section 7.5, corrected the second figure cross-reference in the definition of WORD1[Len] (refers to Figure 7-
1)
in Section 7.9, updated the description of PIP_FRM_LEN_CHK0/1
in Section 7.10, updated description of IPD_CTL_STATUS[PBP_EN].

● PKO chapter 8:
removed CRC block fromFigure 8–1
in Section 8.4, removed mention of CRC in WORD0[S1] and WORD0[S0]; in the WORD2[Ptr] description ,
corrected reference to PKO_REG_FLAGS[STORE_BE] (incorrectly referred to PKO_REG_FLAGS[STORE-
LE].
in Section 8.9, in PKO_REG_BIST_RESULT, removed the [CRC] field.

● PCI, chapter 9:
in Section 9.14.2, for PCI_WIN_RD_ADDR, changed [WR_ADDR] to [RD_ADDR] and changed the
subdivision of this field from <12:3> and <2:0> to <12:2> and <1:0>
in Section 9.15, expanded the Field Description of NPI_CTL_STATUS[CHIP_REV].

● Packet Interface, chapter 13:
in Table 13–6, added configuration settings for GMII and MII.
in Section 13.8, updated GMX0_INF_MODE[EN]; updated note related to GMX_RX/TX0..2_STAT* CSRs
(removed first or second bullet regarding STATS resources)

● TWSI, chapter 17:
in Section 17.3, added text about TWSI_CTL[ENAB]
in Table 17–10, updated the Description of [ENAB].

● SMI, chapter 18:
added text to the first indented bullet following Figure 18–1
modified Figure 18–2 to reflect the same text addition
in Section 18.2, corrected the description of SMI_CLK[SAMPLE] and corrected the typical value for
SMI_CLK[SAMPLE, SAMPLE_HI]

● Cavium Instructions, Appendix A: for the PREF instruction, the hint field values of 2, 3, 8–24, 26, 27 were
changed to Reserved.

0.99E 7/2008 ● Electrical Specifications, Chapter 22: added Note following Table 22-3; in Table 22–4,
added supply voltage for 300/350/400/500 MHz.
34 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Related Documentation

For additional information, refer to these documents.

Cavium Networks, Inc.’s OCTEON Network Chip architecture is based on officially
licensed MIPS Inc. Technology. For reference to MIPS Technology, you should procure
the following books:

For additional information regarding MIPS® technology, refer to “MIPS Technologies”
on page 37.

Symbols Used

The Notes in this manual follow standard ANSI recommendations.

User Comments

We welcome your comments about this document. You can reach us by e-mail at
info@caviumnetworks.com.

Using Cavium Networks PDF Files

Open and view PDF files using the Adobe® Acrobat® Reader application, version 5.0
or later. If necessary, download the Acrobat Reader from the Adobe Systems, Inc. web
site at: http://www.adobe.com/prodindex/acrobat/readstep.html

PDF files offer several ways for moving among the document’s pages:

To move quickly from section to section within the document, use the Acrobat
bookmarks that appear on the left Acrobat Reader window pane. The bookmarks
provide an expandable outline view of the document’s contents. To display the
document’s Acrobat bookmarks, press the “Display both bookmarks and page” button
on the Acrobat Reader tool bar.

To move to the referenced page of an entry in the document’s Contents, List of
Figures, List of Tables, or Index, click on the entry itself, each of which is
hyperlinked.

Table 2 MIPS Publications

Publication Document Number

MIPS64® Architecture For Programmers
Volume I: Introduction to the MIPS64® Architecture
Revision 2.00, June 8, 2003

MD00083

MIPS64® Architecture For Programmers
Volume II: The MIPS64® Instruction Set
Revision 2.00, June 9, 2003

MD00087

MIPS64® Architecture For Programmers
Volume III: The MIPS64® Privileged Resource Architecture
Revision 2.00, June 9, 2003

MD00091

EJTAG Specification
Revision 3.10, July 5, 2005

MD00047

NOTE: This format is used to emphasize important factors.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 35

Owner
矩形

To follow a hyperlink to a heading, figure, or table, click the blue text.

To move to the beginning or end of the document, to move page by page within the
document, or to navigate among the pages you displayed by clicking on hyperlinks,
use the Acrobat Reader navigation buttons shown in this figure:

Table 3 summarizes how to navigate within a Cavium Networks PDF.

About This Book

The data and illustrations found in this book are not binding. We reserve the right to
modify our products in line with our policy of continuous product development. The
information in this document is subject to change without notice and should not be
construed as a commitment by Cavium Networks, Inc.
Cavium Networks, Inc. assumes no responsibility for any errors that may appear in
this document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us at info@cavium.com.
No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of the
Publisher, Cavium Networks, Inc.

Table 3 Navigating Within a PDF Document

To Navigate This Way Click This

Move from section to section within the
document.

A bookmark on the left side of the Acrobat
Reader window

Move to an entry in the Table of Contents. The entry itself

Move to an entry in the Index. The page number

Move to an entry in the List of Figures or
List of Tables.

The entry itself

Follow a hyperlink (highlighted in blue text). The hyperlink text

Move page by page. The appropriate Acrobat Reader
navigation buttons

Move to the beginning or end of the
document.

The appropriate Acrobat Reader
navigation buttons

Move backward or forward among a series of
hyperlinks you have selected.

The appropriate Acrobat Reader
navigation buttons

Beginning
of document

End of document

Next pagePrevious page

Previous or
next hyperlink
36 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

MIPS Technologies

MIPS architecture is the exclusive property of MIPS Technologies, Inc. and is
protected under the following trademarks: MIPS64.
MIPS64 is among the registered trademarks of MIPS Technologies, Inc. in the United
States and other countries.
Various MIPS RISC processor manuals and additional information about MIPS
products can be found at the MIPS URL:
http://www.mips.com
Comments or questions on the MIPS64® Architecture or MIPS documents should be
directed to:

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043
or via E-mail to architecture@mips.com.

Contact Us
Cavium Networks
805 East Middlefield Road,
Mountain View, CA 94043
Telephone: 1-650-623-7000
Fax: 1-650-625-9751
Email: info@caviumnetworks.com
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 37

38 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 1

Introduction
OCTEON Plus CN50XX

Features

● Highly-integrated networking security/application processor

● MIPS64® integer instruction set (version 2), highly programmable

● High-performance architecture with up to two cnMIPS™ processor cores
CN5010 has one processor core
CN5020 has two processor cores

● Dual control- and data-plane support

● Standalone (i.e. self-bootable) or device support

● Core frequency 300–700 MHz, producing up to 2.8 GOPS

● Up to 2 million packets per second

● Excellent performance/watt

● Hardware cryptographic (MD5, SHA-1, SHA-256, SHA-512, DES/3DES, AES,
KASUMI, modular exponentiation, and Galois field multiplication) and CRC
acceleration

● Hardware packet processing acceleration

● Hardware work queueing, scheduling, ordering, and synchronization

● Hardware TCP acceleration, including checksum and timer

● Integrated packet interface with MAC: RGMII/GMII/MII I/O interfaces

● Integrated USB 2.0 MAC/PHY

● Integrated TDM/PCM interface

● High-bandwidth on-chip memory system including a 128KB eight-way set-
associative L2 cache

● Fully coherent memory system

● 32/16-bit DDR2 DRAM interface up to 667 MHz data rate

● 32-bit PCI (66 MHz) interface

● Secure on-chip key memory

● Cryptographic random-number generator
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 39

Owner
下划线

 Introduction:
Overview

The Cavium Networks OCTEON Plus CN50XX Network Services Processors are
targeted at intelligent networking, control-plane, storage, and wireless applications.
The OCTEON Plus CN50XX is targeted for many applications, but is particularly
well-suited for the following applications and standards:

● Broadband Gateways

● Triple Play Gateways

● Media Vault / NAS appliances

● 802.11 Access Points

● Unified Threat Management Appliances

● WiMAX Stations

● In-line packet processing

● Firewall (FW)

● Virtual Private Network (VPN)

● Intrusion Detection / Prevention (IDS)

● iSCSI

● IPSEC

● SSL

● Network Attached Storage (NAS) Appliances

● Intelligent Storage Routers

● 802.11 Wireless Security Protocols

● Security Appliances

● Secure Network Interface Card (NIC)

● Secure Services Card

The OCTEON Plus family has a base architecture that is the same for all members.
Software written for the OCTEON Plus family can scale from top to bottom.

All OCTEON Plus family members use the same cnMIPS™ CPU core and the same
on-chip architecture. The cnMIPS core, hereafter referred to as the core, is a simple
and high-performance dual-issue implementation of the standard MIPS64® integer
(version 2) instruction set. OCTEON Plus hardware preserves the same software
interface to all on-chip hardware units between all family members.

Figure 1–1 shows a block diagram of the CN50XX chip. The blocks on the left half of
the chip (i.e. the CPU cores, the coherent memory bus (CMB), the level-2 cache (L2C),
and the DRAM controller) implement an on-chip multiprocessor and coherent
shared-memory system. The right half of the chip contains the I/O bus and I/O
interface blocks together with configurable I/O and coprocessing hardware
accelerator blocks. These two halves of the chip connect through the I/O bridge (IOB),
creating a system-on-a-chip suited for packet-processing, networking, and security
applications.
40 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Owner
高亮

Introduction:

The family is a scalable architecture that covers a wide range of performance and I/O
configurations. OCTEON Plus family members support the following industry-
standard I/O interfaces: DDR2 DRAM, PCI 2.3 32/66, RGMII, GMII, MII, TDM/PCM,
SPI/MPI, USB, and UART. CN50XX also implements a proprietary boot-bus
interface.

Figure 1–2 shows the full CN50XX pinout.

Figure 1–1 CN50XX Block Diagram

Random Number
Generator (RNG)

Free Pool
Allocator (FPA)

Timer Unit (TIM)

Packet Order/
Work (POW)

Fetch and
Add (FAU)

I/O Bridge
(IOB)

I/O Bus

Packet
Output
(PKO)

(IPD)

Sync

(PIP)

Packet Input

OCTEON Plus CN5010/5020

32 or 16

384

192

UART

UART

Boot/Flash

GPIO

DDR2 SDRAM

USB 2.0
(MAC and PHY)

Miscellaneous
I/O (MIO)

Level-2 Cache (L2C)
Controller (128KB)

Local Memory
Controller

(LMC)

Coherent Memory
Bus

Dual-Issue Integer

Cores†

Dcache: 16KB

Dual-Issue Integer

Icache: 32KB

Crypto
Acceleration

EEPROM

4

SPI/MPI

TDM/PCM

GMX

TWSI

USB

SMI/MDIO

SPI/MPI

TDM/PCM

3 × RGMII, or
2 × MII, or
GMII + MII, or
GMII + RGMII, or

†CN5010 has one cnMIPS™ processor core; CN5020 has two cnMIPS™ processor cores.

32

PCI

PCI

MII + (1 × or 2 × RGMII)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 41

Owner
下划线

 Introduction:
Figure 1–2 CN50XX Signals

DDR_DIMM<1:0>_CS0_L
DDR_DIMM<1:0>_CS1_L

DDR_A<14:0>
DDR_BA<2:0>

DDR_CAS_L
DDR_CB<3:0>

DDR_CBS_0_N
DDR_CBS_0_P

DDR_CK_<3:0>_N
DDR_CK_<3:0>_P

DDR_CKE
DDR_COMP_DN
DDR_COMP_UP
DDR_DQ<31:0>

DDR_DQS_<3:0>_N
DDR_DQS_<3:0>_P

DDR_DIMM<1:0>_ODT<1:0>
DDR_RAS_L
DDR_VREF
DDR_WE_L

DDR_PLL_VDD33
DDR_REF_CLK_N†

DDR_REF_CLK_P†

DDR
Memory
Interface

Boot
Function

Misc.
SignalsPLL_MUL_<2:0>

PLL_VDD33
PLL_REF_CLK

Core

Signals

BOOT_ALE
BOOT_CE_<3:0>_L

BOOT_AD<31:0>
BOOT_OE_L

BOOT_WAIT_L
BOOT_WE_L

O
C
T
E
O
N

TWS_SCL
TWS_SDA

TWSI
Interface

PLL

SPI/MPI

MPI_SCLK
MPI_CS
MPI_TX
MPI_RX

P

s

USB_DP
USB_DM
USB_REXT
USB_XO
USB_XI

UART
Interface

UART0_CTS_L
UART0_RTS_L
UART0_SIN
UART0_SOUT

UART1 (same as UART0)

EJTG_TDO
EJTG_TRST_L

JTG_TCK
JTG_TDI

JTG_TDO
JTG_TMS

JTG_TRST_L

JTAG
Interface

GPI_GPIO[15:0] GPIO
Interface

PCM_BCLK0/1
PCM_FSYNC0/1
PCM_DATA<3:0>

USB

TDM/
PCM

PCI_AD<31:0>
PCI_CBE_<3:0>_L
PCI_RST_L
PCI_BOOT
PCI_PAR
PCI_CLK_OUT_<2:0>
PCI_DEV_GNT_<2:0>_L
PCI_DEV_GNT_3_L/REQ_L
PCI_DEV_REQ_<2:0>_L
PCI_DEV_REQ_3_L/GNT_L
PCI_DEVSEL_L
PCI_DLL_VDD33
PCI_ENABLE
PCI_FRAME_L
PCI_HOST_MODE
PCI_IDSEL
PCI_INTA_L
PCI_INTB_L
PCI_INTC_L
PCI_INTD_L
PCI_IRDY_L
PCI_LOCK_L
PCI_M66EN
PCI_PCLK
PCI_PERR_L
PCI_REF_CLKIN
PCI_SERR_L
PCI_STOP_L
PCI_TRDY_L
PCI_PCI100
PCI_COMP_DN
PCI_COMP_UP

PCI
Interface

MDI_MDC
MDI_MDIO

MDIO
Interface

l
u

GMI_REF_CLK_N
GMI_REF_CLK_P
RGM_COMP_DN
RGM_COMP_UP Packet

Interface 0

CHIP_RESET_L
PLL_DCOK
MSC_CLKOUT
MSC_CLKOUT_ENABLE

C
N
5
0
1
0

&

C
N
5
0
2
0

GMII
Interface

RGMn_RXD[3:0]
RGMn_RXCTL

RGMn_RXC
RGMn_TXD[3:0]

RGMn_TXCTL
RGMn_TXC

RGMII
Interface

GMI_RXD[3:0]
GMI_RXERR

GMI_COL
GMI_RXD[7:4]

GMI_DV
GMI_CRS

GMI_RXCLK
GMI_TXD[3:0]

GMI_TXERR
GMI_TXD[7:4]

GMI_TXEN
GMI_GTXCLK

MII
Interface

MIn_RXD[3:0]
MIn_RXCLK
MIn_RXERR

MIn_RXDV
MIn_COL
MIn_CRS

MIn_TXD[3:0]
MIn_TXCLK
MIn_TXERR

MIn_TXEN

For supported configurations,
refer to Figure 1–1.

†DDR_REF_CLK_N and DDR_REF_CLK_P
must be no-connects.
42 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Introduction: Principles of Operation
1.1 Principles of Operation

This section lists some of the principles of the CN50XX architecture.

1.1.1 CPU Cores

The CN50XX’s cnMIPS cores are full-functionality and high-performance MIPS64®
integer (version 2) implementations. These cores directly support industry-standard
C/C++ (and other) programming environments.

These cores and the CN50XX system-on-a-chip also have all the necessary
requirements, including TLBs, to boot and run full- functionality operating systems.

These core features allow for feature-rich usages of the CN50XX, and also are
essential to simplify programming tasks. The CN50XX has the high performance
necessary for “data-plane” applications, yet avoids the code/data size restrictions
present in some competing “data-plane” processors.

CN50XX includes many core instructions beyond the standard MIPS64® integer
(version 2) instructions. These include instructions to accelerate packet processing,
security processing, and memory/cache processing.

There is extensive hardware acceleration on CN50XX, but the CPU cores direct the
complicated higher-layer application-specific processing.

1.1.2 Coherent Multicore and I/O L2/DRAM Sharing

Shared main memory (implemented via the level-2 cache and the DRAM) is the
primary communication media for bulk transfers in CN50XX. I/O and coprocessor
devices DMA packet and other data in/out of this memory.

CN50XX’s level-2 cache is shared by all of the CPU cores instructions/data and
hardware device DMA accesses. The L2 cache can be partitioned, and can be
bypassed on a reference-by-reference basis.

The CN50XX hardware always maintains L2 cache and CPU core data cache
coherence with respect to all DMA and other core accesses. The CN50XX maps all
addresses into the L2 cache. Caching can be disabled on a reference-by-reference
basis in the CN50XX, but not by address.

1.1.3 Core Partitioning

Software and chip configuration can partition the cores to perform different
functions. For example, some of the cores may run an operating system while others
perform data-plane functions, or different cores may execute different portions of the
data-plane services. All cores can also run the same operating system.

1.1.4 Flexible Packet/Control Interfacing

Packets and control information can flow to/from CN50XX via any of the RGMII,
GMII, MII, or PCI interfaces.

The RGMII interface supports up to three ports, and the PCI interface supports one
port. This means that internally, CN50XX can support up to a total of four ports.

CN50XX hardware efficiently transfers packets via the PCI interface. There is one
input and one output port. CN50XX supports all PCI transfer modes and also
includes multiple DMA engines, whose features can be used to support per-flow
queueing in the PCI host memory.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 43

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
下划线

Owner
下划线

Owner
下划线

 Introduction: Principles of Operation
1.1.5 In-line Packet-Processing Hardware Acceleration

The CN50XX has in-line hardware to offload from the cores all data movement, many
common packet-parsing functions, and other important calculations. The in-line
hardware completely offloads the work from the cores.

The CN50XX in-line packet-processing hardware units complete the following tasks
before a core receives a packet:

● Allocate DRAM buffers to hold the packet bytes.

● Send packet data into these DRAM buffers via DMA operations in a format
convenient to upper-level software. This can enable copy-free core software.

● Parse the layer-two/IP packet, checking for common exception conditions. This is
done for every ingress packet. The layer-four TCP/UDP checksum checks are
included, among many others.

● Perform optional mutual exclusion via a programmable 7-tuple classification.

When software has finished processing the packet, CN50XX in-line hardware
performs the following tasks:

● DMA the packet-send command from the selected output queue (and free the
available queue space).

● DMA packet data from L2/DRAM. This includes multiple modes to gather non-
contiguous packet data.

● Generate the TCP/UDP checksum. (CN50XX can perform this very efficiently;
the packet data is read out of L2/DRAM memory only once to both calculate the
checksum and send the packet off-chip.)

● Free the DRAM buffers.

1.1.6 Hardware-Assisted Dynamic Memory Allocation/Deallocation

CN50XX contains free pools that contain pointers to available packet buffers. The
hardware can automatically allocate and free packet buffers. The queues that the
cores use to submit instructions to the various on-chip coprocessors are also
dynamically allocated in chunks. The coprocessor hardware automatically frees the
memory chunks containing the instructions after it processes the instructions
contained in the chunk. The cores can also use the free pools at any time. Refer to
“Free Pool Unit (FPA)” on page 41.

1.1.7 Hardware Work Queuing, Scheduling, Ordering, and Synchronization

CN50XX hardware maintains a work queue in an on-chip hardware unit. This
structure provides a primary on-chip communication mechanism between the cores
and the hardware units on CN50XX. Both hardware and core software can contribute
work to the work queue. The core software can request work at any time, which it
becomes aware of either through polling or by interrupts. The hardware schedules
the work for the cores.

For example, the in-line input packet processing hardware presents an input packet
to the CPU cores by creating and submitting a work queue entry to the queue. The
core software receives the packet by obtaining the associated work.
44 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Introduction: Principles of Operation
CN50XX has many ordering/synchronizations mechanisms available to core
software, but one important one is closely integrated with the work queueing/
scheduling hardware. This hardware orders / synchronizes based on tag values
associated with the packet/work. The in-line packet processing hardware can create
the initial tag for a piece of work from up to a 7-tuple hash. Core software can fully
direct the subsequent tag changes needed for the packet/work, and is also in control
of the initial tag that it creates.

The work-queueing hardware not only synchronizes, but also schedules and
deschedules (in conjunction with core software) work based on tag values.

1.1.8 Essential Quality of Service (QoS) Functions Implemented in Hardware

CN50XX has some essential QoS capabilities implemented directly in hardware:

● The hardware has eight separate input work queues.

● The in-line input packet processing hardware can classify packets into one of the
eight input work queues using default values, VLAN priorities and IP Diffserv
values, configurable on a per-port basis. The system can also directly select the
work queue on a per-packet basis.

● The in-line input packet processing hardware may discard an input packet before
buffering and presenting it to a core. The hardware implements both a random
early discard (RED) algorithm and a threshold algorithm to decide when or if to
discard an input packet. The RED-like algorithm can be configured differently for
each of the eight QoS levels, and the threshold algorithm can be configured
differently for different ports.

● Each output port can be configured to have multiple queues. The queues can be
configured with different priorities. The hardware implements both static
priority and weighted round-robin.

Remaining QoS functions are implemented by core software on CN50XX. For
example, hardware never decides to drop an outgoing packet – only software does.

1.1.9 Security Features

The cores internally include acceleration for the common security algorithms: MD5/
SHA-1/SHA-256/SHA-512, DES/3DES, AES (all modes), AES-GCM, KASUMI, CRC
(up to 32 bits), and vector multiplication for fast modular exponentiation needed for
RSA/Diffie-Hellman operations.

CN50XX contains a number of features for high FIPS-level certification, including:
on-chip key memory, key zeroization pin, and restricted PCI host access.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 45

 Introduction: CN50XX System Applications
1.1.10 Coprocessor Accelerators

There are also other available coprocessors that have not already been mentioned:

● Timer (TIM): timer support is particularly useful for TCP implementations.

● True Random Number Generator (RNG)

1.1.11 Debug Support

CN50XX has numerous debug features, including:

● Two UARTs for connection to an external console.

● Full core support for the MIPS EJTAG standard, including single-step and an
external JTAG interface with one internal TAP controller per core.

● Multicore debug support.

● Visibility into critical hardware scheduling structures.

● Visibility into hardware/software interface structures

1.2 CN50XX System Applications

TBD

46 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Introduction: Remaining Chapters
1.3 Remaining Chapters

The remainder of this chapter briefly describes the contents of each remaining
chapter in this book.

1.3.1 Coherent Memory Bus (CMB), Level-Two Cache Controller (L2C),
and DRAM Controller

This chapter describes the components that implement the CN50XX main memory
system. This includes a description of the CMB, the internal architecture and
configuration registers of the L2 cache and Controller (L2C), and the internal
architecture and configuration registers of the DRAM Controller, and the DDR2 pin
interface. Refer to “Coherent Memory Bus, Level-2 Cache Controller, DRAM
Controller” on page 53.

1.3.2 I/O Bus and I/O Bridge

This chapter describes the components that implement the I/O bus that connects
CN50XX I/O devices and coprocessors to the on-chip main memory system. This
includes a description of the I/O bus and the internal architecture and configuration
registers of the I/O bridge (IOB). Refer to “I/O Busing, I/O Bridge (IOB) and Fetch
and Add Unit (FAU)” on page 125.

1.3.3 CPU Cores

This chapter describes the CPU cores that implement the MIPS64® (version 2)
integer instruction set, including internal architecture, the CN50XX-specific
enhancements and configuration registers, and the interactions between the cores
and the rest of CN50XX. Refer to “cnMIPS™ Cores” on page 143.

1.3.4 Packet Order / Work Unit (POW)

This chapter describes the work queuing, scheduling, ordering, and synchronization
hardware on CN50XX. This includes the software interface, the internal
architecture, and the configuration registers of the Packet Order / Work Unit (POW).
Refer to “Packet Order / Work Unit (POW)” on page 205.

1.3.5 Free Pool Unit (FPA)

This chapter describes the CN50XX hardware free pool implementations. This
includes the software interface, the internal architecture, and the configuration
registers of the Free Pool unit (FPA). Refer to “Free Pool Unit (FPA)” on page 253.

1.3.6 Packet Input Processing/Input Packet Data Unit (PIP/IPD)

This chapter describes the hardware-centralized input packet parsing and DMA
capabilities. This includes the software interface, the internal architecture, and the
configuration registers of the Packet Input Parsing unit (PIP) and the Input Packet
Data unit (IPD). These units write input packets from any/all of the SGMII, XAUI,
and PCIe interfaces into CN50XX's main memory, and also create/submit work queue
entries for the input packet. Refer to “Packet Input Processing/Input Packet Data
Unit (PIP/IPD)” on page 281.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 47

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

 Introduction: Remaining Chapters
1.3.7 Packet Output Unit (PKO)

This chapter describes the hardware-centralized output packet processing and DMA
capabilities. This includes the software interface, the internal architecture, and the
configuration registers of the Packet Output unit (PKO). This unit DMAs packets out
from main memory through any of the RGMII/GMII/MII and/or PCI interfaces. Refer
to “Packet Output Processing Unit (PKO)” on page 335.

1.3.8 PCI Unit

This chapter describes the PCI interface and the hardware that creates and services
PCI transactions. This includes a description of all the PCI transactions that
CN50XX can create and service, the PCI BARs, the (internal) software interface, the
internal architecture, and the configuration registers. The internal architecture
includes ports that interface with the CN50XX centralized packet-input and packet-
output hardware, DMA engines for transferring data between CN50XX and a PCI
device, direct-access mechanisms from externally-mastered PCI transactions, and
core direct-access to locally-mastered PCI transactions. Refer to “PCI Bus” on
page 365.

1.3.9 Timer Unit (TIM)

This chapter describes the timer unit, which is a hardware mechanism to submit
work-queue entries at future times. This includes the software interface, internal
architecture, and configuration registers. Refer to “Timer” on page 449.

1.3.10 Central Interrupt Unit (CIU)

This chapter describes the central-interrupt unit (CIU). This includes the software
interface and the configuration registers. This unit is a central distributor for core
interrupts, external PCIe interrupts, and other controls. Refer to “Central Interrupt
Unit (CIU)” on page 459.

1.3.11 Boot Bus Unit

This chapter describes the external boot interface, its software interface, and the
configuration registers. When CN50XX self-boots, the boot interface has the (non-
volatile, presumably) storage, like flash memories or ROMs, that contain the initial
CN50XX boot code. The boot bus can also support other more sophisticated devices
such as those that follow the compact flash standard. Refer to “Boot Bus” on
page 479.

1.3.12 RGMII/GMII/MII Unit (GMX)

This chapter describes the RGMII/GMII/MII interfaces, and the internal architecture
and configuration registers of the hardware RGMII/GMII/MII unit (GMX). This unit
primarily interfaces with the centralized packet input and output logic internally.
Refer to “CN50XX Packet Interface” on page 509.

1.3.13 TDM/PCM Unit

Refer to “PCM/TDM Interface” on page 569.
48 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Introduction: Remaining Chapters
1.3.14 GPIO Unit

This chapter describes the external GPIO interface, its software interface, and the
configuration registers. Refer to “GPIO Unit” on page 593.

1.3.15 UART Unit

This chapter describes the external UART interface, its software interface, and the
configuration registers. Refer to “UART Interface” on page 601.

1.3.16 TWSI Unit

This chapter describes the external TWSI interface, its software interface, and the
configuration registers. Refer to “TWSI Interface” on page 623.

1.3.17 System Management Interface (SMI)

The CN50XX system management interface is a standard ethernet MDIO interface.
The chapter describes the interface, its software interface, and the configuration
registers. Refer to “System Management Interface (SMI)” on page 651.

1.3.18 Random Number Generator (RNG/RNM)

This chapter describes the random number generator (RNG), which includes the
internal architecture, the software interface, and the configuration registers. The
random number generator creates truly random numbers. Refer to “Random-Number
Generator (RNG), Random-Number Memory (RNM)” on page 657.

1.3.19 SPI/MPI Unit

Refer to “MPI/SPI Unit” on page 663.

1.3.20 USB Unit

This chapter describes the USB interface, which is a dual-role device (DRD)
controller that supports both host and device functions and is fully compliant with
the USB 2.0 specification. Refer to “USB Unit (USB)” on page 675.

1.3.21 Electrical Specifications

This chapter describes the supply voltages, power sequencing, power consumption,
and DC electrical characteristics of CN50XX. Refer to “Electrical Specifications” on
page 763.

1.3.22 AC Characteristics

This chapter describes the AC characteristics of the CN50XX I/O interfaces. Refer to
“AC Characteristics” on page 773.

1.3.23 Mechanical Specifications

This chapter has an overview of the CN50XX physical package (BGA), and thermal
requirements. Refer to “Mechanical Specifications” on page 793.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 49

Owner
高亮

Owner
高亮

 Introduction: Configuration and Status Registers (CSRs)
1.3.24 Signal Descriptions

This chapter describes the CN50XX signals in detail. Refer to “Signal Descriptions”
on page 799.

1.3.25 Ball Assignments

This chapter describes the position of the I/O pins in the CN50XX physical package.
Refer to “Ball Assignments” on page 811.

1.4 Configuration and Status Registers (CSRs)

CN50XX has many CSRs to control and configure the on-chip hardware. Each
configuration register can be accessed by one or more of the following mechanisms:

● cores using MFC0/MTC0 instructions

● cores using MFC2/MTC2 instructions

● cores using ordinary load/store instructions to I/O bus physical addresses

● remote EJTAG/JTAG device using the EJTAG/JTAG TAP interface
● remote PCI host using direct PCI configuration accesses
● remote PCI host using direct PCI memory space BAR0 accesses
● remote PCI host using indirect windowed accesses to OCTEON I/O bus physical

addresses via the PCI_WIN_WR_ADDR, PCI_WIN_RD_ADDR,
PCI_WIN_WR_DATA, PCI_WIN_WR_MASK, and PCI_WIN_RD_DATA BAR0
CSRs.

These configuration registers fall into the following classes:

● Core coprocessor 0 (COP0) registers. These CSRs are duplicated on each
core, and can only be accessed by software running on the local core. These are
covered in Section 4.11.

● Core coprocessor 2 (COP2) registers. These CSRs are duplicated on each
core, and can only be accessed by software running on the local core. These are
covered in Section 4.2 and Appendix A.

● Core EJTAG registers. These CSRs are duplicated on each core, and can only
be accessed by software running on the local core. These are covered in Section
4.12.

All CN50XX core EJTAG registers are 64-bits, and must be accessed with 64-
bit load/store operations.

● Core EJTAG TAP registers. These CSRs are duplicated on each core, and can
only be accessed by an external EJTAG device via the CN50XX’s EJTAG
interface. These are covered in Section 4.13.

● NCB registers. These registers are accessed directly off the I/O bus. These
registers can be accessed by any core and by remote PCIe devices/hosts through a
windowing mechanism via BAR0 read/write operations.

Each NCB register has a CN50XX-internal address.
All CN50XX NCB registers are 64 or 32 bits, and must be accessed with 64-bit
or 32-bit load/store operations.
50 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Introduction: Configuration and Status Registers (CSRs)
● RSL registers. These registers are accessed indirectly off the I/O bus. They are
similar to NCB registers, except that access to them is much slower as it is
indirect access. The hardware can only service an RSL register access about once
every 30–40 cycles. These registers can be accessed by any core and by remote
PCIe devices/hosts.

Each RSL register has a CN50XX-internal address.
All CN50XX RSL registers are 64-bits, and must be written with 64-bit stores,
but can be read with any size load.

● PCICONFIG registers. These registers can be accessed directly from the PCI
bus and from the I/O bus.

Each PCICONFIG register has both a PCI bus address and an OCTEON-
internal address.
– Cores can access the PCICONFIG registers via the CN50XX-internal

address.
– Remote PCI devices/hosts can access PCICONFIG registers with a PCI

configuration space read or write operation that targets CN50XX.
All PCI config registers are 32-bits. 32-bit load/store operations must be used
by cores to access the PCICONFIG registers.

● PCI registers. These registers can only be accessed directly from the PCI bus,
and cannot be accessed by the local cores. Remote PCI devices/hosts can access
the PCI registers with a PCI memory space read or write operation to CN50XX’s
BAR0.

● PCI_NCB registers. These registers can be accessed directly from the PCI bus
and from the I/O bus.

Each PCI_NCB register has both a PCI bus address and a CN50XX-internal
address.
– Cores can access the PCI_NCB registers via the internal address.
– Remote PCI devices/hosts can access PCI_NCB registers with a PCI

memory space read or write operation to CN50XX’s BAR0.
Cores can access PCI_NCB registers via 32-bit load/store operations.

● JTAG TAP registers. These registers can only be accessed by an external device
via CN50XX’s JTAG interface.

● TWSI core registers. These registers control the TWSI core and can only be
accessed indirectly via MIO_TWS_SW_TWSI (MIO_TWS_SW_TWSI is an
ordinary RSL CSR). TWSI core registers are covered in Chapter 19.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 51

Owner
下划线

 Introduction: Configuration and Status Registers (CSRs)
The detailed descriptions of these CSRs are distributed throughout the remaining
chapters of this document. Table 1–1 lists the CSRs types that are present in the
different chapters.

1.4.1 CSR Field Types

CN50XX has a variety of CSR Field types as described below.

● RO – Fields that can be read from only.

● R/W – Fields that can be read from or written to.

● RAZ – Reserved fields.

● R/W1C – Fields that can be read from or written to with a 1 to clear.

● RC – Fields that are cleared when read.

● RC/W – Fields that are cleared when read or written to.

Table 1–1 CN50XX CSR Types

Chapter Units CSR Type

2 Level-Two Cache Controller (L2C), DRAM Controller RSL

3 I/O Bridge RSL

5 Packet Order / Work Unit NCB

6 Free Pool Unit RSL

7 Packet Input Processing, Input Packet Data RSL, NCB

8 Packet Output Processing RSL

9 PCI Bus, NPI PCI_NCB, PCICONFIG,
NCB, PCI, NCB

9 NPI NCB

10 Timer RSL

11 Central Interrupt Unit NCB

12 Boot Bus RSL

13 Reduced Gigabit Media Independent Interface, ASX RSL

14 TDM/PCM NCB

15 GPIO NCB

16 UART NCB

17 TWSI Interface NCB

18 System Management Interface RSL

19 Random Number Generator, Random Number Memory RSL

20 SPI/MPI NCB

21 USB NCB

NOTE: The listed CSR addresses are all little-endian format. Because most
CN50XX CSRs are 64-bit registers, and all 64-bit addresses are endian-
neutral, most addresses in this book are endian-neutral.
52 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Chapter 2

Coherent Memory Bus, Level-2 Cache
Controller, DRAM Controller
This chapter describes the following topics:

● Coherent Memory Bus (CMB)
● Level-2 Cache Controller (L2C)
● DRAM Controller (LMC)
● L2C Registers
● LMC Registers

Section 2.1 discusses the coherent memory bus (CMB) and contains the following
subjects:

● CMB Overview
● CMB Buses
● CMB Description
● CMB Memory Coherence Support
● CMB Transactions

Section 2.2 discusses the Level-2 cache controller (L2C) and contains the following
subjects:

● L2 Cache and Data Store
● L2C Memory Coherence
● L2 Cache Indexing (Set Selection)
● L2 Cache Replacement and Way-Partitioning
● L2 Cache-Block Locking
● Cache-Block Flush and Unlocking
● Memory Input Queue Arbitration
● COMMIT and FILL Bus Arbitration
● L2C ECC Codes

Section 2.3 discusses the DRAM controller and contains the following subjects:

● Main Memory DRAM Addressing
● DRAM Part Addressing
● DRAM Transaction Examples
● DRAM Programming
● DRAM Refreshes
● DRAM Scheduler Performance
● DRAM Chip Selects and ODT
● DRAM Controller Initialization
● DRAM ECC Codes
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 53

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerCoherent Memory Bus (CMB)
2.1 Coherent Memory Bus (CMB)

2.1.1 CMB Overview

The coherent memory bus (CMB), shown in Figure 2–1, is the communication
channel for all memory and I/O transactions between the two cores, the I/O bridge
(IOB), and the level-2 cache controller (L2C). It runs at the core-clock frequency.

2.1.2 CMB Buses

The CMB is comprised of four buses:

● The Address/Command bus (ADD), which typically transfers an address, and
always transfers control information to initiate CMB transactions.

● The Store Data bus (STORE), which always transfers the store data
associated with the transaction.

● The Commit/Response Control bus (COMMIT), which always transfers control
information that initiates transaction responses from the L2C.

● The Fill Data bus (FILL), which transfers fill data (cache blocks) from the L2C
and reflection data for core-to-IOB transfers.

2.1.3 CMB Description

The CMB is a split-transaction highly pipelined bus. All the ADD, STORE,
COMMIT, and FILL buses are decoupled by large queues. This decoupling allows
for variable timing between the different ADD/STORE/COMMIT/FILL operations
required to complete different CMB transactions. Consequently, CN50XX
schedules the individual buses at maximum efficiency for highest bandwidth
CMB operation. (Some COMMIT bus operations are coupled, at fixed timing, to
later FILL bus cycles.) At 550MHz operation, the CMB peak performance is 211
Gbps.

Figure 2–1 Coherent Memory Bus Diagram

ADD

STORE

COMMIT

FILL

I/O Bridge
(IOB)

128

256

Level-2
Cache

Controller
(L2C)

CMB

Core
0

Core
1

NOTE: CMB transactions transfer no more than 128 bytes of data at a
time. This is the cache-block size.
54 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
下划线

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

Owner
下划线

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerCoherent Memory Bus (CMB)
2.1.4 CMB Memory Coherence Support

The CMB contains write-invalidate coherence support. The core data caches are
write-through. L2C maintains copies of the core data-cache tags and initiates
CMB invalidations to core data caches when other CMB sources update cached
blocks. The cores contain large write buffers to minimize the number of CMB
write operations, and support a weakly consistent memory model to maximize
performance. The CMB commit information allows weakly consistent bus sources
(like the cores) to order operations, as necessary.

Memory requests to coherent memory space are directed to the L2C. Memory
requests can be initiated by either a core or the IOB. The IOB initiates memory
requests on behalf of I/O agents located on the other side of the IOB. Memory
responses are returned by the L2C to the source of the original request, either the
core or IOB.

Other requests, such as core-to-IOB transfers, physically go through the L2C, and
are reflected onto the FILL bus before being received by the destination core/IOB.

Coherent Memory Bus
Transaction Example

FILL Transaction

Figure 2–2 shows the steps of a complete fill transaction, a cache-block load, on
the CMB. A fill is any CMB transaction that puts a cache line into either the L1
instruction or data caches. (In Table 2–1, these are LDD, PSL1, LDI, and LDT
transactions.) As with all CMB transactions, the transaction is initiated by either
a core or the IOB. The first step (not shown in the figure) for this transaction, as
with all CMB transactions, is that the core/IOB arbitrates for a cycle on the ADD
bus. This is necessary to guarantee that only one among the cores and the IOB
drives the ADD bus on a given cycle. The ADD bus arbitration is fair (round-robin)
between all the drivers of the ADD bus. Once the core or IOB wins arbitration, it
puts control information indicating that the transaction is a fill, together with the
address of the cache block, onto the ADD bus in a single cycle.

The L2C receives the ADD bus information, possibly queues it, and eventually
services the transaction. In this case, servicing consists of consulting the L2 cache
and/or DRAM to obtain a copy of the cache block. As Figure 2–2 indicates, once the
L2C has a copy of the block, it sends an early fill indication on the COMMIT bus.
Starting three cycles later, the L2C then transfers the 128 byte cache block on the
FILL bus in four consecutive cycles to complete the CMB transaction. The number
of cycles required to complete the fill transaction varies depending on a number of
factors, including whether the L2C found the block in the L2 cache or in memory.

Coherent Memory Bus
Transaction Example

Store Without Invalidate

Figure 2–3 shows a store, without invalidate, on the CMB. The ADD bus cycle
indicates a store transaction, and contains the address of the store as well as the
number of 128-bit octaword transfers required on the STORE bus. The STORE

Figure 2–2 Fill

128-byte
Cache Block

Time
FILL

ADD
STORE

COMMIT

Cache-Block
Address Early Fill

Indication
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 55

Owner
下划线

Owner
下划线

Owner
下划线

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerCoherent Memory Bus (CMB)
bus cycles are scheduled later, once the STORE bus is available and buffer space
is available to receive the data, wherein the core or IOB drive the store data of the
transaction onto the STORE bus. This example is a case where five STORE bus
cycles are required for the complete store. The number of STORE bus cycles may
range from as small as one, up to a possible eight to transfer an entire 128-byte
cache block.

The L2C buffers the ADD and STORE bus information and services the write
operation. Figure 2–3 shows a more common case where a copy of the cache block
is not held in another core; no core Dcache invalidation is required. L2C places a
commit operation on the COMMIT bus. The commit indicates that the store is
visible to all bus users at this time, and may be sent long before the actual store
operation is completely retired. For example, L2C can send the commit operation
for a store even though the store is not yet deposited in the cache/DRAM, provided
that any subsequent CMB transaction will see the updated store value.

Coherent Memory Bus
Transaction Example

Store With Invalidate

Figure 2–4 shows a store with invalidate on the CMB. This is similar to Figure 2–
3. One difference is that the transaction requires only three cycles on the STORE
bus rather than five. The other difference is that a commit/invalidation operation
appears on the COMMIT bus, followed three cycles later by an invalidation cycle
on the FILL bus. The invalidation cycle causes a data-cache block invalidate in
one or both cores, and is assumed to be required in this example, because an out-
of-date copy of the cache block resides in at least one data cache.

Coherent Memory Bus
Transaction Example

Store/IOBDMA Reflection

Figure 2–5 shows a store/IOBDMA reflection. Effectively, a reflection transaction
is simply a way to transfer commands/results between the IOB and the cores. This
can be required, for example, when a core does a store destined to either the IOB
or the opposite side of the IOB. In these reflection transactions, the L2C buffers
the ADD and STORE bus values, sends an early fill code indicating a reflection

Figure 2–3 Store Without Invalidate

STORE is committed.
No invalidate is required.

Time
FILL

ADD
STORE

COMMIT

Cache-Block
Address (128-bit) Octawords written

(up to 80 bytes here)

Figure 2–4 Store with Invalidate

STORE is committed.
An invalidate follows.

Time
FILL

ADD
STORE

COMMIT

Cache-Block
Address Up to 48 bytes written here.

Indicates the Dcache locations cores must invalidate.
56 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerCoherent Memory Bus (CMB)
transaction response, and copies the ADD/STORE values onto the FILL bus three
cycles later. The destination, (the IOB in the previous example) latches the ADD/
STORE values from the FILL bus and processes the operation.

Coherent Memory Bus
Transaction Example

Load Reflection From Core

Figure 2–6 shows a load reflection. This is required when a core does a load
destined to either the IOB or the opposite side of the IOB. The transaction is the
same as the Figure 2–4 store/IOBDMA case, except that there is no STORE bus
cycles.

With any load/IOBDMA operation initiated by a core, there will later be an
accompanying response transaction, initiated by the IOB, to return the result of
the load/IOBDMA operation to the requesting core. This response transaction is a
store reflection, similar to that shown in Figure 2–5.

Figure 2–5 Store ADD from Core or IOB

Reflection follows.
Time

FILL

ADD
STORE

COMMIT

Cache-Block
Address

L2C copies the ADD, STORE
values onto FILL bus.

Figure 2–6 Load Reflection from Core

Reflection follows.
Time

FILL

ADD
STORE

COMMIT

Cache-Block
Address

L2C copies the ADD
value onto FILL bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 57

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerCoherent Memory Bus (CMB)
2.1.5 CMB Transactions

Table 2–1 shows the CMB’s transactions.

Table 2–1 Coherent Memory Bus Transactions

Transaction Description

Data Cache Fill
(LDD)

The cache block is filled from L2/DRAM. The block will be filled into the Dcache of the requesting
core.A subsequent store from another core or IOB will cause an invalidate.

The block is put into the L2 cache.

These transactions can only be issued by cores.

Data Cache Fill-
Through (PSL1)

The cache block is filled from L2/DRAM. The block will be filled into the Dcache of the requesting core.
A subsequent store from another core or IOB will cause an invalidate.

The block will not be put into the L2 cache.

These transactions can only be issued by cores.

Instruction Cache /
IO Fill (LDI)

The cache block is filled from L2/DRAM.

The block is put into the L2 cache.

These transactions can be issued either by cores or by the IOB.

A subsequent store from another core or IOB will NOT cause an invalidate.

Instruction Cache /
IO Fill-Through
(LDT)

The cache block is filled from L2/DRAM.

The block will not be put into the L2 cache.

These transactions can be issued either by cores or by the IOB.

Prefetch Into L2
(PL2)

The cache block will be put into the L2 cache.

This is an ADD-only transaction on the CMB.

These transactions are only issued by cores.

Store-Partial
(STP)

Some of the bytes in the cache block will be stored. The value of the bytes in the cache block that are
not transferred on the STORE bus or are masked off are not modified. All data-cache copies of the
block will be invalidated, except for the data cache of an initiating core.

The cache block will be put into the L2 cache.

These transactions are issued either by cores or by the IOB.

Store-Full (STF) Store to all bytes in the cache block. The value of the bytes in the cache block that are not transferred
on the STORE bus or are masked off will be written to 0. All data cache copies of the block will be
invalidated, except for the data cache of an initiating core.

The cache block will be put into the L2 cache.

These transactions are issued either by cores or by the IOB.

Store-Through
(STT)

Store to all bytes in the cache block. The value of the bytes in the cache block that are not transferred
on the STORE bus or are masked off will be written to 0. All data cache copies of the block will be
invalidated, except for the data cache of an initiating core.

The cache block will not be put into the L2 cache.

These transactions are only issued by the IOB.

Store-Conditional
(STC)

Store to either 32 or 64-bits if the block is currently held in the data cache of the requesting core. If the
block is in the data cache of the requesting core, the store happens and a commit indication is
returned. All data-cache copies of the block will be invalidated in the other cores. If the block is not in
the data-cache of the requesting core, a failure indication is returned, no invalidate occurs, neither
does the store.

The cache block will be put into the L2 cache.

These transactions are only issued by cores.
58 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerCoherent Memory Bus (CMB)
Store-Atomic Add
(SAA)

Store atomic add to either 32 or 64 bits. Acts like an unmerged STP transaction, except that the valid
bytes are added to the memory location, not stored to it. All data-cache copies of the block are
invalidated in all cores, including the requesting core. The cache block is put into the L2 cache. These
transactions are issued only by cores.

Don't-Write-Back
(DWB)

Clear the dirty bit in the L2 tags if the cache block is present in the L2 cache.

This is an ADD-only transaction on the CMB.

Store Reflection
(IOBST, IOBDMA,
IOBRSP)

Reflect an ADD cycle and corresponding STORE cycle(s) onto the FILL bus. This is used for
core ⇔ IOB communication.

A store reflection transaction is generated by the cores to transfer a store/IOBDMA to IOB. An
IOBDMA must have exactly 64 bits of (aligned) STORE data. A store may have 64, 32, 16, or 8 bits of
aligned STORE data. These transactions are destined to IOB.

A store reflection transaction is generated by the IOB to respond to a prior load/IOBDMA request from
a core. A load response always contains exactly 64 bits of (aligned) STORE data. An individual
IOBDMA response contains between one and sixteen 64 bit (aligned) words of data.

These transactions are destined to a core.

Load Reflection
(IOBLD8,
IOBLD16,
IOBLD32,
IOBLD64)

An ADD cycle will be reflected onto the FILL bus. This is used for communication from the cores to the
IOB.

A load reflection transaction is generated by the core to transfer a load to IOB.

Table 2–1 Coherent Memory Bus Transactions (Continued)

Transaction Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 59

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
2.2 Level-2 Cache Controller (L2C)

This section discusses the L2C and contains the following subjects:

● L2 Cache and Data Store
● L2C Memory Coherence
● L2 Cache Indexing (Set Selection)
● L2 Cache Replacement and Way-Partitioning
● L2 Cache-Block Locking
● Cache-Block Flush and Unlocking
● Memory Input Queue Arbitration
● COMMIT and FILL Bus Arbitration

2.2.1 L2 Cache and Data Store

The L2C block diagram is shown in Figure 2–7. The L2C contains CN50XX’s
shared on-chip cache. The L2 cache has the following specifications:

128KB

eight-way set-associative with a 128-byte cache block

write-back

both the on-chip data and tags are protected by SECDED ECC.

The L2 cache is shared by both the cores and the I/O components on CN50XX,
though it can be bypassed using particular CMB transactions and can also be
partitioned.
60 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
矩形

Owner
下划线

Owner
高亮

Owner
高亮

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)

2.2.2 L2C Memory Coherence

L2C maintains CN50XX’s memory-reference coherence.

● It returns the latest copy of the block for every fill request, whether the block
is in the L2 cache, in DRAM, or in-flight somewhere.

● It also contains a duplicate copy of the tags for each core’s data cache. It
compares the addresses of cache-block store requests against the data cache
tags, and invalidates (both copies) a data-cache tag for a core whenever the
store is from another core or from an I/O component, via the IOB.

The L2C services CMB reflections, that is, non-memory transactions that are
necessary to transfer commands and/or data between the cores and the IOB.

Figure 2–7 is a block diagram of the L2C. The figure shows the CMB interface on
the top and the DRAM controller interface on the bottom. The CMB interface is
384 bits wide, the DRAM interface is 256 bits wide, and the internal L2 cache data
interfaces are 512 bits wide.

Figure 2–7 L2C Block Diagram

Coherent Memory Bus (CMB)
STORE COMMIT FILLADD

L2 Tags Duplicate
Tags

Victim
Address
File(8)

L2 Data

Victim

128
256

512

Reflect to IOB

Invalidate

From L2

From DRAM

128

512

128

DRAM Controller (LMC)

L2C Data (4)

Reflect to Cores

In-Flight
Addresses

(8)
(LFB)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 61

Owner
下划线

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
L2C has two memory-input queues that receive ADD bus memory transactions:
one for transactions initiated by the cores, and one for transactions initiated by
the IOB. Having the separate IOB queue improves L2C response to IOB-initiated
transactions. Without two queues, IOB memory references would have priority
equal to the two cores, so it could be starved when both cores are saturating L2/
DRAM.

L2C contains two reflection queues that hold the ADD/STORE bus information to
be reflected. Two different reflection queues are necessary for deadlock avoidance:

one is for reflections destined to the cores

the other is for reflections destined for the IOB.

L2C holds and processes up to 8 simultaneous memory transactions in its in-flight
address buffer (LFB). It can also manage up to 8 in-flight L2 cache victims, and up
to four of these victims may reside in the victim-data file.

For fills, L2C returns data from either the L2 cache or memory. L2C first deposits
memory STORE bus data into a file associated with the in-flight addresses. It
then updates the cache (STP, STF, STC, or SAA in Table 2–1), or writes the store
data straight to memory (STT in Table 2–1). STF and STT are full cache-block
writes. The partial cache-block writes (STP, STC and SAA) require a DRAM fill (to
first read on the old data in the block) if the store misses in the cache.

All data movement transactions between the L2C and LMC are 128-byte, full-
cache blocks. The L2C buffers LMC fills in one or both of two queues:

one for data destined to be written into the L2 cache

the other for data destined for the FILL bus.

The L2C buffers LMC stores in the victim address / data files until the LMC
accepts them.

L2C buffers all the COMMIT/FILL bus commands needed from each possible
source: the two reflection queues, fills from L2/DRAM, and invalidates. These two
queues allows the arbiter to saturate the FILL bus when a heavy load requires it.

2.2.3 L2 Cache Indexing (Set Selection)

There are 128 sets in the L2 cache. Each set contains eight 128-byte cache blocks,
one per available way. Every L2/DRAM reference must select a set.

L2C implements two set-indexing algorithms, an unaliased algorithm
(L2C_CFG[IDXALIAS] = 0), and an aliased one (L2C_CFG[IDXALIAS] = 1). The
aliased algorithm is recommended for most applications.

● The unaliased algorithm is the typical set-selection algorithm:
index<6:0> = address<13:7>

where address is the physical byte address of the L2/DRAM location.

● The aliased set-selection algorithm additionally bit-wise exclusive-ORs upper
address bits into the index:

index<6:0> = address<13:7> ⊕ address<20:14>

Both the unaliased and aliased algorithms spread contiguous cache blocks across
sequential sets. The aliased algorithm also spreads cache blocks with different
upper address bits across different sets. This is advantageous when memory
addressing is not strictly contiguous or not random.
62 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
For example, if packet buffers are 2KB and always naturally aligned, but only the
first 256 bytes of every packet buffer is typically used, the unaliased algorithm
can only ever use two sets out of every sixteen, but the aliased algorithm evenly
distributes the blocks across all sets, provided the naturally aligned 2KB buffers
cover many 16KB aligned regions. This can have a very large performance effect.

2.2.4 L2 Cache Replacement and Way-Partitioning

L2C implements its replacement policy using one USED bit per L2 cache block.
There are eight USED bits per each of the 128 sets, one per way. (All eight ways
are normally “available”, but way-partitioning, described below, can remove ways
from consideration.)

When L2C references a block, it sets the USED bit for the block to 1. When the
USED bits for all available ways in a set are all 1s, L2C clears to 0 the USED bits
for all the available ways in the set, except for the last block referenced. When
L2C replaces a cache block, it picks the first available way that has a USED bit of
0 and does not hold a locked block. If the USED bits of all available ways in a set
are all 1s on a replacement operation, L2C replaces the first available way that
does not hold a locked block. (Section 2.2.5 covers locking.)

Way-partitioning can prevent specific cores or I/O devices from polluting the L2
cache. Eight-bit UMSK values configure the way-partitioning. There are a total of
three 8-bit UMSK CSR fields for the different sources of L2/DRAM transactions
on the CMB bus:

● two for the cores: one for each of the cores (L2C_SPAR0[UMSK0/1])
● one for all the IOB-initiated transactions (L2C_SPAR4[UMSKIOB])

When [UMSK0/1<i>] is set, the selected source cannot place a block into way i.
Way i is not available to the source for replacements.

NOTE: L2C_CFG[IDXALIAS] must change value only when the L2 cache is
known to be completely empty, such as at boot time.

NOTE: Way partitioning does not affect cache coherence and does not
directly affect cache-hit processing in any way. Way-partitioning only
affects cache replacement.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 63

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
2.2.5 L2 Cache-Block Locking

L2C can lock individual cache blocks into the L2 cache. A locked block is not
replaced (until it is later flushed from the cache via the procedure described in
Section 2.2.6, or until the chip is reset), so fast access to the block is guaranteed
when it is locked.

When L2C_LCKBASE[LCK_ENA] is set, L2C locks cache blocks referenced by an
LDD or LDI transaction on the CMB bus (i.e. and instruction or data cache fill,
refer to Section 2.1.5) as long as both the following occur:

● The selected core (L2C_DBG[PPNUM]) sourced the LDD or LDI
● The index-aliased LDD or LDI physical address falls in the range selected by

L2C_LCKBASE[LCK_BASE] and L2C_LCKOFF[LCK_OFFSET].

If the locking LDD/LDI does not find the block in the cache, the locked block
resides in the way selected by the normal replacement algorithm for the source
core after the transaction. If the locking LDD/LDI finds the block already in the
cache, the locked block resides in the way that previously held the block after the
transaction. It is difficult to predict the exact way that a locked block was placed
in, though the selection can be influenced with way-partitioning (refer to Section
2.2.4) while locking.

L2C_LCKOFF[LCK_OFFSET] should always be updated appropriately before
L2C_LCKBASE[LCK_ENA] is set. The CSR write that sets
L2C_LCKBASE[LCK_ENA] also writes L2C_LCKBASE[LCK_BASE]. Note also
that L2C_LCKOFF[LCK_OFFSET] can cover at most 128KB. Larger address
ranges must be split into multiple different ranges.

To lock a different DRAM range from the current one:

● Clear L2C_LCKBASE[LCK_ENA] to 0
● Update L2C_LCKOFF[LCK_OFFSET] for the new range
● Set L2C_LCKBASE[LCK_BASE] for the new range and set

L2C_LCKBASE[LCK_ENA] = 1 (Both can be done with a single CSR write.)

Note that software should always follow a write operation to L2C_LCKBASE that
changes the L2C_LCKBASE[LCK_ENA] value with a read operation to
L2C_LCKBASE (and wait for the result). Like other CN50XX CSRs,
L2C_LCKBASE CSR write operations are posted (refer to Section 4.9), so the read
operation is necessary to ensure that L2C has the updated L2C_LCKBASE value
before any subsequent operations.

Refer to Section 2.2.4 regarding ways and way partitioning. For every source,
there should be at least one block in every set that is both available and not
locked. When this condition is violated, some combination of the
L2T_ERR[LCKERR,LCKERR2] error bits will set, and some blocks that were
desired to be locked are not locked.

Note that L2C_LCKBASE[LCK_BASE] is an index-aliased physical-cache-block
address. When L2C_CFG[IDXALIAS] is set to 1, the hardware first index-aliases
the LDD/LDI physical address before it compares it to
L2C_LCKBASE[LCK_BASE] and L2C_LCKOFF[LCK_OFFSET]. Index-aliasing
simply replaces address<13:7> with index<6:0>, where Section 2.2.3 defines
index. An LDD/LDI is a locking candidate when its index-aliased physical byte
address falls within the range:
64 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
from: L2C_LCKBASE[LCK_BASE]<<7
to: (L2C_LCKBASE[LCK_BASE] + L2C_LCKOFF[LCK_OFFSET])<<7 + 127

Note also that L2C discards bit<34> of the physical-byte addresses, so the address
ranges mentioned above are based solely on <33:0> of a L2/DRAM byte address.

2.2.6 Cache-Block Flush and Unlocking

During normal operation, L2C only flushes cache blocks from the L2 cache when
it is necessary to create space for new blocks. L2C contains a special cache-flush
mode that can force cache blocks to be flushed. This is the only way to flush locked
blocks from the cache, so this mode is also a cache block unlocking mode (Section
2.2.5 discusses block locking). It is also one way to flush a block with an ECC error
out of the cache, and it is the only way if the block is locked into the cache.)

L2C is in the cache-flush mode whenever L2C_DBG[FINV] is set to 1. In this
mode, L2C treats cached full cache block write transactions (STFs, refer to Section
2.1.5) initiating from the selected core (L2C_DBG[PPNUM]) specially. These
flushing STFs evict blocks from the cache and do not perform any actual write nor
validate a new block. L2C flushes the block whether it is locked or not. Note that
L2C discards any store data associated with the flushing STF when it is in flush
mode. If the flushed block is dirty, L2C writes it to DRAM. In any case, before the
transaction completes, L2C invalidates the selected cache location.

L2C flushes the block in the cache location in the set selected by the index of the
flushing STF (see Section 2.2.3 for the index calculation), and in the way selected
by L2C_DBG[SET]. Note that the index of the flushed block must match the index
of the flushing STF, but the address of the flushed block is otherwise unrelated to
the address of the flushing STF.

Cavium Networks recommends that the flushing STF transactions are generated
on the cores via a sequence of (at least) two instructions:

● PREF 30 (i.e. prepare for store) to generate the STF, with the appropriate
physical address to generate the desired L2 cache index. (Beware that PREF
instructions become NOPs if they would otherwise cause TLB misses.)

● SYNCW to force the STF transaction out of the core-write buffer.

Note that the selected core may generate STF transactions any time the software
writes every byte in a cache line. Care is necessary to ensure that only the desired
STF transactions are created whenever L2C_DBG[FINV] is set, since L2C
discards any store data included with a flushing STF transaction. Unwanted STF
transactions while L2C is in flush mode cause corruption.

If a particular cache block should be flushed/unlocked from the L2 cache, but the
way that the cache block resides in the cache is not known (the index of the block

NOTE: Software should always execute a SYNC instruction immediately before writing the L2C_DBG
register to change the L2C_DBG[FINV] value, or to change the L2C_DBG[SET,PPNUM] values
when L2C_DBG[FINV] is set. Software should also follow the L2C_DBG write operation with a
L2C_DBG read operation (and wait for the result).

SYNC flushes prior STF transactions from the write buffer before the L2C_DBG update (refer to
Section 4.10 for a description of the write buffer, and to Appendix A for a description of the SYNC
instruction). Like other CN50XX CSRs, L2C_DBG CSR write operations are posted (refer to Section
4.9), so the L2C_DBG read operation is necessary to ensure that L2C has the updated L2C_DBG
values before any subsequent operations.

NOTE: Refer to the PREF and SYNCW instruction descriptions in Appendix A.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 65

Owner
下划线

Owner
高亮

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
is assumed known since the physical address of the block is assumed known), all
possible ways can be flushed by changing L2C_DBG[SET]. (Note the discussion
above regarding restrictions on changing L2C_DBG[SET] while L2C_DBG[FINV]
is set.) Similarly, the entire L2 cache can be flushed/unlocked by flushing all
possible ways and indexes with a sequence of many flushing STF transactions.

2.2.7 Memory Input Queue Arbitration

As shown in Figure 2–7, L2C has two queues for ADD-bus transactions. This
configuration automatically improves response time for IOB-initiated traffic when
the cores heavily use the CMB. This is important for real-time packet transfers.
The two queues alone eliminate many potential performance problems, but the
exact algorithm that selects between queues can further increase/decrease the
priority of IOB-generated traffic.

L2C processes transactions from the two queues in one of two programmable
arbitration algorithms:

fixed priority (L2C_CFG[LRF_ARB_MODE] = 0)

round-robin (L2C_CFG[LRF_ARB_MODE] = 1).

With fixed priority, IOB-initiated transactions are always higher priority. For
systems with very high I/O bandwidth requirements, fixed priority may be
preferred.

2.2.8 COMMIT and FILL Bus Arbitration

The COMMIT/FILL bus arbiter can operate in one of the following modes:

round-robin mode (L2C_CFG[RSP_ARB_MODE] = 1)

static-priority mode (L2C_CFG[RSP_ARB_MODE] = 0).

Round-robin is more fair, but the fixed priority mode prioritizes reflections above
other FILL bus usages, and this may be advantageous to minimize core-initiated
reflection latencies.
66 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLevel-2 Cache Controller (L2C)
2.2.9 L2C ECC Codes

Table 2–2 shows the L2T 23-bit ECC code for cache-data references, and Table 2–
3 shows the L2D 128-bit ECC code for tag references.

Table 2–2 L2T 23-Bit ECC Code
CCCCCCC

5:0 22:20 19:16 15:12 11:8 7:4 3:0
000001 110 0001 0010 1100 1011 0111 0x612CB7
000010 111 0010 0101 0101 0101 1011 0x72555B

000100 111 0100 1001 1010 0110 1101 0x749A6D

001000 111 1000 1110 0011 1000 1110 0x78E38E
010000 011 1111 0000 0011 1111 0000 0x3F03F0

100000 101 1111 1111 1100 0000 0000 0x5FFC00

000000 000 0000 0000 0000 0000 0000

xxxxxx xxx xxxx xxxx xxxx xxxx xxxx

210000 213 3333 2222 2211 1111 0000 ← Syndromes
008421 FFE 8421 CA96 53CA 9653 EDB7

Table 2–3 L2D 128-Bit ECC Code
CCCCCCC

9:0 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

0000000001 1011 0000 0100 0010 0010 0101 1000 0100 0100 1011 0001 0010 1100 1011 0111 0xB04225844B12CB7

0000000010 0101 0000 1000 0100 0100 1010 1000 1000 1001 0101 0010 0101 0101 0101 1011 0x50844A88952555B

0000000100 0110 0001 0000 1000 1001 0011 0001 0001 0010 0110 0100 1001 1010 0110 1101 0x610893112649A6D

0000001000 1000 0010 0001 0001 0001 1100 0010 0010 0011 1000 1000 1110 0011 1000 1110 0x82111C22388E38E

0000010000 0000 0100 0010 0001 1110 0000 0100 0011 1100 0000 1111 0000 0011 1111 0000 0x0421E043C0F03F0

0000100000 0000 1000 0011 1110 0000 0000 0111 1100 0000 0000 1111 1111 1100 0000 0000 0x083E007C00FFC00

0001000000 0000 1111 1100 0000 0000 0000 0111 1111 1111 1111 0000 0000 0000 0000 0000 0x0FC0007FFF00000

0010000000 0000 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0x0FFFFF800000000

0100000000 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0xF00000000000000

1000000000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0x000000000000000

0000000000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

xxxxxxxxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

2100000000 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ← Syndromes

0084210000 0000 EDCC CCBA AAA9 9998 8888 8766 6655 5544 4444 3333 2222 2211 1111 0000

0000008421 9653 0084 2108 4218 421C A965 3084 2184 21CA 9653 8421 CA93 53CA 9653 EDB7

127:124 123:120 119:116 115:112 111:108 107:104 103:100 99:96 95:92 91:88 87:84 83:80 79:76 75:72 71:68 67:64 63:60

0000 0001 0000 0010 0000 1000 0111 0100 1100 1011 0000 0000 0010 0000 1000 0100 0100 0x01020874CB0020844

0000 0010 0000 0100 0001 0000 1001 0101 0101 0101 0001 0000 0100 0001 0000 1000 1001 0x02041095551041089

0000 0100 0000 1000 0010 0001 0010 0110 0110 0110 0010 0000 1000 0010 0001 0001 0010 0x04082126662082112

0000 1000 0001 0000 0100 0010 0011 1000 0111 1000 0100 0001 0000 0100 0010 0010 0011 0x08104238784104223

0001 0000 0010 0000 1000 0100 0011 1111 1000 0000 1000 0010 0000 1000 0100 0011 1100 0x1020843F80820843C

0010 0000 0100 0001 0000 0111 1100 0000 0000 0000 1111 0100 0001 0000 0111 1100 0000 0x204107C000F4107C0

0100 0000 1000 0001 1111 1000 0000 0000 0000 0000 1111 1000 0001 1111 1000 0000 0000 0x4081F80000F81F800

1000 0000 1111 1110 0000 0000 0000 0000 0000 0000 1111 1111 1110 0000 0000 0000 0000 0x80FE000000FFE0000

1111 1111 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 0xFF00000000FFFFFFF

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0xFFFFFFFFFF0000000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

3333 3333 2222 2222 2222 2222 2222 2222 2222 2222 1111 1111 1111 1111 1111 1111 1111 ← Syndromes

8421 0000 CA98 8886 5444 4322 2211 1111 1000 0000 FEEE CB98 8886 5444 4322 2211 1100

0000 8421 0008 4210 0842 1084 21DB 8742 1FCA 9653 0842 0008 4210 0842 1084 2184 21CA
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 67

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
2.3 DRAM Controller (LMC)

The LMC is fully programmable to support the JEDEC DDR2 SDRAM
specification (refer to the JEDEC standard: DDR2 SDRAM Specification JESD79-
2B (Revision of JESD79-2) January 2005). The LMC has a 32/16-bit-wide
interface (36/18 bits wide with optional SECDED ECC), and can architecturally
support up to 16GB of SDRAM with data rates of up to 667 MHz.

The 32/36-bit interface can support up to two DIMMs. There is a single address
bus shared by all the DIMMs/parts.

The SDRAM controller has the following features:
● Support for ×8 and ×16 components from 256Mb to 2Gb (×4 support only for

ECC)
● Memory can be assembled as registered or unbuffered DIMMs or a similar

combination
● Support for up to four independent ranks, addressable with four chip-select

signals
● Low-address cache-block bank selection with optional hashing
● An aggressive reordering scheduler

Entire 128-byte cache-block read/write operations (data masking not
supported)
Bank autoprecharge following each read/write operation
four or eight banks supported

● 1T and 2T address/command support (Micron Technical Note TN-47-01)
● Burst-length 4 and 8 support
● Posted-CAS support
● Support for nonhomogeneous ranks/chip selects
● Separate DDR2 ODT enables for read operations and write operations
● Write-data mask not required; optional RDQS

● Support for data rates up to 667 MHz
● Programmable settings to meet various timing specifications
● Programmable settings to compensate for board delays with quarter-cycle

granularity
● Programmable settings per-byte with quarter-cycle granularity to compensate

for board delays
● No support for DDR OCD calibration
● No support for DDR2 power-down

The CN50XX LMC supports a variety of combinations of memory devices. The
combinations are shown in Table 2–4.

Table 2–4 CN50XX Supported Memory Devices

Device
Size

Device Configuration
× DQ Pins

Row/
Column/

Banks Bits
Physical
Banks

256 Mb 32Mb × 8 13/10/2 4

16Mb × 16 13/9/2 4

512 Mb 64Mb × 8 14/10/2 4

32Mb × 16 13/10/2 4

1Gb 128Mb × 8 14/10/3 8

64Mb × 16 13/10/3 8
68 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
Figure 2–8 shows a high-level block diagram of the CN50XX LMC. Read and write
requests are received from L2C along with address and data (in write requests)
for 128-byte cache-block accesses to the memory. Asynchronous FIFOs (MRF for
memory-read requests and MWF for memory-write requests) queue up requests
in the core-clock (ECLK) domain, and a bank-based controller picks requests out
of order on the memory-clock (DCLK) domain (while maintaining coherence) to
minimize bank conflicts.

A cache-block address from L2C is decomposed into row-, column-, and bank-
address based on programmable parameters stored in LMC_MEM_CFG0,
LMC_CTL, and LMC_DDR2_CTL Commands are issued to the memory while
meeting timing specifications as programmed in the CSR. All transactions
autoclose each row after a cache block has been read/written. Refresh counters
keep track of refresh intervals in order to refresh the memory within the
maximum allowable time.

Once the command is committed to the bus, read and write commits are issued by
the MRF and the memory-write-commit block (MWC) respectively, to L2C for
bookkeeping. L2C pushes write data into the asynchronous memory-write-data
register (MWD), which is written out at double-data rate along with generated
ECC code. Read data from memory is accumulated in the asynchronous memory-
read-data FIFO (MRD) and returned to L2C after ECC correction (SEC/DED)
along with payload information.

Figure 2–9 shows a system configuration with CN50XX and two dual-ranked
DIMMs (only Rank 0 is shown).

For a description of the memory signals, see Table 25–3.

2Gb 256Mb × 8 15/10/3 8

128Mb × 16 14/10/3 8

Table 2–4 CN50XX Supported Memory Devices (Continued)

Device
Size

Device Configuration
× DQ Pins

Row/
Column/

Banks Bits
Physical
Banks

Figure 2–8 LMC Block Diagram

Debug

Rd/Addr

Wr/Addr

Write Data

Wr Cmt

Read Data

L2C

LMC

CTL Cmd/Ctl/Addr

Dout[143:0]

PHY CSR

Din[143:0]

Physical
Interface

ECLK DCLK

RAS/CAS
/WE

Addr/BA

CS[3:0]

DQ[31:0]

CB[3:0]

DQS[3:0]

CK/CKE

MWF

MWD

MWC

MRD

MRF

Async
FIFOs

Domain Domain

CSR

CBS_0
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 69

Owner
下划线

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)

Figure 2–9 Memory System Configuration

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

CS

MDQS
DQ[7:0]

8Mb × 8 SDRAM

A[11:0]
BA[1:0]
RAS
CAS
WE

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

CS

MDQS

DQ[7:0]

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

CS

MDQS

DQ[7:0]

DQS[0]
DQ[7:0]
DQS[1]
DQ[15:8]
DQS[2]
DQ[23:16]
DQS[3]
DQ[31:24]

CBS_0_P/N
DDR_CB[3:0]

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

CS

MDQS

DQ[7:0]

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

CS

MDQS

DQ[7:0]

A[11:0]
BA[1:0]
RAS
CAS
WE
CKE
CK

CS

DQS
DQ[7:0]

8Mb × 8 SDRAM

Rank 0

to
Ranks
1,2,3

DDR_DIMM0_CS0_L

DDR_DIMM<1>_CS0/1_L

DDR_CK<2:1>_P/N

DDR_CK0_P/N

DDR_DIMM0_CS1_L

DDR_A<14:0>

DDR_DQS_<3:0>_P/N
DDR_DQ_<31:0>

DDR_CB_<3:0>

DDR_BA<2:0>

DDR_RAS_L

DDR_CAS_L

DDR_WE_L

DDR_CKE

DDR_CK_<3:0>_P/N

DDR_DIMM<1:0>_CS0/1_L

LMC

DDR_CBS_0_P/N
70 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
2.3.1 Main Memory DRAM Addressing

All cached DRAM memory resides in an architected 36-bit address space that is in
the lowest physical addresses. The first CN50XX implementation can contain up
to 16GB of physical addresses available in the following physical address ranges:

DR0: 0x0 0000 0000 0000 to 0x0 0000 0FFF FFFF = low 256MB of SDRAM

DR1: 0x0 0004 1000 0000 to 0x0 0004 1FFF FFFF = mid 256MB of SDRAM

DR2: 0x0 0000 2000 0000 to 0x0 0003 FFFF FFFF = upper 15.5GB of SDRAM

● With 256MB of SDRAM or less, only DR0 is present.
● With 256MB – 512MB of SDRAM, DR0 and DR1 are present.
● With more than 512MB of SDRAM, DR0 and DR1 are present in entirety, and

the lower portion of DR2 is present, according to the amount of SDRAM
attached.

2.3.2 DRAM Part Addressing

Although a CN50XX physical address is 49 bits, the CN50XX addresses the
attached main-memory DRAM parts with at most a 34-bit address. The CN50XX
discards the upper 15 address bits from the DR0, DR1, or DR2 physical address to
create the 34-bit DRAM-part address. The DRAM-part address is contiguous from
0 up to the size of the attached DRAM.

Figure 2–10 shows the partitioning of the (up to) 34-bit DRAM-part byte address.

The least-significant one or two bits of the DRAM part address determine the bus
width.
● Bits <8:7> or <9:7> select the bank, depending whether there are four or eight

banks in the attached parts, respectively. (LMC_DDR2_CTL[BANK8] selects
the number of banks.)

● The column bits for the DRAM parts fill in the remainder of the lowest
address bits, followed by the row bits for the DRAM parts.

Figure 2–10 SDRAM Physical Address

DIMM Ra Row Col Bank BusCol
067

1
Maximum 34 bits

LMC_MEM_CFG0[PBANK_LSB]

LMC_MEM_CFG0[ROW_LSB]

Bus
Col
Bank
Row
Ra

DIMM

=
=
=
=
=

=

selects the byte on the 18- or 36-bit DDR2 bus
column address for the DDR2 part (9, 10, or 11 bits)
bank address for the DDR2 part (2 or 3 bits)
row address for the DDR2 part (13, 14, or 15 bits)
optional rank address for a dual-rank DIMMs (present
when LMC_CTL[BUNK_ENA] is set to 1)
optional DIMM address (present with more than one DIMM
with a 36-bit bus)

(1 + LMC_CTL[MODE32b]) bits
(2 + LMC_DDR2_CTL[BANK8]) bits

0 or 1
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 71

Owner
下划线

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
● The most-significant bits of the DRAM part address select:
the rank within DIMM (if one is present, as selected by
LMC_CTL[BUNK_ENA])

the DIMM (if two DIMMs are present with a 32/36-bit bus).

The bank selected to service a request is not just the Bank field shown in Figure
2–10. CN50XX also supports hashed bank selection when
LMC_CTL[XOR_BANK] is set to 1. Table 2–5 shows the calculations to select the
bank in different configurations:

Most applications will find it advantageous to use hashed bank selection (i.e. to
set LMC_CTL[XOR_BANK] = 1).

CN50XX’s bank selection has the following properties:

● All the locations within a single cache block reside in the same row.
● Sequential cache blocks are always/usually in different banks.

Always when LMC_CTL[XOR_BANK] = 0

Usually when LMC_CTL[XOR_BANK] = 1.

● Sequential cache blocks are usually in the same rank/DIMM.
● Bank distribution for skewed access when LMC_CTL[XOR_BANK] = 1.

– Suppose an application uses many buffers whose size is 4KB or larger
and a power-of-two.

– Suppose, further, that the buffers are naturally-aligned based on their
size and that the application only ever uses the first two (128B) cache
blocks in any given buffer.

With LMC_CTL[XOR_BANK] = 0, only banks 0 and 1 are used by the
described application.

With LMC_CTL[XOR_BANK] = 1, however, all four/eight banks are used by
the described application.

2.3.3 DRAM Transaction Examples

CN50XX always reads/writes entire 128-byte cache blocks on the main-memory
DDR2 interface. There is a single address/command bus to drive all commands to
all DIMMs/parts. The entire interface (32/36-bit) operates as one.

 Figure 2–11shows two cache-block read transactions (A and B). A cache-block
read transaction consists of one bank activate, one (or more) column-address
commands, and the data transfer of the 128-byte cache block on the DRAM data
bus.

Table 2–5 Bank Select
LMC_DDR2_CTL

[BANK8]
LMC_CTL

[XOR_BANK] Selected Bank

0 0 byte_address<8:7>

0 1 byte_address<8:7> ⊕ byte_address<13:12>

1 0 byte_address<9:7>

1 1 byte_address<9:7> ⊕ byte_address<14:12>
72 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)

CN50XX stops driving the data bus (and data strobes) during a programmable
window after the column-address command, called the read no-drive window.
(CN50XX is the default driver of the data bus and data strobes. CN50XX always
drives 0s when it default-drives.)

LMC_CTL[TSKW] delays the entire read no-drive window to adjust for different
board delays. LMC_CTL[FPRCH2] increases the read no-drive window by one
clock cycle and starts it one clock cycle earlier. LMC_CTL[BPRCH] increases the
read no-drive window by one cycle (but does not start it sooner).

Figure 2–11 Example of Two Consecutive Read Operations

ACT A ACT B

Autoprecharge

CS A CS A CS B CS B

ACTtoCAS

Extension of following ADD/CMD cycle when in 2T address mode, or a NOP (or could be a different ADD/CMD) when not in 2T address mode

Always deasserted in 2T address mode

= LMC_MEM_CFG1[TRCD] − (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0) (can never be less than 2)

= (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0) + LMC_MEM_CFG1[CASLAT] − 1.5 + LMC_CTL[TSKW]
+ LMC_CTL[RDIMM_ENA] − LMC_CTL[FPRCH2]

DRVtoSamp + SampTime + SampendtoDRV = 10 + LMC_CTL[FPRCH] + LMC_CTL[BPRCH]

= 1 + LMC_CTL[FPRCH2] + 0.5 × LMC_DDR2_CTL[SILO_HC] + 0.25 × LMC_MEM_CFG0[SILO_QC]

= 16

= 1 − 0.5 × LMC_DDR2_CTL[SILO_HC] − 0.25 × LMC_MEM_CFG0[SILO_QC] + LMC_CTL[BPRCH]

minACTtoCAS

CAStoDRV

DRVtoSamp

SampTime

SampendtoDRV

Parameters For This Example:
TRCD = 2
TCL = 3
Board Delay = ¾CK

LMC_MEM_CFG0[SILO_QC=0]
LMC_MEM_CFG1[TRCD=2, CASLAT=3]
LMC_DDR2_CTL[POCAS=0, BURST8=1, SILO_HC=0]
LMC_CTL[TSKW=1, RDIMM_ENA=0, FPRCH2=0, BPRCH=0, MODE32b=1]

A0 A1 A2 A3 A4 A13 A14 A15

CN50XX drives deasserted

CN50XX does not drive DQS and forces DQS to read as 0s

RD B2RD A1 RD B1

Autoprecharge

CS A CS B

B0 B1A16 A17 A18 A19 A20 A21 A22 A23

CK

ADD/
CMD

CS

DQS/

DQ

ODT

RDQS

RD A4

A24 A25 A26 A27 A28 A29 A30 A31

RD A2

CS A

CAStoDRV
DRVtoSamp

SampTime
Read Sample Window A

Sampend
DRVto

Samp

Read
Sample

Window B

Time
Samp

toDRV
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 73

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
Within the encompassing read no-drive window, there is a read-sample window,
during which CN50XX obeys received-data-bus strobes. LMC_CTL[TSKW] delays
the read-sample window by whole clock cycles, and LMC_DDR2_CTL[SILO_HC]
and LMC_MEM_CFG0[SILO_QC] delay the read sample window by an additional
¼, ½, or ¾ clock cycle to compensate for the board delay (refer to Section 2.3.4 for
more on programming for board delays). All edges of the read-data strobe that
CN50XX receives from the DRAM part must reside entirely in the read-sample
window. (CN50XX supports either differential, bidirectional DQS or single-ended,
unidirectional RDQS, selected by lMC_DDR2_CTL[RDQS].)

The Figure 2–11 example shows two consecutive read operations that are not
back-to-back. CN50XX can schedule back-to-back read operations when the two
read operations reside in the same rank/DIMM and LMC_CTL[R2R_SLOT] = 0,
unlike is shown in the figure. If LMC_CTL[R2R_SLOT] = 1, CN50XX forces a one
clock bubble between all consecutive read operations, like the two read operations
shown in Figure 2–11.

 Figure 2–11 directly displays the CN50XX behavior when 2T addressing mode is
not enabled (i.e. when LMC_DDR2_CTL[DDR2T] = 0), and also indicates the 2T
addressing mode behavior. When 2T addressing is on, the timing could be the
same, except that the address/command bus holds a stable value for an extra cycle
prior to the chip-select assertion.

Though the specific example in Figure 2–11 does not use the DDR2 posted-CAS
feature, CN50XX does support posted CAS, enabled and configured via the
LMC_DDR2_CTL[POCAS,ADDLAT] fields. CN50XX cannot schedule a column-
address command earlier than two cycles behind a bank activation, so the largest
possible posted-CAS delay of TMRD − 1 should not be used, as it results in poorer
performance (higher latency, lower bandwidth) on CN50XX than a smaller posted-
CAS delay. CN50XX fully supports posted-CAS delays ranging from 1 through
TMRD − 2.

CN50XX always precharges (via autoprecharges included in the last column-
address command for the cache block) a BANK after it reads/writes an individual
cache block from/to the bank.

The specific Figure 2–11 example does not use it, but CN50XX supports
registered DIMMs. Registered DIMMs add a cycle of latency between the address/
command bus and the data bus.
74 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
 Figure 2–11 and the subsequent examples in this section have the following
characteristics:

● They show CN50XX’s ODT behavior on read operations. Refer to Section 2.3.6
for more details.

● They show behavior with a burst size of 8 (i.e. with
LMC_DDR2_CTL[BURST8] set = 1).
When the burst size is four, CN50XX similarly transfers cache blocks on the
bus contiguously, but there are differences:

CN50XX issues twice as many column-address commands (RD A/RD B in
Figure 2–11) to move a cache block with a burst of four.

When 2T address mode is used (i.e. when LMC_DDR2_CTL[DDR2T] = 1),
performance is considerably worse with a burst of four than with a burst of
8. (100% of the ADD/CMD-bus bandwidth is needed to saturate the data
bus for 2T address mode with a burst of four, so each bank activate causes
a data-bus bubble in this case.)

A burst length of eight is recommended whenever 2T address mode is
used.

● They show behavior with a 32/36-bit bus. For a 16/18-bit bus, the CN50XX
issues twice times as many column-address commands.

The number of column-address commands needed to move a cache block are listed
in Table 2–6.

CN50XX always positions the column-address commands for a cache block for
contiguous transfer of the cache block on the data bus. (The column-address
commands for an individual cache block are exactly two cycles apart with a burst
of four, and four cycles apart with a burst of eight and a 32/36-bit bus.) CN50XX
always and only issues an autoprecharge with the final column-address command
for a cache block.

Figure 2–12 shows an example with two back-to-back cache-block write
operations. As CN50XX is the default data-bus driver, write operations are
simpler. CN50XX implements all of the following features for write operations:

2T address mode
posted CAS
registered DIMM
burst size
bus-width

When these features are used for read operations, the DDR2 parts require that
they also be used for write operations. CN50XX also autoprecharges for the last
column-address write operation as for read operations. CN50XX always attempts
to schedule write data back-to-back.

Table 2–6 Column-Address Commands

LMC_CTL
[MODE32b]

LMC_DDR2_CTL
[BURST8]

Number of
Column-Address

Commands

0 0 16

0 1 8

1 0 8

1 1 4
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 75

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
Figure 2–12 Example of Two Back-to-Back Cache-Block Write Operations

ACT A ACT B

Autoprecharge

CS A CS A CS B CS B

ODTs for CSes depending on Rank B mask setting

ODTs for CSes depending on Rank A mask setting

ACTtoCAS

ODTtoCAS
CAStoDQS

DRVTime

ODTTime

Extension of following ADD/CMD cycle when in 2T address mode, or a NOP (or could be a different ADD/CMD) when not in 2T address mode

Always deasserted in 2T address mode

= 4 − (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0) − LMC_MEM_CFG1[CASLAT]

= 17

= LMC_MEM_CFG1[TRCD] − (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0) (can never be less than 2)

= (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0) + LMC_MEM_CFG1[CASLAT] − 1 + LMC_CTL[RDIMM_ENA]

= 16

ODTtoCAS

ODTTime

minACTtoCAS

CAStoDQS

DRVTime

Parameters For This Example:
TRCD = 2
TCL = 3
Board Delay = ¾CK

LMC_MEM_CFG0[SILO_QC=0]
LMC_MEM_CFG1[TRCD=2, CASLAT=3]
LMC_DDR2_CTL[POCAS=0, BURST8=1, SILO_HC=0]
LMC_CTL[TSKW=1, RDIMM_ENA=0, FPRCH2=0, BPRCH=0, MODE32b=1]

A0 A1 A2 A3

CN50XX drives deasserted (CN50XX is the default driver)

CN50XX does not drive DQS and forces DQS to read as 0s

WR BWR A WR B

Autoprecharge

CS A CS B

CK

ADD/
CMD

CS

DQS/

DQ

ODT B

ODT A

RDQS

WR A

A24 A25 A26 A27 A28 A29 A30 A31

WR A

CS A

A4 A13 A14 A15A5 A6 A7 A8 B0 B1 B2 B3 B4 B5A16 A17 A18 A19 A20 A21 A22 A23

DRVTime

A

A

A4
76 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
 Figure 2–13 shows a cache-line read followed the earliest possible cache-line
write.

Figure 2–13 Example of Cache-Line Read Operation Followed by Cache-Line Write Operation

ACT A ACT B

Autoprecharge

CS A CS A CS B CS B

ODTs for WRITE B

LastReadCAStoWriteCAS

Parameters For This Example:
TRCD = 2
TCL = 3
Board Delay = ¾CK

LMC_MEM_CFG0[SILO_QC=0]
LMC_MEM_CFG1[TRCD=2, CASLAT=3]
LMC_DDR2_CTL[POCAS=0, BURST8=1, SILO_HC=0]
LMC_CTL[TSKW=1, RDIMM_ENA=0, FPRCH2=0, BPRCH=0, MODE32b=1]

A0 A1 A2 A3 A4 A13 A14 A15

WR BRD A

CS A CS B

A16 A17 A18 A19 A21 A22 A23

RD A

A24 A25 A26 A27 A28 A29 A30 A31

CS A

A20

RD A WR B

B2 BB0 B1

CK

ADD/
CMD

CS

DQS/

DQ

ODT B

RDQS

ReadCAStoDRV

Extension of following ADD/CMD cycle when in 2T address mode, or a NOP (or could be a different ADD/CMD) when not in 2T address mode

Always deasserted in 2T address mode

= LMC_CTL[TSKW] + LMC_CTL[BPRCH] + 2 × LMC_DDR2_CTL[BURST8] + 4

= (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0) + LMC_MEM_CFG1[CASLAT] + LMC_CTL[TSKW]
+ LMC_CTL[RDIMM_ENA] + 2 × LMC_DDR2_CTL[BURST8] + LMC_CTL[BPRCH] + 2.5

minLastReadCAStoWriteCAS

ReadCAStoDRV

CN50XX drives deasserted (CN50XX is the default driver)

CN50XX does not drive DQS and forces DQS to read as 0s

Extension of following ADD/CMD cycle when in 2T address mode, or a NOP (or could be a different ADD/CMD) when not in 2T address mode
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 77

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
2.3.4 DRAM Programming

Most of the parameters to the DRAM controller come from DRAM part and DIMM
specifications. If desired, the TWSI interface can be used to read the SPD of the
DIMMs, refer to Chapter 17. These part parameters go into fields in the
LMC_MEM_CFG0, LMC_MEM_CFG1, LMC_CTL, and LMC_DDR2_CTL CSRs.

The most important remaining parameters account for the board delay inherent
in any design. The LMC_CTL[TSKW], LMC_DDR2_CTL[SILO_HC], and
LMC_MEM_CFG0[SILO_QC] parameters specify this delay.

Table 2–7 lists recommended parameters for different board delays:

2.3.5 DRAM Refreshes

LMC_MEM_CFG0[REF_INT] configures the DRAM refresh interval. When the
refresh-interval counter expires, CN50XX does the following:

● stops creating new read and write operations
● completes the in-flight read and write operations
● generates a single DDR2 REF command.

2.3.6 DRAM Scheduler Performance

The DRAM scheduler aggressively reorders both read and write operations for
optimal performance. The oldest references are higher priority, but if bank
conflicts prevent CN50XX from scheduling the oldest, then CN50XX selects a
younger reference.

The DRAM scheduler typically prioritizes read operations over write operations.
It does, however, prioritize write operations over read operations if one of the
following scenarios occur:

● The most recent transaction was a write operation, and there have not been
LMC_CTL[MAX_WRITE_BATCH] consecutive write operations

● The L2C wants to access a cache block that is currently being written to
memory.

Regardless of the priority between read and write operations, CN50XX still may
schedule either read or write operations if bank conflicts prevent one type from
being scheduled.

Table 2–7 Recommended Parameters
Board Delay
(DDR_CK Cycles)

LMC_CTL
[TSKW]

LMC_DDR2_CTL
[SILO_HC]

LMC_MEM_CFG0
[SILO_QC]

LMC_CTL
[FPRCH2]

LMC_CTL
[BPRCH]

0 – 0.25 0 1 0 1 0/1

0.25 – 0.5 0 1 1 1 1

0.5 – 0.75 1 0 0 1 0/1

0.75 – 1.0 1 0 1 1 0/1

1.0 – 1.25 1 1 0 1 0/1

1.25 – 1.5 1 1 1 1 1

1.5 – 1.75 2 0 0 1 0/1

1.75 – 2.0 2 0 1 1 0/1
78 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
2.3.7 DRAM Chip Selects and ODT

CN50XX has four chip selects (DDR_n_CS_<1:0>_L) and supports up to two
DIMMs, each of which can be dual-rank (i.e. when LMC_CTL[BUNK_ENA] = 1).

DIMM n uses the pair of chip-select signals DDR_n_CS_<1:0>_L.

when LMC_CTL[BUNK_ENA] = 1, each chip-select signal in the pair
asserts independently

when LMC_CTL[BUNK_ENA] = 0, both chip-select signals in the pair
assert together

The LMC assumes that all two DIMMs are present. If fewer are present, software
should not reference the addresses that are not present (see Figure 2–10).

CN50XX has four ODT output signals (DDR_ODT_m) to drive DDR2-part ODT
inputs, one output signal per chip select or DIMM/rank. Figures 2–11, 2–12, and
2–13 show where it is possible for CN50XX to assert its ODT outputs for different
example transactions.

Table 2–8 shows the correspondence between the ODT signals and chip selects /
DIMMs / ranks.

CN50XX does not assert an ODT signal for a write operation when the
transaction references the corresponding chip select. Typically, a system may
desire all other ODT signals to assert for a transaction. CN50XX can provide this
and other patterns depending on the LMC_RODT_COMP_CTL and
LMC_WODT_CTL configuration. CN50XX can produce different ODT signal
combinations for write operations, and for transactions that reference different
DIMMs/ranks.

Table 2–9 shows the configuration variables that determine whether each ODT
signal asserts for write operations to different DIMMs/ranks.

The ODT-enable interval for back-to-back write operations can overlap. These two
write operations may be to different DIMMs/ranks, so may have different ODT
values. CN50XX asserts an ODT signal whenever it should assert due to any
ODT-enable interval.

If ODT is not used, all of LMC_CTL[QS_DIC], LMC_RODT_COMP_CTL, and
LMC_WODT_CTL should be cleared to 0s.

Table 2–8 ODT Signals and Corresponding Chip Select/DIMM/Rank Signals
ODT Signal Chip Select Comment

DDR_ODT_<0> DDR_0_CS_<0>_L <31:0> DIMM 0, rank 0

DDR_ODT_<1> DDR_0_CS_<1>_L <31:0> DIMM 0, rank 1

DDR_ODT_<2> DDR_1_CS_<0>_L <31:0> DIMM 1, rank 0

DDR_ODT_<3> DDR_1_CS_<1>_L <31:0> DIMM 1, rank 1

Table 2–9 Write ODT Configuration Variables
Write on Chip Select # ODT[7:4] ODT[3:0]
DDR_0_CS_0_L WODT_HI3 WODT_LO0
DDR_0_CS_1_L WODT_HI3 WODT_LO1
DDR_1_CS_0_L WODT_HI3 WODT_LO2
DDR_1_CS_1_L WODT_HI3 WODT_LO3
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 79

Owner
下划线

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
During a memory read operation, read ODT control is available at the receivers of
CN50XX. Through LMC_RODT_COMP_CTL, three different read ODT conditions
are provided:

no ODT
weak ODT
strong ODT

Read ODT is automatically off during a memory write operation, even if a weak-
ODT or strong-ODT condition is chosen. Table 2–10 shows the configuration of
read ODT setting through LMC_RODT_COMP_CTL register.

2.3.8 DRAM Controller Initialization

There are three parts to the LMC-initialization procedure:

1. DCLK initialization
2. DRESET initialization
3. LMC initialization

During a cold reset, all three initializations should be executed in sequence. The
DCLK initialization need only be performed once if the DCLK speed and
parameters do not change. Subsequently, it is possible to execute only DRESET
and LMC initializations, or to execute only the LMC initialization.

2.3.8.1 DCLK Initialization Sequence

Perform the following steps to initialize the DCLK.

1. Write LMC_CTL[DRESET]=1, LMC_DDR2_CTL[QDLL_ENA]=0.
2. Write LMC_PLL_CTL[CLKR, CLKF, EN*] with the appropriate values, while

writing LMC_PLL_CTL[RESET_N] = 0, LMC_PLL_CTL[DIV_RESET] = 1.
LMC_PLL_CTL[CLKR, CLKF, EN*] values must not change after this point
without restarting the DCLK initialization sequence.

Section 2.3.9 describes the DDR_CK frequencies resulting from different
reference-clock values and programmings.

3. Read L2D_BST0 and wait for the result.
4. Wait 5 µsec.
5. Write LMC_PLL_CTL[RESET_N] = 1 while keeping

LMC_PLL_CTL[DIV_RESET] = 1. LMC_PLL_CTL[RESET_N] must not
change after this point without restarting the DCLK initialization sequence.

6. Read L2D_BST0 and wait for the result.
7. Wait 500 × (LMC_PLL_CTL[CLKR] + 1) reference-clock cycles.
8. Write LMC_PLL_CTL[DIV_RESET] = 0. LMC_PLL_CTL[DIV_RESET] must

not change after this point without restarting the DCLK initialization
sequence.

9. Read L2D_BST0 and wait for the result.

The DDR address clock frequency (DDR_CK_<5:0>_P/N) should be stable at that
point.

Table 2–10 Configuration of Read ODT Setting

ODT Setting
LMC_RODT_COMP_CTL

[ENABLE] [PCTL] [NCTL]

No ODT 0 — —
Weak ODT 1 00011 0001
Strong ODT 1 00111 0010
80 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
矩形

Owner
下划线

Owner
附注
“Owner”设置的“Unmarked”

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
2.3.8.2 DRESET Initialization Sequence

The DRESET initialization sequence cannot start unless DCLK is stable due to a
prior DCLK initialization sequence. Perform the following steps to initialize
DRESET.

1. Write LMC_CTL[DRESET] = 1 and LMC_DDR2_CTL[QDLL_ENA] = 0.

2. Write LMC_DDR2_CTL[QDLL_ENA] = 1. LMC_DDR2_CTL[QDLL_ENA]
must not change after this point without restarting the LMC and/or DRESET
initialization sequence.

3. Read L2D_BST0 and wait for the result.

4. Wait 10 µsec.

5. Write LMC_CTL[DRESET] = 0. LMC_CTL[DRESET] must not change after
this point without restarting the DRAM-controller and/or DRESET initializa-
tion sequence.

6. Read L2D_BST0 and wait for the result.

2.3.8.3 LMC Initialization Sequence

The LMC initialization sequence must be preceded by a DCLK and DRESET
initialization sequence.

1. Software must ensure there are no pending DRAM transactions.

2. Write LMC_CTL, LMC_CTL1, LMC_MEM_CFG1, LMC_DDR2_CTL,
LMC_RODT_COMP_CTL, LMC_DUAL_MEMCFG, and LMC_WODT_CTL
with appropriate values, if necessary. Refer to Sections 2.3.4, 2.3.5, and 2.3.7
regarding these registers (and LMC_MEM_CFG0).

3. Write LMC_MEM_CFG0 with appropriate values and
LMC_MEM_CFG0[INIT_START] = 0.

4. Write LMC_MEM_CFG0 with appropriate values and
LMC_MEM_CFG0[INIT_START] = 1. At that point, CN50XX hardware ini-
tiates the standard DDR2 init sequence shown in Figure 2–14.

CN50XX activates DDR_CKE (if it has not already been activated).
DDR_CKE remains activated from that point until a subsequent DRESET.

CN50XX then follows with the standard DDR2 initialization sequence, not
using OCD. While CN50XX performs this initialization sequence, it cannot
perform other DDR2 transactions.

Note that if there is not a DRESET between two LMC initialization
sequences, DDR_CKE remains asserted through the second sequence. The
hardware initiates the same DDR2 initialization sequence as the first, except
that DDR_CKE does not deactivate. If DDR_CKE deactivation and
reactivation is desired for a second controller reset, a DRESET sequence is
required.

5. Read L2D_BST0 and wait for the result.

After this point, the LMC is fully functional. LMC_MEM_CFG0[INIT_START]
should not transition from 0→1 during normal operation.

CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 81

Owner
下划线

Owner
下划线

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
Figure 2–14 Standard DDR2 Initialization Procedure

At least 200 clock cycles

257 Cycles

CK

ADD/
CMD

ODT

CKE

Pre
ALLNOP Pre

ALL
EMRS

(2)
EMRS

(3)
EMRS

(1) MRS MRSREFREF EMRS
(1)

EMRS
(1)

Not
NOP

0

LMC_MEM_CFG0[TRP]

LMC_MEM_CFG0[TMRD]

LMC_MEM_CFG0[TRP]

4 × LMC_MEM_CFG0[TRFC]
LMC_MEM_CFG0[TMRD]

At least
7 Cycles

Burst Length (A<2:0>) = 2 + LMC_DDR2_CTL[BURST8
BT (A<3>) = 0
CL (A<6:4>) = LMC_MEM_CFG1[CASLAT]
TM (A<7>) = 0
DLL (A<8>) = 0
WR (A<11:9>) = LMC_DDR2_CTL[TWR]
PD (A<12>) = 0
A<15:13> = 0x0

Burst Length (A<2:0>) = 2 + LMC_DDR2_CTL[BURST8
BT (A<3>) = 0
CL (A<6:4>) = LMC_MEM_CFG1[CASLAT]
TM (A<7>) = 0
DLL (A<8>) = 1
WR (A<11:9>) = LMC_DDR2_CTL[TWR]
PD (A<12>) = 0
A<15:13> = 0x0

DLL (A<0>) = 0
D.I.C. (A<1>) = LMC_CTL[DIC<0>]
Rtt (A<6>,A<2>) = LMC_CTL[QS_DIC]
AL (A<5:3>) = (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0)
OCD (A<9:7>) = 0x0
DQS (A<10>) = LMC_CTL[DIC<1>]
RDQS (A<11>) = LMC_DDR2_CTL[RDQS]
Qoff (A<12>) = 0
A<15:13> = 0x0

DLL (A<0>) = 0
D.I.C. (A<1>) = LMC_CTL[DIC<0>]
Rtt (A<6>,A<2>) = LMC_CTL[QS_DIC]
AL (A<5:3>) = (LMC_DDR2_CTL[POCAS] ? LMC_DDR2_CTL[ADDLAT] : 0)
OCD (A<9:7>) = 0x0
DQS (A<10>) = LMC_CTL[DIC<1>]
RDQS (A<11>) = LMC_DDR2_CTL[RDQS]
Qoff (A<12>) = 0
A<15:13> = 0x0

DLL (A<0>) = 0
D.I.C. (A<1>) = LMC_CTL[DIC<0>]
Rtt (A<6>,A<2>) = 0x0
AL (A<5:3>) = 0x0
OCD (A<9:7>) = 0x7
DQS (A<10>) = 0
RDQS (A<11>) = 0
Qoff (A<12>) = 0
A<15:13> = 0x0

SRF (A<7>) = 0
DCC. (A<3>) = LMC_CTL[DCC_ENABLE]
PASR (A<2:0>) = 0x0
82 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerDRAM Controller (LMC)
2.3.9 DDR Clock-Speed Programming Tables

The resultant address-clock frequency (DDR_CK_<5:0>_P/N) is determined by the
following formula:

where:
CLKR = LMC_PLL_CTL[CLKR]
50 = PLL_REF_CLK frequency
CLKF = LMC_PLL_CTL[CLKF]
EN(2,4,6,8,12,16) = 2, 4, 6, 8, 12, or 16, depending on the

LMC_PLL_CTL[EN*] programming.

The PLL frequency is determined by the following formula:

The PLL frequency must reside between 1.2 GHz and 2.5 GHz. A PLL frequency
closer to 2.5 GHz is desirable if there is a choice.

The following example shows sample programming settings.

Example 2–1 Sample Programming Settings

2.3.10 DRAM ECC Codes

Table 2–11 shows the DRAM 64-bit ECC code for core 64-bit references.

(CLKF + 1)
(CLKR + 1) × EN(2,4,6,8,12,16)DDR_CK frequency (MHz) = 50 ×

CLKF + 1
CLKR + 1

PLL frequency (MHz) = 50 ×

Frequency LMC0_PLL_CTL

DDR_CK/data rate [CLKF] [EN*] [CLKR]
200/400 MHz 95 EN12 1
250/500 MHz 79 EN8 1
267/533 MHz 63 EN6 1
300/600 MHz 71 EN6 1
333/667 MHz 79 EN6 1

NOTE: LMC_PLL_CTL[FASTEN_N] changes the allowed CLKF values.

CLKF limits are controlled by [FASTEN_N] as follows:

1 = 128 < CLKF ≤ 256;
0 = 0 < CLKF ≤ 128.

For more details on DDR clock-speed programming, see Section 2.3.8.

Table 2–11 DRAM 64-Bit ECC Code
CCCCCCC

7:0 63:60 59:59 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

00000001 1011 0100 1101 0001 1011 0100 1101 0001 0100 1011 0010 1110 0100 1011 0010 1110 0xB4D1B4D14B2E4B2E

00000010 0001 0101 0101 0111 0001 0101 0101 0111 0001 0101 0101 0111 0001 0101 0101 0111 0x1557155715571557

00000100 1010 0110 1001 1001 1010 0110 1001 1001 1010 0110 1001 1001 1010 0110 1001 1001 0xA699A699A699A699

00001000 0011 1000 1110 0011 0011 1000 1110 0011 0011 1000 1110 0011 0011 1000 1110 0011 0x38E338E338E338E3

00010000 1100 0000 1111 1100 1100 0000 1111 1100 1100 0000 1111 1100 1100 0000 1111 1100 0xC0FCC0FCC0FCC0FC

00100000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 0xFF00FF00FF00FF00

01000000 1111 1111 0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000 1111 1111 0xFF0000FFFF0000FF

10000000 0000 0000 1111 1111 1111 1111 0000 0000 1111 1111 0000 0000 0000 0000 1111 1111 0x00FFFF00FF0000FF

00000000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

xxxxxxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 83

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
2.4 L2C Registers

The L2C registers are listed in Table 2–12.

84210000 7766 6666 9999 9988 BBAA AAAA 5555 5544 FFEE EEEE 1111 1100 3322 2222 DDDD DDCC ← Syndromes

00008421 50DB 8742 DB87 42AF 50DB 8742 DB87 42AF 41CA 9653 CA96 53BE 41CA 9653 CA96 53BE

Table 2–11 DRAM 64-Bit ECC Code
CCCCCCC

7:0 63:60 59:59 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

Table 2–12 Level 2 Cache Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O bus.

Detailed
Description

L2C_CFG 0x0001180080000000 RSL See page 85

L2T_ERR 0x0001180080000008 RSL See page 86

L2D_ERR 0x0001180080000010 RSL See page 87

L2D_FADR 0x0001180080000018 RSL See page 87

L2D_FSYN0 0x0001180080000020 RSL See page 88

L2D_FSYN1 0x0001180080000028 RSL

L2C_DBG 0x0001180080000030 RSL See page 89

L2C_LFB0 0x0001180080000038 RSL See page 90

L2C_LFB1 0x0001180080000040 RSL See page 91

L2C_LFB2 0x0001180080000048 RSL See page 91

L2C_DUT 0x0001180080000050 RSL See page 92

L2C_LCKBASE 0x0001180080000058 RSL See page 93

L2C_LCKOFF 0x0001180080000060 RSL See page 94

L2C_SPAR0 0x0001180080000068 RSL See page 94

L2C_SPAR4 0x0001180080000088 RSL See page 94

L2C_PFCTL 0x0001180080000090 RSL See page 95

L2C_PFC0

...

L2C_PFC3

0x0001180080000098

...

0x00011800800000B0

RSL See page 97

L2C_LFB3 0x00011800800000B8 RSL See page 91

L2D_BST0 0x0001180080000780 RSL See page 98

L2D_BST1 0x0001180080000788 RSL See page 98

L2D_BST2 0x0001180080000790 RSL See page 99

L2D_BST3 0x0001180080000798 RSL See page 99

L2D_FUS0 0x00011800800007A0 RSL See page 100

L2D_FUS1 0x00011800800007A8 RSL See page 100

L2D_FUS2 0x00011800800007B0 RSL See page 101

L2D_FUS3 0x00011800800007B8 RSL See page 101

L2C_BST2 0x00011800800007E8 RSL See page 104

L2C_BST1 0x00011800800007F0 RSL See page 103

L2C_BST0 0x00011800800007F8 RSL See page 103
84 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Configuration Register
L2C_CFG

See Table 2–12 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved.

<19> BSTRUN RO 0 0 L2 data store BIST running. Indicates when the L2C hardware
BIST sequence (short or long) is running. [L2C ECC BIST FSM is
not in the RESET/DONE state.]

<18> LBIST R/W 0 0 L2C data store long BIST sequence. When the previous state was 0
and software writes a 1, the long BIST sequence (enhanced 13N
March) is performed. Software can then read the
L2C_CFG[BSTRUN] which will indicate that the long BIST
sequence is running. When BSTRUN=0, the state of the
L2D_BST[0–3] registers contain information which reflects the
status of the recent long BIST sequence.
NOTE: Software must never write LBIST=0 while Long BIST is

running (i.e.: when BSTRUN=1 never write LBIST=0).

<17:15> — R/W 0x0 0x0 Spare bits.

<14> — RAZ — — Reserved.

<13:10> FPEXP R/W 0x0 0x0 MBZ.

<9> FPEMPTY R/W 0 0 MBZ.

<8> FPEN R/W 0 0 MBZ.

<7> IDXALIAS R/W 0 0 L2C index alias enable. When set, the L2 tag/data store aliases the
7-bit index with the low-order 7 bits of the tag.

index[13:7] = (tag[20:14] ⊕ index[13:7])

NOTE: This bit must be modified only at boot time, when it can be
guaranteed that no blocks have been loaded into the L2
cache.

The index aliasing is a performance-enhancement feature that
reduces the L2-cache thrashing experienced for regular stride
references.

<6:3> MWF_CRD R/W 2 2 MWF credit threshold. When the remaining MWF credits become
less than or equal to the MWF_CRD, the L2C asserts
L2C__LMI_MWD_HIWATER_A to signal the LMC to give write
operations (victims) higher priority.

<2> RSP_ARB_MODE R/W 1 1 RSP arbitration mode:

0 = Fixed Priority [HP=RFB, RMCF, RHCF, STRSP,
LP=STRSC]

1 = Round Robin: [RFB(reflected I/O), RMCF(RdMiss),
RHCF(RdHit), STRSP(ST RSP w/ invalidate), STRSC (ST
RSP no invalidate)]

<1> RFB_ARB_MODE R/W 1 1 RFB arbitration mode:

0 = Fixed Priority – IOB→PP requests are higher priority than
core→IOB requests

1 = Round Robin – I/O requests from core and IOB are serviced
in round robin
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 85

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Tag Errors
L2T_ERR

L2 tag ECC SEC/DED errors and interrupt enable. See Table 2–12 for address.

<0> LRF_ARB_MODE R/W 1 1 RF arbitration mode:

0 = Fixed Priority – IOB memory requests are higher priority
than core memory requests.

1 = Round Robin – Memory requests from core and IOB are
serviced in round robin.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:28> — RAZ 0 0 Reserved

<27> LCK_INTENA2 R/W 0 1 L2 tag lock error2 interrupt enable bit

<26> LCKERR2 R/W1C 0 0 Hardware detected a case where a Rd/Wr Miss from core n could not
find an available/unlocked set (for replacement). Most likely, this is
a result of software mixing SET PARTITIONING with ADDRESS
LOCKING. If software allows another core to LOCKDOWN all SETs
available to core n, then a Rd/Wr Miss from core n will be unable to
determine a valid replacement set (since LOCKED addresses should
never be replaced). If such an event occurs, the hardware selects the
smallest available SET (specified by UMSKn) as the replacement
set, and the address is unlocked.

<25> LCK_INTENA R/W 0 1 L2 tag lock error interrupt enable bit

<24> LCKERR R/W1C 0 0 Software attempted to lock down the last set of the index (which is
ignored by hardware but reported to software).

NOTE: Available sets takes the L2C_SPARn[UMSKm] into account.
For example, if the diagnostic core has UMSKm defined to
only use SETs [1:0], and SET1 had been previously
LOCKED, then an attempt to LOCK the last available SET0
would result in a LCKERR.

<23:21> FSET RO 0 0 Failing L2 tag set number (1 of 8)

<20:18> — RAZ 0x0 0x0 Reserved

<17:11> FADR RO 0 0 Failing L2 tag address (7-bit index). When L2T_ERR[SEC_ERR] or
L2T_ERR[DED_ERR] are set, the FADR contains the lower 7-bit
cacheline index into the L2 tag store.

<10:5> FSYN RO 0 0 When L2T_SEC_ERR or L2T_DED_ERR are set, this field contains
the failing L2 tag ECC 5-bit syndrome. (A DED error always
overwrites a SEC error SYNDROME and FADR).

<4> DED_ERR R/W1C 0 0 L2T double-bit error detected (DED)

<3> SEC_ERR R/W1C 0 0 L2T single-bit error corrected (SEC)

<2> DED_INTENA R/W 0 0 L2 tag ECC double-error detect (DED) interrupt enable bit. When
set, allows interrupts to be reported on double-bit (uncorrectable)
errors from the L2 tag arrays.

<1> SEC_INTENA R/W 0 0 L2 Tag ECC single-error correct (SEC) interrupt enable bit. When
set, allows interrupts to be reported on single-bit (correctable) errors
from the L2 tag arrays.

<0> ECC_ENA R/W 0 0 L2 tag ECC enable. When set, enables 6-bit SEC/DED codeword for
23-bit L2 tag arrays {V,D,L,TAG[33:14]}
86 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Data Errors Register
L2D_ERR

See Table 2–12 for address.

Level 2 Cache Failing Address
L2D_FADR

L2 data ECC SEC/DED failing address. When L2D_SEC_ERR or L2D_DED_ERR
are set, this CSR contains the failing L2 data-store index. A DED error always
overwrites an SEC error SYNDROME and FADR bits. See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ 0x0 0x0 Reserved

<5> BMHCLSEL R/W 0 0 L2 bit-map half cache line ECC selector. When L2C_DBG[L2T] = 1
and L2D_ERR[ECC_ENA] = 0, the BMHCLSEL selects which half
cacheline to conditionally latch into the L2D_FSYN0/L2D_FSYN1
registers when an LDD is detected from the diagnostic core
(determined by L2C_DBG[PPNUM]).

0 = OW[0-3] ECC (from first ½ cacheline) is selected to be
conditionally latched into the L2D_FSYN0/1 CSRs.

1 = OW[4-7] ECC (from last ½ cacheline) is selected to be
conditionally latched into the L2D_FSYN0/1 CSRs.

<4> DED_ERR R/W1C 0 0 L2D double-bit error detected (DED)

<3> SEC_ERR R/W1C 0 0 L2D single-bit error corrected (SEC)

<2> DED_INTENA R/W 0 1 L2 data ECC double error detect (DED) interrupt enable bit. When
set, allows interrupts to be reported on double-bit (uncorrectable)
errors from the L2 data arrays.

<1> SEC_INTENA R/W 0 1 L2 data ECC single error correct (SEC) interrupt enable bit. When
set, allows interrupts to be reported on single-bit (correctable) errors
from the L2 data arrays.

<0> ECC_ENA R/W 0 1 L2 data ECC enable. When set. enables 10-bit SEC/DED codeword
for 128-bit L2 data arrays.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ 0x0 0x0 Reserved

<17:14> FOWMSK RO 0x0 0x0 Failing OW mask. Indicates which one of four OWs contained SEC/DED
error.

<13:11> FSET RO 0x0 0x0 Failing SET number.

<10:8> — RAZ 0x0 0x0 Reserved

<7:0> FADR RO 0x0 0x0 Failing L2 data-store lower index bits FADR[7:1]: cacheline index[13:7]
FADR[0]: 1/2 cacheline index
NOTE: L2 Data Store Index is for each 1/2 cacheline.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 87

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Failing Syndrome (OW0/1/4/5) Register
L2D_FSYN0

L2 data ECC SEC/DED failing syndrome for lower cache line. When
L2D_SEC_ERR or L2D_DED_ERR are set, this CSR contains the failing L2 data
ECC 10-bit syndrome. A DED error always overwrites an SEC Error SYNDROME
and FADR bits. See Table 2–12 for address.

Level 2 Cache Failing Syndrome (OW2/3/6/7) Register
L2D_FSYN1

L2 data ECC SEC/DED failing syndrome for upper cache line. See Table 2–12 for
address. When L2D_SEC_ERR or L2D_DED_ERR are set, this field contains the
failing L2 data ECC 10-bit syndrome. (A DED error always overwrites an SEC
Error SYNDROME and FADR).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ 0 0 Reserved

<19:10> FSYN_OW1 RO 0 0 Failing L2 data store SYNDROME OW1 or OW5. When
L2D_ERR[ECC_ENA] = 1 and either L2D_ERR[SEC_ERR] = 1 or
L2D_ERR[DED_ERR] = 1, this field represents the failing OWECC
syndrome for the half cache line indexed by L2D_FADR[FADR].

NOTE: The L2D_FADR[FOWMSK] further qualifies which OW lane
(one of four) detected the error.

When L2C_DBG[L2T] = 1 and L2D_ERR[ECC_ENA] = 0, an LDD from
the diagnostic core conditionally latches the raw OWECC for the
selected half cache line. (see L2D_ERR[BMHCLSEL.

<9:0> FSYN_OW0 RO 0 0 Failing L2 data store SYNDROME OW0 or OW4. When
L2D_ERR[ECC_ENA] = 1 and either L2D_ERR[SEC_ERR] = 1 or
L2D_ERR[DED_ERR] = 1, this field represents the failing OWECC
syndrome for the half cache line indexed by L2D_FADR[FADR].

NOTE: The L2D_FADR[FOWMSK] further qualifies which OW lane
(one of four) detected the error.

When L2C_DBG[L2T] = 1 and L2D_ERR[ECC_ENA] = 0, an LDD (L1
load-miss) from the diagnostic core conditionally latches the raw
OWECC for the selected half cache line. (see L2D_ERR[BMHCLSEL].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ 0 0 Reserved

<19:10> FSYN_OW3 RO 0 0 Failing L2 data store SYNDROME OW3 or OW7.

<9:0> FSYN_OW2 RO 0 0 Failing L2 data store SYNDROME OW2 or OW6.
88 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Debug Register
L2C_DBG

L2C tag/data store debug register. See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:14> — RAZ 0x0 0x0 Reserved

<13:11> LFB_ENUM R/W 0x0 0x0 Specifies the L2C inflight buffer (LFB) entry number that is to be
captured.

<10> LFB_DMP R/W 0 0 LFB dump enable. When written to 1, the contents of the LFB specified by
LFB_ENUM[2:0] are captured into the L2C_LFB(0/1/2) registers.

<9:7> — RAZ 0x0 0x0 Reserved

<6> PPNUM R/W 0 0 When L2T, L2D, or FINV are enabled, this field determines which 1-of-2
cores is selected as the diagnostic core.

<5:3> SET R/W 0 0 When L2T, L2D, or FINV are enabled, this field determines 1-of-4
targeted sets to act upon.

<2> FINV R/W 0 0 Flush-invalidate. When set to 1, all STF write commands generated from
the diagnostic core (determined by PPNUM) invalidate the specified set
(determined by SET) at the index specified in the STF address[13:7]. If a
dirty block is detected (D=1), it is written back to memory. The contents of
the invalid L2 cache line is also “scrubbed” with the STF write data.

NOTE: If L2C_CFG[IDXALIAS] = 1, the index specified in STF address
<13:7> refers to the aliased address.

NOTE: An STF command with write data = 0s can be generated by
software using the Prefetch instruction with Hint=30d “prepare
for Store”, followed by a SYNCW.

What is seen at the L2C as an STF w/wrdcnt=0 with all of its mask bits
clear (indicates zero-fill data). A flush-invalidate will “force-hit” the L2
cache at [index, set] and invalidate the entry (V=0/D=0/L=0/U=0). If the
cache block is dirty, it is also written back to memory. The DuTag state is
probed/updated as normal for an STF request.

Typical Applications:

● L2 Tag/Data ECC software recovery

● Cache unlocking

NOTE: If the cache line had been previously locked, a flush-invalidate
operation explicitly unlocks the set/index specified.

NOTE: The diagnostic core can generate STF commands to L2C whenever
all 128 bytes in a block are written. Software must take this into
consideration to avoid errant flush-invalidate operations.

<1> L2D R/W 0 0 When enabled (and L2T = 0), fill data is returned directly from the L2
data store (regardless of hit/miss) when an LDD instruction is issued from
a core determined by the PPNUM field. The selected set# is determined by
the SET field, and the index is determined from the address[13:7]
associated with the LDD instruction. This “force-hit” does not alter the
current L2 tag state or the DuTag state.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 89

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Notes:
● When using the L2T, L2D, or FINV debug probe feature, the LDD instruction

does not update the DuTags.
● L2T, L2D, and FINV must be mutually exclusive (only one set).
● Force Invalidate is intended as a means for software to invalidate the L2 cache

while also writing back dirty data to memory to maintain coherency.
● L2 cache lock down feature must be disabled (L2C_LCKBASE[LCK_ENA]=0)

if any of the L2C debug features (L2T, L2D, FINV) are enabled.

Level 2 Cache In-Flight Address Buffer Debug 0 Register
L2C_LFB0

Contains L2C in-flight address buffer (LFB) contents (status bits). See Table 2–12
for address.

<0> L2T R/W 0 0 When enabled, L2 tag information {V,D,L,U,TAG[33:14]} is returned on
the low-order 2 bits of OW2, OW6 when an LDD instruction is issued from
a core determined by the PPNUM field. The selected set# is determined by
the SET field, and the index is determined from the address[13:7]
associated with the LDD instruction. This “force-hit” does not alter the
current L2 tag state or the DuTag state.

NOTE: The diagnostic core should issue a D-stream load command to an
aligned cacheline + 0x20 (+ 0x60) in order to have the return
VDLUTAG information (in OW2) written directly into the proper
core register. The diagnostic core should also flush its local L1
cache after use (to ensure data coherency).

NOTE: (For L2C bitmap testing of L2 data store OW ECC): If L
L2D_ERR[ECC_ENA] = 0, the OW ECC from the selected half
cacheline (see L2D_ERR[BMHCLSEL]) is also conditionally
latched into the L2D_FSYN0/1 CSRs if an LDD is detected from
the diagnostic core (PPNUM).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ 0x0 0x0 Reserved.

<31> STCPND RO 0 0 LFB STC pending status

<30> STPND RO 0 0 LFB ST* pending status

<29> STINV RO 0 0 LFB ST* invalidate status

<28> STCFL RO 0 0 LFB STC = FAIL status

<27> VAM RO 0 0 Valid full address match status

<26> — RAZ 0 0 Reserved.

<25:23> INXT RO 0x0 0x0 Next LFB pointer

<22> ITL RO 0 0 LFB tail of list indicator

<21> IHD RO 0 0 LFB head of list indicator

<20:18> SET RO 0x0 0x0 SET number used for DS-OP (hit = hset/miss = rset)

<17> — RAZ 0 0 Reserved

<16:14> VABNUM RO 0x0 0x0 VAB number used for LMC miss launch

<13:5> SID RO 0x0 0x0 LFB source ID

<4:1> CMD RO 0x0 0x0 LFB command

<0> VLD RO 0 0 LFB valid
90 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache In-Flight Address Buffer Debug 1 Register
L2C_LFB1

Contains L2C LFB contents (wait bits). See Table 2–12 for address.

Level 2 Cache In-Flight Address Buffer Debug 2 Register
L2C_LFB2

Contains L2C LFB contents tag/index. See Table 2–12 for address.

Level 2 Cache In-Flight Address Buffer Debug 3 Register
L2C_LFB3

Contains L2C LFB high-water mark. See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:19> — RAZ 0x0 0x0 Reserved

<18> DSGOING RO 0 0 LFB DS going (in flight).

<17:16> BID RO 0 0 LFB DS bid#

<15> WTRSP RO 0 0 LFB waiting for RSC response [FILL,STRSP] completion

<14> WTDW RO 0 0 LFB waiting for DS-WR completion

<13> WTDQ RO 0 0 LFB waiting for LFB-DQ

<12> WTWHP RO 0 0 LFB waiting for write-hit partial L2 DS-WR completion

<11> WTWHF RO 0 0 LFB waiting for write-hit full L2 DS-WR completion

<10> WTWRM RO 0 0 LFB waiting for write-miss L2 DS-WR completion

<9> WTSTM RO 0 0 LFB waiting for write-miss L2 DS-WR completion

<8> WTRDA RO 0 0 LFB waiting for read-miss L2 DS-WR completion

<7> WTSTDT RO 0 0 LFB waiting for all ST write data to arrive on XMD bus

<6> WTSTRSP RO 0 0 LFB waiting for ST RSC/RSD to be issued on RSP (invalidates)

<5> WTSTRSC RO 0 0 LFB waiting for ST RSC-only to be issued on RSP (no-invalidates)

<4> WTVTM RO 0 0 LFB waiting for victim read L2 DS-RD completion

<3> WTMFL RO 0 0 LFB waiting for memory fill completion to MRB

<2> PRBRTY RO 0 0 Probe retry detected – waiting for probe completion.

<1> WTPRB RO 0 0 LFB waiting for probe

<0> VLD RO 0 0 LFB valid

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:27> — RAZ 0x0 0x0 Reserved

<26:7> LFB_TAG RO 0x0 0x0 LFB TAG[33:14]

<6:0> LFB_IDX RO 0x0 0x0 LFB IDX[13:7]

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ 0x0 0x0 Reserved

<4> STPARTDIS R/W 0 0 STP/C performance enhancement disable. When clear, all STP/C (store
partial) commands take two cycles to complete (power-on default). When
set, all STP/C commands take four cycles to complete.

NOTE: Cavium recommends you always keep this bit = 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 91

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache DuTag Register
L2C_DUT

L2C duplicate-tag state register. See Table 2–12 for address.

Notes:
● When using the L2T, L2D, or FINV debug probe feature, an LDD instruction

issued by the diagnostic core does not update the DuTags.

● L2T, L2D, and FINV must be mutually exclusive (only one enabled at a time).

● Force Invalidate is intended as a means for software to invalidate the L2 cache
while also writing back dirty data to memory to maintain coherency. (A side
effect of FINV is that an LDD miss fill is launched, which fills data into the L2
DS).

<3> — RAZ 0 0 Reserved

<2:0> LFB_HMW R/W 0x7 0x7 LFB high-water mark. Determines the number of LFB entries in use
before backpressure is asserted:

0 = 1 LFB entry is available, ..., 7 = 8 LFB entries are available

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ 0 0 Reserved

<31> DTENA R/W 0 0 DuTag diagnostic read enable.

When set to 1, all LDD (D-stream load) commands issued from the
diagnostic core (L2C_ DBG[PPNUM]) capture the DuTag state (V|L1TAG)
of the corespecified in the LDD address <26> into L2C_DUT.

The DuTag set# to capture is extracted from the LDD address<25:20>. The
diagnostic core would issue the LDD then read the L2C_DUT register (one
at a time). This LDD “force-hit” does not alter the current L2 tag state or
the DuTag state.

The fill data is returned directly from the L2 data store (regardless of hit/
miss) when an LDD instruction is issued from the core determined by the
L2C_DBG[PPNUM] field. The selected L2 set# is determined by
L2C_DBG[SET], and the index is determined from the address[13:7]
associated with the LDD instruction.

This “force-hit” does not alter the current L2 tag state or the DuTag state.

NOTE: In order for the diagnostic core to generate an LDD command to
the L2C, it must first force an L1 Dcache flush.

NOTE: The DuTag SIZE is 16KB, where each DuTag is organized as 2 ×
64-way entries. The LDD address[7] determines which one (of two)
internal 64-ways to select.

<30> — RAZ 0 0 Reserved

<29> DT_VLD RO 0 0 Duplicate L1 tag valid bit, latched in for previous LDD instruction sourced
by diagnostic core.

<28:0> DT_TAG RO 0 0 Duplicate L1 Tag[35:7] latched in for previous LDD instruction sourced by
diagnostic core.
92 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Lock Down Base Register
L2C_LCKBASE

See Table 2–12 for address.

Notes:

● Software restriction #1: Software must manage the L2 data store lockdown
space such that at least one set per cache line remains in the unlocked
(normal) state to allow general caching operations. If software violates this
restriction, a status bit is set (LCK_ERR) and an interrupt is posted. This
limits the total lockdown space to 7/8ths of the total L2 data store = 896KB.

● IOB-initiated LDI commands are ignored (only core-initiated LDI/LDD
commands are considered for lockdown).

● To unlock a locked cache line, software can use the FLUSH-INVAL CSR
mechanism (see L2C_DBG[FINV]).

● LCK_ENA must only be activated when debug modes are disabled
(L2C_DBG[L2T], L2C_DBG[L2D], L2C_DBG[FINV]).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:31> — RAZ 0x0 0x0 Reserved

<30:4> LCK_BASE RO 0x0 0x0 Base memory block address[33:7]. Specifies the starting address of the
lockdown region.

<3:1> — RAZ 0x0 0x0 Reserved

<0> LCK_ENA R/W 0 0 L2 cache lock enable. When set to 1, all LDI (I-stream Load) or LDD (D-
stream load) commands issued from the core that fall within a predefined
lockdown address range (specified by: [lck_base:lck_base+lck_offset]) are
LOCKED in the L2 cache. The LOCKED state is denoted using an explicit
L2 Tag bit (L = 1).

The LOCKED state is encoded in the L2 Tag as (V=0/D=1/U=1). If the
LOCK request L2-Hits, then data is returned from the L2 and the hit set is
updated to the LOCKED state. If the LOCK request L2-Misses, a
replacement set is chosen. If the replacement set contains a dirty-victim, it
is written back to memory.

If the LOCK request L2-Misses, a replacement set is chosen (from the
available sets (UMSKx). If the replacement set contains a dirty-victim it is
written back to memory. Memory read data is then written into the
replacement set, and the replacement SET is updated to the LOCKED
state(L=1).

NOTE: SETs that contain LOCKED addresses are excluded from the
replacement set selection algorithm.

NOTE: The LDD allocates the DuTag as normal.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 93

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Lock Down OFFSET Register
L2C_LCKOFF

See Table 2–12 for address.

Notes:
● The generation of the end lockdown block address will wrap.

● The minimum granularity for lockdown is 1 cache line (= 128-byte block).

Level 2 Cache Set Partitioning Registers (Core Set 0)
L2C_SPAR0

When a bit is set in the UMSKn register, a memory command issued from core n
does not select that set for replacement. There should always be at least 1 bit
clear in each UMSKn register for proper L2 cache operation.

See Table 2–12 for address.

Level 2 Cache Set Partitioning Register (IOB)
L2C_SPAR4

When a bit is set in the UMSKn register, a memory command issued from core n
does not select that set for replacement. There should always be at least 1 bit
clear in each UMSKn register for proper L2 cache operation.

See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ 0x0 0x0 Reserved

<9:0> LCK_OFFSET R/W 0x0 0x0 Lock down block offset. Used in determining the ending block address
of the lockdown region:

End lockdown block address<33:7> =
L2C_LCKBASE[LCK_BASE] + LCK_OFFSET

NOTE: When L2C FUSE[136] is blown (CRIP_64K), then SETS 7–4 are SET
in all UMSKn registers. When L2C FUSE[137] is blown (CRIP_32K),
then SETS 7–2 are SET in all UMSKn registers.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ 0x0 0x0 Reserved

<15:8> UMSK1 R/W 0x0 0x0 Core 1 L2 “DO NOT USE” set partition mask

<7:0> UMSK0 R/W 0x0 0x0 Core 0 L2 “DO NOT USE” set partition mask

NOTE: When L2C FUSE[136] is blown (CRIP_64K), then SETS 7–4 are SET
in all UMSKn registers. When L2C FUSE[137] is blown (CRIP_32K),
then SETS 7–2 are SET in all UMSKn registers.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ 0x0 0x0 Reserved

<7:0> UMSKIOB R/W 0x0 0x0 IOB L2 “DO NOT USE” set partition mask
94 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Performance Counter Control Register
L2C_PFCTL

See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ 0x0 0x0 Reserved

<35> CNT3RDCLR R/W 0 0 Performance counter 3 read clear. When set, all CSR reads of the
L2C_PFC3 register will autoclear the counter. This allows SW to
maintain “cumulative” counters in SW.

NOTE: If the CSR read occurs in the same cycle as the “event” to be
counted, the counter will properly reflect the event.

<34> CNT2RDCLR R/W 0 0 Performance counter 2 read clear. When set, all CSR reads of the
L2C_PFC2 register will autoclear the counter. This allows SW to
maintain “cumulative” counters in SW.

NOTE: If the CSR read occurs in the same cycle as the “event” to be
counted, the counter will properly reflect the event.

<33> CNT1RDCLR R/W 0 0 Performance counter 1 read clear. When set, all CSR reads of the
L2C_PFC1 register will autoclear the counter. This allows SW to
maintain “cumulative” counters in SW.

NOTE: If the CSR read occurs in the same cycle as the “event” to be
counted, the counter will properly reflect the event.

<32> CNT0RDCLR R/W 0 0 Performance counter 0 read clear. When set, all CSR reads of the
L2C_PFC0 register will autoclear the counter. This allows SW to
maintain “cumulative” counters in SW.

NOTE: If the CSR read occurs in the same cycle as the “event” to be
counted, the counter will properly reflect the event.

<31> CNT3ENA R/W 0 0 Performance counter 3 enable. When the CSR write occurs, if this bit is
set, the performance counter is cleared.

<30> CNT3CLR R/W 0 0 Performance counter 3 clear. When the CSR write occurs, if this bit is
set, the performance counter is cleared. Otherwise, it will resume
counting from its current value.

<29:24> CNT3SEL R/W 0x0 0x0 Performance counter 3 event selector. See the list of selectable events to
count in Table 2–13.

<23> CNT2ENA R/W 0 0 Performance counter 2 enable. When the CSR write occur, if this bit is
set, the performance counter is cleared.

<22> CNT2CLR R/W 0 0 Performance counter 2 clear. When the CSR write occurs, if this bit is
set, the performance counter is cleared. Otherwise, it will resume
counting from its current value.

<21:16> CNT2SEL R/W 0x0 0x0 Performance counter 2 event selector. See the list of selectable events to
count in Table 2–13.

<15> CNT1ENA R/W 0 0 Performance counter 1 enable. When the CSR write occur, if this bit is
set, the performance counter is cleared.

<14> CNT1CLR R/W 0 0 Performance counter 1 clear. When the CSR write occurs, if this bit is
set, the performance counter is cleared. Otherwise, it will resume
counting from its current value.

<13:8> CNT1SEL R/W 0x0 0x0 Performance counter 1 event selector. See the list of selectable events to
count in Table 2–13.

<7> CNT0ENA R/W 0 0 Performance counter 0 enable. When the CSR write occur, if this bit is
set, the performance counter is cleared.

<6> CNT0CLR R/W 0 0 Performance counter 0 clear. When the CSR write occurs, if this bit is
set, the performance counter is cleared. Otherwise, it will resume
counting from its current value.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 95

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Note:

● There are four 36-bit performance-counter registers that can simultaneously
count events. Each counter's event, described in Table 2–13, is programmably
selected via the corresponding CNTnSEL field:

<5:0> CNT0SEL R/W 0x0 0x0 Performance counter 0 event selector. See the list of selectable events to
count in Table 2–13.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Table 2–13 List of Selectable Events to Count

CNTnSEL[5:0] Event

00 0000 Cycles

00 0001 L2 instruction miss

00 0010 L2 instruction hit

00 0011 L2 data miss

00 0100 L2 data hit

00 0101 L2 miss (I/D)

00 0110 L2 hit (I/D)

00 0111 L2 victim buffer hit (retry probe)

00 1000 LFB-NQ index conflict

00 1001 L2 tag probe (issued - could be VB-retried)

00 1010 L2 tag update (completed). Note: Some CMD types do not update.

00 1011 L2 tag probe completed (beyond VB-RTY window)

00 1100 L2 tag dirty victim

00 1101 L2 data store NOP

00 1110 L2 data store READ

00 1111 L2 data store WRITE

01 0000 Memory fill data valid

01 0001 Memory write request

01 0010 Memory read request

01 0011 Memory write data valid

01 0100 XMC NOP

01 0101 XMC LDT

01 0110 XMC LDI

01 0111 XMC LDD

01 1000 XMC STF

01 1001 XMC STT

01 1010 XMC STP

01 1011 XMC STC

01 1100 XMC DWB

01 1101 XMC PL2

01 1110 XMC PSL1

01 1111 XMC IOBLD

10 0000 XMC IOBST

10 0001 XMC IOBDMA

10 0010 XMC IOBRSP

10 0011 XMD bus valid (all)
96 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Performance Counter Registers
L2C_PFC(0..3)

Level-2 cache performance counters. See Table 2–12 for address.

10 0100 XMD bus valid (DST=L2C) memory data

10 0101 XMD Bus valid (DST=IOB) REFL data

10 0110 XMD Bus valid (DST=PP) IOBRSP data

10 0111 RSC NOP

10 1000 RSC STDN

10 1001 RSC FILL

10 1010 RSC REFL

10 1011 RSC STIN

10 1100 RSC SCIN

10 1101 RSC SCFL

10 1110 RSC SCDN

10 1111 RSD data valid

11 0000 RSD data valid (FILL)

11 0001 RSD data valid (STRSP)

11 0010 RSD data valid (REFL)

11 0011 LRF-REQ (LFB-NQ)

11 0100 DT RD-ALLOC (LDD/PSL1 commands)

11 0101 DT WR-INVA (ST* commands)

Table 2–13 List of Selectable Events to Count (Continued)

CNTnSEL[5:0] Event

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ 0x0 0x0 Reserved

<35:0> PFCNTn RO 0x0 0x0 Performance counter 0..3
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 97

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Data Store QUAD0 BIST Status Register
L2D_BST0

See Table 2–12 for address.

Level 2 Cache Data Store QUAD1 BIST Status Register
L2D_BST1

See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:35> — RAZ 0x0 0x0 Reserved

<34> FTL RO 0 0 L2C data store fatal defect (across all QUADs): two or more columns were
detected bad across all QUADs[0-3]. Please refer to individual quad failures
for bad column = 0x7E to determine which QUAD was in error.

<33:0> Q0STAT RO 0x0 0x0 BIST results for QUAD0:

Failure #1 Status
[16:14] Unused
[13:7] bad high column
[6:0] bad low column

Failure #2 Status
[33:31] Unused
[30:24] bad high column
[23:17] bad low column

NOTE: For bad high/low column reporting:
0x7F: No failure
0x7E: Fatal Defect: two or more bad columns

NOTE: 0–0x45: Bad column

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> RSVD RAZ 0x0 0x0 Reserved

<33:0> Q1STAT RO 0x0 0x0 BIST results for QUAD1:

Failure #1 Status
[16:14] Unused
[13:7] bad high column
[6:0] bad low column

Failure #2 Status
[33:31] Unused
[30:24] bad high column
[23:17] bad low column

NOTE: For bad high/low column reporting:
0x7F: No failure
0x7E: Fatal Defect: two or more bad columns

NOTE: 0–0x45: Bad column
98 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Data Store QUAD2 BIST Status Register
L2D_BST2

See Table 2–12 for address.

Level 2 Cache Data Store QUAD3 BIST Status Register
L2D_BST3

See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> RSVD RAZ 0x0 0x0 Reserved

<33:0> Q2STAT RO 00x 0x0 BIST results for QUAD2:

Failure #1 Status
[16:14] Unused
[13:7] bad high column
[6:0] bad low column

Failure #2 Status
[33:31] Unused
[30:24] bad high column
[23:17] bad low column

NOTE: For bad high/low column reporting:
0x7F: No failure
0x7E: Fatal Defect: two or more bad columns

NOTE: 0–0x45: Bad column

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> RSVD RAZ 0 0 Reserved
<33:0> Q3STAT RO 0 0 BIST results for QUAD3:

Failure #1 Status
[16:14] Unused
[13:7] bad high column
[6:0] bad low column

Failure #2 Status
[33:31] Unused
[30:24] bad high column
[23:17] bad low column

NOTE: For bad high/low column reporting:
0x7F: No failure
0x7E: Fatal Defect: two or more bad columns

NOTE: 0–0x45: Bad column
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 99

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Data Store QUAD0 Fuse Register
L2D_FUS0

See Table 2–12 for address.

Level 2 Cache Data Store QUAD1 Fuse Register
L2D_FUS1

See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ 0 0 Reserved

<33:0> Q0FUS RO 0 0 Fuse register for QUAD0. This is purely for debug and not needed in the
general manufacturing flow.

Note that the fuses are complementary (Assigning a fuse to 1 will read as a
0). This means the case where no fuses are blown results in these CSRs
showing all 1s.

Failure #1 fuse mapping
[16:14] Unused
[13:7] bad high column
[6:0] bad low column

Failure #2 fuse mapping
[33:31] Unused
[30:24] bad high column
[23:17] bad low column

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ 0 0 Reserved

<33:0> Q1FUS RO 0 0 Fuse register for QUAD1. This is purely for debug and not needed in the
general manufacturing flow.

Note that the fuses are complementary (Assigning a fuse to 1 will read as a
0). This means the case where no fuses are blown results in these CSRs
showing all 1s.

Failure #1 fuse mapping
[16:14] Unused
[13:7] bad high column
[6:0] bad low column

Failure #2 fuse mapping
[33:31] Unused
[30:24] bad high column
[23:17] bad low column
100 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache Data Store QUAD2 Fuse Register
L2D_FUS2

See Table 2–12 for address.

Level 2 Cache Data Store QUAD3 Fuse Register
L2D_FUS3

See Table 2–12 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ 0 0 Reserved

<33:0> Q2FUS RO 0 0 Fuse register for QUAD2. This is purely for debug and not needed in the
general manufacturing flow.

Note that the fuses are complementary (Assigning a fuse to 1 will read as a
0). This means the case where no fuses are blown results in these CSRs
showing all 1s.

Failure #1 fuse mapping
[16:14] Unused

[13:7] bad high column
[6:0] bad low column

Failure #2 fuse mapping
[33:31] Unused

[30:24] bad high column
[23:17] bad low column

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ 0x0 0x0 Reserved

<39:37> EMA_CTL RO 0x0 0x0 L2 data-store EMA control. These bits are used to observe the EMA[1:0]
inputs for the L2 data-store RAMs, which are controlled either by
FUSES[142:140] or by MIO_FUSE_EMA[EMA] CSR. From power-up
(DC_OK), EMA_CTL is driven by FUSE[142:140]. However after the first
CSR write to MIO_FUSE_EMA[EMA] bits, the EMA_CTL are driven by
MIO_FUSE_EMA[EMA] (until DC_OK).

<36> FUS_SPARE RO 0 0 This is purely for debug and not needed in the general manufacturing
flow. If the FUSE is not blown, then this bit should read as 0. If the FUSE
is blown, then this bit should read as 1.

<35> CRIP_32K RO 0 0 This is purely for debug and not needed in the general manufacturing
flow. If the FUSE is not blown, then this bit should read as 0. If the FUSE
is blown, then this bit should read as 1.

<34> CRIP_64K RO 0 0 This is purely for debug and not needed in the general manufacturing
flow. If the FUSE is not blown, then this bit should read as 0. If the FUSE
is blown, then this bit should read as 1.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 101

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
<33:0> Q3FUS RO 0x0 0x0 Fuse register for QUAD3. This is purely for debug and not needed in the
general manufacturing flow.

Note that the fuses are complementary (Assigning a fuse to 1 will read as
a 0). This means the case where no fuses are blown results in these CSRs
showing all 1s.

Failure #1 fuse mapping
[16:14] Unused

[13:7] bad high column
[6:0] bad low column

Failure #2 fuse mapping
[33:31] Unused

[30:24] bad high column
[23:17] bad low column

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
102 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache BIST 0 Control and Status Register
L2C_BST0

This register specifies the RSL base addresses for the block. See Table 2–12 for
the address.

Level 2 Cache BIST 1 Control and Status Register
L2C_BST1

See Table 2–12 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:24> — RAZ 0x0 0x0 Reserved

<23> DTBNK RO 0 0 DuTag Bank number. When DT = 1 (BAD), this field provides additional
information about which DuTag Bank (0/1) failed.

<22:19> WLB_MSK RO 0x0 0x0 BIST results for WLB-MSK RAM [DP0-3]

0 = GOOD (or BIST in progress/never run)
1 = BAD

<18:16> — RAZ 0x0 0x0 Reserved

<15:6> DTCNT RO 0x0 0x0 DuTag BiST Counter (used to help isolate the failure)

[9]: i (0=FORWARD/1=REVERSE pass)
[8:7]: j (Pattern# 1 of 4)
[6:1]: k (DT Index 1 of 64)
[0]: l (DT# 1 of 2 DTs)

<5> DT RO 0 0 BIST results for DuTAG RAMs

0 = GOOD (or BIST in progress/never run)
1 = BAD

<4> STIN_MSK RO 0 0 BIST results for STIN-MSK RAM

0 = GOOD (or BIST in progress/never run)
1 = BAD

<3:0> WLB_DAT RO 0x0 0x0 BIST results for WLB-DAT RAM [DP0-3]

0 = GOOD (or BIST in progress/never run)
1 = BAD

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ 0 0 Reserved

<15:12> VWDF RO 0 0 BIST results for VWDF RAMs

0 = GOOD (or BIST in progress/never run)
1 = BAD

<11:10> LRF RO 0 0 BIST results for LRF RAMs (PLC+ILC)

0 = GOOD (or BIST in progress/never run)
1 = BAD

<9> VAB_VWCF RO 0 0 BIST results for VAB VWCF_MEM

0 = GOOD (or BIST in progress/never run)
1 = BAD
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 103

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerL2C Registers
Level 2 Cache BIST 2 Control and Status Register
L2C_BST2

See Table 2–12 for address.

<8:0> L2T RO 0 0 BIST results for L2T (USE+8SET RAMs)

0 = GOOD (or BIST in progress/never run)
1 = BAD

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ 0 0 Reserved

<15:12> MRB RO 0 0 BIST results for MRB RAMs

0 = GOOD (or BIST in progress/never run)
1 = BAD

<11:8> RMDF RO 0 0 BIST results for RMDF RAMs

0 = GOOD (or BIST in progress/never run)
1 = BAD

<7:4> — RAZ 0 0 Reserved

<3> IPCBST RO 0 0 BIST results for RFB IPC RAM

1 = BAD

<2> — RAZ 0 0 Reserved

<1> XRDMSK RO 0 0 BIST results for RFB XRD-MSK RAM

0 = GOOD (or BIST in progress/never run)
1 = BAD

<0> XRDDAT RO 0 0 BIST results for RFB XRD-DAT RAM

0 = GOOD (or BIST in progress/never run)
1 = BAD
104 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
2.5 LMC Registers

The LMC registers are listed in Table 2–14.
Table 2–14 LMC Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed
Description

LMC_MEM_CFG0 0x0001180088000000 RSL See page 106

LMC_MEM_CFG1 0x0001180088000008 RSL See page 109

LMC_CTL 0x0001180088000010 RSL See page 111

LMC_DDR2_CTL 0x0001180088000018 RSL See page 113

LMC_FADR 0x0001180088000020 RSL See page 115

LMC_COMP_CTL 0x0001180088000028 RSL See page 115

LMC_WODT_CTL 0x0001180088000030 RSL See page 116

LMC_ECC_SYND 0x0001180088000038 RSL See page 117

LMC_IFB_CNT_LO 0x0001180088000048 RSL See page 117

LMC_IFB_CNT_HI 0x0001180088000050 RSL See page 118

LMC_OPS_CNT_LO 0x0001180088000058 RSL See page 118

LMC_OPS_CNT_HI 0x0001180088000060 RSL See page 118

LMC_DCLK_CNT_LO 0x0001180088000068 RSL See page 118

LMC_DCLK_CNT_HI 0x0001180088000070 RSL See page 119

LMC_RODT_CTL 0x0001180088000078 RSL See page 119

LMC_DELAY_CFG 0x0001180088000088 RSL See page 119

LMC_CTL1 0x0001180088000090 RSL See page 120

LMC_DUAL_MEM_CONFIG 0x0001180088000098 RSL See page 121

LMC_RODT_COMP_CTL 0x00011800880000A0 RSL See page 123

LMC_PLL_CTL 0x00011800880000A8 RSL See page 123

LMC_PLL_STATUS 0x00011800880000B0 RSL See page 124

LMC_BIST_CTL 0x00011800880000F0 RSL See page 124

LMC_BIST_RESULT 0x00011800880000F8 RSL See page 124
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 105

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC Memory Configuration Register0
LMC_MEM_CFG0

This register controls certain parameters required for memory configuration. See
Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31> RESET RAZ — — Reset one-shot pulse for refresh counter, and LMC_OPS_CNT_*,
LMC_IFB_CNT_*, and LMC_DCLK_CNT_* CSRs. Software should
write this to a 1, then rewrite it to a 0 to cause the reset.

<30> SILO_QC R/W 0 — Adds a quarter cycle granularity to generate dqs pulse generation for
silo. Combination of SILO_HC and SILO_QC gives the ability to
position the read enable with quarter cycle resolution. This is applied
on all the bytes uniformly.

<29> BUNK_ENA R/W 0 0 Bunk or rank enable. Used with dual-rank DIMMs. Enables the drive
of the CS_N[1:0] pins based on the (PBANK_LSB−1) address bit.
Write 0 for single-rank DIMMs.

<28:25> DED_ERR[3:0] R/W1C 0x0 0x0 Double-bit error detected on read data.
In 32-bit mode, ECC is calculated on four cycles’ worth of data (c
represents cycle and p represents phase).

[25] corresponds to {DQ[31:0], c 0, p 1, DQ[31:0], c 0, p 0}
[26] corresponds to {DQ[31:0], c 1, p 1, DQ[31:0], c 1, p 0}
[27] corresponds to {DQ[31:0], c 2, p 1, DQ[31:0], c 2, p 0}
[28] corresponds to {DQ[31:0], c 3, p 1, DQ[31:0], c 3, p 0}

In 16-bit mode, ECC is calculated on eight cycles’ worth of data (c
represents cycle and p represents phase).

[25] corresponds to {DQ[15:0], c 1, p 1, DQ[15:0], c 1, p 0,
DQ[15:0], c 0, p 1, DQ[15:0], c 0, p 0}

[26] corresponds to{ DQ[15:0], c 3, p 1, DQ[15:0], c 3, p 0,
DQ[15:0], c 2, p 1, DQ[15:0], c 2, p 0}

[27] corresponds to{ DQ[15:0], c 5, p 1, DQ[15:0], c 5, p 0,
DQ[15:0], c 4, p 1, DQ[15:0], c 4, p 0}

[28] corresponds to {DQ[15:0], c 7, p 1, DQ[15:0], c 7, p 0,
DQ[15:0], c 6, p 1, DQ[15:0], c 6, p 0}

Writing 1 clears the corresponding error bit.
106 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
<24:21> SEC_ERR R/W1C 0x0 0x0 Single-bit error (corrected) on read data.
In 32-bit mode, ECC is calculated on four cycles’ worth of data (c
represents cycle and p represents phase).

[21] corresponds to {DQ[31:0], c 0, p 1, DQ[31:0], c 0, p 0}
[22] corresponds to {DQ[31:0], c 1, p 1, DQ[31:0], c 1, p 0}
[23] corresponds to {DQ[31:0], c 2, p 1, DQ[31:0], c 2, p 0}
[24] corresponds to {DQ[31:0], c 3, p 1, DQ[31:0], c 3, p 0}

In 16-bit mode, ECC is calculated on eight cycles’ worth of data (c
represents cycle and p represents phase).

[21] corresponds to {DQ[15:0], c 1, p 1, DQ[15:0], c 1, p 0,
DQ[15:0], c 0, p 1, DQ[15:0], c 0, p 0}

[22] corresponds to{ DQ[15:0], c 3, p 1, DQ[15:0], c 3, p 0,
DQ[15:0], c 2, p 1, DQ[15:0], c 2, p 0}

[23] corresponds to{ DQ[15:0], c 5, p 1, DQ[15:0], c 5, p 0,
DQ[15:0], c 4, p 1, DQ[15:0], c 4, p 0}

[24] corresponds to {DQ[15:0], c 7, p 1, DQ[15:0], c 7, p 0,
DQ[15:0], c 6, p 1, DQ[15:0], c 6, p 0}

Writing 1 clears the corresponding error bit.

<20> INTR_DED_ENA R/W 0 0 ECC double error detect (DED) interrupt enable bit. When set, allows
interrupts to be reported on double bit (uncorrectable) errors.

<19> INTR_SEC_ENA R/W 0 1 ECC single error correct (SEC) interrupt enable bit. When set, allows
interrupts to be reported on single bit (correctable) errors.

<18:15> TCL R/W 0x3 — Not used. Set to 0x0.

<14:9> REF_INT R/W 0x1 0x2 Refresh interval, represented in number of 512 DCLK increments.

000000 = Reserved
000001 = 1 × 512 = 512 DCLK cycles
...
111111 = 63 × 512 = 32256 DCLK cycles

<8:5> PBANK_LSB R/W 0x5 — Physical Bank address select. Refer to Figure 2–10.

<4:2> ROW_LSB R/W 0x3 — Encoding used to determine which memory address bit position
represents the low order DDR ROW address:

Value Address bit is LSB Value Address bit is LSB
000 [14] 100 [18]
001 [15] 101 reserved
010 [16] 110 [12]
011 [17] 111 [13]

Refer to Figure 2–10.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 107

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
<1> ECC_ENA R/W 0 0 ECC enable. Enables the 8-bit ECC check/correct logic. Should be 1
when used with DIMMs with ECC. 0, otherwise.

● When this mode is turned on, writes contain the ECC code
generated for the 64 bits of data that will written in the memory
and then later on reads, are used to check for single-bit errors
(which are autocorrected) and double-bit errors (which are
reported).

● When not turned on, writes will not contain ECC, and the ECC
bits are driven to 0.

Refer to SEC_ERR, DED_ERR, and the LMC_FADR, and
LMC_ECC_SYND registers for diagnostics information when there is
an error.

<0> INIT_START R/W 0 0 Start initialization. Starts the DDR memory initialization sequence
required prior to using the memory.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
108 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC Memory Configuration Register1
LMC_MEM_CFG1

This register controls the external memory configuration timing parameters. See
Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved

<31> COMP_BYPASS R/W 0 0 Compensation bypass.

<30:28> TRRD R/W 0x2 0x2 TRRD cycles. Specifies ACT-ACT timing parameter for different banks
(represented in TCYC cycles = 1DCLK cycle).

For DDR2, typical = 7.5ns
000 = Reserved
001 = 1 TCYC
010 = 2 TCYC
011 = 3 TCYC
100 = 4 TCYC
101 = 5 TCYC
110 = 6 TCYC
111 = 7 TCYC

<27:25> CASLAT R/W 0x4 0x4 CAS latency encoding, which is loaded into each DDR SDRAM device
(MRS[6:4]) upon power-up (INIT_START=1).

Represented in TCYC cycles = 1 DCLK cycle.

000 = Reserved
001 = Reserved
010 = 2.0 TCYC
011 = 3.0 TCYC
100 = 4.0 TCYC
101 = 5.0 TCYC
110 = 6.0 TCYC
111 = Reserved

Example: The parameters TSKW, SILO_HC, and SILO_QC can account
for ¼ cycle granularity in board/etch delays.

<24:22> TMRD R/W 0x2 0x2 TMRD cycles = RNDUP[TRFC(ns) / TCYC(ns)]. Represented in TCYC cycles
= 1 DCLK). Typically, it is 2 × TCYC.

000 = Reserved
001 = 1
010 = 2
011 = 3
100 = 4
101-111 = Reserved

<21:17> TRFC R/W 0x6 0x7 ¼ TRFC cycles = RNDUP[TRFC(ns) / 4 × TCYC(ns)]. Represented in TCYC
cycles = 1 DCLK cycle.

For example, for 2Gb, 667MHz parts, typically TRFC = 195 ns:

RNDUP[195/(4×3)] = 17 = 0x11 = TRFC

0x0 and 0x1 are reserved.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 109

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
<16:13> TRP R/W 0x5 0x4 TRP cycles = RNDUP[TRP(ns) / TCYC(ns)]. Represented in TCYC cycles = 1
DCLK cycle.

Typical = 15ns (66MHz=1, 167MHz=3, 400MHz=6)
0000 = Reserved
0001 = 1
...
1001 = 9
1010–1111 = Reserved

When using parts with 8 banks (LMC_DDR2_CTL[BANK8] = 1), load
TRP cycles + 1 into this register.

<12:9> TWTR R/W 0x2 0x2 Last write data to read command time. TWTR cycles = RNDUP[TWTR(ns)
/ TCYC(ns)]. Represented in TCYC cycles = 1 DCLK cycle.

Typical = 15ns (66MHz=1, 167MHz=3, 400MHz=6)
0000 = Reserved
0001 = 1
...
0111 = 7
1000–1111 = Reserved

<8:5> TRCD R/W 0x4 0x4 TRCD cycles = RNDUP[TRAS(ns) / TCYC(ns)]. Represented in TCYC cycles
= 1 DCLK cycle)

Typical = 15ns (66MHz=1,167MHz=3,400MHz=6 for TYP)

0000 = Reserved
0001 = 2 (2 is the smallest value allowed)
0010 = 2
...
1001 = 9
1010–1111 = Reserved

<4:0> TRAS R/W 0xC 0xC TRAS cycles = RNDUP[TRAS(ns) / TCYC(ns)]. Represented in TCYC cycles
= 1 DCLK).

00000-0001 = Reserved
00010 = 2
...
11111 = 31

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
110 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC Control Register
LMC_CTL

This register provides various control fields used by the LMC. See Table 2–14 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:28> DDR_NCTL RO — — DDR NMOS control from compensation circuit. The encoded value
on this adjusts the drive strength of the DDR DQ pulldown resistors.

<27:24> DDR_PCTL RO — — DDR PMOS control from compensation circuit. The encoded value on
this adjusts the drive strength of the DDR DQ pullup resistors.

<23> — R/W 0 0 Must be 0.

<22> XOR_BANK R/W 0 1 If (XOR_BANK = 1), then
bank[n:0] = address[n+7:7] ⊕ address[n+7+5:7+5]

else
bank[n:0] = address[n+7:7]

where n=1 for a four-bank part and n=2 for an eight-bank part

 <21:18> MAX_WRITE_
BATCH

R/W 0x8 0x8 Maximum number of consecutive writes to service before allowing
reads to interrupt.

<17> — R/W 0 0 Must be 0.

<16> PLL_BYPASS R/W 0 0 PLL bypass.

<15> RDIMM_ENA R/W 0 0 Registered DIMM enable. When this bit is set, it allows the use of
JEDEC Registered DIMMs, which require write data to be registered
in the controller.

<14> R2R_SLOT R/W 0 0 Read-to-read slot enable. When set, all read-to-read transactions slot
an additional one-cycle data bus bubble to avoid DQ/DQS bus
contention.

NOTE: This bit should not be needed in normal operation. It is
provided in case the built-in DIMM and BUNK crossing logic
(which autodetects and slots read-to-reads to the same
DIMM/BUNK) does not work.

<13> INORDER_MWF RAZ 0 0 Reads as 0.

<12> INORDER_MRF R/W 0 0 Always clear to 0.

<11> DRESET R/W 1 0 DCLK domain reset. The DCLK domain is reset whenever this bit is
set, or whenever the ECLK domain is reset.

<10> MODE32b R/W 1 1 32-bit data-path mode.
1 = 32 DQ pins are used, 0 = 16 DQ pins are used.

<9> FPRCH2 R/W 0 1 Front porch enable. When this bit is set, the turn-off time for the
DDR_DQ/DQS drivers is one DCLK cycle earlier. Typically, this
should be set to 1.

<8> BPRCH R/W 0 — Back porch enable. When this bit is set, the turn-on time for the
DDR_DQ/DQS drivers is delayed an additional DCLK cycle. This
should be set to 1 whenever both SILO_HC and SILO_QC are set.

<7:6> SIL_LAT R/W 0x1 0x1 Silo latency. On reads, this field determines how many additional
DCLK cycles to wait (on top of TCL+1+TSKW) before pulling data
out of the pad silos.

00 = illegal
01 = 1 DCLK cycle
10 = 2 DCLK cycles
11 = illegal

This should always be set to 1.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 111

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
<5:4> TSKW R/W 0x0 0x1 Time of skew. Specifies the total board delay on DQ/DQS during
reads (used to determine the R→W spacing to avoid DQ/DQS bus
conflicts). Enter the largest per-byte board delay.

00 = 0 DCLK cycles
01 = 1 DCLK cycle
10 = 2 DCLK cycles
11 = 3 DCLK cycles

<3:2> QS_DIC R/W 0x2 0x2 DDR2 termination-resistor setting.
A non-zero value in this register enables the on-die termination
(ODT). This field is loaded into the RTT section of the EMRS (bits
[A6,A2] for DDR termination of the memory’s DQ/DQS/DM pads.

00 = ODT disabled
01 = 75Ω termination
10 = 150Ω termination
11 = 50Ω termination

On write operations, CN50XX, by default, drives the ODT pins based
on what the masks (LMC_WODT_CTL) are programmed to.

LMC_DDR2_CTL[ODT_ENA] enables CN50XX to drive ODT pins
for read operations. LMC_RODT_CTL must be programmed based
on the system’s needs for ODT.

<1:0> DIC R/W 0x0 0x0 Drive strength control.
DIC[0] is loaded into the EMRS [A1] bit during initialization.

0 = Normal
1 = Reduced.

DIC[1] is loaded into the EMRS DSQN enable/disable field
(bit[A10]).

0 = DSQN enable
1 = DSQN disable (if high impedance)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
112 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC DDR2 and DLL Control Register
LMC_DDR2_CTL

See Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ 0 0 Reserved

<31> BANK8 R/W 0 — DDR2 eight-bank:
1 = eight banks (BA is 3 bits), 0 = four banks (BA is 2 bits)

<30> BURST8 R/W 0 1 Eight-burst mode: 1 = DDR transfer burst is 8, 0 = DDR transfer burst is 4.

BURST8 should be set when DDR2T = 1 to minimize the command
bandwidth loss.

<29:27> ADDLAT R/W 0x0 0x0 Additional latency for posted CAS. When posted CAS is enabled, this
configures the additional latency. This should be set between 1 and
LMC_MEM_CFG1[TRCD] − 2.

Note the implication that posted CAS should not be used when TRCD = 2.

<26> POCAS R/W 0 0 Enable the posted CAS feature of DDR2.

<25> BWCNT R/W 0 0 Clear bus utilization counters. Clears the LMC_OPS_CNT_*,
LMC_IFB_CNT_*, and LMC_DCLK_CNT_* registers. Software should first
write this field to a 1, then write this field to a 0 to clear the CSRs.

<24:22> TWR R/W 0x3 0x1 DDR write recovery time (TWR). The last write burst to predelay.

This is not a direct encoding of the values are specified in the DDR2
specification. The value shown is RNDUP(TWR(ns) / TCYC(ns)). Typical is 15
ns.

000 = Reserved 100 = 5
001 = 2 101 = 6
010 = 3 110 = 7
011 = 4 111 = 8

<21> SILO_HC R/W 1 — Silo half cycle. Delays the read-sample window by a half cycle.

<20:17> DDR_EOF R/W 0x0 0x0 Early fill counter initialization. L2C needs to know a few cycle before a fill
completes so it can get its control pipe started (for better overall
performance). This counter contains an initialization value that is a
function of ECLK/DCLK ratio, to account for the asynchronous boundary
between L2 cache and the DMC. This initialization value determines when
to safely let the L2C know that a fill termination is coming up.

Set DDR_EOF according to the following rule:
ECLKFreq/DCLKFreq = DCLKPeriod/ECLKPeriod = RATIO

RATIO < 6/6 → illegal
6/6 ≤ RATIO < 6/5 → DDR_EOF=3
6/5 ≤ RATIO < 6/4 → DDR_EOF=3
6/4 ≤ RATIO < 6/3 → DDR_EOF=2
6/3 ≤ RATIO < 6/2 → DDR_EOF=1
6/2 ≤ RATIO < 6/1 -→ DDR_EOF=0
6/1 ≤ RATIO → DDR_EOF=0

<16:12> TFAW R/W 0x0 0x9 Four access window time. Relevant only in DDR and eight-bank parts.

TFAW − Cycles = RNDUP(TFAW/TCYC) – 1

TFAW = 0x0 for DDR2-4bank
TFAW = RNDUP(TFAW/TCYC) – 1 in DDR2-8bank

<11> CRIP_MODE R/W 0 0 Cripple mode. 1 = allow one inflight transaction, 0 = normal mode (allow 8
inflight transactions).

NOTE: This bit can only be programmed at power-on and should not be set
for normal use.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 113

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
<10> DDR2T R/W 0 0 DDR 2T mode (2-cycle window for CMD and address):
1 = enabled, 0 = disabled

This mode helps relieve setup time pressure on the address/command bus,
which nominally has a very large fanout. Refer to Micron's technical note
tn_47_01 “DDR2-533 Memory Design Guide for Two Dimm Unbuffered
Systems” for physical details.

BURST8 should be asserted when DDR2T is set, to minimize add/cmd loss.

<9> ODT_ENA R/W 0 0 Enable Obsolete ODT on read operations.
Obsolete Read ODT wiggles DDR_ODT_* pins on reads. This field should
normally be cleared to zero.
When this bit is 1, the following registers must also be programmed:
LMC_CTL[QS_DIC]: programs the termination value LMC_RODT_CTL:
programs the ODT I/O mask for reads.

<8> QDLL_ENA R/W 0 0 DDR quad DLL enable: A 0→1 transition on this bit after DCLK
initialization sequence resets the DDR 90 DLL. This should be done at
startup, before any DDR activity.
DRESET should be asserted before and for 10 µs following the 0→1
transition on QDLL_ENA.

<7:3> DLL90_VLU R/W 0x0 — DDR DLL90 value. Contains the open-loop setting value for the DDR90
delay line.

<2> DLL90_BYP R/W 0 0 DDR DLL90 bypass: When set, the DDR90 DLL is bypassed and the setting
is defined by DLL90_VLU.

<1> RDQS R/W 0 0 DDR2 RDQS mode. When set, configures memory subsystem to use
unidirectional DQS pins. RDQS/DM — RCV, DQS — XMIT

<0> DDR2 R/W 0x1 0x1 DDR2 enable: When set, configures memory subsystem for DDR2 SDRAMs.
This field should be set.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
114 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC Failing-Address Register (SEC/DED)
LMC_FADR

This register captures and holds only the first transaction with an ECC error. If it
is a single-bit error, however, the address can be overwritten with the failing
address of a double-bit error.

Writing LMC_MEM_CFG0[SEC_ERR, DED_ERR] clears the error bits and
unlocks this register, allowing the capture of the next failing address.

The physical mapping is a function of the number of column bits and the number
of row bits. See Table 2–14 for the address.

LMC Compensation Control Register
LMC_COMP_CTL

See Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved

<31:30> FDIMM RO 0x0 0x0 Failing DIMM number.

<29> FBUNK RO 0 0 Failing rank number.

<28:26> FBANK RO 0x0 0x0 Failing bank number. Bits[2:0]

<25:12> FROW RO 0x0 0x0 Failing row address. Bits[13:0]

<11:0> FCOL RO 0x0 0x0 Failing column start address. Bits[11:0]. Represents the starting column
address of the failing read operation (and not the exact column address in
which the SEC/DED was detected)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ 0x0 0x0 Reserved.

<31:28> NCTL_CSR R/W 0xF — NMOS control CSR compensation-control bits.

<27:24> — R/W 0x0 — Must be 0.

<23:20> — R/W 0x0 — Must be 0.

<19:16> NCTL_DAT R/W 0x0 — NMOS control data compensation-control bits.

<15:12> PCTL_CSR R/W 0xf — PMOS control CSR compensation-control bits.

<11:8> PCTL_CLK— R/W 0x0 — Must be 0.

<7:5> PCTL_CMD— R/W 0x0 — Must be 0.

<4:0> PCTL_DAT R/W 0x0 — PMOS control data compensation-control bits
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 115

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
 LMC Write ODT Mask Register
LMC_WODT_CTL

It may be advantageous to terminate DQ/DQS/DM lines for higher-frequency
DDR operations (667MHz and faster), especially on a multirank system. DDR2
DQ/DM/DQS I/O pins have built-in termination resistors that can be turned on or
off by the controller, after meeting TAOND and TAOF timing requirements.

Each rank has its own ODT pin that fans out to all the memory parts in that
DIMM. You may prefer different combinations of ODT ONs for read and write into
different ranks. CN50XX supports full programmability in this area with the
LMC_WODT_CTL mask register. Each rank position has its own programmable
field. When the controller does a write operation to that rank, it sets the ODT pins
to the MASK pins in LMC_WODT_CTL.

For example, when writing into Rank0, you may desire to terminate the lines with
the resistor on Rank1. The mask WODT_HI0 and WODT_LO0 would then each be
0010 and 0010.

If ODT feature is not desired, the DDR parts can be programmed to not look at
these pins by writing 0x0 into LMC_CTL[QS_DIC]. CN50XX drives the
appropriate mask values on the ODT pins by default. If this feature is not
required, write all 0s into this register.

When a given RANK in position N is selected, the WODT _LO mask for that
position is used. Mask[3:0] is used for WODT control of the RANKs in positions 3,
2, 1, and 0, respectively.

DIMMs are assumed to be ordered in the following order:
● position 3: {DIMM1_RANK1_LO}
● position 2: {DIMM1_RANK0_LO}
● position 1: {DIMM0_RANK1_LO}
● position 0: {DIMM0_RANK0_LO}

See Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ 0 0 Reserved.

<31:28> WODT_HI3 R/W 0xF 0xF Reserved.

<27:24> WODT_HI2 R/W 0xF 0xF Reserved.

<23:20> WODT_HI1 R/W 0xF 0xF Reserved.

<19:16> WODT_HI0 R/W 0xF 0xF Reserved.

<15:12> WODT_LO3 R/W 0xF 0xF Write ODT mask for position 3.

<11:8> WODT_LO2 R/W 0xF 0xF Write ODT mask for position 2.

<7:4> WODT_LO1 R/W 0xF 0xF Write ODT mask for position 1.

<3:0> WODT_LO0 R/W 0xF 0xF Write ODT mask for position 0.
116 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
MRD ECC Syndromes Register
LMC_ECC_SYND

This register provides a view of the ECC syndrome bits. In 32-bit mode, ECC is
calculated on four cycles’ worth of data; while in 16-bit mode, it is calculated on
eight cycles of data. See Table 2–14 for the address.

LMC IFB Performance Counter Low Register
LMC_IFB_CNT_LO

See Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> RSVD RAZ — — Reserved.

<31:24> MRDSYN3 RO 0x0 0x0 MRD ECC syndrome bits Quad3.

In 32-bit mode:
MRDSYN3 corresponds to {DQ[31:0]_c3_p1, DQ[31:0]_c3_p0}.

In 16-bit mode:
MRDSYN3 corresponds to {DQ[15:0]_c7_p1, DQ[15:0]_c7_p0

DQ[15:0]_c6_p1, DQ[15:0]_c6_p0}.

<23:16> MRDSYN2 RO 0x0 0x0 MRD ECC syndrome bits Quad2.

In 32-bit mode:
MRDSYN2 corresponds to {DQ[31:0]_c2_p1, DQ[31:0]_c2_p0}.

In 16-bit mode:
MRDSYN2 corresponds to {DQ[15:0]_c5_p1, DQ[15:0]_c5_p0

DQ[15:0]_c4_p1, DQ[15:0]_c4_p0}.

<15:8> MRDSYN1 RO 0x0 0x0 MRD ECC syndrome bits Quad1.

In 32-bit mode:
MRDSYN1 corresponds to {DQ[31:0]_c1_p1, DQ[31:0]_c1_p0}.

In 16-bit mode:
MRDSYN1 corresponds to {DQ[15:0]_c3_p1, DQ[15:0]_c3_p0

DQ[15:0]_c2_p1, DQ[15:0]_c2_p0}.

<7:0> MRDSYN0 RO 0x0 0x0 MRD ECC syndrome bits Quad0.

In 32-bit mode:
MRDSYN0 corresponds to {DQ[31:0]_c0_p1, DQ[31:0]_c0_p0}.

In 16-bit mode:
MRDSYN0 corresponds to {DQ[15:0]_c1_p1, DQ[15:0]_c1_p0

DQ[15:0]_c0_p1, DQ[15:0]_c0_p0}.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:0> IFBCNT_LO RO 0x0 0x0 Performance counter to measure bus utilization. Lower 32-bits of the 64-
bit counter that increments every cycle in which there is something in the
inflight buffer
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 117

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC IFB Performance Counter High Register
LMC_IFB_CNT_HI

See Table 2–14 for the address.

LMC Operations Performance Counter Low Register
LMC_OPS_CNT_LO

See Table 2–14 for the address.

LMC Operations Performance Counter High Register
LMC_OPS_CNT_HI

See Table 2–14 for the address.

LMC DCLK Counter Low Register
LMC_DCLK_CNT_LO

See Table 2–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:0> IFBCNT_HI RO 0x0 0x0 Performance counter to measure bus utilization. Upper 32-bits of the 64-
bit counter that increments every cycle in which there is something in the
inflight buffer

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:0> OPSCNT_LO R/W 0x0 0x0 Lower 32-bits of the 64-bit performance counter that measures DRAM
bus utilization.

Bus utilization =
LMC_OPS_CNT_HI, LMC_OPS_CNT_L

LMC_DCLK_CNT_HI, LMC_DCLK_CNT_

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:0> OPSCNT_HI R/W 0x0 0x0 Upper 32-bits of the 64-bit performance counter that measures DRAM
bus utilization.

Bus utilization = LMC_OPS_CNT_HI, LMC_OPS_CNT_L
LMC_DCLK_CNT_HI, LMC_DCLK_CNT_

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:0> OPSCNT_LO R/W 0x0 0x0 Lower 32-bits of the 64-bit performance counter that counts DCLK
cycles. Used with LMC_OPS_CNT_* to measure DRAM bus utilization.
118 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC DCLK Counter High Register
LMC_DCLK_CNT_HI

See Table 2–14 for the address.

LMC Read ODT Control Register
LMC_RODT_CTL

On read operations, CN50XX supports turning on ODTs only in the lower two
DIMMs with the masks specified in this register. Refer to the description in
LMC_WODT_CTL. LMC_DDR2_CTL[ODT_ENA] must be set to 1 for CN50XX to
wiggle the ODT pins on reads.

When a given RANK in position N is selected, the RODT _LO mask for that
position is used. Mask[3:0] is used for RODT control of the RANKs in positions 3,
2, 1, and 0, respectively.

DIMMs are assumed to be ordered in the following order:
● position 3: {DIMM1_RANK1_LO}
● position 2: {DIMM1_RANK0_LO}
● position 1: {DIMM0_RANK1_LO}
● position 0: {DIMM0_RANK0_LO}

See Table 2–14 for the address.

LMC Open-Loop Delay Configuration Register
LMC_DELAY_CFG

This register provides the open-loop delay-line settings. The usage scenario is as
follows:

● There is too much delay on command signals and setup-on-command is not
met. The user can then delay the clock until setup is met.

● At the same time, however, dq/dqs should be delayed because there is also a
DDR specification tying dqs with clock. If clock is too much delayed with
respect to dqs, writes start to fail.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:0> OPSCNT_HI R/W 0x0 0x0 Upper 32-bits of the 64-bit performance counter that counts DCLK
cycles. Used with LMC_OPS_CNT_* to measure DRAM bus utilization.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:28> RODT_HI3 R/W 0xF 0xF Reserved.

<27:24> RODT_HI2 R/W 0xF 0xF Reserved.

<23:20> RODT_HI1 R/W 0xF 0xF Reserved.

<19:16> RODT_HI0 R/W 0xF 0xF Reserved.

<15:12> RODT_LO3 R/W 0xF 0xF Read ODT mask for position 3.

<11:8> RODT_LO2 R/W 0xF 0xF Read ODT mask for position 2.

<7:4> RODT_LO1 R/W 0xF 0xF Read ODT mask for position 1.

<3:0> RODT_LO0 R/W 0xF 0xF Read ODT mask for position 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 119

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
This scheme eliminates the board need of adding routing delay to clock signals to
make high frequencies work.

See Table 2–14 for the address.

LMC Control Register 1
LMC_CTL1

This register provides various control fields used by the LMC. See Table 2–14 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:15> — RAZ — — Reserved.

<14> — R/W 0 0 Reserved. Must be 0.

<13:10> DQ R/W 0x0 0x0 DQ delay-line setting. DQ adds outgoing delay only to:

dq, dqs_{p,n}, cb, cbs_{p,n}, dqm.
Delay is approximately 50–80ps per setting, depending on process/
voltage. There is no need to add incoming delay since by default all strobe
bits are delayed internally by 90 degrees (as was always the case in
previous passes and past chips.

<9> — R/W 0 0 Reserved. Must be 0.

<8:5> CMD R/W 0x0 0x0 CMD delay-line setting. CMD adds delay to all command bits:

DDR_RAS, DDR_CAS, DDR_A<15:0>, DDR_BA<2:0>,
DDR_n_CS<1:0>_L, DDR_WE, DDR_CKE, DDR_ODT_<7:0>.

Delay is 50–80ps per tap.

<4> — R/W 0 0 Reserved. Must be 0.

<3:0> CLK R/W 0x0 0x0 CLK delay-line setting. CLK adds delay to all clock signals:

DDR_CK_<5:0>_P and DDR_CK_<5:0>_N.
Delay is 50–80ps per tap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ — — Reserved.

<9> SIL_MODE R/W 0 1 Read Silo mode: 0 = envelope, 1 = self-timed.

<8> DCC_ENABLE R/W 0 0 Duty-cycle corrector enable. 0 = disable, 1 = enable

If the memory part does not support DCC, then this bit must be set to
0.

<7:2> — RAZ 0x0 — Reserved.
120 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC Dual Memory Configuration Register
LMC_DUAL_MEMCFG

This register controls certain parameters of dual-memory configuration. See Table
2–14 for the address.

This register enables the design to have two, separate memory configurations,
selected dynamically by the reference address. Note however, that both
configurations share LMC_CTL[MODE32b, XOR_BANK],
LMC_MEM_CFG0[PBANK_LSB, BUNK_ENA], and all timing parameters.

In this description:

● config0 refers to the normal memory configuration that is defined by the
LMC_MEM_CFG0[ROW_LSB] and LMC_DDR2_CTL[BANK8] parameters

● config1 refers to the dual (or second) memory configuration that is defined by
this register.

Memory config0 must be programmed for the part with the most strict timing
requirements. If a mix of four-bank and eight-bank parts is used, then config0
must be used for the eight-bank part (because the timing requirements of TFAW
and TRP are more strict for eight-bank parts than they are for four-bank parts).

Enable mask to chip select mapping is shown below:

The DIMMs are arranged in one of these arrangements:
DIMM1_RANK1 (highest address)
DIMM1_RANK0
DIMM0_RANK1
DIMM0_RANK0 (lowest address)

<1:0> DATA_LAYOUT R/W 0x0 0x0 Selects data, ECC, and strobe signals used in 16-bit mode.

● In 32-bit mode, this field has no effect and the ECC/data/strobe
signals used are DDR_CB<3:0> / DDR_DQ<31:0> /
DDR_CBS_0_P/N, DDR_DQS_<3:0>_P/N

● In 16-bit mode, the ECC/data/strobe signals used are the
following:

This assumes that ECC is enabled. If ECC is not enabled, the
ECC columns are not used.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Field
Value

Signals Used for
ECC Strobe

Signals Used for
ECC Bits

Signals Used for
Data Strobe

Signals Used for
16 Data Bits

0x0 = DDR_DQS_<2> DDR_DQ<17:16> DDR_DQS_<1:0> DDR_DQ<15:0>

0x1 = DDR_DQS_<3> DDR_DQ<25:24> DDR_DQS_<2:1> DDR_DQ<23:8>

0x2 = DDR_CBS_0 DDR_CB<1:0> DDR_DQS_<3:2> DDR_DQ<31:16>

0x3 = Reserved

CS_MASK[3] = DDR_1_CS_<1>
CS_MASK[2] = DDR_1_CS_<0>
CS_MASK[1] = DDR_0_CS_<1>
CS_MASK[0] = DDR_0_CS_<0>
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 121

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
DIMM0/1 uses the pair of chip selects DDR_n_CS_<1:0>.

● When LMC_MEM_CFG0[BUNK_ENA] = 1, each chip select in the pair
asserts independently.

● When LMC_MEM_CFG0[BUNK_ENA] = 0, both chip selects in the pair assert
together.

Programming restrictions for CS_MASK:

1. when LMC_MEM_CFG0[BUNK_ENA] = 0,
CS_MASK[2n + 1] = CS_MASK[2n], where 0 ≤ n ≤ 3

2. when LMC_MEM_CFG0[MODE128b] = 1,
CS_MASK[n + 4] = CS_MASK[n], where 0 ≤ n ≤ 3

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.

<31:20> — R/W 0x0 — Must be zero.

<19> BANK8 R/W 0 0 DDR2 8-bank: 1 = 8 banks (BA is 3 bits), 0 = 4 banks (BA is 2 bits)

<18:16> ROW_LSB R/W 0x3 — Encoding used to determine which memory address bit position represents
the low order DDR ROW address. The processor’s memory address<33:7>
needs to be translated to DRAM addresses (bnk,row,col,rank and dimm)
and that is a function of the following:

1. # Banks (4 or 8) - specified by BANK8
2. Datapath Width (32 or 16) - MODE32b
3. # Ranks in a DIMM - specified by BUNK_ENA
4. # DIMM’s in the system
5. # Column Bits of the memory part - specified indirectly by this regis-

ter.
6. # Row Bits of the memory part - specified indirectly by

PBANK_LSB.

Refer to Figure 2–10.

<15:4> — R/W 0x0 — Must be zero.

<3:0> CS_MASK R/W 0x0 — Chip select mask. This mask corresponds to the four chip selects for a
memory configuration. Each reference address asserts one of the chip
selects. If that chip select has its corresponding CS_MASK bit set, then
the config1 parameters are used, otherwise the config0 parameters are
used.
122 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC Read ODT Control Register
LMC_RODT_COMP_CTL

During a memory-read operation, read ODT control is available at the receivers.
LMC_RODT_COMP_CTL provides three different read ODT conditions:

no ODT, weak ODT, or strong ODT.

Read ODT is automatically off during a memory-write operation, even if a weak-
ODT or strong-ODT condition is chosen. Table 2–10 shows the configuration of
read ODT settings.

See Table 2–14 for the address.

LMC PLL Control Register
LMC_PLL_CTL

This register controls the DDR_CK frequency. For details, refer to Section 2.3.9.
See Table 2–14 for the address.

Table 2–15 Configuration of Read ODT Setting
ODT Setting [ENABLE] [PCTL] [NCTL]

No ODT 0 — —
Weak ODT 1 00011 0001
Strong ODT 1 00111 0010

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:17> — R/W 0x0 — Must be set to 0.

<16> ENABLE R/W 0 — Read ODT enable: 0 = not enabled, 1 = enabled

<15:12> — R/W 0x0 — Must be set to 0.

<11:8> NCTL R/W 0x0 — On-die termination control bits for read operations. Refer to Table 2–10.

<7:5> — R/W 0x0 — Must be set to 0.

<4:0> PCTL R/W 0x0 — On-die termination control bits. Refer to Table 2–10.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — R/W 0x0 — Must be set to 0.

<28> FASTEN_N This field changes the allowed CLKF values.
1 = 128 < CLKF ≤ 256.
0 = 0 < CLKF ≤ 128.

<27> DIV_RESET R/W 1 0 Analog PLL divider reset
Deassert at least 500 × (CLKR + 1) reference-clock cycles following
RESET_N deassertion.

<26> RESET_N R/W 0 1 Analog PLL reset
Deassert at least 5 µs after CLKF, CLKR, and EN* are set up.

<25:14> CLKF R/W 0x1F — Multiply reference by CLKF + 1. CLKF constraints are specified by
FASTEN_N

<13:8> CLKR R/W 0x0 — Divide reference by CLKR + 1.

<7:6> — R/W 0x0 — Must be set to 0.

<5> EN16 R/W 0 — Divide output by 16.

<4> EN12 R/W 0 — Divide output by 12.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 123

 Coherent Memory Bus, Level-2 Cache Controller, DRAM ControllerLMC Registers
LMC PLL Status Register
LMC_PLL_STATUS

See Table 2–14 for the address.

LMC BIST Control Register
LMC_BIST_CTL

This register controls BIST only for the memories that operate on DCLK. The
normal chip-wide BIST flow controls BIST for the memories that operate on core
clock. See Table 2–14 for the address.

LMC BIST Result Register
LMC_BIST_RESULT

This register provides access to the internal BIST results. Each bit is the BIST
result of an individual memory. For each bit, 0 = pass or BIST in progress/never
run; 1 = fail.

See Table 2–14 for the address.

<3> EN8 R/W 1 — Divide output by 8.

<2> EN6 R/W 0 — Divide output by 6.

<1> EN4 R/W 0 — Divide output by 4.

<0> EN2 R/W 0 — Divide output by 2.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — R/W 0x0 — Must be zero.

<31:27> DDR__NCTL RO — — DDR NCTL from compensation circuit.

<26:22> DDR__PCTL RO — — DDR PCTL from compensation circuit.

<21:2> — R/W 0x0 — Must be zero.

<1> RFSLIP R/W1C 0 — Reference clock slip.

<0> FBSLIP R/W1C 0 — Feedback clock slip.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ X 0x0 Reserved. Must be zero.

<0> START R/W 0 0 A 0 → 1 transition causes BIST to run.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:9> — RAZ X 0x0 Reserved. Must be zero.

<8> MWF RO X 0 BIST result of MWF memories.

<7:5> MWD RO X 0x0 BIST result of MWD memories.

<4> MWC RO X 0 BIST result of MWC memories.

<3> MRF RO X 0 BIST result of MRF memories.

<2:0> MRD RO X 0x0 BIST result of MRD memories.
124 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 3

I/O Busing, I/O Bridge (IOB) and
Fetch and Add Unit (FAU)
This chapter describes the following topics:

● CN50XX I/O Busing

● IOB Architecture

● IOB Architecture

● Fetch and Add Unit (FAU)

● Fetch-and-Add Operations

● IOB Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 125

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): CN50XX I/O Busing
3.1 CN50XX I/O Busing

3.1.1 I/O Busing Overview

Figure 3–1 shows the CN50XX I/O and coprocessor components and their physical
connections, i.e. the I/O buses. The I/O buses include

● an inbound bus (IOBI)
● an outbound bus (IOBO)
● a packet output bus (POB)
● a PKO-specific bus (PKOB)
● an input packet-data bus (IPDB)
● associated controls.

The I/O buses all run at the core-clock frequency. I/O and coprocessor devices use
these buses to communicate among themselves and, through the I/O bridge (IOB),
to communicate with the L2 Cache (L2C) and cores on the coherent memory bus
(CMB).

Figure 3–1 I/O Bus Block Diagram

PIPIPD

NPI PNI PCI
Core

PKOB

64

64 Packet

Timers
(TIM)

Input

Packet
Output
(PKO)

Packet
Order/
Work

(POW)

Random
Number

Gen.
(RNG)

MIOFree
Pools
(FPA)

Boot Bus
2 × UART
16 GPIO
TWSI
JTAG/EJTAG

Outbound I/O Bus (IOBO)

Inbound I/O Bus (IOBI)

Packet Output Bus (POB)

Packet Interface 0 PCI

PCI Interface 32

128

64

IPDB

64

64

C
oh

er
en

t M
em

or
y

B
us

ADD

STORE

COMMIT

FILL

I/O
 B

rid
ge

 (I
O

B
)

256

128

GMX0

TDM/
PCM

SPI/
MPIUSB

TDM/PCM
Interface

USB Interface SPI/MPI Interface
126 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
矩形

Owner
下划线

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): CN50XX I/O Busing
3.1.2 I/O Bus Flow Examples

The following figures are examples of transactions on the CN50XX internal I/O buses
to illustrate their usages.

Figure 3–2 shows I/O bus flows for a packet data input example. The packet data
first arrives on either the RGMII, GMII, MII, or PCI interfaces and is captured by
the RGMII/GMII/MII (GMX) or PCI input interfaces, respectively. This is not shown
in the figure. Figure 3–2 does, however, show the packet input data pieces (each of up
to 64-bits) eventually placed by one of the I/O interfaces onto the CN50XX-internal
IOBI bus. The I/O interface also had to previously arbitrate for the IOBI bus cycles,
as do all other IOBI drivers. The CN50XX central packet-input hardware (IPD)
latches the packet-data pieces directly from the IOBI bus for processing. There is
much processing that occurs, but one particular aspect regarding this example is that
the IPD hardware accumulates the 64-bit packet-data pieces from the IOBI bus into
full (128 byte) cache blocks. IPD then forwards the cache block writes on the IPDB
bus. The IOB later forwards the cache block write onto the CMB.

Figure 3–3 shows I/O bus flows for packet data output. The IOB first fills data using
the CMB (not shown). An individual fetch is up to 128 bytes; the cache block size. The
IOB returns the filled data to the centralized packet-output hardware (PKO) using
the PKOB bus. PKO buffers the PKOB data and eventually forwards it onto the
Packet Output Bus (POB), though PKO has large buffers (because it supports in-line
TCP/UDP checksum generation), so there may be considerable time delay between
the PKOB and POB buses.

Figure 3–4 has an I/O bus flow example that uses the hardware free pools (FPA).

NOTE: A full 64-bit (per core cycle) data path, using only the IOBI and
IPDB buses, exists internally to capture store input packet data into
L2/DRAM. This gives a raw hardware packet input processing
capability in excess of 30 Gbits/sec.

Figure 3–2 I/O Bus Flows for a Packet Data Input

IOBO

PKOB

POB
IOBI

IPDB

…

64 bit Transfers from
Packet Interfaces /
PCI to Packet Input

Logic

…

Packet Input Logic
Accumulates and Transfers
Data to L2/DRAM (via IOB

and CMB) in (128 byte)
Cache Blocks

Time

NOTE: A full 64-bit (per core cycle) data path, using only the PKOB and
POB buses, exists internally to send packet-output data off-chip.
This gives a raw hardware packet-output processing capability in
excess of 30 Gbits/sec. This bandwidth is available independently of
the packet-input data flow. This is for internal busing only. External
interfaces may limit the sustained bandwidth.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 127

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): CN50XX I/O Busing
This example shows transactions resulting from an allocation request to a free pool.
First (not shown), the core issues a load/IOBDMA to an address corresponding to
FPA, and the address is reflected through the CMB. Later (shown), the IOB bridges
the command and address onto the IOBO bus (in green) and the FPA hardware
recognizes that it is the destination for the address. The FPA hardware processes the
command, returning the result, (i.e. a pointer to the available memory), later on the
IOBI bus (also in green). Figure 3–4 also shows an FPA DMA read access that
(infrequently) may be required to replenish the pool of pointers contained in FPA.
First, the FPA hardware places the L2/DRAM address onto the IOBI bus (shown in
tan). The IOB bridges this address onto the coherent memory bus (not shown) and
eventually returns the DMA read data containing the additional pointers on the
IOBO bus (shown in tan).

Figure 3–5 has a similar I/O bus flow example pertaining to the FPA, but this
example is of a memory free rather than a memory allocate. The core freeing the
memory executes a store to an address and the hardware reflects the store through
the CMB (not shown). (This example also does not show the Don’t-Write-Back (DWB)
CMB commands that IOB hardware may create as a result of the memory free
command.) The IOB bridges the address/data pair onto the IOBO bus (shown in
green), the FPA hardware recognizes it, and buffers the pointer to the available
memory in the pool within the FPA block. Figure 3–5 also shows an FPA DMA write
access that (infrequently) may be required to free up space in the pool within the FPA
block. The FPA hardware places the DMA address and data onto the IOBI bus
(shown), which the IOB bridges onto the CMB (not shown).

Figure 3–3 I/O Bus Flows for Packet Data Output

IOBO

PKOB

POB
IOBI

IPDB

…

Cache Block Transfers from
L2/DRAM (via CMB and IOB) to

Packet Output Logic

…

Packet Output Logic Buffers Large Chunks
of the Packet before forwarding to packet

interfaces / PCI. (It can calculate TCP/UDP
checksums at this time.)

Time

Figure 3–4 I/O Bus Flow: Memory Allocate

OCTEON hardware passes core
Load/IOBDMA address to IOBO

(through CMB and IOB)

IOBO
PKOB
POB
IOBI
IPDB

Free pool hardware returns
result (i.e. pointer to

free memory) OCTEON hardware passes result
back to the requesting core

(through IOB and CMB)

Time
L2/DRAM address

L2/DRAM
return data

A pool underflow might cause
the free-pool hardware to read

pointers from L2/DRAM
128 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Architecture
3.2 IOB Architecture

3.2.1 IOB Architecture Overview

Figure 3–6 shows a block diagram of the IOB internal architecture. The CMB is on
the left side of the figure and the I/O buses are in the right, the top, and the bottom of
the figure.

Figure 3–5 I/O Bus Flow: Memory Free

OCTEON hardware passes core
store address to IOBO
(through CMB and IOB)IOBO

PKOB
POB
IOBI
IPDB

Free pool hardware
adds pointer to pool

(to free memory)

Time

A pool overflow might cause
the free-pool hardware to
write pointers to DRAM

(via CMB and IOB)

Figure 3–6 I/O Bridge Block Diagram

ADD

STORE

COMMIT

FILL

From PKO
From IPD

POW Switch Bus To PKO

I/O Bus
Inbound
(IOBI)

I/O Bus
Outbound

(IOBO)

(PKOB)

(IPDB)

Packet Fetches (to L2C)

Packet/WQE (to L2C)

Requests (to L2C)

Responses

DWBs (to L2C)

Frees

F & A

Responses (to cores)

Response (to cores)

IOB

Free Completions
(to FPA)

Commits

Packet Data

Requests
F & A

Requests

Frees

I/O Bridge

Fetch & Add Unit

Don’t-Write-Back
(DWB) Engine

Reflections

Requests (from cores)

128

256

128

64

64

64
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 129

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Don’t-Write-Back Engine
The primary function of the IOB is a bridge, so the largest component of the IOB
architecture is queues to hold information transferred on the different buses. There
are six queues arbitrating to transfer on the ADD/STORE buses of the CMB and five
queues arbitrating to transfer on the IOBO bus. The multiple queues are required for
a number of reasons: deadlock-avoidance, different data sources, and performance.

3.3 Don’t-Write-Back Engine

Another important component within the IOB is the DWB Engine. This engine
intercepts memory-free requests destined to the free-pool hardware (FPA). The
memory-free requests include a hint indicating the number of DWB CMB
transactions that the IOB hardware can issue. The memory has just been freed and it
will not be used until it is reallocated, so it would be wasteful for the hardware to
write the cache blocks from the level 2 cache back to the DRAM. The DWB commands
will cause the dirty bit for the selected blocks to be cleared, thus avoiding these
wasteful write-backs.

The IOB can intercept these memory-free commands arriving from either the cores
(via a reflection onto the CMB COMMIT/FILL buses) or from other OCTEON
hardware units (via the IOBI bus). The IOB can buffer a limited number of the
memory free commands inside DWB. If buffering is available, the IOB intercepts the
memory free request until it has finished issuing the CMB DWB commands for the
request, and then forwards the request onto the FPA hardware (via the IOBO bus). If
the DWB buffering is not available, the IOB DWB unit does not intercept the
memory free command, and the command instead goes to the FPA hardware without
the FPA issuing any DWB commands. This implementation is possible since it is
optional for the hardware to issue the DWBs.

3.4 Fetch and Add Unit (FAU)

Figure 3–7 expands on the final important component of the IOB architecture - the
fetch-and-add unit (FAU). The FAU is a 2KB register file supporting read, write,
atomic fetch-and-add, and atomic update operations. The unit can be accessed from
both the cores and the centralized packet-output (PKO) unit. The cores use the FAU
for general synchronization purposes, including applications like assigning unique
positions for inserting items into shared queues.

Figure 3–7 FAU Block Diagram

Optional Result
(to cores only)Request from CMB (from cores) 2KB

Register
File

POW Switch Bus

Pending
Switch Bus

(one per core)

Waiting
Requests

(one per core)

Request from I/O Bus (from PKO) FAU
130 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
下划线

Owner
下划线

Owner
下划线

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Fetch and Add Unit (FAU)
FAU registers are used particularly to maintain lengths of the output queues (up
to 32) to transfer packets off-chip (via PKO). This is the reason that the PKO
submits commands to the FAU. Core software increments counters in the FAU
when it adds a packet to a queue. Under software command, the PKO decrements
the same counter after it removes the packet from a queue and sends it off-chip.
This way, the register continually maintains the size of the output queue (in
packets and/or bytes). The core software will require the current queue size if it
must implement Quality Of Service (QOS) algorithms like Random Early Discard
(RED).

Another feature of the FAU is its tight integration with the tag switch
synchronization provided by the packet order/work unit (POW). This tight
integration can minimize critical section latencies when both tag switch and FAU
synchronization is required.

The FAU tracks the pending tag switch state for each core. The FAU considers a
tag switch to be pending from when the POW tag switch store (that uses the POW
subDID of 0) issues until the switch completion indication returns via the POW
switch bus. This FAU pending switch logic is, in general, a conservative estimator
of the pending switch state held at both the cores and POW. For switches that are
not descheduled, it tracks exactly.

Each core can specify the “tag-wait” feature for up to one outstanding FAU
request at any time. (The number of outstanding FAU requests that do not specify
the tag-wait feature is never restricted by the hardware.) When this option is
enabled, the FAU attempts to delay the request until the prior tag switch is no
longer pending. While the hardware delays the request, it buffers it in a store that
contains one entry per core. Thus, the restriction on only one outstanding tag-wait
request from each core.

The fetch-and-add unit processes requests without the tag-wait feature enabled
immediately. It also processes requests with the preferred tag-wait requests
immediately when (it thinks) there is not a pending switch. If the hardware
buffers a tag-wait request for too long, it removes the request from the buffer and
returns a failure indication to the requester without performing the operation
specified in the request. The tag-wait time-out length is variable based on
configuration, in multiples of 256 internal clock cycles.

Figure 3–7 shows all the components of the fetch-and-add hardware. The
hardware arbitrates between the three different sources of requests; the cores, the
PKO, and the buffered core tag-wait requests. The hardware completes the
requests by reading and writing the 2KB register file. Some core-generated FAU
requests require responses to be reflected back through the CMB.

Chapter 8 describes the software interface to the PKO.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 131

Owner
高亮

Owner
下划线

Owner
下划线

Owner
附注
有关Tag Switch的一些描述

Owner
高亮

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Fetch-and-Add Operations
3.5 Fetch-and-Add Operations

Core operations to the FAU issue through Load, Store, and IOBDMA instructions.

For Load and Store instructions, the FAU operation size matches the size specified by
the instruction. For example, a core byte load instruction (i.e. LB or LBU) initiates a
byte operation on the register file. This means that the register value can change,
and the load result is returned, only for the particular byte in the register file
referenced by the LB/LBU instruction. All the core load/store instruction sizes can be
used to operate on the fetch-and-add register file:

● 8-bit operation (LB/LBU/SB)
● 16-bit operation (LH/LHU/SH)
● 32-bit operation (LW/LWU/SW)
● 64-bit operation (LD/SD)

IOBDMA instructions destined for the FAU always return a 64-bit result to the core,
but the actual operation performed by the hardware, and the effective result
returned, may be either 8-bit, 16-bit, 32-bit, or 64-bit.

The configuration of the particular core that executes the load/store selects the
endianness of the 8-bit, 16-bit, and 32-bit loads/stores. The FAU has a
IOB_CTL_STATUS[FAU_END] bit that can specify either little-endian or big-endian
addressing for IOBDMA instructions. This IOBDMA endian configuration value is
common to both cores.

3.5.1 Load Operations

Load Physical Address for FAU Operations

● incval - The value to add to the register after returning the load result. This is a
22-bit signed value, of which only the bottom 8-bits are used for 8-bit operations
and the bottom 16-bits for 16-bit operations.

● Tagwait - If set, the hardware will attempt to delay servicing the request until
after the prior tag switch completes.

● Register - Selects a particular FAU register.

<10:3> selects the register

<2:0> selects a byte offset into that register

48 47 43 42 40 39 36 35 14 13 12 11 10 0

1 Major DID
1111 0

subDID
000

Reserved
0000 incval Tagwait Rsvd

0 0 Register

NOTE: Register field must be naturally aligned to the size. This is required
by the core.

NOTE: The value returned for a load or IOBDMA is the old value from the
previous add operation.
132 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Fetch-and-Add Operations
Load Operation Result In Cases Where Tagwait = 0:

64-bit operation result for a LD

● data - data is current value of register location.

32-bit operation result for a LW/LWU

● data - data is current value of register location.

16-bit operation result for a LH/LHU

● data - data is current value of register location.

8-bit operation result for a LB/LBU

● data - data is current value of register location.

Load Operation Result In Cases Where Tagwait = 1:

64-bit operation result for a LD

● I - Operation did not complete.

● data - Unpredictable if I is set. Otherwise, data is current value of the lower 63-
bits of the register location.

32-bit operation result for a LW/LWU

● I - Operation did not complete.

● data - unpredictable if I is set. Otherwise, data is current value of the lower 31-
bits of the register location.

63 0

data

31 0

data

15 0

data

7 0

data

63 62 0

I data

31 30 0

I data
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 133

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Fetch-and-Add Operations
16-bit operation result for a LH/LHU

● I - Operation did not complete.

● data - unpredictable if I is set. Otherwise, data is current value of the lower 15-
bits of the register location.

8-bit operation result for a LB/LBU

● I - Operation did not complete.

● data - unpredictable if I is set. Otherwise, data is current value of the lower 7 bits
of the register location.

3.5.2 IOBDMA Operations

IOBDMA Store Data for FAU Operations

● scraddr - Defined in “cnMIPS™ Cores” on page 143.
● len - Must be 1. Defined in “cnMIPS™ Cores” on page 143.
● incval - The value to add to the register. This is a 22-bit signed value, of which

only the bottom 8 bits are used for 8-bit operations and the bottom 16 bits for 16-
bit operations.

● Tagwait - If set, the hardware will attempt to delay servicing the request until
after the prior tag switch completes.

● Size - Indicates the size of the operation
0 = 8-bit
1 = 16-bit
2 = 32-bit
3 = 64-bit

● Register - Selects a particular FAU register.

64-bit operation (tagwait=0) result for an IOBDMA (in CVMSEG_LM)

● data - data is current value of register location.

15 14 0

I data

7 6 0

I data

63 56 55 48 47 43 42 40 39 36 35 14 13 12 11 10 0

scraddr len
1

Major DID
11110

subDID
000

Reserved
0 incval Tagwait Size Register

NOTE: Register field must be naturally aligned to the size.

63 0

data
134 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Fetch-and-Add Operations
64-bit operation (tagwait=1) result for an IOBDMA (in CVMSEG_LM)

● I - Incomplete. When I = 1, the operation did not complete and the data is
unpredictable.

● data - Unpredictable when I = 1. Otherwise, data is current value of the lower
63 bits of the register location.

32-bit operation result for an IOBDMA (in CVMSEG_LM)

● I - Incomplete. The hardware always forces I = 0 when tagwait = 0. When
tagwait = 1, then I may be 1 or 0.

I = 1, the operation did not complete and the data is unpredictable.
I = 0, the operation completed.

● unused - Unpredictable when I = 1; otherwise all 0s.

● data - Unpredictable when I = 1. Otherwise, data is the current value of the
32-bit register.

16-bit operation result for an IOBDMA (in CVMSEG_LM)

● I - Incomplete. The hardware always forces I = 0 when tagwait = 0. When
tagwait = 1, then I may be 1 or 0.

I = 1, the operation did not complete and the data is unpredictable.
I = 0, the operation completed.

● unused - Unpredictable when I = 1; otherwise all 0s.

● data - Unpredictable when I = 1. Otherwise, data is the current value of the
16-bit register.

8-bit operation result for an IOBDMA (in CVMSEG_LM)

● I - Incomplete. The hardware always forces I = 0 when tagwait = 0. When
tagwait = 1, then I may be 1 or 0.

I = 1, the operation did not complete and the data is unpredictable.
I = 0, the operation completed.

● unused - Unpredictable when I = 1; otherwise all 0s.

● data - Unpredictable when I = 1. Otherwise, data is the current value of the 8-
bit register.

63 62 0

I data

63 62 32 31 0

I unused data

63 62 16 15 0

I unused data

63 62 8 7 0

I unused data
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 135

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): Fetch-and-Add Operations
3.5.3 Store Operations

Store Physical Address for FAU Operations

● noadd - If clear, do an (atomic) update, else just store

● Register - Selects a particular FAU register.

The store address above can be used for any of the core 8-bit (SB), 16-bit (SH), 32-bit
(SW), or 64-bit (SD) store instructions to produce FAU operations of the
corresponding size. The no add bit selects whether to add the store data to the
previous register value or to simply over-write the prior register value.

48 47 43 42 40 39 14 13 12 11 10 0

1 Major DID
11110

subDID
000

Reserved
0 noadd Rsvd

0 Register

NOTE: Register field must be naturally aligned to the size. This is required
by the core.
136 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Registers
3.6 IOB Registers

The IOB registers are listed in Table 3–1.

Table 3–1 IOB Registers

Register Address

CSR

Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed
Description

IOB_FAU_TIMEOUT 0x00011800F0000000 RSL See page 138

IOB_CTL_STATUS 0x00011800F0000050 RSL See page 138

IOB_INT_SUM 0x00011800F0000058 RSL See page 138

IOB_INT_ENB 0x00011800F0000060 RSL See page 139

IOB_PKT_ERR 0x00011800F0000068 RSL See page 139

IOB_INB_DATA_MATCH 0x00011800F0000070 RSL See page 139

IOB_INB_CONTROL_MATCH 0x00011800F0000078 RSL See page 140

IOB_INB_DATA_MATCH_ENB 0x00011800F0000080 RSL See page 140

IOB_INB_CONTROL_MATCH_ENB 0x00011800F0000088 RSL See page 140

IOB_OUTB_DATA_MATCH 0x00011800F0000090 RSL See page 140

IOB_OUTB_CONTROL_MATCH 0x00011800F0000098 RSL See page 141

IOB_OUTB_DATA_MATCH_ENB 0x00011800F00000A0 RSL See page 141

IOB_OUTB_CONTROL_MATCH_ENB 0x00011800F00000A8 RSL See page 141

IOB_BIST_STATUS 0x00011800F00007F8 RSL See page 142
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 137

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Registers
Fetch and Add Unit Tag-Switch Time-Out Register
IOB_FAU_TIMEOUT

See Table 3–1 for address.

I/O Bridge Control and Status Register
IOB_CTL_STATUS

See Table 3–1 for address.

I/O Bridge Interrupt Summary Register
IOB_INT_SUM

Contains the interrupt summary bits of the IOB. See Table 3–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:13> — RAZ — — Reserved
<12> TOUT_ENB R/W 1 0 Enable FAU time-out: 1 = enable the time-out, 0 = disable.
<11:0> TOUT_VAL R/W 0x4 0x4 When a tag request arrives from the core a timer is started associated with

that core. The timer, which increments every 256 core clock cycles, is
compared to TOUT_VAL. When the two are equal, the IOB flags the tag
request to complete as a time-out tag operation. The 256-count timer used
to increment the core-associated timer is always running, so the first
increment of the core-associated timer may occur anywhere within the first
256 core clock cycles.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved.
<4> OUTB_MAT R/W1C 0 0 Outbound match. When this bit is set, it indicates there was a match

on the outbound bus to the outbound pattern matchers.
<3> INB_MAT R/W1C 0 0 Inbound match. When this bit is set, it indicates there was a match on

the inbound bus to the inbound pattern matchers.
<2> PKO_ENB R/W 0 0 PKO endian style. Toggles the endian style of the FAU for the PKO.

0 = big-endian, 1 = little-endian.
<1> DWB_ENB R/W 1 1 Enable DWB. Enables the don’t-write-back function of the IOB.
<0> FAU_END R/W 0 0 FAU endian style. Toggles the endian style of the FAU.

0 = big-endian, 1 = little-endian.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3> P_EOP R/W1C 0 0 Set when a EOP is followed by an EOP for the same port for a

passthrough packet. The first detected error associated with bits <3:0>
of this register will only be set here. A new bit can be set when the
previous reported bit is cleared.

<2> P_SOP R/W1C 0 0 Set when a SOP is followed by an SOP for the same port for a
passthrough packet. The first detected error associated with bits <3:0>
of this register will only be set here. A new bit can be set when the
previous reported bit is cleared.

<1> NP_EOP R/W1C 0 0 Set when a EOP is followed by an EOP for the same port for a
nonpassthrough packet. The first detected error associated with bits
<3:0> of this register will only be set here. A new bit can be set when
the previous reported bit is cleared.
138 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Registers
I/O Bridge Interrupt Enable Register
IOB_INT_ENB

Contains the interrupt summary bits of the IOB. See Table 3–1 for address.

I/O Bridge Packet Error Register
IOB_PKT_ERR

Provides status about the failing packet receive error. See Table 3–1 for address.

I/O Bridge Inbound Data Match Register
IOB_INB_DATA_MATCH

This register provides the match pattern for inbound data that is used to set
IOB_CTL_STATUS[INB_MAT]. See Table 3–1 for address.

<0> NP_SOP R/W1C 0 0 Set when a SOP is followed by an SOP for the same port for a
nonpassthrough packet. The first detected error associated with bits
<3:0> of this register will only be set here. A new bit can be set when
the previous reported bit is cleared.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3> P_EOP R/W1C 0 0 Passthrough packet EOP interrupt enable. When this bit is set and

IOB_INT_SUM[P_EOP] is set, the IOB asserts an interrupt.
<2> P_SOP R/W1C 0 0 Passthrough packet SOP interrupt enable. When this bit is set and

IOB_INT_SUM[P_SOP] is set, the IOB asserts an interrupt.
<1> NP_EOP R/W1C 0 0 Nonpassthrough packet EOP interrupt enable. When this bit is set and

IOB_INT_SUM[NP_EOP] is set, the IOB asserts an interrupt.
<0> NP_SOP R/W1C 0 0 Nonpassthrough packet SOP interrupt enable. When this bit is set and

IOB_INT_SUM[NP_SOP] is set, the IOB asserts an interrupt.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved
<5:0> PORT RO 0 — When an IOB_INT_SUM[3:0] bit is set, this field latches the failing port

associate with the IOB_INT_SUM[3:0] bit set.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> DATA R/W 0x0 — Pattern to match on the inbound I/O bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 139

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Registers
I/O Bridge Inbound Control Match Register
IOB_INB_CONTROL_MATCH

This register provides the match pattern for inbound control that is used to set
IOB_CTL_STATUS[INB_MAT]. See Table 3–1 for address.

I/O Bridge Inbound Data Match Enable Register
IOB_INB_DATA_MATCH_ENB

Enables the match of the corresponding bit in IOB_INB_DATA_MATCH. See Table
3–1 for address.

I/O Bridge Inbound Control Match Enable Register
IOB_INB_CONTROL_MATCH_ENB

Enables the match of the corresponding bit in IOB_INB_CONTROL_MATCH. See
Table 3–1 for address.

I/O Bridge Outbound Data Match Register
IOB_OUTB_DATA_MATCH

This register provides the match pattern for outbound data that is used to set
IOB_CTL_STATUS[OUTB_MAT]. See Table 3–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved
<28:21> MASK R/W 0x0 — Pattern to match on the inbound I/O bus.
<20:17> OPC R/W 0x0 — Pattern to match on the inbound I/O bus.
<16:8> DST R/W 0x0 — Pattern to match on the inbound I/O bus.
<7:0> SRC R/W 0x0 — Pattern to match on the inbound I/O bus.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> DATA R/W 0x0 — Bits that are set in this field enable the corresponding bits in
IOB_INB_DATA_MATCH to be matched.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved
<28:21> MASK R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_INB_CONTROL_MATCH to be matched.
<20:17> OPC R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_INB_CONTROL_MATCH to be matched.
<16:8> DST R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_INB_CONTROL_MATCH to be matched.
<7:0> SRC R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_INB_CONTROL_MATCH to be matched.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> DATA R/W 0x0 — Pattern to match on the outbound I/O bus.
140 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Registers
I/O Bridge Outbound Control Match Register
IOB_OUTB_CONTROL_MATCH

This register provides the match pattern for outbound control that is used to set
IOB_CTL_STATUS[OUTB_MAT]. See Table 3–1 for address.

I/O Bridge Outbound Data Match Enable Register
IOB_OUTB_DATA_MATCH_ENB

Enables the match of the corresponding bit in IOB_OUTB_DATA_MATCH. See Table
3–1 for address.

I/O Bridge Outbound Control Match Enable Register
IOB_OUTB_CONTROL_MATCH_ENB

Enables the match of the corresponding bit in IOB_OUTB_CONTROL_MATCH. See
Table 3–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:26> — RAZ — — Reserved
<25:18> MASK R/W 0x0 — Pattern to match on the outbound I/O bus.
<17> EOT R/W 0 — Pattern to match on the outbound I/O bus.
<16:9> DST R/W 0x0 — Pattern to match on the outbound I/O bus.
<8:0> SRC R/W 0x0 — Pattern to match on the outbound I/O bus.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> DATA R/W 0x0 — Bits that are set in this field enable the corresponding bits in
IOB_OUTB_DATA_MATCH to be matched.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:26> — RAZ — — Reserved
<25:18> MASK R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_OUTB_CONTROL_MATCH to be matched.
<17> EOT R/W 0 — Bits that are set in this field enable the corresponding bits in

IOB_OUTB_CONTROL_MATCH to be matched.
<16:9> DST R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_OUTB_CONTROL_MATCH to be matched.
<8:0> SRC R/W 0x0 — Bits that are set in this field enable the corresponding bits in

IOB_OUTB_CONTROL_MATCH to be matched.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 141

 I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU): IOB Registers
BIST Status of IOB Memories Register
IOB_BIST_STATUS

This register shows the result of the BIST run on the IOB memories. See Table 3–1
for address. A 1 in any of the bits indicates a BIST error. A 0 indicates the BIST
passed or never ran.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:14> — RAZ — — Reserved
<13> ICNR0 RO 0 0 icnr_reg_mem0_bist_status.
<12> IBDR0 RO 0 0 ibdr_bist_req_fifo0_status.
<11> IBDR1 RO 0 0 ibdr_bist_req_fifo1_status.
<10> IBR0 RO 0 0 ibr_bist_rsp_fifo0_status.
<9> IBR1 RO 0 0 ibr_bist_rsp_fifo1_status.
<8> — RAZ — — Reserved
<7> IBRQ0 RO 0 0 ibrq_bist_req_fifo0_status.
<6> IBRQ1 RO 0 0 ibrq_bist_req_fifo1_status.
<5> ICRN0 RO 0 0 icr_ncb_bist_mem0_status.
<4> ICRN1 RO 0 0 icr_ncb_bist_mem1_status.
<3> ICRP0 RO 0 0 icr_pko_bist_mem0_status.
<2> ICRP1 RO 0 0 icr_pko_bist_mem1_status.
<1> IBD RO 0 0 ibd_bist_mem0_status.
<0> ICD RO 0 0 icd_ncb_fifo_bist_status.
142 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 4

cnMIPS™ Cores
This chapter contains the following subjects:

● Overview
● Summary of cnMIPS Core Features
● cnMIPS Core Non-Privileged State
● Cavium-Specific Instruction Summary
● cnMIPS Core Instruction Set Summary
● cnMIPS Core Virtual Addresses and CVMSEG
● Physical Addresses
● IOBDMA Operations
● cnMIPS Core-Memory Reference Ordering
● cnMIPS Core CSR Ordering
● cnMIPS Core Write Buffer
● cnMIPS Core Coprocessor 0 Privileged Registers
● cnMIPS™ Core EJTAG DRSEG Registers
● cnMIPS™ Core EJTAG TAP Registers
● cnMIPS Core Pipelines
● Special MUL Topics
● COP2 Latencies
● cnMIPS Core Hardware Debug Features
● cnMIPS Core Load-Linked / Store-Conditional
● cnMIPS Core Exceptions

Cavium Networks, Inc.’s OCTEON Plus CN50XX architecture is based on officially
licensed MIPS Inc. Technology. For reference to MIPS® Technology found in CN50XX,
you must have the following books:

Table 4–1 MIPS Publications

Publication
Document
Number

EJTAG Specification, Revision 3.10, July 5, 2005 MD00047

MIPS64® Architecture For Programmers
Volume I: Introduction to the MIPS64® Architecture, Revision 2.00, June 8, 2003

MD00083

MIPS64® Architecture For Programmers
Volume II: The MIPS64® Instruction Set, Revision 2.00, June 9, 2003

MD00087

MIPS64® Architecture For Programmers
Volume III: The MIPS64® Privileged Resource Architecture, Revision 2.00, June
9, 2003

MD00091
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 143

 cnMIPS™ Cores: Summary of cnMIPS Core Features
Overview
The OCTEON Plus CN50XX’s cnMIPS™ cores, shown in Figure 4–1, support
MIPS64® version 2 integer instruction set and privileged architecture. CN5010 has
one cnMIPS™ processor core; CN5020 has two cnMIPS™ processor cores.

Instruction fetch/decode operates at two instructions fetched per cycle. Up to two
instructions can be issued per cycle, and one branch prediction per cycle. The cnMIPS
cores have four-entry subroutine return call stacks and hardware instruction
prefetching.

cnMIPS core pipelines are capable of a total of 2.8 GOPS peak (2 cores @ 700 MHz).

The cnMIPS core Load/Store units can do a total of 1.4 billion load/store operations/
sec (two cores, 700 MHz), and have a high-performance coherent memory bus
interface supporting up to 384 Gbps of data transfer.

4.1 Summary of cnMIPS Core Features

4.1.1 MIPS64 Version 2.0 Implementation

● Dual-issue, 5+ stage pipeline

● Up to 700 MHz in 90 nm process

● Floating-point not implemented

● Big and little endian support

● Aggressive conditional clocking for minimal power dissipation

● 32KB, 4-way virtual instruction cache (Icache)
Bitmask LRU or random replacement
Hardware single-bit-error correction

● Hardware instruction prefetching

Figure 4–1 cnMIPS™ Core Block Diagram

64

64

64

64

Pipe 0
instr.

Pipe 1
instr.

D
ec

od
e/

S
lo

t

R
eg

is
te

r F
ile

64

In
st

ru
ct

io
n

C
ac

he
32

K
B

 4
-W

ay

ALU/
Shift/
Mul

ALU/
Shift/
Load/
Store/
Mul/
Misc

64

64

Branch
Prediction
(512 × 2)

Data Cache
/Local Mem

16KB
64-Way

TLB
(64 × 2
Entry)

Write
Buffer
2KB

16-Entry

Miss File
7-Entry

0 1 2 3 4 5 6 7

Store

Add

Security Accelerators

MUL / VMUL

128

256

C
oh

er
en

t M
em

or
y

B
us

In
te

rfa
ce

Commit

Fill
144 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

cnMIPS™ Cores: Summary of cnMIPS Core Features
● 512 entry × 2-bit branch prediction

● Four-entry subroutine-call return stack

● 16KB, 64-way data cache (Dcache)
Fully coherent with all multicore and IO DRAM references
Write-through, Invalidate protocol
Bitmask LRU replacement
Hardware single-bit-error correction

● High-performance coherent memory bus interface

● Up to 7 outstanding fills

● 2KB, 16 entry merging write-buffer

Aggressive merging for highest performance

Allows many outstanding stores

Marked differentiation for looser ordering via SYNCS or SYNCWS

Flushed by a SYNC or SYNCW

Partially flushed by a SYNCS or SYNCWS

High-performance write synchronization

Programmable overflow threshold

Programmable merge closure time-out

4.1.2 Cavium-Specific Architectural Additions

● Cavium-specific instruction additions

Bit-test branches

Bit-field signed extracts

Bit-field clear and insert

Unsigned byte add

Set equals, set not-equals

32-bit and 64-bit population count

RDHWR additions
– 64-bit cycle counter
– fast POW tag switch access

True unaligned loads/stores

New SYNC instructions

PREF implementation
– Many PREFs with different L1/L2 cache behavior
– Don’t write-back operation added

Cache implementation

● Cavium-specific in-core coprocessor 2 security accelerators

CRC (any polynomial 32-bit or less)
Hash (MD5/SHA-1/SHA-256/SHA-512)
3DES
AES
KASUMI
Galois Field Multiplier
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 145

Owner
高亮

Owner
下划线

Owner
下划线

 cnMIPS™ Cores: Summary of cnMIPS Core Features
● Cavium-specific integer multiply unit

64-bit register-direct integer multiply

128-bit and 256-bit product mul/add

● CVMSEG

CVMSEG LM = Dcache partition can be a local memory / scratchpad

– Variable and dynamic size from zero to 54 cache blocks (up to 6912B)

CVMSEG I/O = IOBDMA operations = I/O prefetches into CVMSEG LM

Separate kernel/debug, supervisor, user access

● XKPHYS access for supervisor/user applications

separate enables for memory and I/O spaces

separate enables for supervisor and user

● Read and Execute Inhibit TLB support

4.1.3 Full Privileged Architecture (i.e. Coprocessor 0) Support

● 64-entry TLB

Up to 128 pages

Page sizes from 4KB up to 256MB (1KB not supported)

● Cavium-specific Read Inhibit and Execute Inhibit extensions to PageGrain and
EntryLo* COP0 registers

● SEGBITS = 49

● PABITS = 49

● Virtual Icache

● Soft-reset

Core-selected CIU_PP_RST[RST,RST0] (core must be forced idle)

Chip-wide CIU_SOFT_RST[SOFT_RST]

Core-local EJTAG TAP soft-reset (ECR[PrRst])

● Non-maskable interrupts

Core-selected CIU_NMI[NMI]

CIU watchdog timer expiration for the core

● Interrupts

Three interrupt input wires per core (Cause[IP4, IP3, IP2]) from CIU

– CIU combines all interrupt sources separately for each

– CIU has per-core mailbox registers for inter-core interrupts

No external interrupt controller (EIC)

Vectored interrupts not implemented

● Supervisor mode implemented

● Two performance counters

● Two watchpoints

One instruction-only, one load/store-only

● Hardware-automatic Icache and Dcache repair (by invalidation) on Icache and
Dcache errors

Separate Icache and Dcache error registers for diagnostic purposes.
146 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
矩形

Owner
矩形

Owner
高亮

Owner
高亮

Owner
下划线

Owner
高亮

cnMIPS™ Cores: Summary of cnMIPS Core Features
● HWREna support for Cavium-specific RDHWR additions

● No GPR shadow sets

● No user-mode endian reversal

● No reduced-power modes

● MDMX ASE not implemented

● SmartMIPS ASE not implemented

● MIPS16e not implemented

● Trace Logic not implemented

4.1.4 Full EJTAG Version 3.10 Support

● Single-step implemented

● EJTAG DSEG implemented

DRSEG

DMSEG accesses pass through EJTAG TAP controller

● Four Instruction Breakpoints

ASID compare

● Four Data Breakpoints

Both load and store value compare with byte lanes implemented

ASID compare

● Debug interrupts (DINT) implemented

Core-selected CIU_DINT[DINT]

Debug interrupts from the EJTAG TAP controller

● Multicore Debug Support

Immediate multicore stop on EJTAG breakpoint match

Dedicated multicore communication path for low-impact and very fast
debugging

Global (CIU_GSTOP[GSTOP]) and per-core debug mode counter/ watchdog
stop conditions

● EJTAG PC Sampling Implemented

● Full EJTAG TAP controller support

Special EJTAG chip pin interface

One EJTAG TAP controller per core - EJTAG TAPs from different cores link
serially onto the EJTAG chip pin interface

DMSEG implemented

EJTAGBOOT implemented (for memory-less boot)

Core reset support (ECR[PrRst])

Peripheral reset not supported

● Imprecise debug data breakpoint on load value compare, otherwise all debug
data breakpoints are precise.

● No imprecise bus errors

● No imprecise machine-checks

● No imprecise cache errors
● Internal bus clock never stops

● No soft-reset masking
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 147

 cnMIPS™ Cores: cnMIPS Core Non-Privileged State
4.2 cnMIPS Core Non-Privileged State

Table 4–2 details the non-privileged state of the cnMIPS cores.

NOTE: The cores do not implement floating-point. Otherwise, all instructions
are implemented.

Table 4–2 CPU Visible State Resident in each cnMIPS Core

Register
Implemented/
Not Implemented Comments

32 general-purpose
registers

Implemented

HI and LO registers Implemented

PC Implemented

FPU registers Not implemented Hardware floating point is not supported by the cnMIPS cores

MPL0, MPL1, MPL2 Cavium specific 64-bit multiplier registers used by Cavium Networks’ multiplier additions. Refer
to Section 4.15 on page 194 for more information.
Not present when CvmCtl[NOMUL] = 1.

P0, P1, P2 Cavium specific 64-bit product registers used by Cavium Networks’ multiplier additions. Refer to
Section 4.15 on page 194 for more information.
NOTE: P0, P1, and P2 are made unpredictable by any of the DDIV, DDIVU,

DIV, DIVU, MUL, DMUL, DMULT, MADD, MADDU, MSUB, OR
MSUBU instructions. You must save P0, P1, and P2 before any of these
instructions are executed when a context switch is necessary.

NOTE: Not present when CvmCtl[NOMUL] = 1.

CRCIV<31:0> Cavium specific IV for CRC32 engine

CRCPOLY<31:0> Cavium specific Polynomial for CRC32 engine

CRCLEN<3:0> Cavium specific LEN (number of bytes to add) for CRC32 engine

GFMMUL[1:0]<63:0> Cavium specific Galois Field Multiplier multiplier
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

GFMRESINP[1:0]<63:0> Cavium specific Galois Field Multiplier result/input
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

GFMPOLY<15:0> Cavium specific Galois Field Multiplier polynomial
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

HASHDAT[14:0]<63:0> Cavium specific First part of input data for 512/1024-bit hash
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

HASHIV[7:0]<63:0> Cavium specific Hash IV
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

3DESKEY[2:0]<63:0> Cavium specific 3DES key. 3DESKEY[1:0] also is the KASUMI key when CvmCtl[[KASUMI] = 1.
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

3DESIV<63:0> Cavium specific 3DES IV
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

3DESRESULT<63:0> Cavium specific 3DES result. Also the KASUMI result when CvmCtl[[KASUMI] = 1.
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

AESKEY[3:0]<63:0> Cavium specific AES key
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.
148 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: Cavium-Specific Instruction Summary
4.3 Cavium-Specific Instruction Summary

Table 4–3 lists all Cavium Networks-specific instructions in the cnMIPS core.

AESKEYLEN<1:0> Cavium specific AES key length indicator
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

AESIV[1:0]<63:0> Cavium specific AES IV
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

AESRESINP[1:0]<63:0> Cavium specific AES result/input
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

CVMSEG LM Cavium specific Local Scratchpad Memory

Table 4–2 CPU Visible State Resident in each cnMIPS Core (Continued)

Register
Implemented/
Not Implemented Comments

Table 4–3 Summary of Cavium Networks-specific Instructions

Instruction Comments

BADDU Unsigned byte add. Refer to Appendix A.

BBIT0, BBIT032, BBIT1, BBIT132 Bit-test branches. These instructions consume the MIPS LDC2, LWC2, SDC2,
and SWC2 major opcodes. Refer to Appendix A.

CACHE Cache manipulation instruction. Refer to Appendix A.

DMFC2, DMTC2 3DES:
CVM_MF_3DES_IV
CVM_MF_3DES_KEY
CVM_MF_3DES_RESULT
CVM_MT_3DES_DEC
CVM_MT_3DES_DEC_CBC
CVM_MT_3DES_ENC
CVM_MT_3DES_ENC_CBC
CVM_MT_3DES_IV
CVM_MT_3DES_KEY
CVM_MT_3DES_RESULT

Instructions to use the in-core 3DES Coprocessor. Refer to Appendix A.
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

DMFC2, DMTC2 AES:
CVM_MF_AES_INP0
CVM_MF_AES_IV
CVM_MF_AES_KEY
CVM_MF_AES_KEYLENGTH
CVM_MF_AES_RESINP
CVM_MT_AES_DEC_CBC0
CVM_MT_AES_DEC_CBC1
CVM_MT_AES_DEC0
CVM_MT_AES_DEC1
CVM_MT_AES_ENC_CBC0
CVM_MT_AES_ENC_CBC1
CVM_MT_AES_ENC0
CVM_MT_AES_ENC1
CVM_MT_AES_IV
CVM_MT_AES_KEY
CVM_MT_AES_KEYLENGTH
CVM_MT_AES_RESINP

Instructions to use the in-core AES Coprocessor. Refer to Appendix A.
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 149

 cnMIPS™ Cores: Cavium-Specific Instruction Summary
DMFC2, DMTC2 CRC:
CVM_MF_CRC_IV
CVM_MF_CRC_IV_REFLECT
CVM_MF_CRC_LEN
CVM_MF_CRC_POLYNOMIAL
CVM_MT_CRC_BYTE
CVM_MT_CRC_BYTE_REFLECT
CVM_MT_CRC_DWORD
CVM_MT_CRC_DWORD_REFLECT
CVM_MT_CRC_HALF
CVM_MT_CRC_HALF_REFLECT
CVM_MT_CRC_IV
CVM_MT_CRC_IV_REFLECT
CVM_MT_CRC_LEN
CVM_MT_CRC_POLYNOMIAL
CVM_MT_CRC_POLYNOMIAL_REFLECT
CVM_MT_CRC_VAR
CVM_MT_CRC_VAR_REFLECT
CVM_MT_CRC_WORD
CVM_MT_CRC_WORD_REFLECT

Instructions to use the in-core CRC Coprocessor. Refer to Appendix A.

DMFC2, DMTC2 GFM
CVM_MF_GFM_MUL
CVM_MF_GFM_RESINP
CVM_MF_GFM_POLY
CVM_MT_GFM_MUL
CVM_MT_GFM_RESINP
CVM_MT_GFM_XOR0
CVM_MT_GFM_XORMUL1
CVM_MT_GFM_POLY

Instructions to use the Galois Field Multiplier. Refer to Appendix A.
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

DMFC2, DMTC2 HSH
CVM_MF_HSH_DAT
CVM_MF_HSH_DATW
CVM_MF_HSH_IV
CVM_MF_HSH_IVW
CVM_MT_HSH_DAT
CVM_MT_HSH_DATW
CVM_MT_HSH_IV
CVM_MT_HSH_IVW
CVM_MT_HSH_STARTMD5
CVM_MT_HSH_STARTSHA
CVM_MT_HSH_STARTSHA256
CVM_MT_HSH_STARTSHA512

Instructions to use the in-core HSH Coprocessor. (MD5/SHA-1). Refer to
Appendix A.
NOTE: Not present when CvmCtl[NOCRYPTO] = 1.

DMFC2, DMTC2 KASUMI:
CVM_MF_KAS_KEY
CVM_MF_KAS_RESULT
CVM_MT_KAS_ENC_CBC
CVM_MT_KAS_ENC
CVM_MT_KAS_KEY
CVM_MT_KAS_RESULT

Instructions to use the in-core KASUMI coprocessor. Refer to Appendix A.
NOTE: Not present when CvmCtl[KASUMI] = 0.

DMUL Register-direct 64-bit multiply. Refer to Appendix A.

EXTS, EXTS32, CINS, CINS32 Signed-bit field extract and clear/insert instructions. Refer to Appendix A.

MTM0, MTM1, MTM2, MTP0, MTP1, MTP2 Instructions to move data to/from Cavium-specific multiplier registers. Refer
to Appendix A.
NOTE: Not present when CvmCtl[NOMUL] = 1.

Table 4–3 Summary of Cavium Networks-specific Instructions (Continued)

Instruction Comments
150 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Instruction Set Summary
4.4 cnMIPS Core Instruction Set Summary

Table 4–4 through Table 4–23 list the complete cnMIPS core instruction set.

PREF 4, PREF 5
PREF 28
PREF 29
PREF 30

Prefetch into L1, do not put the block in L2
Prefetch into L2, do not put the block in L1
Don’t-write-back (block locations are unpredictable until stored to).
Prepare for store (block locations are unpredictable until stored to). Refer to
Appendix A.

POP, DPOP Count the number of ones in a 32-bit (POP) or a 64-bit (DPOP) variable. Refer
to Appendix A.

RDHWR 31, RDHWR 30 64-bit cycle counter (31). Fast POW switch access (30). Refer to Appendix A.

SAA, SAAD 32-bit and 64-bit store atomic add instructions. Refer to Appendix A.

SEQ, SEQI, SNE, SNEI SEQ and SNE have functionality similar to SLT. Refer to Appendix A.

SYNCIOBDMA, SYNCS, SYNCW, SYNCWS Memory reference ordering instructions. Refer to Appendix A.

ULD, ULW, USD, USW Unaligned Load / Store instructions. Included when CvmCtl[USEUN] is set.
Refer to Appendix A.

V3MULU, VMULU, VMM0 Large multiply instructions. Refer to Appendix A.
NOTE: Not present when CvmCtl[NOMUL] = 1.

Table 4–3 Summary of Cavium Networks-specific Instructions (Continued)

Instruction Comments

Table 4–4 CPU Arithmetic Instructions

Instruction
Implemented/
Not Implemented Comments

ADD, ADDI, DADD,
DADDI, DSUB, SUB

Implemented

ADDU, ADDIU, DADDU,
DADDIU, DSUBU, SUBU

Implemented

BADDU Implemented (Cavium specific) Unsigned byte add. Refer to Appendix A.

CLO, CLZ, DCLO, DCLZ Implemented

DDIV, DDIVU, DIV, DIVU Implemented These instructions make the Cavium large multiply registers P0,
P1, and P2 unpredictable.

DMUL Implemented (Cavium specific) Register-direct 64-bit multiply. Refer to Appendix A. This
instruction makes the Cavium large multiply registers P0, P1, and
P2 unpredictable.

DMULT, DMULTU, MULT,
MULTU

Implemented These instructions make the Cavium large multiply registers P0,
P1, and P2 unpredictable.

DPOP Implemented (Cavium specific) 64-bit population count. Refer to Appendix A.

MUL, MADD, MADDU,
MSUB, MSUBU

Implemented These instructions make the Cavium large multiply registers P0,
P1, and P2 unpredictable.

POP Implemented (Cavium specific) 32-bit population count. Refer to Appendix A.

SEB, SEH Implemented

SEQ, SEQI, SNE, SNEI Implemented (Cavium specific) Equal/not equal comparison. Refer to Appendix A.

SLT, SLTI, SLTIU, SLTU Implemented
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 151

Owner
高亮

 cnMIPS™ Cores: cnMIPS Core Instruction Set Summary

VMM0, V3MULU, VMULU Implemented (Cavium specific) Large multiplies. Refer to Appendix A.

Table 4–4 CPU Arithmetic Instructions (Continued)

Instruction
Implemented/
Not Implemented Comments

Table 4–5 CPU Branch and Jump Instructions

Instruction
Implemented/
Not Implemented Comments

BBIT0, BBIT032, BBIT1,
BBIT132

Implemented (Cavium specific) New bit test instructions not in the MIPS64 architecture.
These instructions consume the MIPS LDC2, LWC2, SDC2, and
SWC2 major opcodes. They are not, however, considered coprocessor
instructions. Refer to Appendix A.

BEQ (B), BGEZ, BGTZ,
BGEZAL (BAL), BLTZAL,
BLEZ, BLTZ, BNE,
J, JR, JAL, JALR.HB,
JR.HB,

Implemented

BEQL, BGEZALL,
BGEZL, BGTZL, BLEZL,
BLTZALL, BLTZL, BNEL

Implemented Deprecated. Software is strongly encouraged to avoid use of the
Branch likely instructions.

Table 4–6 CPU Instruction Control Instructions

Instruction
Implemented/
Not Implemented Comments

NOP, SSNOP, EHB Implemented

Table 4–7 CPU Load, Store, and Memory Control Instructions

Instruction
Implemented/
Not Implemented Comments

LB, LBU, SB Implemented

LD, LH, LHU, LW, LWU,
SD, SH, SW

Implemented as specified in the
MIPS specifications when
CvmCtl[REPUN] is clear.
Unaligned memory references
are automatically completed by
hardware when
CvmCtl[REPUN] is set.

When CvmCtl[REPUN] is set, unaligned memory addresses are not
trapped, they are instead completed by the hardware. The hardware
cost is ~6 extra cycles when the different bytes required by the
operation cross an aligned 64-bit boundary, so the ULD, ULW, USD,
and USW instructions may be advantageous in this case. Refer to
Appendix A for descriptions of the ULD, ULW, USD, and USW
instructions.

LL, LLD, SC, SCD Implemented Refer to “cnMIPS Core Load-Linked / Store-Conditional” on page 200.

LDL, LWL, SDL, SWL
LDR, LWR, SDR, SWR

Implemented when
CvmCtl[USEUN] is clear.

The LDL, LWL, SDL, and SWL instruction opcodes are otherwise the
ULD, ULW, USD, and USW instructions or NOPs when
CvmCtl[USEUN] is set. Refer to Appendix A for descriptions of the
ULD, ULW, USD, and USW instructions.

PREF Implemented (Cavium specific) Prefetch instructions. Refer to Appendix A.

SAA, SAAD Implemented (Cavium specific) 32-bit and 64-bit store atomic add instructions. Refer to Appendix A.

SYNC Implemented

SYNCI Implemented Flushes the entire Icache. SYNCI instructions never match a
watchpoint/breakpoint on CN50XX.
152 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Instruction Set Summary
SYNCIOBDMA, SYNCS,
SYNCW, SYNCWS

Implemented (Cavium specific) SYNC instructions not included in the MIPS ISA. Refer to Appendix A.

ULD, ULW, USD, USW Cavium-specific instructions
that are available when
CvmCtl[USEUN] is set

Unaligned Load and Store operations (ULW, USW = 32-bit, ULD, USD
= 64-bit).
Instructions included when CvmCtl[USEUN] is set. Consume the LDL,
LWL, SDL, SWL, LDR, LWR, SDR, SWR opcodes
whenCvmCtl[USEUN] is set. Refer to Appendix A.

Table 4–7 CPU Load, Store, and Memory Control Instructions (Continued)

Instruction
Implemented/
Not Implemented Comments

Table 4–8 CPU Logical Instructions

Instruction
Implemented/
Not Implemented Comments

AND, ANDI, LUI, NOR,
OR, ORI, XOR, XORI

Implemented

Table 4–9 CPU Insert/Extract Instructions

Instruction
Implemented/
Not Implemented Comments

DEXT, DEXTM, DEXTU,
DINS, DINSM, DINSU,
DSBH, DSHD, EXT, INS,
WSBH

Implemented

EXTS, EXTS32, CINS,
CINS32

Implemented (Cavium specific) Signed bit field extract and clear/insert instructions not included in the
MIPS64 architecture. Refer to Appendix A.

Table 4–10 CPU Move Instructions

Instruction
Implemented/
Not Implemented Comments

MFHI, MFLO, MTHI,
MTLO, MOVN, MOVZ

Implemented

MOVF, MOVT Not implemented cnMIPS cores do not implement floating point.

MTM0, MTM1, MTM2,
MTP0, MTP1, MTP2,

Implemented (Cavium specific) Instructions to move data to/from Cavium-specific multiplier registers.
Refer to Appendix A.

RDHWR Implemented (Cavium specific) RDHWR 30, 31 added beyond the RDHWR 0, 1, 2, 3 already in MIPS
Specifications. Refer to Appendix A.

Table 4–11 CPU Shift Instructions

Instruction
Implemented/
Not Implemented Comments

DROTR, DROTR32, DROTRV, ROTR, ROTRV
DSLL, DSLL32, DSLLV, DSRA, DSRA32, DSRAV,
DSRL, DSRL32, DSRLV,
SLL, SLLV, SRA, SRAV, SRL, SRLV

Implemented
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 153

 cnMIPS™ Cores: cnMIPS Core Instruction Set Summary

Table 4–12 CPU Trap Instructions

Instruction
Implemented/
Not Implemented Comments

BREAK, SYSCALL, TEQ, TEQI, TGE,
TGEI, TGEIU, TGEU, TLT, TLTI, TLTIU,
TLTU, TNE, TNEI

Implemented

Table 4–13 FPU Arithmetic Instructions

Instruction
Implemented/
Not Implemented Comments

All Not Implemented cnMIPS cores do not implement floating point.

Table 4–14 FPU Branch Instructions

Instruction
Implemented/
Not Implemented Comments

All Not Implemented cnMIPS cores do not implement floating point.

Table 4–15 FPU Compare Instructions

Instruction
Implemented/
Not Implemented Comments

All Not Implemented cnMIPS cores do not implement floating point.

Table 4–16 FPU Convert Instructions

Instruction
Implemented/
Not Implemented Comments

All Not Implemented cnMIPS cores do not implement floating point.

Table 4–17 FPU Load, Store, and Memory Control Instructions

Instruction
Implemented/
Not Implemented Comments

All Not Implemented cnMIPS cores do not implement floating point.

Table 4–18 FPU Move Instructions

Instruction
Implemented/
Not Implemented Comments

All Not Implemented cnMIPS cores do not implement floating point.

Table 4–19 Coprocessor Branch Instructions

Instruction
Implemented/
Not Implemented Comments

BC2F, BC2T, BC2FL, BC2TL Not implemented
154 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Instruction Set Summary
Table 4–20 Coprocessor Execute Instructions

Instruction
Implemented/
Not Implemented Comments

COP2 Not Implemented

Table 4–21 Coprocessor Load and Store Instructions

Instruction
Implemented/
Not Implemented Comments

LDC2, LWC2, SDC2, SWC2 Not Implemented These opcodes are consumed by the Cavium-specific BBIT0, BBIT032,
BBIT1, BBIT132 instructions. Refer to Appendix A.

Table 4–22 Coprocessor Move Instructions

Instruction
Implemented/
Not Implemented Comments

CFC2, CTC2, MFC2, MTC2,
MFHC2, MTHC2

Not Implemented

DMFC2, DMTC2 Implemented (Cavium specific) Refer to Appendix A.

Table 4–23 Privileged Instructions

Instruction
Implemented/
Not Implemented Comments

CACHE Implemented (Cavium specific) Cache manipulation instruction, addresses never-match watchpoints/
breakpoints on CN50XX. Refer to Appendix A.

ERET, DI, EI, DMFC0,
DMTC0, MFC0, MTC0

Implemented

RDPGPR, WRPGPR Implemented Implemented as a register-to-register copy. The cnMIPS cores have no
shadow register set, so both rd and rt refer to the main register file.

TLBP, TLBR, TLBWI,
TLBWR

Implemented A machine-check may occur during a TLB write. This is what will
happen to the TLB contents when a machine-check is taken: The even
entry will be written, the VPN side and odd entry will be unchanged.

WAIT Implemented CvmCtl[DISWAIT] changes WAIT into a NOP.

Table 4–24 EJTAG Instructions

Instruction
Implemented/
Not Implemented Comments

DERET, SDBBP Implemented See “cnMIPS Core Hardware Debug Features” on page 197.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 155

 cnMIPS™ Cores: cnMIPS Core Virtual Addresses and CVMSEG
4.5 cnMIPS Core Virtual Addresses and CVMSEG

SEGBITS = 49, as per the MIPS specifications.

When CvmMemCtl Register[CVMK/S/U] is set for the appropriate mode (Kernel,
Supervisor, or User), virtual addresses for loads/stores in the KSEG3 range 0xFFFF
FFFF FFFF 8000 to 0xFFFF FFFF FFFF BFFF are called CVMSEG references and
are treated specially by the cnMIPS cores. Instruction references to these addresses
are always treated as normal KSEG3 references in the cores. When
CvmMemCtl[CVM*] is clear for the appropriate mode, these CVMSEG addresses act
as normal MIPS-defined KSEG3 addresses.

CVMSEG has two parts:

CVMSEG LM = 0xFFFF FFFF FFFF 8000 to 0xFFFF FFFF FFFF 9FFF
CVMSEG IO = 0xFFFF FFFF FFFF A000 to 0xFFFF FFFF FFFF BFFF

CVMSEG LM is a segment that accesses portions of the Dcache as a local memory;
the larger CVMSEG is, the smaller the cache is. CvmMemCtl[LMEMSZ] selects the
size of CVMSEG LM, which is in cache blocks. CvmMemCtl[LMEMSZ] can legally
range from zero to 54 cache blocks (i.e. CVMSEG LM is between zero and 6192
bytes). The legal CVMSEG LM addresses (when CvmMemCtl[LMEMSZ] is larger
than zero) start at virtual address 0xFFFF FFFF FFFF 8000 and may increase up to
the maximum possible legal CVMSEG LM virtual address 0xFFFF FFFF FFFF
9AFF (which is only legal when CvmMemCtl[LMEMSZ] is 54). CVMSEG LM
references above the range allocated by CvmMemCtl[LMEMSZ] (but at 0xFFFF
FFFF FFFF 9FFF or below) cause an address error, but stores to these illegal
addresses may not be stopped by the hardware, so can cause cache corruption.

CVMSEG I/O is a segment that has only one legal address that does not give address
errors:

0xFFFF FFFF FFFF A200

This address can only be referenced by SD instructions. SD instructions to this
CVMSEG I/O address cause the core hardware to issue IOBDMA commands.
IOBDMA commands return data from I/O bus devices into selected CVMSEG LM
locations.

Store instructions to CVMSEG LM execute so early in the processor pipeline that the
core implementation cannot stop them in certain unusual circumstances, causing
anomalies. One such anomaly is that cache corruption can occur when an address
error occurs solely due to exceeding the CvmMemCtl[LMEMSZ] limit on CVMSEG
LM size. As “address error on data access” in Table 4–36 indicates, these erroneous
CVMSEG LM stores can corrupt other areas of the Dcache. Either these erroneous
stores must not be present in proper applications or, if necessary, software can
invalidate the Dcache on these CVMSEG LM store range address errors to reduce
the likelihood of problems. Another anomaly is the early execution of CVMSEG LM
stores due to implementation-specific traps related to the presence of virtual-to-
physical aliases in the cache. When these aliases are present near when an interrupt
or other asynchronous exception occurs, in rare circumstances it is possible that the
core will have executed the CVMSEG LM store, though the exception program
counters indicate that the store has not yet executed. This early CVMSEG LM store
execution anomaly is not generally a problem, as there will never be another load or
store between the exception PC and the store to CVMSEG LM when the CVMSEG
LM store executes early. When the software returns from the exception in this case,
the store will re-write CVMSEG LM and the software will likely not notice the
anomaly. Nevertheless, it is possible to observe the early CVMSEG LM stores when
debugging or in other circumstances.
156 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

cnMIPS™ Cores: Physical Addresses
4.6 Physical Addresses

The physical address is described in Figure 4–2. The number of physical address bits
(PABITS) is 49, as per the MIPS specifications.

● IO - I/O bit

● Major did - Directs the request to the correct hardware block.

● subdid - Directs the request within the hardware block.

● offset - Either L2/DRAM addresses or I/O Bus device addresses.

Physical Address Detail:

Figure 4–2 49-bit Physical Address Format

NOTE: CN50XX does not use the MIPS-defined cache-coherence attributes to
determine cacheability. Only the physical addresses determine
cacheability. Except for physical addresses in the range 0x1000 0000 to
0x1FFF FFFF, CN50XX caches all addresses that have I/O bit clear.
CN50XX does not cache an address that either has the I/O bit set or is
in the range
0x1000 0000 to 0x1FFF FFFF. These addresses are called I/O space
addresses.

NOTE: The physical addressing implementation does not support uncached
DRAM addressing or cached I/O space accesses.

48 4743 42 40 39 36 35 0

IO Major DID sub-DID
Reserved

0
offset

Table 4–25 cnMIPS Core Physical Addresses

Physical Addresses Mem / Bus Comment

0x0 0000 0000 0000 to
0x0 0000 0FFF FFFF

DR0 DRAM Cached (first 256 MB of DRAM)

0x0 0000 1000 0000 to
0x0 0000 1FFF FFFF

Boot Bus Uncached I/O space. converted to:
0x1 0000 1000 0000 to
0x1 0000 1FFF FFFF

0x0 0000 2000 0000 to
0x0 0003 FFFF FFFF

DR2 DRAM Cached (all DRAM memory above the first
512 MB)

0x0 0004 1000 0000 to
0x0 0004 1FFF FFFF

DR1 DRAM Cached (second 256 MB of DRAM)

0x1 0000 0000 0000 to
0x1 0000 FFFF FFFF

Boot bus Uncached (I/O space)

0x1 0700 0000 0000 to
0x1 0700 0000 08FF

CIU and GPIO NCB type CSRs Uncached (I/O space)

0x1 1800 0000 0000 to
0x1 1800 0000 1FFF

MIO BOOT, LED, FUS, TWSI, UART0,
UART1, SMI RML type CSRs

Uncached (I/O space)

0x1 1800 0800 0000 to
0x1 1800 0800 1FFF

GMX0 RML type CSRs Uncached (I/O space)

0x1 1800 2800 0000 to
0x1 1800 2800 01FF

FPA RML type CSRs Uncached (I/O space)

0x1 1800 4000 0000 to
0x1 1800 4000 000F

RNM RML type CSRs Uncached (I/O space)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 157

Owner
高亮

Owner
下划线

Owner
下划线

 cnMIPS™ Cores: Physical Addresses
0x1 1800 5000 0000 to
0x1 1800 5000 1FFF

PKO RML type CSRs Uncached (I/O space)

0x1 1800 5800 0000 to
0x1 1800 5800 1FFF

TIM RML type CSRs Uncached (I/O space)

0x1 1800 6800 0000 to
0x1 1800 6800 1FFF

USBC RML CSRs Uncached (I/O space)

0x1 1800 8000 0000 to
0x1 1800 8000 07FF

L2C RML type CSRs Uncached (I/O space)

0x1 1800 8800 0000 to
0x1 1800 8800 007F

LMC RML type CSRs Uncached (I/O space)

0x1 1800 A000 0000 to
0x1 1800 A000 1FFF

PIP RML type CSRs Uncached (I/O space)

0x1 1800 B000 0000 to
0x1 1800 B000 03FF

ASX0 RML type CSRs Uncached (I/O space)

0x1 1800 F000 0000 to
0x1 1800 F000 07FF

IOB RML type CSRs Uncached (I/O space)

0x1 1900 0000 0000 to
0x1 190F FFFF FFFF

PCI Bus Config/IACK/Special space Uncached (I/O space)

0x1 1A00 0000 0000 to
0x1 1A0F FFFF FFFF

PCI Bus I/O space Uncached (I/O space)

0x1 1B00 0000 0000 to
0x1 1B0F FFFF FFFF

PCI Bus Memory space (subdid 3) Uncached (I/O space)

0x1 1C00 0000 0000 to
0x1 1C0F FFFF FFFF

PCI Bus Memory space (subdid 4) Uncached (I/O space)

0x1 1D00 0000 0000 to
0x1 1D0F FFFF FFFF

PCI Bus Memory space (subdid 5) Uncached (I/O space)

0x1 1E00 0000 0000 to
0x1 1E0F FFFF FFFF

PCI Bus Memory space (subdid 6) Uncached (I/O space)

0x1 1F00 0000 0000 to
0x1 1F0F FFFF FFFF

NPI NCB type CSRs, doorbells Uncached (I/O space)

0x1 2800 0000 0000 to
0x1 280F FFFF FFFF

FPA Pool 0 Allocate/Free operations Uncached (I/O space)

0x1 2900 0000 0000 to
0x1 290F FFFF FFFF

FPA Pool 1 Allocate/Free operations Uncached (I/O space)

0x1 2A00 0000 0000 to
0x1 2A0F FFFF FFFF

FPA Pool 2 Allocate/Free operations Uncached (I/O space)

0x1 2B00 0000 0000 to
0x1 2B0F FFFF FFFF

FPA Pool 3 Allocate/Free operations Uncached (I/O space)

0x1 2C00 0000 0000 to
0x1 2C0F FFFF FFFF

FPA Pool 4 Allocate/Free operations Uncached (I/O space)

0x1 2D00 0000 0000 to
0x1 2D0F FFFF FFFF

FPA Pool 5 Allocate/Free operations Uncached (I/O space)

0x1 2E00 0000 0000 to
0x1 2E0F FFFF FFFF

FPA Pool 6 Allocate/Free operations Uncached (I/O space)

0x1 2F00 0000 0000 to
0x1 2F0F FFFF FFFF

FPA Pool 7 Allocate/Free operations Uncached (I/O space)

0x1 4000 0000 0000 to
0x1 4000 0000 07FF

RNG Load/IOBDMA operations Uncached (I/O space)

0x1 4F00 0000 0000 to
0x1 4F00 0000 07FF

IPD NCB type CSRs Uncached (I/O space)

0x1 5200 0000 0000 to
0x1 5200 0003 FFFF

PKO doorbell store operations Uncached (I/O space)

Table 4–25 cnMIPS Core Physical Addresses (Continued)

Physical Addresses Mem / Bus Comment
158 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: Physical Addresses
0x1 6000 0000 0000 to
0x1 600F FFFF FFFF

POW getwork load/iobdma operations, store
work operations

Uncached (I/O space)

0x1 6100 0000 0000 to
0x1 610F FFFF FFFF

POW status load operations, store work
operations

Uncached (I/O space)

0x1 6200 0000 0000 to
0x1 6200 0000 FFFF

POW memory load operations Uncached (I/O space)

0x1 6300 0000 0000 to
0x1 630F FFFF FFFF

POW index loads, store operations Uncached (I/O space)

0x1 6300 0000 0000 to
0x1 6300 0000 0007

POW NullRd load operations Uncached (I/O space)

0x1 6700 0000 0000 to
0x1 6700 0000 03FF

POW NCB type CSRs Uncached (I/O space)

0x1 6F00 0000 0000 to
0x1 6F00 0000 0FFF

USBN NCB type CSRs Uncached (I/O space)

0x1 F000 0000 0000 to
0x1 F00F FFFF FFFF

FAU operations Uncached (I/O space)

Table 4–25 cnMIPS Core Physical Addresses (Continued)

Physical Addresses Mem / Bus Comment
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 159

 cnMIPS™ Cores: IOBDMA Operations
4.7 IOBDMA Operations

The cnMIPS core issues an IOBDMA request when the store that references the
CVMSEG I/O address issues, and does not wait for the return data to be deposited
into the selected CVMSEG LM addresses before executing subsequent instructions.
SYNCIOBDMA or SYNC instructions stall subsequent instructions until the
CVMSEG LM addresses are updated for all prior IOBDMA operations, however.
These IOBDMA operations are “I/O prefetches” since IOBDMA operations allow
multiple outstanding “loads” to I/O Bus devices and also can reference more than 64-
bits.

See Figure 4–3. The 64-bit store data format for a CVMSEG I/O store access is:

● scraddr - A (64-bit word) CVMSEG starting location where the core puts the
result. The effective CVMSEG LM is the combination of the 8-bit scradr field in
the store data of the IOBDMA together with the
CvmMemCtl[IOBDMASCRMSB] extension bits.

effective_scraddr = scraddr + (CvmMemCtl[IOBDMASCRMSB] << 8)

The corresponding CVMSEG LM is the combination starting address is:

0xFFFF FFFF FFFF 8000 + (8 × effective_scraddr).

● len - The number of 64-bit words in the result. The results are placed
sequentially in CVMSEG LM from the starting address indicated by scraddr.

● Major did - Directs the request to the correct hardware block, as with a normal
physical address.

● subdid - Directs the request within the hardware block.

● offset - Interpreted by the hardware on the I/O bus as with offset for a normal
physical address.

A CVMSEG I/O store causes an I/O bus transaction using the did and offset. This I/O
bus transaction is very similar to the transaction created to service an I/O load. The
difference is that IOBDMA operations do not stall the core and can return a vector of
64-bit words.

IOBDMA constraints:

● effective_scraddr + len ≤ (CvmMemCtl[LMEMSZ]×16)

● len > 0

● if len is 2 or 3, then (scraddr<1:0>) must not be 3

● if len is 4 or greater, then (scraddr<0>) must be zero

Figure 4–3 64-bit IOBDMA Store Data Format

63 56 55 48 47 43 42 40 39 36 35 0

scraddr len
Major
DID

sub
DID

Rsvd
0

offset

NOTE: IOBDMA operations can start only in the first 2KB of CVMSEG LM,
unless CvmMemCtl[IOBDMASCRMSB] is non-zero.

NOTE: IOBDMA operations cannot reference L2/DRAM addresses.
160 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

cnMIPS™ Cores: cnMIPS Core-Memory Reference Ordering
4.8 cnMIPS Core-Memory Reference Ordering

L2/DRAM stores may be buffered by cnMIPS cores until a subsequent SYNC,
SYNCS, SYNCW, or SYNCWS instruction issues. The cnMIPS cores may choose to
issue these buffered stores into the system memory in any order when there are no
SYNC* instructions issued by the cores.

The cnMIPS core’s store-buffering architecture is important for correct functionality
and for best performance. Proper use of the cnMIPS core’s synchronization
instructions is essential with the cnMIPS core’s store-buffering architecture, and
code optimized for cnMIPS cores may be different from code optimized for other
architectures.

For an example of the architectural importance of the cnMIPS core’s store-buffering
behavior, consider lock releases. Lock releases are typically ordinary stores to a lock
variable indicating that the lock is no longer held. For best performance with
multiple cores, this releasing store should typically be made visible to other cores
quickly so that the other cores have the opportunity to obtain the lock soon after it is
released.

Without a synchronization instruction (typically, a SYNCW or SYNCWS), the
cnMIPS core does not by default make a store visible quickly since it aggressively
buffers stores. Thus, for best lock performance on cnMIPS core, you should typically
follow the releasing-store instruction with a synchronization instruction. This
synchronization instruction is not be needed with many other memory architectures.

The description of the SYNCW instruction in Appendix A details a similar producer/
consumer example. Section 4.10 discusses more about the cnMIPS core’s store-
buffering implementation.

The cnMIPS core differentiates L2/DRAM references based the MIPS cache-
coherence attribute attached to the references as follows:

This differentiation is only used for ordering purposes. System performance can be
higher when load/store operations are unordered. All L2/DRAM loads/store
operations are ordered by SYNC and SYNCW instructions. Marked L2/DRAM loads/
stores are not ordered by SYNCS and SYNCWS instructions, so SYNCS and
SYNCWS can be higher performance.

● A SYNC guarantees that all prior load and IOBDMA operations complete and all
prior (possibly buffered) L2/DRAM store operations are visible to all CN50XX
devices before any subsequent load, IOBDMA, or L2/DRAM store operations
from the core can issue. A SYNCS is identical to a SYNC, except that it does not
order marked L2/DRAM load and store operations.

● A SYNCW guarantees that all prior (possibly buffered) L2/DRAM store
operations are visible to all CN50XX devices before any subsequent store
operations can issue to the system. SYNCWs are considerably faster than SYNCs
since they do not cause the pipeline to stall (subsequent store operations are
buffered until the prior store operations are visible to all devices). A SYNCWS is
identical to a SYNCW, except that it does not order marked L2/DRAM store
operations.

Cache Coherence Attribute Relevance to L2/DRAM References
0–6 Unmarked

7 Marked
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 161

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

 cnMIPS™ Cores: cnMIPS Core CSR Ordering
Table 4–26 summarizes what is ordered by the different synchronization instructions
available on CN50XX.

Note, however, that I/O space store operations are posted, which means that the core
considers I/O store operations to be complete when they reach the coherent memory
bus (CMB). There is no direct synchronization support available to guarantee that a
prior I/O store reached a given device. When software must guarantee that an I/O
store completes before proceeding with references, it must follow the store operation
with a load operation or IOBDMA/SYNCIOBDMA.

I/O space load/store/IOBDMA requests from a single core to a single device arrive on
the CMB and I/O bus in the same order that the instructions issue, so this
synchronization often is not needed.

SYNCW/SYNCWS instructions guarantee that all prior I/O-space store/IOBDMA
operations are on the CMB before subsequently ordered store/IOBDMA operations
become visible to the rest of the system.

SYNC/SYNCS instructions enforce all constraints of a SYNCW/SYNCWS
instruction, and also enforces ordering for I/O-space loads. CN50XX guarantees the
ordering of all I/O space-load/store/IOBDMA requests from the CMB to the IOB, so
SYNCW/SYNCWS and SYNC/SYNCS instructions can be used by software to
constrain ordering between I/O bus requests from different cores. cnMIPS core
SYNCW/SYNCWS instructions are considerably faster for these I/O space references
for the same reason that they are for L2/DRAM references.

SYNCIOBDMA instructions guarantee that prior IOBDMA requests have arrived at
the device (and the response has been returned) before any subsequent load/store/
IOBDMA can issue. SYNC/SYNCS instructions enforces the same ordering
constraints as SYNCIOBDMA, and also orders ordinary loads/stores.

4.9 cnMIPS Core CSR Ordering

Note that the Section 4.8 I/O load/store ordering description refers only to the
ordering of the load and store operations on the CMB and I/O bus. In the cnMIPS
core design, when the device has CSRs of type RSL, the order of the I/O load/store/
IOBDMA operations on the I/O bus may not match the order in which the I/O load/
store/IOBDMA operations are received and executed by the device on the I/O bus.

This complicating factor occurs because CN50XX services RSL-type CSR references
indirectly off the I/O bus, and this indirect mechanism is much slower than direct
accesses via the I/O bus. Later I/O-bus direct references to the device may bypass
earlier RSL references. For example, the FPA (described in Chapter 6) has RSL-type
CSRs as well as I/O-bus direct FPA operations to free/allocate buffers. Without
synchronization, a prior CSR write that configures FPA may be delayed until after a
subsequent FPA free operation, causing FPA to malfunction. Software must insert

Table 4–26 Synchronization Instruction Ordering

Synchronization
Instruction

Unmarked L2/DRAM Marked L2/DRAM I/O

IOBDMALoad Store Load Store Load Store

SYNC Yes Yes Yes Yes Yes Yes Yes

SYNCS Yes Yes No No Yes Yes Yes

SYNCW No Yes No Yes No Yes No

SYNCWS No Yes No No No Yes No

SYNCIOBDMA No No No No No No Yes
162 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
高亮

cnMIPS™ Cores: cnMIPS Core Write Buffer
synchronization to force prior RSL-type writes to complete before issuing the
subsequent FPA operations to avoid these malfunctions caused by the hardware re-
ordering of RSL CSR references.

Whenever it is necessary for cnMIPS core software to guarantee completion of prior
store operations to RSL-type CSRs before subsequent operations, as in the FPA
example just described, the core can perform either of the following operations
● Issue a load request to any RSL-type CSR

● Issue an IOBDMA request to any RSL-type CSR followed by a SYNCIOBDMA
request

As CN50XX services all load/store/IOBDMA operations to any RSL-type CSR in the
same order that they appear on the I/O bus, these load/IOBDMA operations flush all
prior store/ load/IOBDMA operations. In general, write operations to RSL-type CSRs
should be infrequent in CN50XX, and liberal doses of this RSL synchronization
should not cause performance problems.

4.10 cnMIPS Core Write Buffer

The behavior of the write buffers in the cnMIPS cores is important for correct
functionality and for best performance. There are 16 write-buffer entries in each core,
and each can merge multiple individual stores up to a full 128-byte cache line. A
write-buffer entry is marked if its merged stores are all marked.

The write buffer can only stall the instruction pipeline when SYNC/SYNCS
instructions execute or when there are no write-buffer entries available. SYNCW/
SYNCWS instructions never stall the instruction pipeline, and are queued and
complete in parallel with instruction issue.

A SYNC/SYNCW forces all write-buffer entries to be sent to the CMB. A SYNCS/
SYNCWS does the same, except that marked L2/DRAM write-buffer entries are
unmodified. The core does not merge any subsequent store into any write buffer
entries that are sent to the CMB, but continues merging into marked L2/DRAM write
buffer entries after a SYNCS/SYNCWS.

All sent write-buffer entries commit before any instruction following a SYNC/SYNCS
issues.

Following a SYNCW/SYNCWS instruction, the core does not send any subsequently
created write-buffer entries to the CMB until after all previously sent write-buffer
entries commit. (Note that commit order is, effectively, the store order that is visible
to the other cores.)

The write buffer aggressively merges L2/DRAM stores. If an L2/DRAM store is in the
same 128-byte (naturally aligned) cache block, the store merges into the existing
entry. Otherwise, stores allocate new write buffer entries. L2/DRAM stores normally
remain in the write buffer until one of the following occurs:

● A SYNC or SYNCW instruction executes.

● A SYNCS or SYNCWS instruction executes and the write-buffer entry merged
at least one unmarked store.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 163

Owner
高亮

Owner
矩形

Owner
下划线

Owner
下划线

 cnMIPS™ Cores: cnMIPS Core Write Buffer
● The write buffer entry times out. CvmMemCtl[WBFLTIME] controls the
expiration interval of unmarked L2/DRAM write buffer entries. The expiration
interval starts when the write buffer entry is last referenced (unless
CvmMemCtl[DISMRGCLRWBTO] is set, when it starts when the write buffer
entry is allocated). The timeout interval can be as small as 2K cycles, and as
large 500K cycles. (Larger CvmMemCtl[WBFLTIME] values result in larger
timeouts.) Marked L2/DRAM write buffer entries always use the maximum
timeout interval (unless CvmMemCtl[DISMARKWBLONGTO] is set, when the
timeout of marked entries is the same as other entries).

● A load/PREF instruction to the same cache block misses in the (L1) Dcache.

● An SC/SCD instruction executes with the following properties:
hits in the data cache
to the same cache block

● The write buffer entry is ejected to make space for other write-buffer entries.
The core ejects blocks to make space when there are more than
CvmMemCtl[WBTHRESH] active write-buffer entries. (Smaller
CvmMemCtl[WBTHRESH] values eject blocks sooner, reducing merging, but
leave more write-buffer entries available for later use. Larger
CvmMemCtl[WBTHRESH] values eject blocks later, increasing merging, but
may result in more pipeline stalls because write-buffer entries are not available.)

SC/SCD instructions are treated specially in the write buffer. SC/SCD instructions
that miss in the data cache do nothing. SC/SCD instructions that hit evict any
matching write-buffer entry that was previously in the write buffer. In addition, all
SC/SCD instructions that hit in the data cache create a write-buffer entry that is
immediately pushed to the CMB. For many effects, it appears as if the SC/SCD
instructions bypass the write buffer.

I/O write operations and IOBDMA operations create write-buffer entries. But they
never merge with any other accesses, and are always immediately pushed to the
CMB, through the I/O bridge, and onto the I/O buses. For many effects, it appears as
if the I/O write operations and IOBDMA operations bypass the write buffer.

Don’t-Write-Backs (i.e. PREF 29s, see Appendix A) invalidate earlier write buffer
entries that are to the same cache block as the Don’t-Write-Back. A Don’t-Write-Back
also creates a write buffer entry that is immediately pushed to the CMB.

Prepare For Stores (i.e. PREF 30s, see Appendix A) create write buffer entries like
ordinary stores, but also make the (either merged into or newly created) write-buffer
entry a full cache block write. Note that Prepare For Stores do not update the L1
Dcache, so it is possible for the Dcache copy of the block to become inconsistent with
the value that is eventually written into L2/DRAM by the write buffer created for the
Prepare For Store. The specification of Prepare For Store defines the value of the
bytes in the cache block to be unpredictable after the Prepare For Store, so this is
acceptable. If software needs these bytes set to a predictable value (in both the
Dcache and the L2/DRAM), it must eventually follow the Prepare For Store with
stores to the bytes of interest in the cache block (or with stores to the cache block by
another core or device, which invalidates the Dcache).

CvmMemCtl[NOMERGE,ALLSYNCW] are additional debug bits. When
CvmMemCtl[NOMERGE] is set, writes do not merge and are forced immediately to
the L2. When both CvmMemCtl[NOMERGE,ALLSYNCW] are set, these stores are
additionally forced to commit in order.
164 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
4.11 cnMIPS Core Coprocessor 0 Privileged Registers

MIPS COP0 is implemented. 64-entry TLB. SEGBITS = PABITS = 49. EJTAG
implemented. CN50XX maintains a virtual Icache.

Table 4–27 Coprocessor 0 Register Summary

Register
Implemented/Not
implemented Comments

Index Implemented See page 167

Random Implemented See page 167

EntryLo0 Implemented See page 167

EntryLo1 Implemented See page 167

Context Implemented See page 168

ContextConfig Not Implemented No SmartMIPS ASE.

PageMask Implemented See page 168

PageGrain Implemented See page 168

Wired Implemented See page 169

HWREna Implemented See page 169

BadVAddr Implemented See page 169

Count Implemented See page 169

EntryHi Implemented See page 169

Compare Implemented See page 170

Status Implemented See page 170

IntCtl Implemented See page 171

SRSCtl Implemented See page 171

SRSMap Not Implemented No shadow register set.

Cause Implemented See page 171

EPC Implemented See page 172

PRId Implemented See page 172

Ebase Implemented See page 172

Config Implemented See page 172

Config1 Implemented See page 173

Config2 Implemented See page 173

Config3 Implemented See page 174

LLAddr Not Implemented

WatchLo Two Implemented One instruction-only (reg = 18, sel = 0), one
data-only (reg = 18, sel = 1). See page 174

WatchHi Two Implemented One instruction-only (reg = 19, sel = 0), one
data-only (reg = 19, sel = 1). See page 174

XContext Implemented See page 175

Debug Implemented See page 176

TraceControl Not implemented PDtrace not implemented.

TraceControl2 Not implemented PDtrace not implemented.

UserTraceData Not implemented PDtrace not implemented.

TraceBPC Not Implemented PDtrace not implemented.

DEPC Implemented See page 176
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 165

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
The remainder of this section details the Coprocessor 0 registers in the cnMIPS™
cores.

PerfCnt Two Implemented Four total registers at reg = 25, one set at
sel=0, 1, another set at sel=2, 3. See page 176

ErrCtl Not Implemented

CacheErr Implemented (Cavium-
specific)

reg = 27, Sel = 0 implemented to latch Icache
error information. See “CacheErr (Icache)” on
page 179.

reg = 27, Sel = 1 implemented to latch Dcache
error information. See “CacheErr (Dcache)”
on page 179.

TagLo Implemented (Cavium-
specific)

reg = 28, Sel = 0 (Icache) Implemented. See
“TagLo Register (Icache)” on page 180.

reg = 28, Sel = 2 (Dcache) Implemented. See
“TagLo Register (Dcache)” on page 180.

DataLo Implemented (Cavium-
specific)

reg = 28, Sel = 1 (Icache) Implemented. See
“DataLo Register (Icache)” on page 180.

reg = 28, Sel = 3 (Dcache) Implemented. See
“DataLo Register (Dcache)” on page 181.

TagHi Implemented (Cavium-
specific)

reg = 29, sel = 2 (Dcache) implemented. See
“TagHi Register” on page 181.

DataHi Implemented (Cavium-
specific)

reg = 29, sel = 1 (Icache) implemented. See
“DataHi Register (Icache)” on page 181

reg = 29, sel = 3 (Dcache) implemented. See
“DataHi Register (Dcache)” on page 182

ErrorEPC Implemented See page 178

DESAVE Implemented See page 178

CvmCtl Implemented (Cavium-
specific)

Implemented at reg = 9, sel = 7. Controls the
Icache and instruction issue. See “CvmCtl
Register” on page 182.

CvmMemCtl Implemented (Cavium-
specific)

Implemented at reg = 11, sel = 7. Controls
the cores’ memory system. See “CvmMemCtl
Register” on page 184.

CvmCount Implemented (Cavium-
specific)

Implemented at reg = 9, sel = 6. A 64-bit cycle
counter. See page 185
Read by RDHWR 31

MultiCore
Debug

Implemented (Cavium-
specific)

Implemented at reg = 22, sel = 0. See
page 186
Used for multi-core debugging. See “cnMIPS
Core Hardware Debug Features” on page 197
for more details.

Table 4–27 Coprocessor 0 Register Summary (Continued)

Register
Implemented/Not
implemented Comments
166 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Index Register

CP0 Register 0, Select 0)

● P - Probe Failure. Hardware writes this bit during execution of the TLBP
instruction to indicate whether a TLB match occurred.

● Index - TLB index. Software writes this field to provide the index to the TLB
entry referenced by the TLBR and TLBWI instructions.

Random Register

CP0 Register 1, Select 0

● Random - TLB Random Index

EntryLo0, EntryLo1 Registers

CP0 Registers 2 and 3, Select 0

● RI - Read inhibit. If this bit is set to 1 in a TLB entry, any load instruction that
reads data on the virtual page causes a TLB invalid exception, even if the V
(valid) bit is set. This bit is writable only if PageGrain[RIE] = 1. If
PageGrain[RIE] = 0, this bit is set to 0 on any write to the EntryLo0/1 register,
regardless of the value written.

● XI - Execute inhibit. If this bit is set to 1 in a TLB entry, any attempt to fetch an
instruction causes a TLB invalid exception, even if the V (valid) bit is set. This bit
is writable only if PageGrain[XIE] = 1. If PageGrain[XIE] = 0, this bit is set to 0
on any write to the EntryLo0/1 register, regardless of the value written.

● Fill - Ignored on write, return 0x0 on read.
● PFNX - When PageGrain[ELPA] = 1, the hardware uses the full address width,

with PFNX expanding the PFN field to the full physical address.
When PageGrain[ELPA] = 0, the PFNX is always written to 0x0 on a mtc0/dmtc0
operation to EntryLo0/1. Otherwise, the hardware uses the full address width in
all cases. See “PageGrain Register” on page 168.

cnMIPS™ cores implement a 49-bit physical address requiring a 13-bit PFNX
field.
cnMIPS™ cores do not support 1KB pages.

31 30 6 5 0

P
Reserved

0
Index

31 6 5 0
Reserved

0
Random

When PageGrain[ELPA] = 0:
63 32 31 30 29 6 5 3 2 1 0

Fill RI XI PFN C D V G

When PageGrain[ELPA] = 1:
63 62 61 43 42 30 29 6 5 3 2 1 0

RI XI Fill PFNX PFN C D V G
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 167

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
● PFN - Page Frame Number
● C - Coherency attribute of page. Refer to Section 4.8.
● D - Dirty bit (indicates page is writable)
● V - Valid bit
● G - Global bit

 Context Register

CP0 Register 4, Select 0

● PTEBase - This field is for use by the operating system and is normally written
with a value that allows the operating system to use the Context Register as a
pointer into the current PTE array in memory.

● BadVPN2 - Bad Virtual Page Number/2 field is written by hardware on a miss.

PageMask Register

CP0 Register 5, Select 0

The PageMask register is a read/write register used for reading from and writing to
the TLB.

● Mask - The Mask field is a bit mask in which a 1 bit indicates that the
corresponding bit of the virtual address should not participate in the TLB match.
CN50XX supports the full mask range, and supports all page sizes 4KB, 8KB,
16KB, ... 64MB, 128MB, and 256MB.

● MaskX - CN50XX does not support 1KB pages, so the MaskX field is not used
(writes are ignored, reads as 0).

PageGrain Register

CP0 Register 5, Select 1

See “EntryLo0, EntryLo1 Registers” on page 167 for description for the only effect of
PageGrain[ELPA].

● RIE - Read inhibit enable. When set to 1, EntryLo0/1[RI] is enabled. When
cleared to 0, EntryLo0/1[RI] is disabled and is not writable by software.

● XIE - Execute inhibit enable. When set to 1, EntryLo0/1[XI] is enabled. When
cleared to 0, EntryLo0/1[XI] is disabled and is not writable by software.

● ASE = 0x0 - (ASE not implemented, must be written as 0).
● ELPA - Enables support for large physical addresses. As PABITS = 49 for

CN50XX, ELPA should normally be enabled on CN50XX.
● ESP = 0 - (1KB pages not implemented).

63 23 22 4 3 0

PTEBase BadVPN2
Reserved

0000

31 29 28 13 12 11 10 0

0 Mask MaskX 0

31 30 29 28 27 13 12 8 7 0

RIE XIE ELPA
ESP

0
Reserved

0
ASE

0 0000
Reserved

0

168 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Wired Register

CP0 Register 6, Select 0

● Wired - TLB wired boundary

HWREna Register
CP0 Register 7, Select 0

● MaskX - cnMIPS™ cores include Cavium-specific instruction RDHWR 31, 30, so
a MaskX field exists at <31:30> to enable them. Refer to Appendix A for the
RDHWR description.

● Mask - Each bit in this field enables access by the RDHWR instruction to a
particular hardware register

BadVAddr Register
CP0 Register 8, Select 0

● BadVAddr - Bad virtual address

Count Register
CP0 Register 9, Select 0

The Count register is zeroed during reset and increments by one every cycle.

EntryHi Register
CP0 Register 10, Select 0

● R - Virtual memory region.
● Fill - Fill bits reserved for expansion of the virtual address space.
● VPN2 - This field is written by hardware on a TLB exception or on a TLB read.
● VPN2X - Not used. (1KB pages not implemented). Must be written with 0, reads

return 0.
● ASID - Address space identifier.

31 6 5 0
Reserved

0000 0000 0000 0000 0000 0000 000
Wired

31 30 29 4 3 0

MaskX
Reserved

00 0000 0000 0000 0000 0000 0000
Mask

63 0

BadVAddr

31 0

Count

63 62 61 49 48 32

R
Fill
0

VPN2, cont.

31 13 12 11 10 8 7 0

VPN2 VPN2X
Reserved

0
ASID
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 169

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Compare Register
CP0 Register 11, Select 0

● Compare - Interval count compare value

Status Register

CP0 Register 12, Select 0

● CU3 = 0

● CU1 = 0 (Floating point not implemented)

● CU2, CU0 - Control access to coprocessors 2 and 0, respectively:

● RP = 0 (Reduced power mode is not implemented.)

● FR = 0 (Floating point unit is not implemented.)

● RE = 0 (Reverse-endian mode is not implemented.)

● MX = 0 (MDMX™ is not implemented.)

● PX - Enables access to 64-bit operations in User mode, without enabling 64-bit
addressing.

● BEV - Controls the location of exception vectors.

● TS - Indicates that the TLB has detected a match on multiple entries (i.e
machine-check).

● SR - Indicates that the entry through the reset exception vector was due to a Soft
Reset.

● NMI - Indicates that the entry through the reset exception vector was due to an
NMI exception.

● Impl = 0

● IM7...IM2 - Interrupt Masks. When set, these mask bits enable the
corresponding Cause[IP7..IP2] interrupts.

● IM1, IM0 - Interrupt Masks. These are used to control SW interrupts.

● KX - Enables access to 64-bit Kernel Segments and use of the XTLB Refill Vector
for references to Kernel Segments.

● SX - Enables access to 64-bit Supervisor Segments and use of the XTLB Refill
Vector for references to Supervisor Segments.

● UX - Enables access to 64-bit User Segments, Use of the XTLB Refill Vector for
references to User Segments and Execution of instructions which perform 64-bit
operations while the processor is operating in User Mode.

● KSU - The encoding of this field denotes the base operating mode of the
processor.

● ERL - Error Level

● EXL - Exception Level

● IE - Interrupt Enable

31 0

Compare

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0
CU3

0
CU2

CU1
0

CU0 RP FR RE MX PX BEV TS SR NMI 0
Impl
00

IM7...IM2 IM1, IM0 KX SX UX KSU ERL EXL IE

NOTE: The Dcache (virtual tags only, not physical tags) is invalidated
whenever the Status[ERL] value changes.
170 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
IntCtl Register

CP0 Register 12, Select 1

● IPTI = This field is a read-only copy of CvmCtl[IPTI].
● IPPCI = This field is a read-only copy of CvmCtl[IPPCI].
● VS = 0 (vectored interrupt not Implemented)

SRSCtl Register

CP0 Register 12, Select 2

cnMIPS™ cores have no GPR shadow sets so the entire SRSCtl register is read as
zero.

Cause Register

CP0 Register 13, Select 0

● BD - Indicates whether the last exception taken occurred in a branch-delay slot.
● TI - Timer Interrupt.
● CE - Coprocessor unit number referenced when a coprocessor unusable exception

is taken.
● DC - Disable count register.
● PCI - Implemented (two performance counters implemented).
● IV - Indicates whether an interrupt exception uses the general exception vector

or a special interrupt vector.
● WP - Implemented (two watch registers implemented).
● IP7...IP5 - Indicate an interrupt is pending. May be set for timer interrupts

(Cause[TI] is set in this case) and/or performance counter interrupts (Cause[PCI]
is set in this case). CvmCtl[IPTI,IPPCI] select the IP bits used for timer and
performance counter interrupts, respectively.

● IP4...IP2 - Indicate an interrupt is pending. may assert due to timer and
performance counter interrupts, and may additionally assert due to the CIU
interrupt distribution. Refer to Chapter 11, Central Interrupt Unit (CIU).

● IP1, IP0 - Indicate an interrupt is pending. These are used to control the request
for SW interrupts.

● ExcCode - Exception code. This field is compliant with MIPS® documentation.
Please refer to the MIPS® documentation for cause code value assignment. (See
Table 2.)

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI
Reserved

0
VS

0 0000
Reserved
0 0000

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0
Reserved

00
HSS
0000

Reserved
0000

EICSS
0000

Reserved
00

ESS
0000

Reserved
00

EXL
0000

Reserved
00

CSS
0000

NOTE: SRS map is not implemented.

31 30 29 28 27 26 25 24 23 22 21
16 15 13 12 10 9 8 7 6 2 1 0

BD TI CE DC PCI
Reserved

00
IV WP

Reserved
00 0000

IP7...IP5 IP4...IP2 IP1, IP0
Reserved

0
ExcCode

Reserved
00
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 171

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Exception Program Counter

CP0 Register 14, Select 0

● EPC - Exception Program Counter

PRId Register

CP0 Register 15, Select 0

● Company Options = 0.
● CompanyID = 13 (11012).
● Processor ID = 6.

0 = CN38XX/CN36XX 2 = CN3005/CN3010 4 = CN54/5/6/7XX 7 = CN52XX
1 = CN31XX/CN3020 3 = CN58XX 6 = CN50XX

● Revision ID = 0/1.
0 = pass 1.0 1 = pass 1.1

EBase Register

CP0 Register 15, Select 1

● Exception Base - In conjunction with bits <31:30>, this field specifies the base
address of the exception vectors when StatusBEV = 0.

● CPUNum - specifies the cnMIPS™ core ID.

Config Register

CP0 Register 16, Select 0

● M = 1 (Indicates that the Config1 register is present)
● IMPL = Read as 0
● BE = CvmCtl[LE]
● AT = 2 (MIPS 64 with access to all address segments)
● AR = 1 (Release 2)
● MT = 1 (Standard TLB)
● VI = 1 (Icache is virtual)
● KO - Field is implemented, and the only effect is on the ordering of kseg0 stores.

Section 4.8 describes the CN50XX use of the MIPS cache-coherency
attributes.

63 0

EPC

31 24 23 16 15 8 7 0

Company Options
0000 0000

Company ID
0000 1101

Processor ID
0000 0110

Revision
0000 xxxx

31 30 29 12 11 10 9 0

1
Reserved

0
Exception Base

Reserved
0

CPUNum

31 30 16 15 14 13 12 10 9 7 6 4 3 2 0

M
1

Impl
0

BE
AT
10

AR
001

MT
001

Reserved
0

VI
1

KO
172 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Config1 Register

CP0 Register 16, Select 1

● M = 1 (Indicates that a Config2 register is present)

● MMU Size−1 = 63 (64 entries)

● IS = 0 (Denotes 64 Icache sets per way)

● IL = 6 (128 byte line size)

● IA = 3 (Denotes 4-way Icache)

● DS = 0 (Denotes 64 Dcache sets per way, actual is 1)

● DL = 0 (Denotes no Dcache, though cache is present and line size is 128 bytes)

● DA = 7 (Denotes 8-way Dcache, actual is 64)

● C2 = 1 (Coprocessor 2 implemented)

● MD = 0 (MDMX ASE not implemented)

● PC = 1 (Two Performance Counter registers implemented)

● WR = 1 (Two Watch registers implemented)

● CA = 0 (MIPS16e not implemented)

● EP = 1 (EJTAG implemented)

● FP = 0 (No FPU implemented)

Config2 Register

CP0 Register 16, Select 2

● M = 1 (Config 3 is present)

● TU - Not implemented (Read as zero)

● TS = 0 (No tertiary cache)

● TL = 0 (No tertiary cache)

● TA = 0 (No tertiary cache)

● SU - Not implemented (Read as zero)

● SS - 4 (1024 sets per way in secondary code)

● SL - 6 (128-byte cache line in secondary cache)

● SA - 7 (8-way set-associative secondary cache)

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0
M
1

MMU Size−1
11 1111

IS
000

IL
110

IA
011

DS
000

DL
000

DA
111

C2
1

MD
0

PC
1

WR
1

CA
0

EP
1

FP
0

31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
M
1

TU
000

TS
0000

TL
0000

TA
0000

SU
0000

SS
0100

SL
0110

SA
0111
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 173

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Config3 Register
CP0 Register 16, Select 3

The Config3 register encodes additional capabilities. All fields in the Config3 register
are read-only.

● M = 0 (Config4 is not present)
● RXI = 1 (read/execute inhibit function is implemented)
● LPA = 1 (Large physical address support is implemented, and the PageGrain

register exists)
● VEIC = 0 (no external interrupt controller)
● VInt = 0 (Vectored interrupts not implemented)
● SP = 0 (1KB page size not implemented)
● SM = 0 (SmartMIPS™ not implemented)
● TL = 0 (Trace Logic not implemented)

WatchLo Register

CP0 Register 18, select 0, 1

● VAddr - specifies the virtual address to match.
● I - Implemented at select = 0 (only first watchpoint is instruction)
● R - Implemented at select = 1 (only second watchpoint is data)
● W - Implemented at select = 1 (only second watchpoint is data)

Two watchpoints are implemented; the first instruction-only and the second data-
only.

WatchHi Register
CP0 Register 19, select 0, 1

● M = Set for select = 0, clear for select = 1 (2 watchpoints implemented)
● G - If this bit is one, any address that matches that specified in the WatchLo

register will cause a watch exception. If this bit is zero, the ASID field of the
WatchHi register must match the ASID field of the EntryHi register to cause a
watch exception.

● ASID - ASID value which is required to match that in the EntryHi register if the
G bit is zero in the WatchHi register.

● Mask - Implemented in the maximum width
● I - Set by hardware when an instruction fetch condition matches the values in

this watch register pair.
● R - Set by hardware when a load condition matches the values in this watch

register pair.
● W - Set by hardware when a store condition matches the values in this watch

register pair.

31 30 13 12 11 8 7 6 5 4 3 2 1 0
M
0

Reserved
0

RXI
1

Reserved
0

LPA
1

VEIC
0

VInt
0

SP
0

Reserved
00

SM
0

TL
0

63 3 2 1 0

VAddr I R W

31 30 29 24 23 16 15 12 11 3 2 1 0

M G
Reserved

0
ASID

Reserved
0

Mask I R W
174 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
XContext Register

CP0 Register 20, Select 0

● PTEBase - This field is for use by the operating system and is normally written
with a value that allows the operating system to use the Context Register as a
pointer into the current PTE array in memory.

● R - Region field. Contains bits 63...62 of the virtual address.
● BadVPN2 - Bad Virtual Page Number/2 field is written by hardware on a miss.

Debug Register

CP0 Register 23, Select 0

● DBD - Indicates whether the last debug exception or exception in Debug Mode
occurred in a branch or jump delay slot.

● DM - Indicates that the processor is operating in Debug Mode.
● NoDCR = 0 (dseg present)
● LSNM - Implemented
● Doze = 0 (No low power mode)
● Halt = 0 (Internal bus clock never stopped)
● CountDM - Implemented
● IBusEP = 0 (No imprecise bus errors)
● MCheckP = 0 (No imprecise machine checks)
● CacheEP = 0 (No imprecise cache errors)
● DBusEP - Implemented
● IEXI - Implemented
● DDBSImpr = 0 (No imprecise Debug Data breakpoint on store)
● DDBLImpr - Implemented for load value breakpoints
● EJTAGver = 3 (EJTAG version 3.10)
● DExcCode - Implemented
● NoSSt = 0 - (Single step is implemented)
● SSt - Implemented
● DINT - Implemented
● DIB - Implemented
● DDBS - Implemented
● DDBL - Implemented
● DBP - Implemented
● DSS - Implemented

63 42 41 40 39 4 3 0

PTEBase R BadVPN2
Reserved

0

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM
No DCR

0
LSNM

Doze
0

Halt
0

CountDM
IBusEP

0
MCheckP

0
CacheEP

0
DBusEP IEXI

DDBSImpr
0

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLImpr
EJTAG

011
DExcCode

NoSSt
0

SSt
Reserved

0
DINT DIB DDBS DDBL DBp DSS
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 175

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Debug Exception Program Counter Register

CP0 Register 24, Select 0

For imprecise debug exceptions and imprecise exceptions in debug mode, the DEPC
register contains the address at which execution is resumed when returning to non-
debug mode.

Performance Counter Control Register

CP0 Register 25, Select 0, 2

● M - 1 for sel = 0, 0 for sel = 2 (Two performance counters implemented)
● W = 1 - (64-bit counter)
● Event - Selects the event to be counted by the corresponding Counter Register.

See Table 4–28

63 0

DEPC

31 30 29 11 10 5 4 3 2 1 0

M
W
1

Reserved
0

Event IE U S K EXL

Table 4–28 Performance Counter Control Register Events

Value Event Meaning

0x0 — Reserved

0x1 PERF_CNT_CLK Conditionally clocked cycles (as opposed to count/cvm_count which count even with no
clocks)

0x2 PERF_CNT_ISSUE Instructions issued but not retired

0x3 PERF_CNT_RET Instructions retired

0x4 PERF_CNT_NISSUE Cycles no issue

0x5 PERF_CNT_SISSUE Cycles single issue

0x6 PERF_CNT_DISSUE Cycles dual issue

0x7 PERF_CNT_IFI Cycle ifetch issued (but not necessarily commit to pp_mem)

0x8 PERF_CNT_BR Branches retired

0x9 PERF_CNT_BRMIS Branch mispredicts

0xA PERF_CNT_J Jumps retired

0xB PERF_CNT_JMIS Jumps mispredicted

0xC PERF_CNT_REPLAY Mem Replays

0xD PERF_CNT_IUNA Cycles idle due to unaligned_replays

0xE PERF_CNT_TRAP trap_6a signal

0xF — Reserved

0x10 PERF_CNT_UULOAD Unexpected unaligned loads (REPUN=1)

0x11 PERF_CNT_UUSTORE Unexpected unaligned store (REPUN=1)

0x12 PERF_CNT_ULOAD Unaligned loads (REPUN=1 or USEUN=1)

0x13 PERF_CNT_USTORE Unaligned store (REPUN=1 or USEUN=1)

0x14 PERF_CNT_EC Exec clocks (must set CvmCtl[DISCE] for accurate timing)

0x15 PERF_CNT_MC Mul clocks (must set CvmCtl[DISCE] for accurate timing)

0x16 PERF_CNT_CC Crypto clocks (must set CvmCtl[DISCE] for accurate timing)

0x17 PERF_CNT_CSRC Issue_csr clocks (must set CvmCtl[DISCE] for accurate timing)

0x18 PERF_CNT_CFETCH Icache committed fetches (demand+prefetch)

0x19 PERF_CNT_CPREF Icache committed prefetches
176 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
● IE - Interrupt Enable.
● U - Enables event counting in User Mode.
● S - Enables event counting in Supervisor Mode
● K - Enables event counting in Kernel Mode.
● EXL - Enables event counting when the EXL bit in the Status register is one and

the ERL bit in the Status register is zero.

0x1A PERF_CNT_ICA Icache aliases

0x1B PERF_CNT_II Icache invalidates

0x1C PERF_CNT_IP Icache parity error

0x1D PERF_CNT_CIMISS Cycles idle due to imiss (must set CvmCtl[DISCE] for accurate timing)

0x1E — Reserved

0x1F — Reserved

0x20 PERF_CNT_WBUF Number of write buffer entries created

0x21 PERF_CNT_WDAT Number of write buffer data cycles used (may need to set CvmCtl[DISCE] for accurate
counts)

0x22 PERF_CNT_WBUFLD Number of write buffer entries forced out by loads

0x23 PERF_CNT_WBUFFL Number of cycles that there was no available write buffer entry (may need to set
CvmCtl[DISCE] and CvmMemCtl[MCLKALWYS] for accurate counts)

0x24 PERF_CNT_WBUFTR Number of stores that found no available write buffer entries

0x25 PERF_CNT_BADD Number of address bus cycles used (may need to set CvmCtl[DISCE] for accurate
counts)

0x26 PERF_CNT_BADDL2 Number of address bus cycles not reflected (i.e. destined for L2) (may need to set
CvmCtl[DISCE] for accurate counts)

0x27 PERF_CNT_BFILL Number of fill bus cycles used (may need to set CvmCtl[DISCE] for accurate counts)

0x28 PERF_CNT_DDIDS Number of Dstream DIDs created

0x29 PERF_CNT_IDIDS Number of Istream DIDs created

0x2A PERF_CNT_DIDNA Number of cycles that no DIDs were available (may need to set CvmCtl[DISCE] and
CvmMemCtl[MCLKALWYS] for accurate counts)

0x2B PERF_CNT_LDS Number of load issues

0x2C PERF_CNT_LMLDS Number of local memory load issues

0x2D PERF_CNT_IOLDS Number of I/O load issues

0x2E PERF_CNT_DMLDS Number of loads that were not prefetches and missed in the cache

0x2F — Reserved

0x30 PERF_CNT_STS Number of store issues

0x31 PERF_CNT_LMSTS Number of local memory store issues

0x32 PERF_CNT_IOSTS Number of I/O store issues

0x33 PERF_CNT_IOBDMA Number of IOBDMA operations

0x34 — Reserved

0x35 PERF_CNT_DTLB Number of dstream TLB refill, invalid, or modified exceptions

0x36 PERF_CNT_DTLBAD Number of dstream TLB address errors

0x37 PERF_CNT_ITLB Number of istream TLB refill, invalid, or address error exceptions

0x38 PERF_CNT_SYNC Number of SYNC stall cycles (may need to set CvmCtl[DISCE] for accurate counts)

0x39 PERF_CNT_SYNCIOB Number of SYNCIOBDMA stall cycles (may need to set CvmCtl[DISCE] for accurate
counts)

0x3A PERF_CNT_SYNCW Number of SYNCWs or SYNCWSs

0x3B
-0x3F

— Reserved

Table 4–28 Performance Counter Control Register Events (Continued)

Value Event Meaning
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 177

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
Performance Counter Counter Register

CP0 Register 25, select 1, 3

Increments once for each event that is enabled by the corresponding Control
Register. When the MSB is one, a pending interrupt request is ORed with those
from other performance counters and indicated by the PCI bit in the Cause
register.

ErrorEPC

CP0 Register 30, Select 0

The ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error.

DESAVE Register

CP0 Register 31, Select 0)

The Debug Exception Save (DESAVE) register is a read/write register that
functions as a simple scratchpad register.

63 0

Event Count

63 0

ErrorEPC

63 0

DESAVE
178 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
4.11.1 Cavium Networks-Specific Coprocessor 0 Registers

CacheErr (Icache)
Cache Error Icache Register, Implemented at reg# = 27, select = 0

Implemented to latch Icache error information.

CacheErr (Dcache)
Cache Error Dcache Register, Implemented at reg# = 27, select = 1

This register is updated by the hardware on any load to cacheable memory (i.e. L2/
DRAM), not just when there is a parity error. For this register to contain useful
information following a Cache Error on Data Access Exception (refer to Table 4–36
and Section 4.19), there must be no L2/DRAM loads prior to the mfc0 27,1 instruction
that captures the data cache error information during the exception handler.

Implemented to latch Dcache error information. .

63 55 54 48 47 46 40 39 38 37 36 35 34 33 32 31 15 14 13 12 11 10 5 4 3 2 1 0
Reserved

0
badcolf

Reserved
0

badcol
Reserved

0000
regfail lrufail aesfail hshfail BHTbroke icbroke

Reserved
0

qw row set way Reserved
00

dperr

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:55> — RO 0 0 Reserved
<54:48> badcolf RO 0 0 Bad column stored in fuses. 0x7F for no fuse
<47> — RO 0 0 Reserved
<46:40> badcol RO 0 0 Bad column in Icache - 0x7F for perfect
<39:38> — RO 0 0 Reserved
<37> regfail RO 0 0 Register file BIST failed
<36> lrufail RO 0 0 LRU BIST failed
<35> hshfail RO 0 0 HSH/GFM BIST failed
<34> aesfail RO 0 0 AES BIST failed
<33> BHTBK RO 0 0 BHT is unrepairable
<32> icbk RO 0 0 Icache is unrepairable
<31:15> — RO 0 0 Reserved
<14:13> qw R/W 0 0 Address<4:3>
<12:11> row R/W 0 0 Address<6:5>
<10:5> set R/W 0 0 Address<12:7>
<4:3> way R/W 0 0 Selects the cache way.
<2:1> — RO 0 0 Reserved
<0> dperr R/W 0 0 Data parity error

63 14 13 8 7 3 2 1 0
Reserved

0
way va73 Reserved

0
perr

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:13> — RO 0 0 Reserved
<13:8> way RO 0 0 Way in which the parity error happened
<7:3> va73 RO 0 0 VA<7:3> of the address that had the error
<2:1> — RO 0 0 Reserved
<0> perr R/W 0 0 Set on Dcache parity error
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 179

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
TagLo Register (Icache)

Implemented at reg# = 28, select = 0 (Icache)

Icache implemented.

TagLo Register (Dcache)

Implemented at reg# = 28, select = 2 (Dcache)

Dcache implemented.

DataLo Register (Icache)

Implemented at reg# = 28, select = 1 (Icache))

The repair solution (i.e. Icache CacheErr[badcol]) must be known to interpret the raw
Icache data. For a perfect Icache, raw Icache data[63:0] is the data in the instruction
cache (big-endian format).

63 62 61 60 59 52 51 49 48 13 12 7 6 2 1 0

R Reserved
0

asid Reserved
0

tag index
Reserved

0
G valid

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:62> R R/W 0 0 <63:62> of virtual address
<61:60> — RO 0 0 Reserved
<59:52> asid R/W 0 0 ASID
<51:49> — RO 0 0 Reserved
<48:13> tag R/W 0 0 <48:13> of the virtual address
<12:7> index R/W 0 0 <12:7> from the address in the cache

instruction
<6:2> — RO 0 0 Reserved
<1> G R/W 0 0 G bit
<0> valid R/W 0 0 valid bit

63 62 61 60 59 52 51 49 48 7 6 2 1 0

R Reserved
0

asid Reserved
0

tag Reserved
0

G valid

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:62> R R/W 0 0 <63:62> of virtual address
<61:60> — RO 0 0 Reserved
<59:52> asid R/W 0 0 ASID
<51:49> — RO 0 0 Reserved
<48:7> tag R/W 0 0 <48:7> of the virtual address
<6:2> — RO 0 0 Reserved
<1> G R/W 0 0 G bit
<0> valid R/W 0 0 valid bit

63 0

data

Bit Pos Field
Name

Field
Type

Reset
Value

Typical
Value

Field Description

<63:0> data R/W 0 0 Raw Icache data <63:0>.
180 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
DataLo Register (Dcache)

Implemented at reg# = 28, select = 3 (Dcache)

The 64 bits read from the CACHE instruction. Dcache implemented. DataLo is
unpredictable after a load to a noncacheable (i.e. I/O) address. To successfully read
out the Dcache, there must not be a load to a noncacheable address between the
CACHE instruction and the read of DataLo.

TagHi Register

Implemented at reg# = 29, select = 2 (Dcache))

Dcache implemented.

DataHi Register (Icache)

Implemented at reg# = 29, select = 1 (Icache)

The repair solution (i.e. Icache CacheErr[badcol]) must be known to interpret the raw
Icache data. For a perfect Icache, raw Icache data[64] is the parity bit of the data in
the instruction cache and [65] is not used.

63 0

data

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:0> data R/W 0 0 Data from the Dcache.

63 36 35 7 6 1 0

Reserved
0 ptag Reserved

0 valid

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RO 0 0 Reserved
<35:7> ptag R/W 0 0 Bits <35:7> of the physical address
<6:1> — RO 0 0 Reserved
<0> valid R/W 0 0 valid bit for physical tag

63 2 1 0

Reserved
0

val

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RO 0 0 Reserved
<1:0> val R/W 0 0 Raw Icache data <65:64>.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 181

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
DataHi Register (Dcache)

Implemented at reg# = 29, select = 3 (Dcache)

The eight parity bits read from the CACHE instruction. Dcache implemented.
DataHi is unpredictable after a load to a noncacheable (i.e. I/O) address. To
successfully read out the Dcache, there must not be a load to a noncacheable address
between the CACHE instruction and the read of DataHi.

CvmCtl Register

Cvm Control Register, Implemented at reg# = 9, select = 7

Controls the Icache and instruction issue.

Field Descriptions

63 8 7 0

Reserved
0 par

Bit Pos Field
Name

Field
Type

Reset
Value

Typical
Value

Field Description

<63:8> — RO 0 0 Reserved
<7:0> par R/W 0 0 Parity bits after cache idxldtag

63 32 31 30 29 28 27 26 25 24 23 22
Reserved

0
FUSE_STARTBIT

Reserved
0

KASUMI NODFA_CP2 NOMUL NOCRYPTO RST_SHT BIST_DIS DISSETPRED DISJRPRED

21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 4 3 2 1 0

DISICACHE DISWAIT DEFET DISCO DISCE DDCLK DCICLK REPUN IPREF USEUN DISIOCACHE IRAND IPPCI IPTI Reserved
00 LE USELY

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RO 0x0 0x0 Reserved.
<31> FUSE_START

BIT
RO 0 0 Must be 1.

<30> — RO 0 0 Reserved. Must be 0.
<29> KASUMI RO 1 1 When set, KASUMI operations are enabled. CvmCtl[KASUMI] =0

whenever CvmCtl[NOCRYPTO] = 1.

<28> NODFA_CP2 RO 1 1 Always set to 1.
<27> NOMUL RO 0 0 When set, large mul operations are disabled
<26> NOCRYPTO RO 0 0 When set, crypto operations are disabled
<25> RST_SHT RO 0 0 When set, reset delays are short (should be 0)
<24> BIST_DIS RO 0 0 When set, BIST is disabled (should be 0)
<23> DISSETPRED R/W 0 0 When set, disables power-saving feature of Icache.
<22> DISJRPRED R/W 0 0 When set, JALs no longer push the jump stack (i.e. the jump stack

remains frozen).
182 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
<21> DISICACHE R/W 0 0 When set, Icache is disabled (operates in pass-through mode). Normally,
this bit should not be set. When DISICACHE = 0, and is being written
to 1, one of the following must be true:

● The linear instruction stream including the MTC0/DMTC0
instruction that writes CvmCtl[DISICACHE] = 1 is running out of
I/O space or DMSEG

● The MTC0/DMTC0 instruction that writes CvmCtl[DISICACHE] =
1 is followed immediately with a SYNCI instruction (in the same
cache block).

● There was a one cache line backward branch before the MTC0/
DMTC0 instruction that writes CvmCtl[DISICACHE] = 1

<20> DISWAIT R/W 0 0 When set, wait is disabled
<19> DEFET R/W 0 0 When set, fetch under fill is disabled
<18> DISCO R/W 0 0 When set, disable the conditional clocks (i.e. always clock) mul/crypto
<17> DISCE R/W 0 0 When set, disable the conditional clocks (i.e. always clock) issue
<16> DDCLK R/W 0 0 When set, disable the conditional clocks (i.e. always clock) exec
<15> DCICLK R/W 0 0 When set, disable the conditional clocks (i.e. always clock) issue unit

CSRs
<14> REPUN R/W 0 0 When set, LH+LHU+LW+LWU+LD+SH+SW+SD unaligned accesses

handled by HW
<13> IPREF R/W 0 0 When set, instruction prefetching is disabled
<12> USEUN R/W 0 0 When set, CVM ULW+ULD+USW+USD insts, else MIPS

LWL+LWR+LDL+LDR+SWL+SWR+SDL+SDR
<11> DISIOCACHE R/W 0 0 When set, the iocache feature is disabled, which cause noncompliance

for EJTAG and may cause extra I/O-space fetches.
<10> IRAND R/W 0 0 When set, the Icache uses random replacement, else use “bitmask LRU”
<9:7> IPPCI R/W 0x7 0x7 Selects the Cause[IP] bit to which the Performance Counter Interrupt

request is merged. Legal values are CvmCtl[IPPCI] = 2 .. 7, where
CvmCtl[IPPCI]=n selects Cause[IP<n>] for the interrupt.
IntCtl[IPPCI] is a read-only copy of CvmCtl[IPPCI].

<6:4> IPTI R/W 0x7 0x7 Selects the Cause[IP] bit to which the Timer Interrupt request is
merged. Legal values are CvmCtl[IPTI] = 2 .. 7, where
CvmCtl[IPTI]=n selects Cause[IP<n>] for the interrupt.
IntCtl[IPTI] is a read-only copy of CvmCtl[IPTI].

<3:2> — RO 0x0 0x0 Reserved
<1> LE R/W 0 0 When set, the core defaults to LE (i.e. Config[BE] is a read-only copy of

the inverse of CvmCtl[LE].)
<0> USELY R/W 0 0 When clear use *L for unaligned opcode for BE, *R for LE. When set

unaligned opcode is always the *L opcodes

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 183

 cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
CvmMemCtl Register

Cvm Memory Control Register, Implemented at reg# = 11, select = 7

Controls the cnMIPS™ cores’ memory system.

63 62 61 60 59 58 57 36 35 34 33 32

TLBBIST L1CBIST L1DBIST DCMBIST PTGBIST WBFBIST
Reserved

0
DISMARKWBLONGTO DISMRGCLRWBTO IOBDMASCRMSB

31 30 29 28 27 26 25 24 23 22 21

SYNCWSMARKED DISSYNCWS DISWBFST XKMEMENAS XKMEMENAU XKIOENAS XKIOENAU ALLSYNCW NOMERGE DIDTTO

20 19 18 16 15 14 11 10 9 8 7 6 5 0

CSRCLKALWYS MCLKALWYS WBFLTIME ISTRNOL2 WBTHRESH
Reserved

0
CVMSEGENAK CVMSEGENAS CVMSEGENAU LMEMSZ

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> TLBBIST RO x x 1 = BIST fail, 0 = BIST pass
<62> L1CBIST RO x x 1 = BIST fail, 0 = BIST pass
<61> L1DBIST RO x x 1 = BIST fail, 0 = BIST pass
<60> DCMBIST RO x x 1 = BIST fail, 0 = BIST pass
<59> PTGBIST RO x x 1 = BIST fail, 0 = BIST pass
<58>> WBFBIST RO x x 1 = BIST fail, 0 = BIST pass
<57:36> — R/W 0 0 Reserved
<35> DISMARKWBLONGTO R/W 0 0 If set, marked write-buffer entries time out the same as

other entries; if clear, marked write-buffer entries use the
maximum timeout.

<34> DISMRGCLRWBTO R/W 0 0 If set, a merged store does not clear the write-buffer entry
timeout state.

<33:32> IOBDMASCRMSB R/W 0x0 0x0 Two bits that are the MSBs of the resultant CVMSEG LM
word location for an IOBDMA. The other 8 bits come from
the SCRADDR field of the IOBDMA.

<31> SYNCWSMARKED R/W 0 0 If set, SYNCWS and SYNCS only order marked stores; if
clear, SYNCWS and SYNCS only order unmarked stores.
SYNCWSMARKED has no effect when DISSYNCWS is set.

<30> DISSYNCWS R/W 0 0 If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC.
<29> DISWBFST R/W 0 0 If set, no stall happens on write buffer full.

NOTE: This bit should always be cleared to 0.

<28> XKMEMENAS 1 R/W 0 0 If set (and SX set), supervisor-level loads/stores can use
XKPHYS addresses with VA<48>==0

<27> XKMEMENAU 1 R/W 0 0 If set (and UX set), user-level loads/stores can use XKPHYS
addresses with VA<48>==0

<26> XKIOENAS 1 R/W 0 0 If set (and SX set), supervisor-level loads/stores can use
XKPHYS addresses with VA<48>==1

<25> XKIOENAU 1 R/W 0 0 If set (and UX set), user-level loads/stores can use XKPHYS
addresses with VA<48>==1

<24> ALLSYNCW R/W 0 0 If set, all stores act as SYNCW (NOMERGE must be set
when this is set) RW, reset to 0 if set, all stores act as
SYNCW (NOMERGE must be set when this is set).

<23> NOMERGE R/W 0 0 If set, no stores merge, and all stores reach the coherent bus
in order.

<22:21> DIDTTO 2 R/W 0 0 Selects the bit in the counter used for DID time-outs 0 = 231,
1 = 230, 2 = 229, 3 = 214. Actual time-out is between 1× and
2× this interval. For example, with DIDTTO=3, expiration
interval is between 16K and 32K.
184 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Coprocessor 0 Privileged Registers
CvmCount Register

Implemented at reg# = 9, sel = 6

Reset to 0x0. Increments by one every cycle. See “Multicore Debug Register” on
page 186 for more details about the behavior of CvmCount during debug.

<20> CSRCKALWYS R/W 0 0 If set, the (mem) CSR clock never turns off.
<19> MCLKALWYS R/W 0 0 If set, the core’s memory clock never turns off.
<18:16> WBFLTIME R/W 0x4 0x4 Selects the bit in the counter used for write buffer flush

time-outs (WBFLT+11) is the bit position in an internal
counter used to determine expiration. The write buffer
expires between 1× and 2× this interval. For example, with
WBFLT = 0, a write buffer expires between 2K and 4K
cycles after the write buffer entry is allocated.

<15> ISTRNOL2 R/W 0 0 If set, do not put Istream in the L2 cache.
<14:11> WBTHRESH R/W 0xC 0xC The write buffer threshold. The legal range is 0x2–0xE.

Values 0x0, 0x1, and 0xF are illegal
<10:9> — R/W 0x0 0x0 Reserved
<8> CVMSEGENAK 1 R/W 0 0 If set, CVMSEG is available for loads/stores in kernel/debug

mode. CVMSEGENAK must be enabled when either
CVMSEGENAS or CVMSEGENAU are enabled?

<7> CVMSEGENAS 1 R/W 0 0 If set, CVMSEG is available for loads/stores in supervisor
mode.

<6> CVMSEGENAU 1 R/W 0 0 If set, CVMSEG is available for loads/stores in user mode.

<5:0> LMEMSZ R/W 0x0 0x0 Size of local memory in cache blocks, 54 (6912 bytes) is max
legal value.

1. Note that both CvmMemCtl[CVMSEGENA*] and CvmMemCtl[XK*] enable the corresponding range (CVMSEG and XKPHYS with
VA<48>==1) only for loads/store operations, and NOT for instruction references.

2. Note that DID time-outs are the only source of bus-error exceptions. These bus-error exceptions may not be recoverable, but the
handler can extract information for diagnostic purposes.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

63 0

Count

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:0> count RW 0 0 Cycle counter. Value may also be read at
RDHWR 31. Refer to Appendix A.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 185

 cnMIPS™ Cores: cnMIPS™ Core EJTAG DRSEG Registers
Multicore Debug Register

Implemented at reg# =22, select =0

4.12 cnMIPS™ Core EJTAG DRSEG Registers

The memory-mapped EJTAG registers are located in the debug register segment
(drseg), which is a subsegment of the debug segment (dseg). They are accessible by
the debug software when the processor is executing in Debug Mode. These registers
provide both miscellaneous debug control and control of hardware breakpoints.

63 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved

0
DExcC CGSTP CvGSTP CvDM GSDB

Reserved
0

MskM2 MskM1 MMC0
Reserved

0
Pls2 Pls1 Pls0

Reserved
0

MCD2 MCD1 MCD0

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:17> — RO 0 0 Reserved
<16> DExcC R/W 0 0 Set to one when Debug[DExcCode] is valid and should be interpreted
<15> CGSTP R/W 0 0 If set, Count does not increment when GSTOP is set
<14> CvGSTP R/W 0 0 If set, CvmCount does not increment when GSTOP is set
<13> CvDM R/W 0 0 If set, CvmCount does not increment when Debug[DM] set
<12> GSDB R/W 0 0 If one, SDBBP execution pulses global MCD0 wire
<11> — RO 0 0 Reserved
<10> MskM2 R/W 0 0 When set, pulses on the global MCD2 wire set MCD2.
<9> MskM1 R/W 0 0 When set, pulses on the global MCD1 wire set MCD1.
<8> MMC0 R/W 0 0 When set, pulses on the global MCD0 wire set MCD0.
<7> — RO 0 0 Reserved
<6> Pls2 RAZ/W 0 0 Writing a 1 pulses global MCD2 wire.
<5> Pls1 RAZ/W 0 0 Writing a 1 pulses global MCD1 wire.
<4> Pls0 RAZ/W 0 0 Writing a 1 pulses global MCD0 wire.
<3> — RO 0 0 Reserved
<2> MCD2 R/W1C 0 0 Reset to zero. If set, enter debug mode.
<1> MCD1 R/W1C 0 0 Reset to zero. If set, enter debug mode.
<0> MCD0 R/W1C 0 0 Reset to zero. If set, enter debug mode.

Table 4–29 EJTAG DRSEG Registers Summary

Register Implemented/Not Implemented Comments

Debug Control Register (DCR) Implemented See page 187

Instruction Breakpoint Status (IBS) Implemented See page 187

Instruction Breakpoint Address (IBA) Four implemented See page 187

Instruction Breakpoint Address Mask (IBM) Four implemented See page 187

Instruction Breakpoint ASID (IBASID) Four implemented See page 188

Instruction Breakpoint Control (IBC) Four implemented See page 188

Data Breakpoint Status (DBS) Implemented See page 188

Data Breakpoint Address (DBA) Four implemented See page 188

Data Breakpoint Address Mask (DBM) Four implemented See page 189

Data Breakpoint ASID (DBASID) Four implemented See page 189

Data Breakpoint Control (DBC) Four implemented See page 189

Data Breakpoint Value (DBV) Four implemented See page 189
186 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS™ Core EJTAG DRSEG Registers
Debug Control Register (DCR)

Address: Offset 0x0000

● ENM - !CvmCtl[LE]
● DataBrk = 1 (4 data hardware breakpoints implemented)
● InstBrk = 1 (4 instruction hardware breakpoints implemented)
● PCS = 1 (PC sampling is supported)
● PCR - PC Sampling rate. Values 0 to 7 map to values 25 to 212 cycles,

respectively (i.e. a PC sample is written out every 32, 64, 128, 256, 512, 1024,
2048, or 4096 cycles respectively). The external probe or software is allowed to set
this value to the desired sample rate.

● IntE - Hardware and software interrupt enable for Non-Debug Mode.
● NMIE - Non-Maskable Interrupt (NMI) enable for Non-Debug Mode.
● NMIpend - Indication for pending NMI.
● SRstE = 0 (Soft-reset masking not implemented)
● ProbEn - Indicates ECR[ProbEn]

Instruction Breakpoint Status (IBS) Register

Address: Offset 0x1000

● ASIDsup = 1 (ASID compare implemented)
● BCN = 4 (4 instruction breakpoints implemented)
● BS [14:4] = 0 (Not implemented)
● BS [3:0] - Implemented

Instruction Breakpoint Address (IBA0...3) Register

Address: Offset 0x1100 + 0x100 × n

● IBA - Instruction Breakpoint Address (IBA0...3) register has the virtual address
used in the condition for instruction breakpoint 0...3. It is located at drseg
segment offset 0x1100 + 0x100 × n.

Instruction Breakpoint Address Mask (IBM0...3) Register

Address: Offset 0x1108 + 0x100 × n

● IBM - Instruction Breakpoint Address Mask (IBM0...3) register has the address
compare mask used in the condition for instruction breakpoint 0...3. The address
that is masked is in the IBA0...3 register. The IBM0...3 register is located at
drseg segment offset 0x1108 + 0x100 × 0...3.

31 30 29 28 18 17 16 15 10 9 8 6 5 4 3 2 1 0
Reserved

0
ENM

Reserved
0

DataBrk
1

InstBrk
1

Reserved
0

PCS
1

PCR
Reserved

0
IntE NMIE NMIpend

SRstE
0

ProbEn

63 31 30 29 28 27 24 23 15 14 4 3 0

Reserved
0

ASIDsup
1

Reserved
0

BCN
0100

Reserved
0

BS14...BS4
0

BS3...BS0

63 0

IBA

63 0

IBM
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 187

 cnMIPS™ Cores: cnMIPS™ Core EJTAG DRSEG Registers
Instruction Breakpoint ASID (IBASID0...3) Register

Address: Offset 0x1110 + 0x100 × n

● ASID - The Instruction Breakpoint ASID (IBASID0...3) register has the ASID
value used in the compare for instruction breakpoint 0...3. It is located at drseg
segment offset 0x1110 + 0x100 × 0...3.

Instruction Breakpoint Control (IBC0...3) Register

Address: Offset 0x1118 + 0x100 × n

● ASIDuse - Implemented

● TE - Use instruction breakpoint 0...3 as triggerpoint. See 4–35Table 4–35
Breakpoint Match Behavior on page 198.

● BE - Use instruction breakpoint 0...3 as breakpoint. See 4–35Table 4–35
Breakpoint Match Behavior on page 198.

Data Breakpoint Status (DBS) Register

Address: Offset offset 0x2000.

● ASIDsup = 1 (ASID compare implemented)

● NoSVmatch = 0 (Store values compare supported)

● NoLVmatch = 0 (Load values compare supported)

● BCN = 4 (4 data breakpoints implemented)

● BS [14:4] = 0 - (Not implemented)

● BS [3:0] - Implemented

Data Breakpoint Address (DBA0...3) Register

Address: Offset 0x2100 + 0x100 × n

● DBA - Data Breakpoint Address (DBA0...3) register has the virtual address used
in the condition for data breakpoint 0...3. This register is located at drseg
segment offset 0x2100 + 0x100 × 0...3.

63 8 7 0
Reserved

0
ASID

63 24 23 22 3 2 1 0
Reserved

0
ASID
use

Reserved
0

TE
Reserved

0
BE

63 31 30 29 28 27 24 23 15 14 4 3 0

Reserved
0

ASIDsup NoSVmatch NoLVmatch BCN Reserved
0

BS14...BS4
0

BS3...BS0

63 0

DBA
188 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS™ Core EJTAG DRSEG Registers
Data Breakpoint Address Mask (DBM0...3) Register

Address: Offset 0x2108 + 0x100 × n

● DBM - Data Breakpoint Address Mask (DBM0...3) register has the address
compare mask used in the condition for data breakpoint 0...3. The address that is
masked is in the DBA0...3 register. The DBM0...3 register is located at drseg
segment offset 0x2108 + 0x100 × 0...3.

Data Breakpoint ASID (DBASID0...3) Register

Address: Offset 0x2110 + 0x100 × n

● ASID - The Data Breakpoint ASID (DBASID0...3) register has the ASID value
used in the compare for data breakpoint 0...3. It is located at drseg segment offset
0x2110 + 0x100 × 0...3.

Data Breakpoint Control (DBC0...3) Register

Address: Offset 0x2118 + 0x100 × n

● ASIDuse = 1 - (ASID compare Implemented)

● BAI[7:0] - Implemented (byte lines in value compare)

● NoSB - Controls whether condition for data breakpoint is ever fulfilled on a store
access:

● NoLB - Controls whether condition for data breakpoint is ever fulfilled on a load
access:

● BLM[7:0] - (Byte lines in value compare)

● TE - Use instruction breakpoint n as triggerpoint. See 4–35Table 4–35
Breakpoint Match Behavior on page 198.

● BE - Use instruction breakpoint n as breakpoint. See 4–35Table 4–35 Breakpoint
Match Behavior on page 198.

Data Breakpoint Value (DBV0...3) Register

Address: Offset 0x2120 + 0x100 × n

The Data Breakpoint Value (DBV0...3) register has the value used in the condition
for data breakpoint 0...3.

63 0

DBM

63 8 7 0
Reserved

0
ASID

63 24 23 22 21 14 13 12 11 4 3 2 1 0
Reserved

0
ASIDuse

Reserved
0

BAI NoSB NoLB BLM
Reserved

0
TE

Reserved
0

BE

63 0

DBVn
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 189

 cnMIPS™ Cores: cnMIPS™ Core EJTAG TAP Registers
4.13 cnMIPS™ Core EJTAG TAP Registers

Device ID Register Format

● Version = 0 (Identifies the version of a specific device)

● Part Number = 0xB00 (Identifies the part number of a specific device)

● ManufID = 0x1CC

Implementation Register Format (TAP Instruction IMPCODE)

● EJTAGver = 3 (EJTAG Version 3.10)

● R4k/R3k = 0 (R4K privileged environment)

● DINTsup = 1 (DINT is supported from TAP)

● ASIDsize = 2 (8-bit ASID)

● NoDMA = 1 (Implemented)

● MIPS16 = 0 (No MIPS16e support)

● MIPS32/64 = 1 (64-bit processor)

Table 4–30 EJTAG TAP Registers Summary

Register Implemented/Not Implemented Comments

Device ID Implemented See page 190

Implementation Implemented See page 190

Data Implemented See page 191

Address Implemented See page 191

EJTAG Control Implemented See page 191

PC Sample Implemented See page 191

EJTAG Boot Indication Implemented See page 192

Bypass Implemented See page 192

Fastdata Implemented See page 192

31 28 27 12 11 1 0
Version

0000
Part Number

0000 1011 0000 0000
ManufID

01 1100 1100
1

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 1 0
EJTAGver

011
R4k/R3k

0
Reserved

0
DINTsup

1
Reserved

0
ASIDsize

10
Reserved

0
MIPS16

0
Reserved

0
NoDMA

1
Reserved

0
MIPS32/64

1

190 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS™ Core EJTAG TAP Registers
Data Register (TAP Instruction DATA, ALL, or FASTDATA)

The read/write Data register is used for opcode and data transfers during processor
accesses. A TAP write to the Data register is ignored when there is no DMSEG access
pending.

Address Register (TAP Instruction ADDRESS or ALL)

The read-only Address register provides the address for a processor access.

EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)

● Rocc - This bit must be cleared to acknowledge that the reset was detected.
● Psz - Indicates the size of a pending processor access, in combination with the

Address register.
● Doze = 0 (No low power mode)
● Halt = 0 (Internal bus clock does not stop)
● PerRst = 0 (Peripheral reset not implemented)
● PRnW - Indicates read or write of a pending processor access.
● PrAcc - Indicates a pending processor access and controls finishing of a pending

processor access.
● PrRst - Implemented (core reset supported)
● ProbEn - Controls whether the probe handles accesses to the dmseg segment

through servicing of processors accesses.
● ProbTrap - Controls location of the debug exception vector.
● EjtagBrk - Requests a Debug Interrupt exception to the processor when this bit

is written as 1.
● DM - Indicates if the processor is in Debug Mode.

PC Sample Register Format (TAP Instruction PCSAMPLE)

● ASID - Address Space ID of the sampled PC.

● PC - Program counter value.

● New - Processor writes a 1 to this field whenever a new sample is written into
this register. The probe replaces with a zero when it reads out the sample value.

63 0

Data

63 0

Address

31 3029 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz
Reserved

0
Doze

0
Halt

0
PerRst

0
PRnW PrAcc

Reserved
0

PrRst ProbEn ProbTrap
Reserved

0
EjtagBrk

Reserved
0

DM
Reserved

0

72 65 64 1 0

ASID PC New
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 191

 cnMIPS™ Cores: cnMIPS™ Core EJTAG TAP Registers
EJTAG Boot Indication

EJTAG Boot is Implemented.

Bypass Register

Implemented. The Bypass register is a 1-bit read-only register, which provides a
minimum shift path through the TAP.

Fastdata Register

Implemented. The width of the Fastdata register is 1-bit. During a Fastdata access,
the Fastdata register is written and read, i.e., a bit is shifted in and a bit is shifted
out.
192 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Pipelines
4.14 cnMIPS Core Pipelines

The cnMIPS cores are dual-issue processors. The instruction classes are:

Pipeline 0 can issue instructions of any class:

Arith = CPU Arithmetic (Table 4–4, except Imul*/Idiv listed below),
CPU Logical Instructions (Table 4–8),
CPU Instruction Control (Table 4–6),
CPU Insert/Extract Instructions (Table 4–9),
CPU shift (Table 4–11)

BrJ = CPU Branch and Jump Instructions (Table 4–5),
CPU Trap Instructions (Table 4–12)

Load/Store = CPU Load, Store, and Memory Control Instructions (Table 4–7, except
ULD,ULW,USD,USW)

ULoad/UStore = ULD,ULW,USD,USW

Cmov = MOVN, MOVZ

MFCOP0 = MFC0, DMFC0, RDPGPR, WRPGPR, ERET, DERET, SDBBP, RDHWR

MTCOP0 = MTC0, DMTC0, CACHE, DI, EI, TLB*, WAIT

COP2 = DMFC2, DMTC2

Imul = MUL, DMUL, VMULU, MTHI, MTLO, MTM*, MTP*, POP, DPOP, CLZ,
CLO, DCLZ, DCLO

Imul2 = MULT, MULTU, DMULT, DMULTU, MTM0, MFHI, MFLO

Imul3 = V3MULU

Imul4 = VMM0

Idiv = DDIV, DDIVU, DIV, DIVU

Class

Result
Latency
(cycles)

Unit
Busy

(cycles) Comment

Arith 1 1 Fully pipelined

BrJ 2+ Taken branch takes at least 2 cycles.

Load/Store 2 1 Fully pipelined. Load-result latency is two cycles. Store
operations have no result. Hardware can issue a load or
store operation on any cycle.

ULoad/UStore 3 2 Takes two cycles on pipe 0, no instruction can issue on
pipe 1 the same cycle as the first.

Cmov 2 1 Fully pipelined

MFCOP0 4 1 Fully pipelined

MTCOP0 3 No other instruction can issue for three cycles.

COP2 4 1 Fully pipelined

Imul 5 1 Fully pipelined, No other Imul*/Idiv can issue this cycle.

Imul2 2 No other Imul*/Idiv can issue for two cycles.

Imul3 5 3 No other Imul*/Idiv can issue for three cycles.

Imul4 5 4 No other Imul*/Idiv can issue for four cycles.

Idiv 72 No other Imul*/Idiv can issue for 72 cycles.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 193

 cnMIPS™ Cores: Special MUL Topics
Pipeline 1 can issue instructions of this class:

4.15 Special MUL Topics

The following sequence can be used to save/restore multiplier context.

// save multiplier context
la $ka, multiplier_context
v3mulu $v0, $0, $0 // multiply by zero so p2-p0 will get walked out
v3mulu $v1, $0, $0
sd $v0, 0($ka)
v3mulu $v0, $0, $0
sd $v1, 8($ka)
ori $v1, $0, 1
v3mulu $v1, $v1, $0 // now multiply by 1 so p2-p0=mpl2-mpl0
sd $v0, 16($ka)
v3mulu $v0, $0, $0
sd $v1, 24($ka)
v3mulu $v1, $0, $0
sd $v0, 32($ka)
mflo $v0
sd $v1, 40($ka)
mfhi $v1
sd $v0, 48($ka)
sd $v1, 56($ka)

// restoring multiplier context
la $ka, multiplier_context
ld $v0, 56($ka)
ld $v1, 48($ka)
mthi $v0
mtlo $v1
ld $v0, 40($ka)
ld $v1, 32($ka)
mtm2 $v0
ld $v0, 24($ka)
mtm1 $v1
ld $v1, 16($ka)
mtm0 $v0
ld $v0, 8($ka)
mtp2 $v1
ld $v1, 0($ka)
mtp1 $v0
mtp0 $v1

mul rd, rs, rt
 Fully pipelined
 5 cycle latency

dmul rd, rs, rt
 Fully pipelined
 5 cycle latency

vmulu rd, rs, rt
 Fully pipelined
 5 cycle latency

v3mulu rd, rs, rt
 Next mul/div can issue in 3 cycles
 5 cycle latency

Class

Result
Latency
(cycles)

Unit
Busy

(cycles) Comment

Arith 1 1 Fully pipelined

Cmov 2 1 Fully pipelined

Imul 5 1 Fully pipelined, no other Imul*/Idiv can issue this cycle.

Imul2 2 No other Imul*/Idiv can issue for two cycles.

Imul3 5 3 No other Imul*/Idiv can issue for three cycles.

Imul4 5 4 No other Imul*/Idiv can issue for four cycles.

Idiv 72 No other Imul*/Idiv can issue for 72 cycles.
194 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: Special MUL Topics
vmm0 rd, rs, rt
 Next mul/div can issue in 4 cycles
 5 cycle latency

mtm0 rs, rt
 Next mul/div can issue in 2 cycles

mtm1 rs
 Fully pipelined

mtm2 rs
 Fully pipelined

mtp0 rs
 Fully pipelined

mtp1 rs
 Fully pipelined

mtp2 rs, rt
 Fully pipelined

mult(u) rs, rt
 Next mul/div can issue in 2 cycles

dmult(u) rs, rt
 Next mul/div can issue in 2 cycles

madd(u) rs, rt
 Next mul/div can issue in 4 cycles

msub(u) rs, rt
 Next mul/div can issue in 4 cycles

div(u) rs, rt
 Next mul/div can issue in 72 cycles

ddiv(u) rs, rt
 Next mul/div can issue in 72 cycles

mflo rd
 Fully pipelined
 5 cycle latency

mfhi rd
 Fully pipelined
 5 cycle latency

mtlo rs
 Next mul/div can issue in 2 cycles

mthi rs
 Next mul/div can issue in 2 cycles

pop rd,rs
 fully pipelined
 5 cycle latency

dpop rd,rs
 fully pipelined
 5 cycle latency

clz rd,rs
 fully pipelined
 5 cycle latency

clo rd,rs
 fully pipelined
 5 cycle latency

dclz rd, rs
 fully pipelined
 5 cycle latency

dclo rd, rs
 fully pipelined
 5 cycle latency
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 195

 cnMIPS™ Cores: COP2 Latencies
4.16 COP2 Latencies

Table 4–31 lists the latencies (i.e. the number of clock cycles until the next issue to
the unit) of the COP2 class of instructions (DMFC2 and DMTC2, refer to Table 4–3).
If a COP2-class instruction is not listed in Table 4–31, it has a latency of one cycle.

Table 4–31 COP2 Latencies

Operation Unit
Number

of Cycles

CVM_MT_3DES_DEC 3DES/KAS 25

CVM_MT_3DES_DEC_CBC 3DES/KAS 25

CVM_MT_3DES_ENC 3DES/KAS 25

CVM_MT_3DES_ENC_CBC 3DES/KAS 25

CVM_MT_AES_DEC_CBC1 AES See
Table 4–32CVM_MT_AES_DEC1 AES

CVM_MT_AES_ENC_CBC1 AES See
Table 4–32CVM_MT_AES_ENC1 AES

CVM_MT_CRC_BYTE CRC 1

CVM_MT_CRC_BYTE_REFLECT CRC 1

CVM_MT_CRC_DWORD CRC 2

CVM_MT_CRC_DWORD_REFLECT CRC 2

CVM_MT_CRC_HALF CRC 1

CVM_MT_CRC_HALF_REFLECT CRC 1

CVM_MT_CRC_VAR CRC 2

CVM_MT_CRC_VAR_REFLECT CRC 2

CVM_MT_CRC_WORD CRC 1

CVM_MT_CRC_WORD_REFLECT CRC 1

CVM_MT_CRC_POLYNOMIAL CRC 4

CVM_MT_CRC_POLYNOMIAL_REFLECT CRC 4

CVM_MT_GFM_XORMUL1 HSH/GFM 36

CVM_MT_HSH_STARTMD5 HSH/GFM 148

CVM_MT_HSH_STARTSHA HSH/GFM 100

CVM_MT_HSH_STARTSHA256 HSH/GFM 149

CVM_MT_HSH_STARTSHA512 HSH/GFM 181

CVM_MT_KAS_ENC 3DES/KAS 17

CVM_MT_KAS_ENC_CBC 3DES/KAS 17
196 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Hardware Debug Features
Table 4–32 lists the latencies of the COP2 instructions that use the AES unit, since
they depend on key length, encrypt or decrypt, and whether the operation is the first
after a key load.

4.17 cnMIPS Core Hardware Debug Features

The cnMIPS core’s hardware debug support includes the traditional MIPS debug
features as well as the MIPS EJTAG features. Refer to EJTAG Specification,
Revision 3.10. The traditional MIPS debug features provide compatibility with
existing debuggers. The cnMIPS™ core's EJTAG support includes cnMIPS core-
specific extensions that enable concurrent multicore debugging.

Non-EJTAG cnMIPS™ Core Hardware Features

The traditional MIPS debug features are listed in Table 4–33, and the EJTAG debug
features are listed in Table 4–34.

EJTAG Hardware Debug Features:

The EJTAG hardware-debug features are listed in Table 4–34.

CN50XX includes a single JTAG external (i.e. pin) interface for EJTAG support,
though each core has it's own EJTAG TAP controller.

Table 4–32 AES Unit Latencies

AES Key Length
First Operation
After Key Load?

Encrypt/
Decrypt

Number
of Cycles

128-bit No — 31
Yes Decrypt 141
Yes Encrypt 65

192-bit No — 37
Yes Decrypt 165
Yes Encrypt 74

256-bit No — 43
Yes Decrypt 206
Yes Encrypt 102

Table 4–33 MIPS Debug Features

Register Implemented / Comments
BREAK instruction Implemented
Trap instructions Implemented
Watch registers 1 inst-only, 1 data-only implemented
MMU Traps Implemented

Table 4–34 EJTAG Debug Features

Register Implemented / Comments

EJTAG dmseg Implemented

EJTAG drseg Implemented

EJTAG inst
breakpoints

4 implemented

EJTAG data
breakpoints

4 implemented, both address and value. The EJTAG data value
breakpoints are not precise for loads.

EJTAG single step Implemented

EJTAG debug
interrupts

Implemented. No external wire, only through the TAP.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 197

 cnMIPS™ Cores: cnMIPS Core Hardware Debug Features
4.17.1 Multicore Debug Support

The cnMIPS core hardware supports very fast debug interrupts, called multicore
debug (i.e. MCD) interrupts, to aid debugging parallel applications.

The hardware includes 3 global wires, called MCD wires, that each core can pulse
every cycle. Each core also samples the “wired-OR” value, each wire every cycle.
When this value is a one, each core that is not mask-disabled (via Multicore
Debug[Mask_MCD0,Mask_MCD1,Mask_MCD2]) sets a state bit corresponding to
the wire (i.e. sets Multicore Debug[MCD0,MCD1,MCD2]).

If any of Multicore Debug[MCD0,MCD1,MCD2] are non-zero on a given core (and the
core is not already in debug mode), a debug exception is requested on the core.
Software can clear Multicore Debug[MCD0, MCD1, MCD2] by writing a one to them;
this is necessary to ensure that no further debug interrupts occur after exiting the
debug handler.

These MCD interrupts occur at the same priority level as the debug interrupts (i.e.
DINT) described in the MIPS spec. The exception location is also the same as a debug
interrupt and MCD0, MCD1, and MCD2 bits are similar to the DINT bit, but the
detailed behavior is different:

● The DINT bit is read-only, but Multicore Debug[MCD0, MCD1, MCD2] must be
cleared by the debug handler

● DINT must be clear when Multicore Debug[DExcC] is set, but Multicore
Debug[MCD0,MCD1,MCD2] need not be.

There are three ways that the global MCD wires can be pulsed:

1. Software can write a one to the Pls0, Pls1, or Pls2 bits to pulse any combination
of the three MCD wires.

2. If Multicore Debug[GSDB] is set and a SDBBP instruction is executed, the hard-
ware pulses the MCD0 wire.

3. If IBCn/DBCn[TE] is set and a breakpoint matches, the hardware pulses the
MCD0 wire. The following table describes the detailed behavior on a breakpoint
match based on the IBCn/DBCn[BE,TE] value:

The debug exception handler can follow these rules to determine the cause(s) of a
given debug exception after reading the Debug and/or Multicore Debug registers:

1. Any of Multicore Debug[MCD0,MCD1,MCD2] could be set at any time, indicating
that the corresponding MCD state bit is set.

Table 4–35 Breakpoint Match Behavior

BE TE Comment

0 0 Nothing happens on a match

0 1 MCD0 is pulsed on a match. BS bits are also set in IBS/DBS. No direct local
exception occurs. (This mode may not be used.)

1 0 A local breakpoint exception occurs due to the breakpoint match, causing the
core to enter debug mode. MCD0 is not pulsed. BS bits are set in IBS/DBS. (This
mode will be used when debugging, but not multicore.)

1 1 A local breakpoint exception occurs due to the breakpoint match, causing the
core to enter debug mode. MCD0 is also pulsed. BS bits are also set in IBS/DBS.
(This mode will be used when debugging multicore.)
198 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Hardware Debug Features
2. If Multicore Debug[DExcC] is set, all of Debug[DDBSImpr, DDBLImpr, DINT,
DIB, DDBS, DDBL, DBp, DSS] will be clear, and Debug[DExcCode] will contain a
valid code. (This is the case for a debug mode exception.)

3. If none of Debug[DDBSImpr,DDBLImpr, DINT, DIB, DDBS, DDBL, DBp, DSS]
are set, then the exception was either due to MCD*, or Multicore Debug[DExcC]
being set and Debug[DExcCode] is valid.

4. No more than one of Debug[DIB, DDBS, DDBL, DBp, DSS] can be set.

5. If Multicore Debug[DExcC] is clear, any combination of Debug[DDBLImpr,
DINT] may be set.

6. At least one of Debug[DDBLImpr, DINT, DIB, DDBS, DDBL, DBp, DSS] and
Multicore Debug[MCD0, MCD1, MCD2, DExcC] will be set.

4.17.2 System Debug Characteristics

Note that Multicore Debug[CvDM, CGSTP, CGSTP] bits determine whether the
Count and CvmCount registers are affected by the GSTOP state, and the watchdog
timers may be affected by the GSTOP state, as described in Central Interrupt.

Though cnMIPS cores implement the CountDM and STOPEN functions to make the
core instruction flow while debugging as similarly as possible to the non-debug
instruction flow, there still are many ways that debug timing and instruction flows
will differ from non-debug. No other CN50XX hardware is affected by debug mode or
GSTOP: packets may continue to arrive, hardware coprocessor units will continue to
operate, and external interrupts (e.g. PCI) may arrive while the cores are in debug
mode and/or GSTOP is enabled.

Another significant factor affecting debug/nondebug instruction flow is the impact of
delayed load/IOBDMA operations. The cores can issue these delayed load/IOBDMA
operations as follows:

● Fetch & Add Unit (FAU) requests have the tagwait feature. With this feature, the
hardware attempts to delay servicing the FAU request until after the last
pending tag switch occurs. Refer to “Fetch and Add Unit (FAU)” on page 148.

● New work requests have a wait feature. With this feature, the hardware attempts
to delay the new work request until work is available.

These delayed load/IOBDMA operations have time-outs that fail the request. The
time-out is necessary to ensure that subsequent SYNCIOBDMA, SYNCIOALL, or
SYNC requests do not hang forever. (If they did hang, the core would no longer be
able to execute any instructions.) These time-outs are necessarily shorter than any of
the other time-outs so that the cores can respond quickly to interrupts, exceptions,
and any other flow redirections. During debug it may not only be probable for these
time-outs to expire, but also perhaps necessary for these time-outs to expire, to make
forward progress. Refer to “Forward Progress Constraints” on page 251. This may
cause considerable changes to the instruction flow while debugging. Tagwait FAU
requests may often time-out when debugging, but never time-out during normal
operation. Refer to “Fetch and Add Unit (FAU)” on page 148.

Note that, the core-debug-mode handler need not use noncacheable references to
avoid invalidating load-linked/store-conditional sequences, as the MIPS
specifications suggest. The debug handler can use ordinary cached loads/stores
without invalidating load-linked / store conditional sequences.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 199

 cnMIPS™ Cores: cnMIPS Core Load-Linked / Store-Conditional
4.18 cnMIPS Core Load-Linked / Store-Conditional

LL and LLD instructions to DRAM set the lock flag. The hardware clears the lock
flag under any of the following conditions:

● Another core writes the same (128-byte) cache block, causing the block to be
invalidated from this cache.

● ERET execution

● SC/SCD execution

● TLBWI/TLBWR execution

● A store to the block using a different virtual address than was used by the LL/
LLD.

● A store to the locked block (same virtual address as was used by the LL/LLD)
that has a late exception (TLB modified, address error, TLB invalid, TLB
modified, watchpoint, or breakpoint), but hit in the cache.

● Increase in CvmMemCtl[LMEMSZ].

● Anything that invalidates the entire Dcache:
CACHE (op == 1, 9, 17, 21)
Status[ERL] change

LL/LLD instructions to I/O space do not set the lock flag and act exactly as LW/LD,
respectively.

SC/SCD instructions to I/O space always fail, no write ever occurs (and clear the lock
flag).

4.19 cnMIPS Core Exceptions

Table 4–36 lists all the MIPS-defined and Cavium Networks-specific exceptions, and
whether they are implemented on the cnMIPS core.
200 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Exceptions

Table 4–36 cnMIPS Core Exceptions

Exception
Implemented/
Not Implemented Comments

Reset Implemented
Soft Reset Implemented cnMIPS cores can be reset from a chip-wide soft reset

(CIU_SOFT_RST[SOFT_RST]), watchdog time-out expiration, core-selected
soft reset (CIU_PP_RST[RST,RST0]), or core-local EJTAG TAP soft reset
(ECR[PrRst]).
In the core-selected and core-local soft-reset cases (where only the local core
is reset), the coherent memory bus and other coherent bus users are not
reset. If the core being reset is actively using the bus the chip behavior could
be adversely affected. Before performing a core-selected or core-local soft
reset, ensure that the core being reset has executed a SYNCIOBDMA
instruction, and has entered an idle loop.

Debug Single Step Implemented
Debug Interrupt
(DINT)

Implemented cnMIPS cores can receive core-selected debug interrupts
(CIU_DINT[DINT]), EJTAG TAP ECR[EjtagBrk] debug interrupts, and can
take a debug interrupt from EJTAGBOOT.

Multicore Debug
(MCD) Interrupt

Cavium-specific. Multicore debug interrupts are very similar to DINT, except that
Debug[DINT] is not set after the interrupt is taken.
(MultiCoreDebug[MCD*] is set instead.)

Debug Data Break
Load/Store Imprecise
(DDBLImpr/
DDBSImpr)DDBLIm
pr

DDBLImpr
implemented
DDBSImpr not
implemented.

cnMIPS core’s EJTAG breakpoints are all precise except for load value
matches.

Non-Maskable
Interrupts

Implemented cnMIPS core may receive core-selected non-maskable interrupts
(CIU_NMI[NMI]) or may receive a non-maskable interrupt from the CIU
watchdog for the core.

Machine Check Implemented cnMIPS core implements synchronous machine-checks. Debug mode
machine-checks can occur.

Interrupt Implemented for
Cause[IP4,IP3,IP2].

cnMIPS cores receive two interrupt wires from CIU - Cause[IP4,IP3,IP2].
The CIU combines all possible chip-wide interrupt wires into
Cause[IP4,IP3,IP2]. This includes: per-group work queue interrupts, GPIO
interrupts, 2 mailbox (inter-core) interrupts, UART interrupts, PCI
interrupts, PCI MSI interrupts, watchdog interrupts, TWSI interrupts, RML
interrupts, trace buffer interrupts, GMX/IPD packet-drop interrupts, key
zeroization interrupts, general timer interrupts. Cause[IP2], Cause[IP3],
and Cause[IP4] can be programmed independently to include any
combination of these interrupt sources.

Deferred Watch Implemented
Debug Instruction
Break

Implemented CN50XX may take an instruction breakpoint for the instruction in the delay
slot of a branch-likely instruction, even though the branch was taken, and
therefore the instruction was not really executed. (Note that branch-likely
instructions are deprecated in the MIPS architecture and generally should
not be used.)

Watch on Instruction
fetch

 Implemented CN50XX may take a watch on an instruction fetch for the instruction in the
delay slot of a branch-likely instruction, even though the branch was taken,
and therefore the instruction was not really executed. (Note that branch-
likely instructions are deprecated in the MIPS architecture and generally
should not be used.)

Address error in
Instruction fetch

Implemented The cnMIPS core may flush the Icache on an address error on an instruction
fetch. Debug mode address error instructions can occur.

TLB/XTLB Refill on
Instruction Fetch

Implemented Debug mode TLB/XTLB refill on instruction fetch exceptions can occur.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 201

 cnMIPS™ Cores: cnMIPS Core Exceptions
TLB Invalid on
Instruction Fetch

Implemented Debug mode TLB invalid on instruction fetch exceptions can occur.

Cache error on
Instruction Fetch

Implemented The cnMIPS core automatically corrects the error by flushing the Icache, so
the cache error handling software need not attempt to correct the error. The
Cache error register (register = 27, select = 0) contains diagnostic
information.
Debug-mode cache error on instruction fetch exceptions can occur.

Bus error on
Instruction Fetch

Implemented CN50XX instruction fetch bus errors only occur on a time-out of an
outstanding instruction fetch fill. These errors are generally non-
recoverable.
Debug mode bus error on instruction fetch exceptions can occur.

Debug breakpoint
(SDBBP execution)

Implemented Debug mode debug breakpoint exceptions can occur.

Coprocessor
Unusable

Implemented CN50XX may generate Coprocessor unusable exceptions for all of
Coprocessors 0, 1, and 2.
Debug mode coprocessor unusable exceptions can occur.

MDMX Unusable Not Implemented CN50XX does not implement the MDMX ASE.
Reserved Instruction Implemented Debug mode reserved instruction exceptions can occur.
Integer Overflow Implemented Debug mode Integer overflow exceptions can occur.
Trap Implemented Debug mode Trap exceptions can occur.
System Call Implemented Debug mode system call exceptions can occur.
Breakpoint Implemented Debug mode breakpoint exceptions can occur.
Floating Point Not Implemented cnMIPS™ cores do not implement floating-point.
Coprocessor 2 Not Implemented cnMIPS core’s coprocessor 2 units do not generate exceptions.
Precise Debug Data
Break

Implemented All debug data break exceptions are precise except for load value match
breakpoints.

Watch on Data Access Implemented

Table 4–36 cnMIPS Core Exceptions

Exception
Implemented/
Not Implemented Comments
202 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

cnMIPS™ Cores: cnMIPS Core Exceptions
Address Error on
Data Access

Implemented with
Cavium-specific
additions.

When CvmCtl[REPUN] is clear, the core generates address errors for the
LD, LW, LWU, LH, LHU, SD, SW, and SH instructions exactly as per the
MIPS specs.

When CvmCtl[REPUN] is set, address error exceptions due to address
alignment in physical memory or CVMSEG LM (NOTE: NOT I/O or DSEG)
locations do not happen for the LD, LW, LWU, LH, LHU, SD, SW, and SH
instructions since the core hardware automatically completes the memory
unaligned loads/ stores.

When CvmCtl[REPUN] is set, the core generates address errors for all
unaligned IO/DSEG accesses for the LD, LW, LWU, LH, LHU, SD, SW, and
SH instructions, as per the MIPS specifications. However, the priority of
these unaligned address errors is lower than the priority of TLB refill, TLB
invalid, and TLB modified exceptions when CvmCtl[REPUN] is set, unlike
the MIPS specifications.

When CvmCtl[USEUN] is set, the core generates address errors for all
unaligned IO/DSEG accesses for the ULD, ULW, USD, and USW
instructions. The priority of these unaligned address errors is lower than the
priority of TLB refill, TLB invalid, and TLB modified exceptions.

When enabled (by the appropriate CvmMemCtl[CVM*]), CVMSEG I/O
references by anything other than an aligned SD to the 0xFFFF FFFF FFFF
A200 virtual address (i.e. any non-IOBDMA) cause address errors.

When enabled (by the appropriate CvmMemCtl[CVM*]), CVMSEG LM
references larger than that allowed by CvmMemCtl[LMEMSZ] cause
address errors. Stores that take an address error solely due to the limit
imposed by CvmMemCtl[LMEMSZ] may corrupt other cache locations,
however, since the core hardware does not stop the store sufficiently early.

When enabled (by the appropriate CvmMemCtl[CVM*]), all LL, LLD, SAA,
SAAD, SC, and SCD accesses to CVMSEG cause address errors.

Debug mode address error on data access exceptions can occur.
TLB/XTLB Refill on
Data Access

Implemented Debug mode TLB/XTLB Refill on Data Access exceptions can occur.

TLB Invalid on Data
Access

Implemented Debug mode TLB Invalid on Data Access exceptions can occur.

TLB Modified on
Data Access

Implemented Debug mode TLB Modified on Data Access exceptions can occur.

Cache Error on Data
Access

Implemented The cnMIPS core automatically corrects the error by flushing the Dcache, so
the cache error handling software need not attempt to correct the error. The
Cache error register (register = 27, select = 1) contains diagnostic
information.
Debug mode Cache Error on Data Access exceptions can occur.

Bus error on Data
Access

Implemented Data access bus errors only occur on a time-out of an outstanding Dcache
fill. These errors are generally non-recoverable.
Debug mode Bus error on Data Access exceptions can occur.

Precise Debug Data
Value Compare Break

Not implemented Debug Data Value Compare breakpoints are imprecise on the core.

Table 4–36 cnMIPS Core Exceptions

Exception
Implemented/
Not Implemented Comments
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 203

 cnMIPS™ Cores: cnMIPS Core Exceptions
204 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 5

Packet Order / Work Unit (POW)
This chapter contains the following subjects:

● Overview

● POW Work Flow, Operations, and Ordering

● Software Architecture Example

● POW Internal Architecture

● Work-Queue Entry Format

● Core and Fetch-and-Add Pending Switch Bits

● POW Interrupts

● POW QOS Features

● POW Debug Visibility

● POW Performance Considerations

● Forward Progress Constraints

● POW Operations

● POW ECC Codes

● POW Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 205

 Packet Order / Work Unit (POW):
Overview

The Packet Order/Work (POW) unit is a CN50XX coprocessor providing the following
important functions:

Work Queueing

Work is described by an associated work-queue entry and may be created by either
hardware units or core software. The centralized packet-input hardware creates a
work-queue entry and submits work for each packet arrival. Core software can create
work-queue entries and submit work as desired. The packet output (PKO), Timer
(TIM), and PCI hardware units can also submit work-queue entries created by core
software after completing an operation/instruction.

POW implements eight input work queues. The different work queues can be used to
provide different service levels.

The input work queues can be infinitely large, overflowing to DRAM when necessary.

Work Scheduling/Descheduling

Core software requests work from POW. POW selects (i.e. schedules) work for the
core and returns a pointer to the work-queue entry that describes the work to core
software. This off-loads much overhead from the cores and the coherent memory bus.

All work is not equal since the POW hardware supports 16 groups. Each piece of
work has an associated group identifier. A configuration variable for each core
specifies the groups that the associated core will accept when it requests work. This
configuration variable is a 16-bit bitmask, one bit per group, so core software can
specify all possible combinations of groups. The POW hardware does not schedule a
piece of work if the core doesn't accept the group associated with the work.

Groups provide a means to execute different functions on different cores, though all
cores share the same POW hardware. For example, packet processing may be
pipelined from one group of cores to another group of cores, with the first group
performing the first stage of work and the next group performing the next stage of
work.

A core can deschedule a piece of work. Deschedule means that the software running
on this core will not complete the work at this time, and the POW hardware should
reschedule it later. The POW hardware reschedules previously descheduled work at
higher priority than it schedules new work from an input queue. Deschedule can be
useful in a number of circumstances:

● It can transfer work from one core group to another. This is one mechanism to
implement “work pipelining”.

● It can avoid consuming a core for work that requires a large synchronization
delay.

● It can make work interruptible.

Ordering and Synchronization of Work

The POW hardware associates a 32-bit tag value and a tag type with each piece of
work. The work-queue entry and the request to add work to an input work queue
contain the initial tag value. (This initial tag value may be created by either the
centralized input packet processing hardware or by core software.) Core software can
206 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
高亮

Packet Order / Work Unit (POW): POW Work Flow, Operations, and Ordering
also later switch the tag/type as the work progresses through different phases of the
application. If the same tag value sequences are used by two packets, the packets are
ordered.

There are three different tag types:

● ORDERED - Ordering is guaranteed with this tag type. (Atomicity is not.)

● ATOMIC - Ordering and atomicity are guaranteed with this tag type. Two pieces
of work holding the same ATOMIC tag cannot be scheduled simultaneously.

● NULL - No ordering is guaranteed with this tag type, and work cannot be in-
flight (with respect to the POW hardware) with this tag type.

The POW hardware, in combination with core software, uses these tag/type values to
order and synchronize related work, and allow unrelated work to be unordered and
unsynchronized. This is essential for efficient multi-core execution. Two pieces of
work may be / are related and will be ordered and synchronized when they share the
same tag value and tag type. Two pieces of work may be unrelated and will execute
entirely in parallel when they have different tag or tag type values.

For example, the tag value may be a hash of the standard TCP five-tuple (IP source
address, IP destination address, IP protocol, TCP source port, TCP destination port)
defining a “flow”. The same flow will have the same tag value, so it may be ordered
and synchronized. Different flows will likely have different tag values, so will likely
not be ordered and synchronized, and can be executed completely in parallel on
different cores.

At different code phases, core software can change the tag value via a tag switch
transaction with separated switch request and switch completion wait operations.
The POW hardware completes a requested switch when the required ordering and
atomicity constraints for the work are met. This separated switch transaction allows
software to overlap the switch request latency with other profitable work and also
allows software the option to deschedule the work while a tag switch is pending, thus
avoiding long synchronization delays.

5.1 POW Work Flow, Operations, and Ordering

Figure 5–1 shows an abstracted view of the POW unit, focusing on the states of work
as it flows through the POW Unit, and touching on the most important operations
that cores can execute to transform work. Often, work flows through the states in the
figure from top to bottom - work is first in the input queues, then in-flight, and finally
descheduled or completed.

At any given time, only one piece of work can be scheduled to a particular core. This
is shown in the center of Figure 5–1 (see “in unit, sched”). Clearly, the number of
scheduled items is limited to the number of cores (up to 2). A core is not scheduled if
it is executing unscheduled work or if it completes scheduled work without
requesting new work. Scheduled work is a subset of the POW in-flight work. Any core
may deschedule a scheduled item at any point (see “in unit, desched” in Figure 5–1).
Descheduled work remains in-flight, and will be rescheduled later, but is not
currently executing on a core. Work that is scheduled remains scheduled after the
completion of a tag switch transaction (SWTAG), unless the switch has a next tag
state of NULL. A tag switch with a next tag switch to NULL causes work to
immediately become unscheduled on the core. Figure 5–1 abstracts SWTAG
transactions by showing them as a single arrow; in reality, a deschedule operation
can occur after SWTAG transaction starts, but before it completes.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 207

Owner
矩形

Owner
下划线

Owner
下划线

Owner
下划线

 Packet Order / Work Unit (POW): POW Work Flow, Operations, and Ordering
Work typically enters the POW unit through one of the input queues. The top of
Figure 5–1 shows the eight POW input work queues. The POW unit internal entries
are shared by in-flight work and work in input queues. Both software and hardware
can add input queue entries (ADDWQ). Though the POW unit size is limited, the
POW hardware maintains the illusion of an infinite input work queue. When space is
not available in the POW unit, the POW hardware adds the input queue entries to an
L2/DRAM list maintained by hardware. If space is available in the POW unit when
work is added, the POW hardware buffers the work internally immediately and
avoids the overhead of the memory list. If the POW hardware puts work in a memory
list, it later automatically (and in the background) moves the work from L2/DRAM
into the unit as soon as space becomes available in the unit, in the order that the
work was originally added.

Work is typically scheduled to a core when core software executes a GET_WORK
transaction to request new work. The POW hardware can schedule in-unit input
queue entries to cores in response to these requests. The POW hardware can also
schedule descheduled work to cores in response to GET_WORKs. The POW hardware
prioritizes descheduled work above input queue work. The POW scheduler never
schedules a descheduled item that has a pending tag switch, and never schedules an
input queue entry with an ATOMIC tag unless it can immediately have the tag. In
other words, POW only schedules work when it can make forward progress. Input
work-queue entries with the NULL tag type are a special case. The POW hardware
immediately unschedules NULL type input queue work returned for a GET_WORK.

Figure 5–1 States of Work Flowing Through the POW

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

In Input Queue

In-Flight

Unscheduled
or Completed

In Queue Order

In Queue Order
(ORDERED or NULL tags for the same group)

or tag ordered within queue
(ATOMIC tags for the same group)

or unordered
(different groups)

Descheduled

Scheduled

Tag + type ordered
(Identical tag switch sequences

give total order)

Unordered

×8 input queues
(QOS levels)

GET_WORK

DESCHED

SWTAG to NULL or
NULL input queue entry

SWTAG
(to non-NULL)

×
m

an
y

N
ot

 F
ul

l

In L2/
DRAM

In
Unit

ADDWQ

GET_WORK

SW
TA

G
to

 n
on

-n
ul

l

up
 to

 2
(o

ne
 p

er
 c

or
e) In Unit,

Desched

In Unit,
Desched

In Unit,
Sched
208 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
高亮

Packet Order / Work Unit (POW): POW Work Flow, Operations, and Ordering
Work also enters the POW unit when an unscheduled (from the perspective of the
POW hardware) core executes a SWTAG transaction. This is shown by the upward
arrow in the bottom of Figure 5–1. Work that enters the POW hardware unit this way
is immediately scheduled, and is then not distinguishable from other scheduled
work.

Figure 5–1 also shows another interesting aspect of the POW hardware on the right
side. The ordering guarantees for work as it flows through the POW unit.

First, if work is in an input queue in memory (at the top in Figure 5–1), POW keeps it
strictly in-order on a per queue basis.

Second, when work is in-flight (either scheduled or descheduled), ordering is strictly
based on tag and tag type values. POW does not force any ordering nor synchronize
in-flight work that uses different tag values or different tag type values. This in-
flight work freely executes in parallel.

Third, when work is both in an input queue and in the POW unit (i.e. between the
memory input queues and the in-flight work), the work ordering guarantees are
mixed. The POW hardware work scheduler skips past in-unit input queue entries
that cannot be immediately scheduled when it searches for schedulable work. The
POW scheduler never skips past ORDERED and NULL input queue work, so the
POW scheduler schedules work with these types (and the same group) strictly in per
input queue order. The POW scheduler skips input queue work with the ATOMIC tag
type and a tag that cannot immediately be scheduled, and so only guarantees tag
order for ATOMIC input queue work (that has the same group). The POW work
scheduler skips over input queue work that is not in the desired group, so no ordering
is implied between two input queue entries in different groups. Finally, at the bottom
of Figure 5–1, unscheduled work is not synchronized by POW hardware and so is
completely unordered.

The POW hardware maintains order across tag switches. Any in-flight work that
executes the identical series of tag switches (each with the same tag/type values)
while in-flight will be ordered identically through each switch. With proper
configuration and software support, the POW hardware can totally order the
processing of all packets in a flow. CN50XX provides total per-flow work ordering
support for input packets (perhaps all the way to output) as long as the following
conditions are true: (1) All packets from the same flow enter POW via the same input
queue with the same initial tag value and group, and (2) The software processes
packets from the same flow with the same sequence of non-NULL tag switches.

Figure 5–2 depicts an abstracted view of the POW core state (i.e. the POW states
visible to a core) and the operations that affect it, focusing on the legal major
operations in each state. A state has an arc tagged with a particular operation when
it is legal to issue the operation in the state.

The abstracted states in Figure 5–2 closely mirror the tag types available in the tag
switch operation. A new work request that receives work with an ORDERED,
ATOMIC, or NULL tag puts the core into the ORDERED, ATOMIC, or NULL POW

NOTE: The group identifier of work does not affect the ordering of in-flight
work, it only affects the cores to which a descheduled item can be
rescheduled.

NOTE: The POW ADDWQ and NOP commands do not affect POW core
state and are legal at any time. The POW CLR_NSCHED command
does not affect POW core state and has its own issue rules.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 209

Owner
下划线

Owner
下划线

Owner
下划线

 Packet Order / Work Unit (POW): POW Work Flow, Operations, and Ordering
core state, respectively. A tag switch to an ORDERED, ATOMIC, or NULL tag type
puts the core in the ORDERED, ATOMIC or NULL POW core state, respectively.
These operations are depicted by arcs entering these states.

Figure 5–2 introduces the NULL_NULL state and the NULL_RD transaction.
NULL_NULL is a special state entered only after a deschedule or reset.
NULL_NULL and NULL_RD are required because a deschedule operation detaches
an internal POW entry from a core and there may not be another entry available.
(See Section 5.3 for more description of the POW hardware internals). NULL_NULL
is similar to NULL, with the clear difference that it is illegal to SWTAG when in the
NULL_NULL state. NULL_RD causes the POW hardware to attempt to convert the
state to NULL when it is in the NULL_NULL state. (NULL_RD will fail when there
are no more internal POW entries — see Section 5.10 for forward-progress
implications.)

The GET_WORK arcs exiting the ORDERED and ATOMIC states are special and
marked with “#”. These transactions implement multiple functions to release the
prior work and schedule new work for this core. The POW hardware actually
executes an implicit switch to NULL before executing the GET_WORK in these two
cases. This implicit switch to NULL releases the prior work, so that the hardware
always starts a GET_WORK from the NULL or NULL_NULL states. Note the
implication that a GET_WORK from ORDERED or ATOMIC that does not

Figure 5–2 The POW States Visible to a Core

* = can start while a SWTAG or SWTAG_FULLFULL is pending to the state
= hardware inserts an implicit switch to NULL prior to the GET_WORK

NULL_NULL

GET_WORK*,
NULL_RD*

ORDERED

NULL ATOMIC

GET_WORK#,
NULL_RD*

SWTAG, SWTAG_FULL

UPD_WQP_GRP*

GET_WORK#,

SWTAG, SWTAG_FULL
GET_WORK#,

SWTAG, SWTAG_FULL

GET_WORK#,
NULL_RD*

SWTAG, SWTAG_FULL

UPD_WQP_GRP*

GET_WORK (Failure),
NULL_RD (Failure)

SWTAG

SWTAG_FULL*GET_WORK*,

GET_WORK#,

GET_W
ORK*

SW
TA

G_F
ULL

*

SWTA
G, G

ET_W
ORK#

GET_WORK

NULL_RD (Successful)

GET_WORK

DESCHED

SWTA
G_DESCHED

D
ESC

H
ED

G
ET

_W
O

R
K

SW
TAG

_D
ESC

H
ED

RESET
210 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Work Flow, Operations, and Ordering
successfully return work will change to the NULL state. A GET_WORK transaction
from NULL_NULL that does not successfully return work will stay in the
NULL_NULL state.

As in Figure 5–1, Figure 5–2 abstracts SWTAG, GET_WORK, and NULL_RD
transactions as a single arc, though all these operations can have separate request
and completion times. This is because the initial request solely determines the legal
operations that can follow. The only question is whether the next legal transaction
can start before the POW hardware completes the previous transaction. A tag switch
transaction has explicitly-separated request and completion operations, but the get
work and Null Rd transactions are separated only with core IOBDMAs. IOBDMAs
are described in Section 4.7. Here are the rules regarding transaction start time for
the POW transactions that affect POW core state:

● SWTAG_DESCHED, DESCHED, UPD_WQP_GRP, and NOP transactions do not
have separated start and completion times, so can be followed immediately by
any legal command.

● The transactions marked “*” can start before the prior SWTAG is complete.

● In all other cases in Figure 5–2, A following transaction must not start before the
prior transaction is complete.

The hardware behavior is unpredictable when the rules evident in Figure 5–2 are
violated by core software. Note some specific restrictions:

● It IS NOT LEGAL to initiate a deschedule from the NULL or NULL_NULL POW
core state.

● It IS NOT LEGAL to initiate any tag switch from the NULL_NULL state.

● It IS NOT LEGAL to initiate a tag switch with tag type of NULL from the NULL
POW core state.

● It IS NOT LEGAL to issue any tag switch or get work operation while there is a
pending switch with an ORDERED or ATOMIC tag type.

● It IS NOT LEGAL to initiate any transaction while a get work transaction is
pending.

● It IS NOT LEGAL to initiate any transaction while a Null Rd operation is
pending.

● It IS NOT LEGAL to initiate a SWTAG_FULL or SWTAG_DESCHED
transaction with tag type of NULL.

Table 5–1 details the available POW operations:

Table 5–1 POW Operations

Operation Description

ADDWQ(tag_type, tag, wqp, grp, qos) This adds work to the input queue selected by the QOS. Tag_type can legally be
ATOMIC, ORDERED, or NULL. QOS is a 3-bit value, grp is a 4-bit value, and tag
is a 32-bit value.

The work-queue pointer (wqp) must be a 64-bit aligned pointer into L2/DRAM and
must point to a legal work-queue entry. See “Work-Queue Entry Format” on
page 220. Furthermore, the work-queue entry group, tag type, and tag fields in the
work-queue entry in L2/DRAM must exactly match the corresponding values
supplied with the ADDWQ or the POW hardware may produce unpredictable
results.

The input work-queues are infinite, so this transaction never fails.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 211

Owner
下划线

Owner
下划线

Owner
高亮

 Packet Order / Work Unit (POW): POW Work Flow, Operations, and Ordering
GET_WORK(wait) This transaction attempts to get work for the requesting core. The value of the
POW_PP_GRP_MSK0/1[GRP_MSK] CSR for the core at the time of the
GET_WORK specifies the groups that are acceptable. The wait option causes the
POW hardware to delay responding to the request until either work becomes
available or the request times out. In any case, the POW hardware returns a
failure response if it was unable to find work for the core, or a pointer to the work-
queue entry if it successfully found work for the core.

NOTE: It is possible, though unlikely, for a time-out to occur when the wait bit is
clear, as well as when the wait bit is set, if the work search takes too long.

The POW_PP_GRP_MSK that specifies the acceptable groups for a core must not
be written between the start and completion of the GET_WORK, or unpredictable
results may occur. Otherwise, the CSR can be written at any time.

The POW_NW_TIM[NW_TIM] CSR specifies the configurable time-out counter
interval that controls a single counter used for both cores. The POW hardware
times out a GET_WORK request after two interval timer expirations, so the
effective time-out interval varies between one and two times the configured
interval.

NULL_RD This transaction attempts to change to the NULL state when in the NULL_NULL
state. It is a NOP from all other states. The POW hardware will return
NULL_NULL when it could not successfully allocate an internal POW entry.

Successful NULL_RDs always leave the core in the NULL state. Unsuccessful
NULL_RDs or ones converted to NOPs do not change the core state.

SWTAG(new_tag_type, new_tag) This starts a tag switch transaction. The POW hardware completes the tag switch
transaction later when it clears the pending switch bit for the core (refer to Section
5.5 for more information onPOW tag switch-pending indications). An exception is a
SWTAG to NULL, whose completion POW hardware never transmits. A SWTAG
must not be used when switching from the NULL state.

A SWTAG from an ATOMIC tag releases the ATOMIC tag immediately
once the tag switch transaction starts, perhaps long before the SWTAG
transaction completes.

A SWTAG to an ATOMIC tag completes when the work acquires the new
ATOMIC tag. At most one piece of work holds an ATOMIC tag at any time.
The FIFO order is the acquisition order for the tag.

A SWTAG from an ORDERED tag cannot complete until all work ordered
earlier in the old tag's FIFO start a SWTAG transaction.

A SWTAG to an ORDERED tag occurs immediately when switching from
an ATOMIC or NULL tag, and occurs once the ordering constraints of the
old tag are met when switching from an ORDERED tag.

SWTAG_FULL(new_tag_type,
new_tag, new_wqp, new_grp)

This is identical to SWTAG, except that the transaction additionally updates the
work-queue pointer (new_wqp) and 4-bit group identifier (new_grp) for the work
that is held in the POW. SWTAG_FULL must be used for all switches from the
NULL state.

The POW hardware never interprets or uses the work-queue pointer supplied in
this transaction, but it may deliver it to SW later to complete a GET_WORK. The
POW hardware stores <35:3> of the work-queue pointer. SWTAG_FULL must not
be used for switches to NULL.

Table 5–1 POW Operations (Continued)

Operation Description
212 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
下划线

Owner
下划线

Packet Order / Work Unit (POW): Software Architecture Example
5.2 Software Architecture Example

This section describes one specific example of software usage of some of the POW
hardware features. We describe this example only to illustrate a possible usage of
some of the POW hardware features, not to advocate any of the particular
techniques. The POW hardware synchronization support is very flexible and can be
used in a huge variety of ways.

Figure 5–3 shows the simple synchronization architecture for the Firewall/VPN
packet processing example. This simple architecture assumes that there are at most
six application phases during the processing of each individual packet: defrag, IPSEC
decrypt, Lookup, Process, IPSEC encrypt, and output queue. It also assumes IPv4,
but could be modified/generalized to IPv6.

DESCHED(no_sched) This executes a deschedule transaction. When the no_sched bit is set on DESCHED
(or SWTAG_DESCHED) operations, the POW hardware does not schedule the
packet to a core until a subsequent CLEAR_NSCHED operation clears the
no_sched bit for the POW entry. The POW entry can be determined with a POW
status load with get_cur=1 prior to the DESCHED (refer to Section 5.11.1). The
index field in <50:40> identifies the POW ID.

Note that it is recommended that the core be in ATOMIC state rather than
ORDERED state at the time of the DESCHED. (See the “POW Performance
Considerations” on page 228, below.)

SWTAG_DESCHED(new_tag_type,
new_tag, new_grp, no_sched)

This is identical to a SWTAG followed by a DESCHED, except that it also updates
the group identifier. It must follow the same start rules as does SWTAG (shown in
Figure 5–2). SWTAG_DESCHED is well-suited for transferring work from one
group to another - work pipelining.

UPD_WQP_GRP (new_wqp, new_grp) Update the work-queue pointer (new_wqp) and group identifier (new_grp) for the
work that is held in the POW.

CLR_NSCHED (wqp, index) Clears the nosched bit for the POW entry selected by index. CLR_NSCHED is a
NOP under any the following conditions:

the POW entry is not on a deschedule list, or

the wqp in the POW entry does not match the supplied wqp

Before initiating a CLR_NSCHED operation, software must guarantee that all
*DESCHEDs and CLR_NSCHEDs are complete. software can read the
pend_desched and pend_nosched_clr bits via POW status loads to determine when
these conditions are true. (Refer to Sections 5.8 and 5.11.1 for more details on
POW status loads.)

After a CLR_NSCHED operation, software must guarantee that the
CLR_NSCHED is complete before issuing any subsequent POW operations. It can
do this by checking the pend_nosched_clr via POW status reads.

Note also that index will typically be determined by POW status loads prior to the
*DESCHED that set the no_sched bit. A POW status load with get_cur=1 returns
the index field in <50:40>.

NOP No Operation

Table 5–1 POW Operations (Continued)

Operation Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 213

Owner
高亮

Owner
下划线

Owner
下划线

Owner
下划线

 Packet Order / Work Unit (POW): Software Architecture Example
The example of software architecture in Figure 5–3 also uses some of the possible 32
tag bits to force unique tags in the different processing phases. For example, software
could choose to partition the 32 tag bits in the following way:

Phase ID - Unique identifier for the phase
0x0 = Defrag
0x1 = IPSEC Decrypt
0x2 = Lookup,
0x3 = Process
0x4 = IPSEC encrypt
0x5 = Output queue

Phase TAG - tag value for within the phase

This phase tagging is not required by the hardware. It guarantees that different
software processing phases execute in parallel in a pipelined fashion. The different
PHASE ID values guarantee different tag values, so packets execute simultaneously
with any other packet that is in a different phase. Of course, multiple packets can
also execute freely within the same flow if they have different PHASE TAG values.

As is always possible with the POW hardware, the different PHASE TAGs
architected in Figure 5–3 guarantee processing order among all packets in the same
flow (and the same direction). Some phases also have ATOMIC tags to serialize
access to shared data structures in some of the phases. Generally speaking, the phase
tag value for each phase in the figure is either:

a. A hash result using the maximum number of packet fields to differentiate
flows as much as possible, but still guarantee that two packets from the
same flow produce the same hash value, or

b. An index into a critical data structure, or
c. BOTH of the above.

The goal is to expose many different tag values to the POW hardware so it can
parallelize as much work as possible, yet still guarantee strict in-order processing for
packets in the same flow, and still guarantee that access to critical data structures is
appropriately synchronized.

Figure 5–3 Architecture for the Firewall/VPN

Defrag,

IPSEC decrypt,

Lookup,

Process,

IPSEC encrypt,

Output queue,

ORDERED tag

ATOMIC tag

ATOMIC tag

ORDERED tag

ATOMIC tag

ATOMIC tag

= {0, hash(IPsrc, IPdest)}

= {1, IPSEC SPI/SA}

= {2, hash(Psrc, IPdest, IPprot, IPsrcprt, IPdestprt)}

= {3, hash(Psrc, IPdest, IPprot, IPsrcprt, IPdestprt)}

= {4, IPSEC SPI/SA}

= {5, output queue index}

Initial tag generated by hardware

31 24 23 0

PHASEID PHASE TAG
214 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
下划线

Owner
下划线

Packet Order / Work Unit (POW): Software Architecture Example
Figure 5–4 depicts the execution sequence using this software architecture for
packets from two different flows: the gray flow and the black flow that pass through
to different output queues without any IPSEC processing by CN50XX. The Figure 5–
4 example execution shows that the two different flows select different PHASE TAG
values in every phase. Thus, the POW hardware will schedule the packets from the
two flows entirely in parallel.

A tag switch defines the transition from one phase to the next in Figure 5–4, though
the cores can work on the packet during a tag switch transaction and make the
boundaries fuzzy. The packets from the gray and black flows execute four different
phases to complete a packet, and four different tag switches occur for each packet.

The software need not issue a tag switch transaction for the first phase since the
hardware creates the proper initial tag (“Packet Input Processing/Input Packet Data
Unit (PIP/IPD)” on page 265 describes the programmability of the centralized Packet
Input Processing and Input Packet Data Unit (PIP/IPD) that generates the initial
tags), and the POW hardware only schedules the work after it has the initial tag.
Though the last switch (to NULL that removes the work from POW) must execute
inside POW, software need not specifically issue it since it can be an implicit part of
the get work request for the next packet. So this architecture requires exactly three
tag switches to execute the example pass-thru packets.

Note also that in the example execution in Figure 5–4, the software simply skips the
IPSEC phases since no IPSEC is required. As long as all packets in the same flow
(and the same direction) skip the same IPSEC phases, the switches in the IPSEC
phases can be avoided and the packets in the flow can still be kept in order by the
POW hardware. Other flows may require IPSEC processing, so may require up to two
additional tag switches.

To explain the assumed ordering and synchronization requirements of the simple
example architecture of Figure 5–4 in more detail, in the remainder of this section we
briefly describe the functions assumed for each phase, and how the architected tags
for each phase give the desired synchronization and ordering behavior.

Figure 5–4 Software Execution Sequence

Defrag,

IPSEC decrypt,

Lookup,

Process,

IPSEC encrypt,

Output queue,

ORDERED tag

ATOMIC tag

ATOMIC tag

ORDERED tag

ATOMIC tag

ATOMIC tag

= {0, hash(IPsrc, IPdest)}

= {1, IPSEC SPI/SA}

= {2, hash(Psrc, IPdest, IPprot, IPsrcprt, IPdestprt)}

= {3, hash(Psrc, IPdest, IPprot, IPsrcprt, IPdestprt)}

= {4, IPSEC SPI/SA}

= {5, output queue index}

Initial tag generated by hardware

Tag
sw

itch

Tag
sw

itch
Tag

sw
itch

Tag
sw

itch
(Im

print?)Ta
g

sw
itc

h
(Im

pr
in

t?
)

G
ray Flow

B
la

ck
 F

lo
w

Ta
g

sw
itc

h
Ta

g
sw

itc
h

Ta
g

sw
itc

h

CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 215

 Packet Order / Work Unit (POW): Software Architecture Example
5.2.1 Defragmentation

This stage defragments input packets. All input packets enter this phase, some of
which may be fragmented, and fewer de-fragmented packets exit.

The POW ORDERED tag type architected for this phase does not serialize the work
within the defrag phase in any way, so some other means of memory synchronization
(e.g. load-linked/store-conditional) would likely be required by software to correctly
access the defragmentation data structure.

Any inbound packets in the same flow, fragmented or not, must have identical values
for the IP source and destination address fields, and so will have the same PHASE
TAG and will be ordered. Both unfragmented and de-fragmented packets from the
same flow will enter the next stage in order.

The fragments that enter but do not exit this stage will immediately switch to NULL
and not execute in any other phases. When the last fragment creates a completely
defragged packet, the de-fragged packet is processed in subsequent phases in place of
the input fragment, so the de-fragged packet assumes the work order of the input
fragment. This gives the de-fragged packet the ideal ordering; as if it instantly
appeared with the last input fragment, even though the software processing time
needed to create the defragged packet may be large.

5.2.2 IPSEC Decryption

This stage performs IPSEC decryption for packets that need it. If not needed, this
phase is skipped entirely.

In general, inbound IPSEC processing requires some synchronization between
different packets that use the same IPSEC tunnel for shared structures, like the
anti-replay window. The architecture specifies the simplest possible solution for this
synchronization; a single ATOMIC tag that covers the IPSEC SA for the entire
packet decryption. The PHASE TAG value uniquely identifies the SA, so after the
inbound tag switch completes, the core can freely read and write the tunnel data
structure until the next tag switch.

All packets from the same flow will have the same IPSEC SPI/SA value and so will
remain ordered as they exit this phase. Packets from other flows that use the same
tunnel are also serialized through this phase, and will exit this phase in order, but
will likely have a different tag in the next phase so will probably be unordered going
into the next phase.

5.2.3 Lookup

This example assumes a stateful firewall, and this stage finds the flow (identified by
a 5-tuple in this example) records and updates the state. On the first packet of a flow,
a fast-path flow record will not exist for the flow, so the software will need to validate
the flow and cache it for the fast-path flow records for later packets. The PHASE TAG
architected for this phase selects a particular hash bucket. Thus, the ATOMIC tag
serializes accesses to a bucket, and no further synchronization on the hash data
structure may be required. No packets from a flow will observe (or modify) the flow
state before the previous packets from the flow have updated the fast-path flow
record.
216 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Internal Architecture
With this cached architecture, it will likely take much longer to initially validate and
cache the flow state than it will take to process subsequent packets. Thus, some
packets may need to wait for the validation to complete before their lookup can
continue. With some protocols, like TCP, these waits will not happen within the same
flow, but long waits are still possible with other protocols or with packets from a
different flow that, unluckily, happen to collide in the same hash bucket. The
deschedule operation provided by the POW hardware can be useful in these long-wait
circumstances. The software can deschedule the current work and execute other
work, and the POW hardware will reschedule the work later when the ATOMIC tag
is available.

5.2.4 Process

This stage is for some processing of the packet that may be required before sending
the packet out. For example, the packet may require NAT translation or TCP
sequence number adjustment.

This stage uses an ORDERED tag with a hashed flow identifier for the PHASE TAG.
This will force order for packets in the same flow as they exit this stage, as precisely
as possible.

Of course, the firewall software may choose to drop a packet in either the lookup or
process stages without executing any further stages.

5.2.5 IPSEC Encrypt

This stage performs IPSEC encryption for packets that need it. If not needed, this
phase is skipped entirely.

This stage’s tag usage is very similar to the IPSEC decryption stage.

5.2.6 Output Queue

This stage places the packet into an output queue to be sent out. The tag is ATOMIC
to synchronize critical data structures needed for the enqueue. The PHASE TAG
identifies the exact output queue, so only references that use the same output queue
are serialized.

The firewall software may choose to perform QOS calculations (e.g. RED) at this
stage to determine whether to drop the packet based upon queue sizes.

5.3 POW Internal Architecture

Figure 5–5 has a conceptual picture of the internal POW architecture. The actual
implementation differs for performance reasons. The largest component of the POW
unit is the 256 internal POW entries. As the figure shows, POW entries are either in
input queues, in-flight, attached to a core that is in the NULL state, or in the free list.
Each POW entry contains at least the following information:

● A pointer to the work-queue entry in L2/DRAM (WQP).

● The current tag and tag type

● The current group.

● Pointers to link the entry into various lists.

NOTE: For illustration purposes, Figure 5–5 shows five hypothetical cores.
CN50XX has only two cores and would perform the tasks differently.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 217

 Packet Order / Work Unit (POW): POW Internal Architecture
The left side of Figure 5–5 shows the input queues. There are eight input queues. For
each input queue, there is both a memory list and an in-unit list. As the POW
hardware adds new work into the unit, either directly from an ADDWQ or from the
head of the associated memory queue, it allocates an internal POW entry and fills it
with the necessary information. Once the POW hardware allocates an internal POW
entry for a piece of work, the work remains in the unit while it is in the input queue
or in-flight. The POW hardware cannot overflow to L2/DRAM after that point. Core
operations only cause the POW entry to attach/detach to/from particular cores, and
move between lists.

The right side of Figure 5–5 shows the in-flight POW entries. Conceptually, in-flight
POW entries are always organized in FIFOs, with one FIFO associated with each
unique in-flight tag and tag type value combination. For example, Figure 5–5 shows
an O7 (tag = 7, type = ORDERED), A5 (tag = 5, type = ATOMIC), and A7 (tag = 7,
type = ATOMIC) FIFO. Work first enters a FIFO when the POW hardware either
schedules work from an input queue or switches from the NULL core state. SWTAG
then causes POW entries to move from FIFO to FIFO. Note that there are no NULL
FIFOs; work is no longer in-flight after a switch to NULL.

The FIFO orders in Figure 5–5 imply all ordering and synchronization constraints.
For an ORDERED tag, the FIFO order indicates the order of the work holding the
tag. For an ATOMIC tag, the FIFO order indicates the order that the work will
switch to the ATOMIC tag, and the head of the list is the only work that has
successfully switched to the ATOMIC tag. The POW hardware must move the head of
one FIFO to the tail of another FIFO as part of any non-NULL tag switch. This FIFO
move completes a switch to an ORDERED tag, but for an ATOMIC tag the work must

NOTE: Once the POW unit loads work into the unit, it no longer reads or writes the work-queue entry
locations in L2/DRAM. The work-queue entry in L2/DRAM is only used while work is in an input
queue, but never while the work is in the unit. The POW hardware must carry the work-queue
pointer along at all points when it is inside the unit, since the work-queue entry pointer is what
(indirectly) describes the actual work that needs to be performed.

Figure 5–5 Internal POW Architecture Components

POW Unit

Input Q
Head/Tail

POW Entry

Tag

WQP
POW Entry

Tag

WQP

Input Q
Head/Tail

Input Q
Head/Tail

POW Entry

Tag

WQP

…

In-Flight
FIFO List

POW Entry

Tag=O7

WQP

POW Entry

Tag=A5

WQP

POW Entry

Tag=A7

WQP

POW Entry

Tag=O7

WQP
POW Entry

Tag=O7

WQP

POW Entry

Tag=A7

WQP

…

FIFO for
Tag=O7

FIFO for
Tag=A5

FIFO for
Tag=A7

T
ag

 S
w

itc
h

to
 O

7

T
ag

 S
w

itc
h

to
 A

5

T
ag

 S
w

itc
h

to
 …

Core 0

Core 1

Core 2

Core 3

…

POW Entry

NULL

Core 4

Input Q
Mem

Head/Tail

Input Q
Mem

Head/Tail

Input Q
Mem

Head/Tail

Entries in Input Queues In-Flight Entries

NULL_NULL

POW Entry

NULL

POW Entry

NULL …Free List

Scheduled

Scheduled

Scheduled
218 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Internal Architecture
further become the head of the new FIFO before the switch is complete. The work at
the head of a FIFO never has a pending switch, or else the POW hardware would
immediately execute the FIFO move required by the switch.

For example, in Figure 5–5, since the O7 FIFO is ORDERED, each of the three pieces
of work has successfully switched to the O7 tag. The head of the O7 FIFO cannot
have a pending switch, but the remaining work can have a pending switch to a
different non-NULL tag. If non-head work has a pending FIFO move (because of a
pending non-NULL SWTAG), the move cannot occur until the head moves. The A5
FIFO has only one entry so there can be no pending SWTAGs. The one piece of work
holds the ATOMIC tag. In the A7 FIFO, the switch to A7 is complete for the head
entry in the FIFO, but is pending for the other work. No work in any ATOMIC FIFO
can have a pending SWTAG to a different tag.

The POW hardware implements the in-flight FIFOs as pure first-in, first-out lists,
with one exception. The POW hardware can, in some cases, remove work from an
ORDERED list out-of-order when the work has a pending SWTAG to NULL.

The middle of Figure 5–5 also depicts the POW core states. A core is either scheduled
to in-flight work (i.e. in the ORDERED or ATOMIC states), in the NULL state with
an attached POW entry, or in the NULL_NULL state. For example, Core 0 is in the
NULL state; it has an attached POW entry, but the entry is not scheduled. Core 1 is
in the NULL_NULL state; it neither has an attached POW entry nor is scheduled.
Core 2 may currently be in the ORDERED state, or may have a pending switch to
another state. Core 3 has a pending switch to the ATOMIC state. Core 4 is in the
ORDERED state and has no pending switches.

The final POW architectural component shown in Figure 5–5 is the free list. The
POW hardware uses the available POW entries to create in-unit input work-queue
entries and to successfully complete core NULL_RD requests. If there are no free
POW entries, the POW hardware can neither create in-unit work entries nor
successfully complete core Null Rd requests for cores in the NULL_NULL state. If
there are fewer than 2 free POW entries available, the POW hardware cannot create
in-unit input work-queue entries, but can still successfully complete NULL_RD
requests. This reservation of the last 2 free-list entries makes it less likely that
NULL_RD requests will fail. The POW hardware frees any POW entry previously
attached to a core when it successfully completes a GET_WORK for the core. (The
core would always have been in the NULL state when a POW entry frees, either
because the GET_WORK initiated from the NULL state, or because of a switch to
NULL implicitly inserted by the hardware prior to a GET_WORK transaction from
ORDERED or ATOMIC.)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 219

 Packet Order / Work Unit (POW): Work-Queue Entry Format
5.4 Work-Queue Entry Format

The work-queue entry in L2/DRAM is the primary descriptor that describes work.
Though POW hardware does much to assist work queueing, scheduling, and
synchronization, it doesn't dictate much about the format of the work-queue entry.
POW hardware only uses the L2/DRAM work-queue entry in specific circumstances,
and it uses few fields in those cases. The central packet input processing and input
packet data unit (PIP/IPD) may be the primary CN50XX hardware component that
constrains the work-queue entry format. (Chapter 7 describes the work-queue entries
created by PIP/IPD. This section strictly discusses the requirements of the POW unit
hardware.)

First, It is only possible for the POW hardware to read/write to the L2/DRAM
locations containing the work-queue entry at two times: (1) when processing the
ADDWQ, and (2) when moving work from a memory input queue to a POW entry in
the unit. At all other times the WQP held in a POW entry need only be a 64-bit
aligned pointer (with at least <35:3> stored). The POW hardware stores the pointer
and delivers the pointer to the work when a core executes a GET_WORK transaction.

Second, Figure 5–6 depicts the format requirements for the work-queue entry when
it is used by the POW hardware. The POW Next Ptr field (in WORD 0) is used by
hardware to link work in a memory input queue, so must not be used by software
when work is created with ADDWQ. The POW hardware always reads the value of
the QOS field in WORD 1 from L2/DRAM when a hardware unit submits an
ADDWQ, and so must be set appropriately by software in only that case. The POW
hardware may also read the Grp, TT, and Tag fields from L2/DRAM for any ADDWQ.
Software must guarantee that these L2/DRAM work-queue entry fields exactly
match the same fields also supplied when software submits the ADDWQ transaction,
or unpredictable results may occur.

Figure 5–6 Format Requirements for the Work Queue Entry

WORD 0

WORD 1
63 42 41 39 38 35 34 32 31 0

TagU QOS Grp TT

63 40 39 0

U POW Next Ptr

WQP (64-bit-aligned)

U – Never used by POW hardware
POW Next Ptr – Written and read by POW hardware to implement memory input queue
QOS – Selects the input queue for the work. Read from L2/DRAM by the POW hardware

when a hardware unit initiates an ADDWQ.
Grp, TT, Tag – Select the group, tag type, and tag for the work. Read from L2/DRAM

by the POW hardware either when a hardware unit initiates an
ADDWQ, or when moving work from a memory input queue into the unit.
220 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Packet Order / Work Unit (POW): Core and Fetch-and-Add Pending Switch Bits
5.5 Core and Fetch-and-Add Pending Switch Bits

The core/fetch-and-add(FAU)/POW hardware SWTAG implementation includes
switch pending bits held local to a core and inside the Fetch-and-Add unit inside the
I/O bridge (IOB) block. The pending switch bits inside a core get set when the core
starts a switch transaction by executing a store to a particular (I/O space) physical
address destined for the POW hardware (refer to Section 5.11.3). The FAU hardware
also sets its pending switch bit for a core when it sees the same store.

The SWTAG implementation also includes a dedicated bus that indicates switch
completion. The pending switch bits in the core and in the FAU hardware get cleared
by the dedicated switch completion bus.

The FAU hardware uses its pending switch bit to delay selected requests until after a
tag switch completes. The core software uses the pending switch bit to determine
when the switch completes.

It can locally sample its pending switch bit with the

RDHWR rt, $30

MIPS instruction, which returns a one when the pending switch bit is clear, and a
zero when the pending switch bit is set. Core software must use this instruction to
determine that the prior switch transaction is complete.

The cores starts SWTAG transactions by executing I/O stores (<48> of the physical
address set) with a major did value of 12 (in <47:43> of the physical address)
selecting the POW unit. I/O stores with this major did value are POW unit stores.
The subDID field is in <42:40> of the physical address.

Here are the precise rules regarding the pending switch bit in a core:

● POW unit stores with subdid equal zero set the bit

● POW unit stores with subdid equal three clear the bit

● A tag switch completion from POW clears the bit

Here are the rules regarding the pending switch bits in the Fetch-and-Add logic:

● POW unit stores with subdid equal zero sets the bit corresponding to the core

● A tag switch completion from POW clears the bit corresponding to the core

A SWTAG transaction starts with a POW unit store to subdid zero that sets the
pending switch bits in both the core and the FAU. Normally, the tag switch completes
with the tag switch completion from POW on the special switch bus, which clears all
the pending switch bits. Here are the exception cases:

● The POW hardware never sends a switch completion for a SWTAG to NULL.

● The POW hardware will not send a switch completion for a piece of work after the
core executes a DESCHED transaction to deschedule and detach the work from
the core.

Given this pending switch bit behavior, software should use the following rules for
POW unit I/O stores:

NOTE: A core can have, at most, one outstanding (non-NULL) switch, so
only one pending switch bit is required.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 221

 Packet Order / Work Unit (POW): POW Interrupts
● Subdid zero should be used to start non-NULL SWTAG and SWTAG_FULL
transactions. This sets the pending switch bit in the core and in the Fetch-and-
Add unit.

● Subdid three should be used to start all DESCHED and SWTAG_DESCHED
transactions. This clears the pending switch bit in the core, ensuring that it is not
stale for any subsequent work.

● Subdid one should be used to start ADDWQ, NULL SWTAG, UPD_WQP_GRP,
CLR_NSCHED, and NOP transactions. These will affect no pending switch bit.

Core software should not initiate any DESCHED transaction while there is an in-
flight Fetch-and-Add request that is waiting for a tag switch completion. (However, it
is legal to issue a DESCHED after a Fetch-and-Add request fails due to a time out on
a tag switch wait.) Note also that the Fetch-and-Add pending switch bit may
conservatively remain set after a DESCHED, so core software should only use the
Fetch-and-Add tagwait feature when a tag switch is known to be outstanding.

5.6 POW Interrupts

The highest-performance CN50XX core software will avoid the high cost of interrupts
on packet receipt. Instead, this software will poll the POW hardware scheduler to
find work. However, the POW hardware does support coalescing interrupts for those
applications that require them. The interrupts can occur based on either work counts
or time.

The goal of the POW interrupt hardware is to produce interrupts when work is
present and can be executed by a core. All work is not considered equal with respect
to the interrupts generated by the POW hardware. Rather, the POW hardware
accounts for and controls interrupts on a per-group basis. Software can configure and
accept interrupts separately for each core.

There are two distinct ways a piece of work in a particular group is “executable” in
the POW unit:

● IQ executable

● DS executable.

IQ Executable

The work is present in one of the 8 POW input work queues and is held in one of
the 256 entries inside the POW unit. Note specifically that work held in one of
the 8 input queues, but not yet held inside the POW unit (i.e. resides in L2/
DRAM), is NOT considered “executable”. This is because the POW hardware
cannot schedule work to a core if it is not currently in the POW unit.

Note that though work was/is IQ executable and an interrupt was/is generated, it
is still possible for a subsequent interrupt handler request for work to fail to
return work from the interrupting group. Here are the ways this is possible:

1. Of course, if the interrupt handler did not include the interrupting group as
an acceptable one (in POW Core Group Mask Registers) before the request,
the hardware cannot return work for the interrupting group. Also, if the
interrupt handler requests work from more than just the interrupting group,
the POW hardware may return work from a different group.
222 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Owner
高亮

Owner
高亮

Packet Order / Work Unit (POW): POW Interrupts
2. This core (or any other core using the same group) may have been given new
work from the group while the hardware was generating the interrupt, but
before the interrupt handler requests work.

3. IQ work with an atomic tag may be constantly “IQ executable”, though have a
tag conflict with some other piece of in-flight work that constantly prevents
the POW hardware from scheduling it.

4. The POW hardware may time out if it is forced to search too deep from among
the DS or IQ executable items to supply work for a core.

This can happen while attempting to acquire a particular “IQ Executable”
piece of work if there is:

too many work items for different groups “earlier” in the in-unit input
queue(s), or

too many work items for the same group, but with an atomic tag conflict
“earlier” in the in-unit input queue(s).

The next section describes the POW hardware scheduling search priority/order
and will explain the concept of “earlier” in the input queue(s).

DS Executable

The work was previously descheduled, and is now ready to be rescheduled again.

DS executable work is generally higher priority than IQ executable work since
the POW hardware schedules previously descheduled work before it schedules
new input queue work. Also, tag conflicts with descheduled (or other in-flight)
work can prevent work (in this or any other group) from executing/proceeding,
unlike IQ executable work.

Note that a descheduled item with the no_sched bit set is not considered to be
executable, as it cannot be scheduled to a core.

Here is the work-queue interrupt logic inside POW that is replicated for each of the
16 groups:

● A counter of the number of work-queue entries that are IQ executable
(POW_WQ_INT_CNT(0..15)[IQ_CNT]) and an associated interrupt threshold
(POW_WQ_INT_THR(0..15)[IQ_THR]).

● A temporary IQ executable interrupt threshold disable bit.
(POW_WQ_INT[IQ_DIS<*>]). With the IQ executable interrupt threshold disable
bit, software can prevent continual interrupts when the IQ executable count
exceeds its threshold, but cannot be reduced due to cases (3) or (4) outlined above.

While the disable count bit is set, the threshold check on the IQ executable count
cannot generate an interrupt until the next time expiration. This bit can be
written to one by software, and is cleared by hardware. The hardware clears the
IQ executable interrupt threshold disable bit under these conditions:

a. The IQ executable count is zero for the group, or
b. The hardware decrements the time counter for this group to zero.

● A counter of the number of work-queue entries that are DS executable
(POW_WQ_INT_CNT(0..15)[DS_CNT]) and an associated interrupt threshold
(POW_WQ_INT_THR(0..15)[DS_THR]).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 223

Owner
下划线

 Packet Order / Work Unit (POW): POW Interrupts
● A time counter (POW_WQ_INT_CNT(0..15)[TC_CNT]), an associated time
threshold (POW_WQ_INT_THR(0..15)[TC_THR]), and a time threshold
interrupt enable bit (POW_WQ_INT_THR(0..15)[TC_EN]).

The time counter decrements whenever either the IQ executable count is non-
zero or the DQ executable count is non-zero for the group.

The hardware sets the time counter to the threshold value whenever:

a. both the IQ and DS counts are zero, or
b. the interrupt bit for this group is written with a 1 (to clear), or
c. the time threshold value is written, or
d. the temporary IQ executable interrupt threshold disable bit is written

to a one (to set it), or
e. the time counter is zero

● An interrupt bit (POW_WQ_INT[WQ_INT<*>]).

This bit is set by hardware and can be cleared by software. The POW
hardware sets this bit under any/all of the following three conditions:

a. The IQ executable count is >= its threshold and the IQ threshold
check is enabled (the threshold check is disabled when the threshold is
zero or when the temporary IQ executable interrupt threshold disable
bit is set).

b. The DS executable count is >= its threshold and the DS threshold
check is enabled (the threshold check is disabled when the threshold is
zero).

c. It decrements the time counter to zero and the time count check is
enabled.

The POW hardware decrements the per-group time counters at a frequency
selected by a single counter (POW_WQ_INT_PC[PC]) and associated period
(POW_WQ_INT_PC[PC_THR]) that is shared by all groups. The POW hardware
loads the counter with POW_WQ_INT_PC[PC_THR]*256 + 255 initially and
whenever POW_WQ_INT_PC is written, and decrements the counter once every
cycle otherwise. When the counter reaches zero, the hardware reloads the shared
counter and decrements each of the per-group time counters by one if the
associated IQ executable or DS executable counts are non-zero, whether the time
threshold interrupt is enabled or not.

As touched upon earlier in this section, software must handle any discrepancies
that occur from the fact that the IQ executable count for a group may not match
the number of successful work requests for the group that follow. Here are some
possible ideas, not requirements, to alleviate possible interrupt forward-progress
issues if they arise:

● Use the temporary IQ executable interrupt threshold disable bit to prevent
continual interrupts from cases (3) or (4) above.

● Use only the time threshold interrupts and not the executable count threshold
interrupts to avoid continual interrupts from cases (3) or (4).

● Use dedicated input queues containing only interrupt traffic and/or dedicated
input queues containing only specific groups to reduce the probability of
problems with (4) above.

● Don't use atomic tags for the interrupt word in the IQ if (3) above is a problem.
224 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Packet Order / Work Unit (POW): POW QOS Features
5.7 POW QOS Features

The POW hardware contains a number of quality-of-service (QOS) features to
prioritize input queues differently and keep work flowing through the unit smoothly.
The main features are thresholds and scheduling.

5.7.1 Thresholds

Having thresholds is a QOS feature to limit the number of in-unit POW entries
consumed by individual input queues (i.e. to limit POW_QOS_THRn[BUF_CNT]). In-
unit POW entries are consumed by work in input queues, in-flight work. In-flight
work may be descheduled, and POW_QOS_THRn[DES_CNT] indicates the total
number of descheduled work items in all groups. POW_QOS_THRn[FREE_CNT]
indicates the number of available POW entries - a total number available for all
groups.

The POW hardware implements the following thresholds separately for each input
queue:

● A maximum number of in-unit work-queue entries
(POW_QOS_THRn[MAX_THR] + 1) for the queue. POW_QOS_THRn[BUF_CNT]
will not exceed this threshold. If there are more than
POW_QOS_THRn[MAX_THR] + 1 entries in the queue, those entries must reside
in L2/DRAM, not in the POW unit.

● A minimum number of free in-unit work-queue entries
(POW_QOS_THRn[MIN_THR]) for the queue. If the number of available in-unit
entries (i.e. POW_QOS_THRn[FREE_CNT]) is smaller than
POW_QOS_THRn[MIN_THR] for the queue, no more entries from the queue will
be loaded into the unit.

5.7.2 Scheduling

The second QOS feature is the mechanisms to control the input-queue traversal. The
POW hardware traverses all input queues in parallel when it is searching for new
input-queue work to schedule to the cores. The POW hardware scheduling can
implement, on a core-by-core basis, mixtures of static priority (based on the input
queue) and weighted round-robin priority. This can programmably prevent cores
from receiving work from particular input queues.

When scheduling work to a core, POW hardware first scans the list of descheduled
work. If a previously descheduled, currently schedulable item exists for a group that
that the core resides in, the POW hardware schedules this work to the core. If such
descheduled items are not available, the POW hardware attempts to schedule work
from an input queue to the core in the following manner.

The input-queue search proceeds in configurable rounds. The software can configure
the 32 rounds via the POW_QOS_RNDn[RND_P*] fields. Each configured round is
an 8-bit bit-mask indicating the input queues that participate in the round. In
general, the more rounds that a queue can participate in (as selected by the
POW_QOS_RNDn[RND*] configuration), the higher is the priority of the queue.

The following pseudo-code conceptually describes the scheduling algorithm that the
POW hardware implements for a GET_WORK operation when schedulable input-
queue work is selected for the core:
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 225

 Packet Order / Work Unit (POW): POW QOS Features
get_work(core) {

for(iq = 0; iq < 8; iq++) {
 size[iq] = POW_QOS_THR[iq].BUF_CNT; // # POW entries IQ has in unit
 pri[iq] = POW_PP_GRP_MSK[core].QOS<iq>_PRI; // priority of this IQ for this core
 if(pri[iq] == 0xF) size[iq] = 0; // IQ may be disabled for the core
 if(size[iq]) wqe[iq] = first WQE in iq;
}
found_pri = 0xF;
round = current_round;
iq = current_iq;
grp_msk = POW_PP_GRP_MSK[core].GRP_MSK;

do {
 // check if this iq participates in this round
 mask = (POW_QOS_RND[round / 4] >> ((round & 0x3) * 8)) & 0xFF;
 if((mask & (1 << iq)) && size[iq]) {
 // check if this is the best candidate for this core, or:
 // - the core is in the selected group, and
 // - there are no (atomic) conflicts with in-flight work, and
 // - we have not already found work of the same or higher priority
 if((grp_msk & (1 << wqe[iq].grp)) &&
 ((wqe[iq].type != ATOMIC) || no_matching_inflight_atomic_tag(wqe[iq].tag)) &&
 (pri[iq] < found_pri)) {
 found_wqe = wqe[iq];
 found_pri = pri[iq];
 }

 wqe[iq] = next WQE in iq;
 size[iq] --;
 }

 // advance to the next round/iq
 if(iq == 0) {
 iq = 7;
 round = (round + 1) % 32;
 }
 else
 iq--;
 // we are done once we find a work-queue entry
 // at the highest possible priority
 for(i = 0; i < 8; i++) {
 if(size[i] && (pri[i] < found_pri))
 break;
 }
 found = (i == 8) && (found_pri < 0xF);
} while(!found);

current_round = round;
current_iq = iq;
return(found_wqe);
}

The POW hardware scans the input queues starting at a current round and the
current input queue. The remaining queues that participate in the current round are
sequentially scanned for work first. After that, the rounds are scanned circularly.
Each input queue is scanned in order, and different input queues are scanned in the
order indicated by the round configuration.

The POW hardware selects the highest-priority schedulable input queue work for the
core. Whenever the POW hardware schedules work from an input queue to a core, it
updates the current queue/round so that the next work request starts from the
queue/round that sequentially follows the position where the last schedulable work
was found. The current queue/round is shared by all cores.

These are some notable aspects of the input queue scheduling algorithm:

● The POW hardware can only schedule in-unit work-queue entries, whose count
for a given input queue is indicated by POW_QOS_THRn[BUF_CNT]
226 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Debug Visibility
● Each core can reside in any combination of groups, indicated by
POW_PP_GRP_MSKn[GRP_MSK]

● Each core can establish its own individual priority for each input queue, indicated
by POW_PP_GRP_MSKn[QOS*_PRI]. The hardware can find work more quickly
when the core uses fewer priorities, as the higher-priority queues must be
traversed in entirety before lower-priority work can be scheduled.

● POW_QOS_RNDn configuration always indicates the order that the input queues
are traversed, regardless of the selected priorities.

● Weighted-round-robin is used between queues of the same priority. The
POW_QOS_RNDn configuration establishes the weighting.

For example, the highest-weight queue might participate in all 32 rounds, while
a low-weight queue might participate in only one of the 32 rounds. Assuming
there are schedulable items in both these equal-priority-example queues, the
POW hardware schedules 32 items from the high-weight queue and then
schedules one item from the low-weight queue.

5.8 POW Debug Visibility

The POW hardware provides complete visibility into its current state through POW
load operations. This visibility can be used for POW debug dumps and for probing
current status. Section 5.11 describes the details of the POW status loads, POW
memory loads, and POW index/pointer loads that return the POW state. This section
describes them qualitatively.

Figure 5–5 figuratively indicates much of the POW state. The more detailed list is:

● 256 POW entries, linked in various in-unit queues and tag lists (i.e. the FIFO for
a given tag)

● eight in-unit input queues, one per QOS level

● 16 external (i.e., overflow) input queues, two per QOS level

● 16 in-unit descheduled head queues, one per group

● a nosched descheduled head queue

● 2 core states, one per core

● a free list for POW entries

● a 2-entry reserved free queue1 for servicing NULL_RD requests from the cores.

● a prefetched entry1 used for ADDWQs.

● four prefetched entries1 used for moving input queue entries from L2/DRAM into
the unit.

POW status loads return the current state for individual cores. The POW core state
includes:

● State bits indicating the operations that the POW is currently attempting to
process. For example, there is a bit indicating that this core has a pending
switch and has not left the original tag list.

● The current state / tag type of the core, as depicted in Figure 5–2.

1 These 7 entries are not directly visible to software. All other POW entries can be accounted for by the in-unit input
queues, free list, core-headed tag lists, or tag lists associated with the descheduled heads, though. The prefetched
and reserved entries reside among the remaining unaccounted-for POW entries.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 227

 Packet Order / Work Unit (POW): POW Performance Considerations
● The current work-queue pointer, group, and tag for the POW entry attached to
the core (if any POW entry is attached).

● The next/pending work-queue pointer, group, tag type, and tag (if there are
pending operations).

● Head and tail bits, forward and reverse links to maintain the tag list that the
POW entry is in (if any POW entry is attached).

Note that when a POW entry is attached to a core, the POW core state supercedes the
POW entry status. (When the POW hardware attaches a POW entry to a core, it
loads the POW entry state into the POW core state and does not update the POW
entry state until it detaches it from the core.)

POW Memory loads return the current state of an individual POW entry through
POW memory loads. The state of a POW entry includes:

● The current work-queue pointer, group, tag type, and tag of the POW entry.

● A bit indicating that the POW entry has a pending switch and has not left its
original tag list, together with the tag type and tag for the new tag list.

● A forward link for the input, free, or descheduled head list that the POW entry is
currently on (if any).

● A tail bit and forward link for the tag list that the POW entry is currently on (if
any).

● A nosched bit.

POW index/pointer loads return the heads and tails for the following lists:

● the 8 in-unit input queues.

● the 16 external input queues, and which is the current head for reloading. (The
hardware alternates between the two memory queues associated with a given
input queue when it reloads. This is a higher-performance implementation than
would be a single input-memory list per QOS level, as it allows the hardware to
traverse the two input-memory lists in parallel.)

● the 16 descheduled head queues.

● the nosched descheduled head queue

● the free list.

To get a consistent snapshot of the POW state, it is best to capture it while all POW
activity and operations have ceased. If these types of captures are not possible, then
capture the POW state as quickly as possible to get a view that is as consistent as
possible. Do this by first reading the core state, then the heads/tails of the various
lists of POW entries, and then traversing the lists.

Note that for the POW hardware to correctly service the visibility (and CSR) reads,
software must restrict itself to at most one outstanding load/IOBDMA inflight from
each individual core. This is most simply done by only using loads to read the
visibility information, and never using IOBDMAs.

5.9 POW Performance Considerations

The features provided by the POW hardware are so integral to the use of CN50XX
that its use can have important performance effects. This section describes how the
POW performance interacts and influences, actually determines how other on-chip
components will work.
228 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): Forward Progress Constraints
First, the POW hardware does not ideally reschedule descheduled work with an
ORDERED tag. The POW hardware can reschedule only the head of an ORDERED
tag FIFO in some cases, though the ORDERED tag semantics allow it to schedule all
the work in the FIFO. Core software is recommended to always use ATOMIC tags
when descheduling. If ORDERED behavior was desired, core software can
immediately switch to an ORDERED tag after it receives the rescheduled work.

Second, some notes on the raw CN50XX hardware latencies, as it is desirable for
software to overlap the latencies with other useful operations:

● CN50XX requires approximately 40 cycles from the start of a SWTAG until it
completes.

● CN50XX requires approximately 60 cycles from the start of a GET_WORK until
it completes.

Third, some notes on the POW hardware behavior for the performance-critical
SWTAG and GET_WORK transactions:

● SWTAG transactions are highest priority and always complete in near
minimum latency (excluding bus contentions transferring the request to the
unit) if there are no synchronization/ordering conflicts.

● The POW hardware prefetches work for both cores during cycles that would
otherwise be idle. Thus, GET_WORK transactions can complete in near
minimum latency (excluding bus contentions that transfer the load/IOBDMA to/
from the unit) in many cases. However, changes to POW_PP_GRP_MSKn CSRs
and SWTAG transactions both invalidate the prefetch.

● GET_WORKs can be slower for cores that cannot accept all groups.

● GET_WORK prefetches are slower when the prefetcher must skip over a
number of input-queue entries to find work for the core. This can be a problem
when input queue work has a conflicting ATOMIC tag, or for cores that cannot
accept the group of the work in the input queue. Some applications may find it
advantageous to avoid ATOMIC tags in the input queue. It may also be desirable
to restrict work for particular groups to particular input queues, since this can
ensure that there is some work for all/more groups at or near the head of an input
queue, and will make work for all or more of the acceptable groups more easily
visible to the prefetcher.

5.10Forward Progress Constraints

Care is necessary to guarantee that core software makes forward progress when it
uses POW synchronization features. This section gives examples of some pitfalls and
suggests some rules for core software to use that can avoid forward progress
problems. These may not cover all circumstances, but touches on all the sources that
can limit forward progress.

First, multi-constraint synchronization deadlocks must be avoided by core software.
The POW hardware alone cannot be a source of multi-constraint synchronization
deadlocks since each piece of work, and each core, has at most one active tag with a
well-defined set of ordering / synchronization constraints. Of course, it is always
possible for core software to create deadlock conditions if it combines POW
synchronization constraints with other synchronization/locking constraints. (In
CN50XX, core software can synchronize through means other than provided by the
POW hardware, like load-linked/store-conditional sequences and Fetch-and-Add
hardware sequences.) For example, if work that holds a POW atomic tag critical
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 229

 Packet Order / Work Unit (POW): Forward Progress Constraints
section cannot proceed until it enters another critical section, but the other critical
section is held by work that is waiting for a tag switch to the same POW atomic lock,
neither piece of work can make forward progress.

Second, when descheduling is used by any work using a particular tag value, all work
using that particular tag value may need to use descheduling also. For example, a
deadlock is present if a descheduled piece of work holds an atomic tag, and both cores
are waiting for a pending switch to the same atomic tag, and neither of the cores
eventually deschedule. The work scheduled in the cores cannot make forward
progress because of the descheduled work, and the descheduled work can never be
scheduled because the cores never become available. It may be advantageous for
software to partition the available tag/type values into deschedulable ones and non-
deschedulable ones by convention. Non-deschedulable tag switches/waits can be
faster for shortly-held and/or non-conflicting tags since they need not be encumbered
with any code support for descheduling. Deschedulable tag switches may require
higher overhead in the non-conflicting case, but still may be faster, for long-held
conflicting tags.

Third, livelock and/or infinite loops must be avoided by core software. Core software
needs to eventually make forward progress on scheduled work. It is always possible
for core software to create a continual stream of tag switches or deschedules so that
work never completes. This may be due to either an infinite loop or livelock condition.
The POW scheduler assists somewhat in this task since it never reschedules work
that has a pending tag switch, and never schedules an input queue entry that has an
atomic tag conflict.

Fourth, in-unit input queue entries and descheduled items must eventually schedule
to core software. The POW scheduler's capability to search and find acceptable input
work is limited by the number of entries in the unit, the group value, and tag
conflicts. The most obvious way to find this pitfall is with groups or the no_sched bit.
The POW scheduler will never schedule work that has the no_sched bit set or is to a
group number that is not acceptable by cores, and work that cannot be scheduled due
to this constraint will consume an entry in the POW unit. Of course, work can also
schedule more freely when it has fewer tag synchronization constraints, so it is better
to use more tags rather than fewer. A more subtle issue, which may be more of a
performance problem than a hard forward-progress problem, can occur when input
queue work requests a highly-contended atomic tag value. The POW scheduler will
not schedule this input queue item whenever there is any in-flight work holding or
switching to the same atomic tag. Another more subtle issue may occur when some
input queues have entries in the POW unit, and remaining input queues do not have
any entries in the unit because space is not available. Core software may eventually
need to service the in-unit input queue entries before the POW scheduler can select
the in-memory input queue entries.

Fifth, the in-flight full condition. This occurs when there are so many in-flight entries
that the POW hardware cannot place any input queue entries in the unit, and
furthermore may not be able to successfully allocate a POW entry for a Null Rd
command. The POW hardware can, however, schedule descheduled items and service
tag switches for existing POW entries when in an in-flight full condition. Core
software must eventually accept and complete descheduled work to relieve an in-
flight full condition. Deadlock could occur, for example, if both cores simply stall for
successful Null Rd commands following a deschedule or prior to a switch to NULL.
The Null Rds may always fail due to the in-flight full condition, and the in-flight full
condition may never clear out since no POW entries are freed when work completes.
More simply, core software must not require that POW schedule an input queue
entry before it can accept descheduled work.
230 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Operations
5.11POW Operations

This section shows the detailed bit formats and codes for the various transactions.

5.11.1 Load Operations

GET_WORK Load Operations

Physical Address for a GET_WORK Load

● Wait - If set, don't return load result until work is available or time-out

Result for a GET_WORK Load

● no_work - Set when no new work-queue entry was returned

● addr - The work-queue pointer. Must be aligned on a 64-bit boundary.
Unpredictable when no_work is set.

POW Status Load Operations

Physical Address for a POW Status Load

● get_rev - If set and get_cur is set, return reverse tag-list pointer rather than
forward tag-list pointer

● get_cur - If set, return current status rather than pending status

● get_wqp - If set, get the work-queue pointer rather than tag/type

NOTE: Unused and unaddressed fields in the address are reserved
and must be set to 0s by the software.

Unused fields in the results are actually 0s.

The POW load result is unpredictable when anything but a
64-bit load (i.e. anything other than an LD) is used.

48 47 43 42 40 39 4 3 2 0

1
Major DID

011 00
subDID

00 0
Reserved

0000 0000 0000 0000 0000 0000 0000 0000 0000
Wait 00

NOTE: The POW hardware behavior is unpredictable when anything but a
64-bit load (i.e. anything other than an LD) is used for work request
loads or NULL_RD loads.

63 62 40 39 0

no_work
Reserved

000 0000 0000 0000 0000 0000
addr

48 47 43 42 40 39 10 9 6 5 4 3 2 0

1
Major DID

0110 0
subDID

001
Reserved

0000 0000 0000 0000 0000 0000 0000 00
coreid get_rev get_cur get_wqp 0
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 231

 Packet Order / Work Unit (POW): POW Operations
Result for a POW Status Load (when get_cur==0 and get_wqp==0)

● pend_switch - set when there is a pending non-NULL SWTAG or
SWTAG_FULL, and the POW entry has not left the list for the original tag.

● pend_switch_full - set when SWTAG_FULL and pend_switch is set.

● pend_switch_null - set when there is a pending NULL SWTAG, or an implicit
switch to NULL.

● pend_desched - set when there is a pending DESCHED or SWTAG_DESCHED.

● pend_desched_switch - set when there is a pending SWTAG_DESCHED and
pend_desched is set.

● pend_nosched - set when nosched is desired and pend_desched is set.

● pend_new_work - set when there is a pending GET_WORK.

● pend_new_work_wait - when pend_new_work is set, this bit indicates that
the wait bit was set.

● pend_null_rd - set when there is a pending NULL_RD.

● pend_nosched_clr - set when there is a pending CLR_NSCHED.

● pend_index - this is the index when pend_nosched_clr is set.

● pend_grp - this is the new_grp when (pend_desched AND
pend_desched_switch) is set.

● pend_type - this is the tag type when pend_switch or (pend_desched AND
pend_desched_switch) are set.

● pend_tag - this is the tag when pend_switch or (pend_desched AND
pend_desched_switch) are set.

Result for a POW Status Load (when get_cur==0 and get_wqp==1)

● pend_wqp - this is the wqp when pend_nosched_clr is set.

63 62 61 60 59 58 57 56 55
unused

00 pend_switch pend_switch_f
ull

pend_switch_
null pend_desched pend_desched_

switch pend_nosched pend_new_work

54 53 52 51 50 40 39 36 35 34 33 32 31 0

pend_new_
work_wait pend_null_rd pend_nosched

_clr
unused

0
pend_index pend_grp

unused
00

pend_type pend_tag

63 62 61 60 59 58 57 56 55

00 pend_switch pend_switch_f
ull

pend_switch_
null pend_desched pend_desched_

switch pend_nosched pend_new_work

54 53 52 51 50 40 39 36 35 0

pend_new_work_wait pend_null_rd pend_nosched_clr
unused

0
pend_index pend_grp pend_wqp
232 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Operations
Result for a POW Status Load (when get_cur==1, get_wqp==0, and
get_rev==0)

● link_index - points to the next POW entry in the tag list when tail == 0 (and
tag_type is not NULL or NULL_NULL),.

● index - the POW entry attached to the core.
● grp - the group attached to the core (updated when new tag list entered on

SWTAG_FULL).
● head - set when this POW entry is at the head of its tag list (also set when in the

NULL or NULL_NULL state).
● tail - set when this POW entry is at the tail of its tag list (also set when in the

NULL or NULL_NULL state).
● tag_type - the tag type attached to the core (updated when new tag list entered

on SWTAG, SWTAG_FULL, or SWTAG_DESCHED).
● tag - the tag attached to the core (updated when new tag list entered on SWTAG,

SWTAG_FULL, or SWTAG_DESCHED).

Result for a POW Status Load (when get_cur==1, get_wqp==0, and
get_rev==1)

● revlink_index - points to the prior POW entry in the tag list when head == 0
(and tag_type is not NULL or NULL_NULL). This field is unpredictable when
the core’s state is NULL or NULL_NULL.

Result for a POW Status Load (when get_cur==1, get_wqp==1, and
get_rev==0)

● wqp - the wqp attached to the core (updated when new tag list entered on
SWTAG_FULL).

Result for a POW Status Load (when get_cur==1, get_wqp==1, and
get_rev==1)

63 62 61 51 50 40 39 36 35 34 33 32 31 0
unused

00 link_index index grp head tail tag_type tag

NOTE: The link_index, grp, and tag fields are unpredictable when the
core’s state is NULL or NULL_NULL.
The index field is unpredictable when the core’s state is
NULL_NULL.

63 62 61 51 50 40 39 36 35 34 33 32 31 0
unused

00 revlink_index index grp head tail tag_type tag

63 62 61 51 50 40 39 36 35 0
unused

00
link_index index grp wqp

63 62 61 51 50 40 39 36 35 0
unused

00 revlink_index index grp wqp
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 233

 Packet Order / Work Unit (POW): POW Operations
POW Memory Load Operations

Physical Address for a POW Memory Load

● get_des - If set, return deschedule information rather than the standard
response for work-queue index (invalid if the work-queue entry is not on the
deschedule list).

● get_wqp - If set, get the work-queue pointer rather than tag/type (no effect when
get_des set).

Result For POW MemoryLoad (get_des == 0 and get_wqp == 0)

● next_index - the next entry in the input, free, descheduled_head list
(unpredictable if entry is the tail of the list).

● grp - the group of the POW entry.

● tag_type - the tag type of the POW entry.

● tag - the tag of the POW entry.

Result For POW MemoryLoad (get_des == 0 and get_wqp == 1)

● wqp - the WQP held in the POW entry.

48 47 43 42 40 39 16 15 5 4 3 2 0

1
Major DID

0110 0
subDID

010
Reserved

0000 0000 0000 0000 0000 0000
index get_des get_wqp 0

63 51 50 40 39 36 35 34 33 32 31 0

unused
0000 0000 0000 0

next_index grp
unused

0
tail tag_type tag

NOTE: All these fields are unpredictable when the POW entry is currently
scheduled to a core.

The grp, tail, tag_type, and tag fields are unpredictable when the
POW entry is on a free list.

The next_index field is unpredictable when the POW entry is on
the reserved free list.

63 51 50 40 39 36 35 0

unused
0000 0000 0000 0

next_index grp wqp

NOTE: All these fields are unpredictable when the POW entry is currently
scheduled to a core.

The grp and wqp fields are unpredictable when the POW entry is on
a free list.

The next_index field is unpredictable when the POW entry is on the
reserved free list.
234 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Operations
Result For POW MemoryLoad (get_des == 1)

● fwd_index - the next entry in the tag list connected to the descheduled head.
● pend_tag - the next tag for the new tag list when pend_switch is set.
● nosched - the nosched bit for the POW entry.
● pend_type - the next tag type for the new tag list when pend_switch is set.
● pend_tag - the next tag for the new tag list when pend_switch is set.

POW Index/Pointer Load Operations

Physical Address for a POW Index/Pointer Load

● qosgrp -
when {get_rmt ==0 AND get_des_get_tail == 0}, this field selects one of
eight POW internal-input queues (0-7), one per QOS level; values 8-15
are illegal in this case;

when {get_rmt ==0 AND get_des_get_tail == 1}, this field selects one of
16 deschedule lists (per group);

when get_rmt ==1, this field selects one of 16 memory-input queue lists.
The two memory-input queue lists associated with each QOS level are:

qosgrp = 0, qosgrp = 8: QOS0
qosgrp = 1, qosgrp = 9: QOS1
qosgrp = 2, qosgrp = 10: QOS2
qosgrp = 3, qosgrp = 11: QOS3
qosgrp = 4, qosgrp = 12: QOS4
qosgrp = 5, qosgrp = 13: QOS5
qosgrp = 6, qosgrp = 14: QOS6
qosgrp = 7, qosgrp = 15: QOS7

● get_des_get_tail - if set and get_rmt is clear, return deschedule list indexes
rather than indexes for the specified qos level; if set and get_rmt is set, return
the tail pointer rather than the head pointer for the specified qos level.

● get_rmt - if set, return remote pointers rather than the local indexes for the
specified qos level.

63 51 50 40 39 36 35 34 33 32 31 0

unused
0000 0000 0000 0

fwd_index grp nosched pend_switch pend_type pend_tag

NOTE: These fields are unpredictable when the POW entry is not
descheduled (i.e., when the POW entry is currently scheduled to a
core, in an input queue, or on a free list).

48 47 43 42 40 39 9 8 5 4 3 2 0

1
Major DID

0110 0
subDID

011
Reserved

0000 0000 0000 0000 0000 0000 0000 000
qosgrp get_des_

get_tail get_rmt 000

NOTE: The POW hardware behavior is unpredictable when anything but a
64-bit load (i.e. anything other than an LD) is used for work request
loads or NULL_RD loads.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 235

 Packet Order / Work Unit (POW): POW Operations
Result For POW Index/Pointer Load (get_rmt == 0/get_des_get_tail == 0)

● free_val - set when there is one or more POW entries on the free list.
● free_one - set when there is exactly one POW entry on the free list.
● free_head - when free_val is set, indicates the first entry on the free list.
● free_tail - when free_val is set, indicates the last entry on the free list.
● loc_val - set when there is one or more POW entries on the input Q list selected

by qosgrp.
● loc_one - set when there is exactly one POW entry on the input Q list selected by

qosgrp.
● loc_head - when loc_val is set, indicates the first entry on the input Q list

selected by qosgrp.
● loc_tail - when loc_val is set, indicates the last entry on the input Q list selected

by qosgrp.

Result For POW Index/Pointer Load (get_rmt == 0/get_des_get_tail == 1)

● nosched_val - set when there is one or more POW entries on the nosched list.

● nosched_one - set when there is exactly one POW entry on the nosched list.

● nosched_head - when nosched_val is set, indicates the first entry on the
nosched list.

● nosched_tail - when nosched_val is set, indicates the last entry on the nosched
list.

● des_val - set when there is one or more descheduled heads on the descheduled
list selected by qosgrp.

● des_one - set when there is exactly one descheduled head on the descheduled list
selected by qosgrp.

● des_head - when des_val is set, indicates the first descheduled head on the
descheduled list selected by qosgrp.

● des_tail - when des_val is set, indicates the last descheduled head on the
descheduled list selected by qosgrp.

63 52 51 50 49 48 38 37 36 26 25 24 23 22 12 11 10 0

unused
0000 0000 0000

free_
val

free_
one

unused
0

free_
head

unused
0

free_
tail

loc_
val

loc_
one

unused
0

loc_
head

unused
0

loc_tail

63 52 51 50 49 48 38 37 36 26 25 24 23 2212 11 10 0

unused
0000 0000 0000

nosched
_val

nosched
_one

unused
0

nosched
_head

unused
0

nosched
_tail

des_
val

des_
one

unused
0

des_
head

unused
0

des_tail
236 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Operations
Result For POW Index/Pointer Load (get_rmt == 1/get_des_get_tail == 0)

● rmt_is_head - set when this DRAM list is the current head (i.e. is the next to be
reloaded when the POW hardware reloads a POW entry from DRAM). The POW
hardware alternates between the two DRAM lists associated with a QOS level
when it reloads work from DRAM into the POW unit.

● rmt_val - set when the DRAM portion of the input Q list selected by qosgrp
contains one or more pieces of work.

● rmt_one - set when the DRAM portion of the input Q list selected by qosgrp
contains exactly one piece of work.

● rmt_head - when rmt_val is set, indicates the first piece of work on the DRAM
input Q list selected by qosgrp.

Result For POW Index/Pointer Load (get_rmt == 1/get_des_get_tail == 1)

● rmt_is_head - set when this DRAM list is the current head (i.e. is the next to be
reloaded when the POW hardware reloads a POW entry from DRAM). The POW
hardware alternates between the two DRAM lists associated with a QOS level
when it reloads work from DRAM into the POW unit.

● rmt_val - set when the DRAM portion of the input Q list selected by qosgrp
contains one or more pieces of work.

● rmt_one - set when the DRAM portion of the input Q list selected by qosgrp
contains exactly one piece of work.

● rmt_tail - when rmt_val is set, indicates the last piece of work on the DRAM
input Q list selected by qosgrp.

NULL_RD Load Operations

Physical Address for a NULL_RD Load

Result For NULL_RD Load

● state - NULL_NULL (3) on failure

63 39 38 37 36 35 0

unused
0000 0000 0000 0000 0000 0000 0

rmt_is_head rmt_val rmt_one rmt_head

63 39 38 37 36 35 0

unused
0000 0000 0000 0000 0000 0000 0

rmt_is_head rmt_val rmt_one rmt_tail

48 47 43 42 40 39 3 2 0

1
Major DID

0110 0
subDID

100
Reserved

0000 0000 0000 0000 0000 0000 0000 0000 0000 0
000

NOTE: The POW hardware behavior is unpredictable when anything but a
64-bit load (i.e. anything other than an LD) is used for work request
loads or NULL_RD loads.

63 2 1 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00 state
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 237

 Packet Order / Work Unit (POW): POW Operations
5.11.2 IOBDMA Operations

GET_WORK IOBDMA Operations

IOBDMA GET_WORK Addressing

● scraddr - Defined in “cnMIPS™ Core” on page 147.

● Wait - If set, don't return load Result until work is available or time-out

Result for an IOBDMA GET_WORK

● no_work - Set when no new work-queue entry was returned

● addr - The work-queue pointer. Must be aligned on a 64-bit boundary.
Unpredictable when no_work is set.

NULL_RD IOBDMA Operations

IOBDMA NULL_RD Addressing

● scraddr - Defined in “cnMIPS™ Core” on page 147.

Result For NULL_RD IOBDMA

● state - NULL_NULL (3) on failure

5.11.3 Store Operations

Physical Address to Store to POW

● subdid == 0 for SWTAG_FULL, SWTAGs not switching to NULL
subdid == 3 for DESCHED, SWTAG_DESCHED
subdid == 1 otherwise

● addr - The address of the work-queue entry. Not used for SWTAG,
SWTAG_DESCHED, DESCHED, NOP, addr<2:0> must be zero.

63 56 55 48 47 43 42 40 39 4 3 2 0

scraddr
len

0000 0001
Major DID

0110 0
subDID

000
Reserved

0000 0000 0000 0000 0000 0000 0000 0000 0000
Wait 000

63 62 40 39 0

no_work
Reserved

000 0000 0000 0000 0000 0000
addr

63 56 55 48 47 43 42 40 39 0

scraddr
len

0000 0001
Major DID

0110 0
subDID

100
Reserved

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

63 2 1 0

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00 state

48 47 43 42 40 39 36 35 0

1
Major DID

0110 0
subDID Reserved

0000
addr

NOTE: The POW hardware behavior is unpredictable when anything but a
64-bit store (i.e. anything other than an SD) is used.
238 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW ECC Codes
Store Data on a Store to POW

● no_sched - Don't reschedule this entry. no_sched is used for SWTAG_DESCH
and DESCHED

● index - Contains index of entry for a CLR_NSCHED
● op - The operation to perform

The following different op tag types are used:
SWTAG = 0
SWTAG_FULL = 1
SWTAG_DESCHED = 2
DESCHED = 3
ADDWQ = 4
UPD_WQP_GRP = 5
CLR_NSCHED = 7
NOP = 15

● qos - The QOS level for the packet. qos is only used for ADDWQ.
● grp - The group that the work-queue entry will be scheduled to. grp is used for

ADDWQ, SWTAG_FULL, SWTAG_DESCH, and UPD_WQP_GRP
● type - The type of the tag. type is used for everything except DESCH,

UPD_WQP_GRP, NOP, and CLR_NSCHED
The following different tag types are used:

ORDERED = 0
ATOMIC = 1
NULL = 2
NULL_NULL = 3

● tag - The actual tag. tag is used for everything except DESCHED,
UPD_WQP_GRP, NOP, and CLR_NSCHED

5.12 POW ECC Codes

Table 5–2 shows the POW 11-bit ECC code.

63 62 61 60 48 47 44 43 42 41 39 38 35 34 32 31 0

no_sched
Reserved

00
index op

Rsvd
00

qos grp type tag

Table 5–2 POW 11-Bit ECC Code
CCCCC 4:0 10:8 7:4 3:0
00001 100 1011 0111 0x4B7

00010 101 0101 1011 0x55B

00100 110 0110 1101 0x66D
01000 111 1000 1110 0x78E

0000 111 1111 0000 0x7F0

000000 000 0000 0000

xxxxxx xxx xxxx xxxx

210000 111 1111 0000 ← Syndromes
008421 FCA 9653 EDB7
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 239

 Packet Order / Work Unit (POW): POW Registers
5.13POW Registers

The POW registers are listed in Table 5–3.

Table 5–3 POW Registers

Register Address CSR Type1

1. NCB-type registers are accessed directly across the I/O Bus.

Detailed
Description

POW_PP_GRP_MSK0
POW_PP_GRP_MSK1

0x0001670000000000
0x0001670000000008

NCB See page 241

POW_WQ_INT_THR0

...
POW_WQ_INT_THR15

0x0001670000000080

...
0x00016700000000F8

NCB See page 241

POW_WQ_INT_CNT0

...
POW_WQ_INT_CNT15

0x0001670000000100

...
0x0001670000000178

NCB See page 243

POW_QOS_THR0

...
POW_QOS_THR7

0x0001670000000180

...
0x00016700000001B8

NCB See page 243

POW_QOS_RND0

...
POW_QOS_RND7

0x00016700000001C0

...
0x00016700000001F8

NCB See page 245

POW_WQ_INT 0x0001670000000200 NCB See page 245
POW_WQ_INT_PC 0x0001670000000208 NCB See page 246
POW_NW_TIM 0x0001670000000210 NCB See page 246
POW_ECC_ERR 0x0001670000000218 NCB See page 248
POW_NOS_CNT 0x0001670000000228 NCB See page 249
POW_PF_RST_MSK 0x0001670000000230 NCB See page 249
POW_WS_PC0

...
POW_WS_PC15

0x0001670000000280

...
0x00016700000002F8

NCB See page 249

POW_WA_PC0

...
POW_WA_PC7

0x0001670000000300

...
0x0001670000000338

NCB See page 249

POW_IQ_CNT0

...
POW_IQ_CNT7

0x0001670000000340

...
0x0001670000000378

NCB See page 249

POW_WA_COM_PC 0x0001670000000380 NCB See page 250
POW_IQ_COM_CNT 0x0001670000000388 NCB See page 250
POW_TS_PC 0x0001670000000390 NCB See page 250
POW_DS_PC 0x0001670000000398 NCB See page 250
POW_BIST_STAT 0x00016700000003F8 NCB See page 251
240 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Registers
POW Core Group Mask Registers
POW_PP_GRP_MSK0/1

Selects which groups a core belongs to (one per core). A 1 in any bit position sets the
core’s membership in the corresponding group. A value of 0x0 prevents the core from
receiving new work.

This register also contains the QOS level priorities for each core:
0x0 is highest priority.
0x7 is the lowest priority.
0xF prevents that core from receiving work from that QOS level.
0x8 – 0xE are reserved and should not be used.

For a given core, priorities should begin at 0x0 and remain contiguous throughout the
range. See Table 5–3 for the address.

POW Work-Queue Interrupt Threshold Registers
POW_WQ_INT_THR(0..15)

Contains the thresholds for enabling and setting work-queue interrupts (one per
group). For more information on this register, refer to Section 5.6.

See Table 5–3 for the address.

NOTE: Disabled or nonexistent cores should have this field set to 0xFFFF
(the reset value) to maximize POW performance.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:44> QOS7_PRI R/W 0x0 — Core0/1 priority for QOS level 7.
<43:40> QOS6_PRI R/W 0x0 — Core0/1 priority for QOS level 6.
<39:36> QOS5_PRI R/W 0x0 — Core0/1 priority for QOS level 5.
<35:32> QOS4_PRI R/W 0x0 — Core0/1 priority for QOS level 4.
<31:28> QOS3_PRI R/W 0x0 — Core0/1 priority for QOS level 3.
<27:24> QOS2_PRI R/W 0x0 — Core0/1 priority for QOS level 2.
<23:20> QOS1_PRI R/W 0x0 — Core0/1 priority for QOS level 1.
<19:16> QOS0_PRI R/W 0x0 — Core0/1 priority for QOS level 0.
<15:0> GRP_MSK R/W 0xFFFF 0xFFFF Core0/1 group mask

NOTE: Up to two of the POW’s internal storage buffers can be allocated for hardware use and are therefore
not available for incoming work-queue entries. Additionally, any core that is not in the
NULL_NULL state consumes a buffer. Thus in a two-core system, it is not advisable to set either
[IQ_THR] or [DS_THR] to greater than 256 − 2 − 2 = 252. A higher threshold may prevent the
interrupt from ever triggering.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved
<28> TC_EN R/W 0x0 — Time counter interrupt enable for group(0..15). This field must be zero

when [TC_THR] is 0.
<27:24> TC_THR R/W 0x0 — Time counter interrupt threshold for group(0..15). When this field is

equal to 0, POW_WQ_INT_CNT(0..15)[TC_CNT] is zero.
<23:20> — RAZ — — Reserved
<19:12> DS_THR R/W 0x0 — Deschedule count threshold for group(0..15). When this field is 0, the

threshold interrupt is disabled.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 241

Owner
下划线

 Packet Order / Work Unit (POW): POW Registers
<11:8> — RAZ — — Reserved
<7:0> IQ_THR R/W 0x0 — Input queue count threshold for group(0..15). When this field is 0, the

threshold interrupt is disabled.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
242 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Registers
POW Work-Queue Interrupt Count Registers
POW_WQ_INT_CNT(0..15)

Contains a read-only copy of the counts used to trigger work-queue interrupts (one
per group). For more information on this register, refer to Section 5.6. See Table 5–3
for the address.

POW QOS Threshold Registers
POW_QOS_THR(0..7)

Contains the thresholds for allocating POW internal storage buffers (one per QOS
level). If the number of remaining free buffers drops below the minimum threshold
(MIN_THR) or the number of allocated buffers for this QOS level rise above the
maximum threshold (MAX_THR), future incoming work-queue entries are buffered
externally rather than internally.

This register also contains a read-only count of the current number of free buffers
(FREE_CNT), the number of internal buffers currently allocated to this QOS level
(BUF_CNT), and the total number of buffers on the deschedule list (DES_CNT)
(which is not the same as the total number of descheduled buffers). See Table 5–3 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:28> — RAZ — — Reserved.
<27:24> TC_CNT RO 0x0 — Time counter current value for group(0..15). Hardware sets this field to

the value of POW_WQ_INT_THR(0..15)[TC_THR] whenever:

Corresponding POW_WQ_INT_CNT*[IQ_CNT] is equal to 0 and
corresponding POW_WQ_INT_CNT*[DS_CNT] is equal to 0.

Corresponding POW_WQ_INT[WQ_INT<*>] is written with a 1
by software.

Corresponding POW_WQ_INT[IQ_DIS<*>] is written with a 1 by
software.

Corresponding POW_WQ_INT_THR(0..15) is written by
software.

TC_CNT is equal to 1 and periodic counter
POW_WQ_INT_PC[PC] is equal to 0.

Otherwise, hardware decrements this field whenever the periodic
counter POW_WQ_INT_PC[PC] is equal to 0. This field is 0 whenever
POW_WQ_INT_THR(0..15)[TC_THR]is equal to 0.

<23:21> — RAZ — — Reserved.
<20:12> DS_CNT RO 0x0 — Deschedule executable count for group(0..15)
<11:9> — RAZ — — Reserved.
<8:0> IQ_CNT RO 0x0 — Input-queue executable count for group(0..15)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:57> — RAZ — — Reserved.
<56:48> DES_CNT RO 0x0 — Deschedule list count. Number of buffers on the deschedule list.
<47:45> — RAZ — — Reserved.
<44:36> BUF_CNT RO 0x0 — Buffer count. Number of internal buffers allocated to QOS level (0..7)
<35:33> — RAZ — — Reserved.
<32:24> FREE_CNT RO 0xF9 — Free buffer count. Number of total free buffers
<23:20> — RAZ — — Reserved.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 243

 Packet Order / Work Unit (POW): POW Registers
<19:12> MAX_THR R/W 0xFF — Max threshold for QOS level(0..7)
<11:8> — RAZ — — Reserved.
<7:0> MIN_THR R/W 0x0 — Min threshold for QOS level (0..7)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
244 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Registers
POW QOS Issue Round Registers
POW_QOS_RND(0...7)

Contains the round definitions for issuing new work. Each round consists of eight
bits, with each bit corresponding to a QOS level. There are four rounds contained in
each of the eight registers for a total of 32 rounds. The issue logic traverses through
the rounds sequentially (lowest round to highest round) in an attempt to find new
work for each core. Within each round, the issue logic traverses through the QOS
levels sequentially (highest QOS to lowest QOS) skipping over each QOS level with a
clear bit in the round mask.

 See Table 5–3 for the address.

POW Work-Queue Interrupt Register
POW_WQ_INT

Contains the bits (one per group) that set work-queue interrupts and are used to
clear these interrupts. Also contains the input queue interrupt temporary disable
bits (one per group). For more information on this register, refer to Section 5.6. See
Table 5–3 for the address.

NOTE: Setting a QOS level to all 0s in all issue round registers prevents
work from being issued from that QOS level.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:24> RND_P3 R/W 0xFF — Round mask for (round # × 4 + 3)
<23:16> RND_P2 R/W 0xFF — Round mask for (round # × 4 + 2)
<15:8> RND_P1 R/W 0xFF — Round mask for (round # × 4 + 1)
<7:0> RND R/W 0xFF — Round mask for (round # × 4)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:16> IQ_DIS R/W1 0x0 — Input queue interrupt temporary disable mask. The corresponding

[WQ_INT<*>] bit cannot be set due to IQ_CNT/IQ_THR check when this
bit is set. The corresponding [IQ_DIS] bit is cleared by hardware
whenever:

POW_WQ_INT_CNT*[IQ_CNT] is zero, or

POW_WQ_INT_CNT*[TC_CNT] is equal to 1 when periodic
counter POW_WQ_INT_PC[PC] is equal to 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 245

Owner
下划线

 Packet Order / Work Unit (POW): POW Registers
POW Work-Queue Interrupt Periodic Counter Register
POW_WQ_INT_PC

Contains the threshold value for the work-queue interrupt periodic counter and also
a read-only copy of the periodic counter. For more information on this register, refer
to Section 5.6. See Table 5–3 for the address.

POW New-Work Timer Period Register
POW_NW_TIM

Sets the minimum period for a new-work-request timeout. The period is specified in
n-1 notation, with the increment value of 1024 clock cycles.

See Table 5–3 for the address.

<15:0> WQ_INT R/W1C 0x0 — Work-queue interrupt bits. The corresponding WQ_INT bit is set by
hardware whenever:

POW_WQ_INT_CNT(0..15)[IQ_CNT] ≥
POW_WQ_INT_THR(0..15) [IQ_THR] and the threshold
interrupt is not disabled. When IQ_DIS<*> is equal to 1, the
interrupt is disabled. When POW_WQ_INT_THR(0..15)[IQ_THR]
is equal to 0, the interrupt is disabled.

POW_WQ_INT_CNT(0..15)[DS_CNT] ≥
POW_WQ_INT_THR(0..15)[DS_THR] and the threshold
interrupt is not disabled. When
POW_WQ_INT_THR(0..15)[DS_THR] is equal to 0, the interrupt
is disabled.

POW_WQ_INT_CNT(0..15)[TC_CNT] is equal to 1 when periodic
counter POW_WQ_INT_PC[PC] is equal to 0 and
POW_WQ_INT_THR(0..15)[TC_EN] is equal to 1.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:60> — RAZ — — Reserved
<59:32> PC RO 0x0 — Work-queue interrupt periodic counter
<31:28> — RAZ — — Reserved
<27:8> PC_THR R/W 0x0 — Work-queue interrupt periodic counter threshold
<7:0> — RAZ — — Reserved

NOTE: The maximum period for a new work request timeout is 2 × the
minimum period.

The new-work-request timeout counter is reset when this register
is written.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ — — Reserved
246 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Registers
<9:0> NW_TIM R/W 0x0 0x3FF New-work-timer period.

0x0 = 1024 clock cycles

0x1 = 2048 clock cycles

0x2 = 3072 clock cycles

... etc.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 247

 Packet Order / Work Unit (POW): POW Registers
POW ECC Error Register
POW_ECC_ERR

This register contains the single- and double-error bits and the corresponding
interrupt-enable bits for the ECC-protected POW index memory, plus the syndrome
value in the event of an ECC error.

It also contains the remote-pointer-error bit and its interrupt-enable bit. RPE is set
when POW detects corruption on one or more of the input-queue lists in L2/DRAM
(i.e. POW’s local copy of the tail pointer for the L2/DRAM input queue did not match
the last entry on the the list). This is caused by L2/DRAM corruption, and is
generally a fatal error because it likely caused POW to load bad work-queue entries.
See Table 5–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:45> — RAZ — — Reserved.
<44:32> IOP_IE R/W 0x0 — Illegal-operation interrupt enable bits for corresponding errors in IOP.
<31:29> — RAZ — — Reserved.
<28:16> IOP R/W1C 0x0 0x0 Illegal-operation errors.

IOP_IE IOP Illegal Operation

<44> <28> Received a CSR load operation from the core with a CSR load
operation pending.

<43> <27> Received a DBG load operation from the core with a DBG load
operation pending.

<42> <26> Received ADD_WORK with tag specified as NULL_NULL.

<41> <25> Received an illegal opcode.

<40> <24> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/
UPD_WQP/GET_WORK/NULL_RD from the core with
CLR_NSCHED pending.

<39> <23> Received CLR_NSCHED from the core with SWTAG_DESCH/
DESCH/CLR_NSCHED pending.

<38> <22> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/
UPD_WQP/GET_WORK/NULL_RD from the core with NULL_RD
pending.

<37> <21> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/
UPD_WQP/GET_WORK/NULL_RD from the core with
GET_WORK pending.

<36> <20> Received SWTAG_FULL/SWTAG_DESCH from the core with the
tag specified as NULL.

<35> <19> Received SWTAG/SWTAG_FULL/SWTAG_DESCH from the core
with the tag specified as NULL_NULL.

<34> <18> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/GET_WORK
from the core with a pending tag switch to ORDERED or ATOMIC.

<33> <17> Received SWTAG/SWTAG_DESCH/DESCH/UPD_WQP from the
core in the NULL state.

<32> <16> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/
UPD_WQP from the core in the NULL_NULL state.

<15:14> — RAZ — — Reserved.
<13> RPE_IE R/W 0 — Remote-pointer-error interrupt-enable bits.
<12> RPE R/W1C 0 0 Remote-pointer error.
<11:9> — RAZ — — Reserved.
<8:4> SYN RO — — Syndrome value (only valid when DBE or SBE is set)
<3> DBE_IE R/W 0 — Double-bit-error interrupt-enable bit.
<2> SBE_IE R/W 0 — Single-bit-error interrupt-enable bit.
<1> DBE R/W1C 0 0 Double-bit error.
<0> SBE R/W1C 0 0 Single-bit error.
248 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Registers
POW Noschedule Count Register
POW_NOS_CNT

Contains the number of work-queue entries on the noschedule list. See Table 5–3 for
the address.

POW Prefetch Reset Mask Register
POW_PF_RST_MSK

Resets the work prefetch engine when work is stored in an internal buffer (either
when the add work arrives or when the work is reloaded from an external buffer) for
an enabled QOS level (1 bit per QOS level). See Table 5–3 for the address.

POW Work-Schedule Performance Counter Registers
POW_WS_PC(0..15)

One per group; counts the number of work schedules for each group. Write to clear.
See Table 5–3 for the address.

POW Work-Add Performance Counter Registers
POW_WA_PC(0..7)

One per QOS level; counts the number of add new work requests for each QOS level.
Write to clear. See Table 5–3 for the address.

POW Input-Queue Count Registers
POW_IQ_CNT(0..7)

Contains a read-only count of the number of work-queue entries for each QOS level
(one register per QOS level). See Table 5–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:9> — RAZ — — Reserved.
<8:0> NOS_CNT RO 0x0 — Number of work-queue entries on the noschedule list.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7:0> RST_MSK R/W 0x0 — Prefetch engine reset mask.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> WS_PC R/W1C 0x0 — Work-schedule performance counter for group number.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> WA_PC R/W1C 0x0 — Work-add performance counter for QOS level number.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> IQ_CNT RO 0x0 — Input-queue count for QOS level number.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 249

 Packet Order / Work Unit (POW): POW Registers
POW Work-Add Combined Performance Counter Register
POW_WA_COM_PC

Counts the number of add new work requests for all QOS levels. Write to clear. See
Table 5–3 for the address.

POW Input-Queue Combined-Count Register
POW_IQ_COM_CNT

Contains a read-only count of the total number of work-queue entries in all QOS
levels. See Table 5–3 for the address.

POW Tag-Switch Performance Counter Register
POW_TS_PC

Counts the number of tag switch requests. Write to clear. See Table 5–3 for the
address.

POW Deschedule Performance Counter Register
POW_DS_PC

Counts the number of deschedule requests. Write to clear. See Table 5–3 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> WA_PC R/W1C 0x0 — Work add combined performance counter

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> IQ_CNT RO 0x0 — Input-queue combined count

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> TS_PC R/W1C 0x0 — Tag-switch performance counter

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> DS_PC R/W1C 0x0 — Deschedule performance counter.
250 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Order / Work Unit (POW): POW Registers
POW BIST Status Register
POW_BIST_STAT

Contains the BIST status for the POW memories: 0 = pass, 1 = fail. Also contains the
BIST status for the cores. Each bit in the PP field represents the corresponding core.
See Table 5–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved.
<17:16> PP RO 0x0 0x0 Physical core BIST status. Each bit is the OR of all BIST results for the

corresponding core (0 = pass, 1 = fail).
<15:9> — RAZ — — Reserved.
<8> CAM RO 0 0 POW CAM BIST status
<7> NBT1 RO 0 0 I/O bus transmitter memory 1 BIST status
<6> NBT0 RO 0 0 I/O bus transmitter memory 0 BIST status
<5> IDX RO 0 0 Index memory BIST status
<4> FIDX RO 0 0 Forward index memory BIST status
<3> NBR1 RO 0 0 I/O bus receiver memory 1 BIST status
<2> NBR0 RO 0 0 I/O bus receiver memory 0 BIST status
<1> PEND RO 0 0 Pending switch memory BIST status
<0> ADR RO 0 0 Address memory BIST status
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 251

 Packet Order / Work Unit (POW): POW Registers
252 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 6

Free Pool Unit (FPA)
This chapter contains the following information about the Free Pool Unit (FPA).

● Overview

● Free Pool Unit Operations

● FPA Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 253

 Free Pool Unit (FPA):
Overview

The FPA is a CN50XX unit that maintains eight infinite-size pools of pointers to free
L2/DRAM memory. Both core software and other CN50XX hardware units allocate
and free pointers from/to the pools. Core software and the centralized input-packet-
processing hardware units allocate memory from the pools. Core software, the
centralized output packet processing, PCI, and timer (TIM) hardware units free
memory to the pools.

The FPA hardware implements a data structure that approximates a logical stack/
LIFO for each free pointer pool. The FPA hardware unit stores/caches the top of the
stacks in the unit at any time. When a pool is too large to fit in the in-unit store, the
FPA builds a tree/list data structure in L2/DRAM, using the freed memory in the
pool, to store the extra pointers. Each pool's size is unlimited due to this technique.

The only constraint required by the FPA hardware is that pointers submitted to the
free pools must be aligned on a 128-byte boundary and the free memory must be 128
bytes or more. The free memory size can be different in different pools and, in fact,
can also be different within the same pool.

Figure 6–1 shows the data structure the FPA hardware builds in memory when the
in-unit stores overflow. Thirty-one out of every 32 pieces of free memory are
unmodified by the FPA hardware. Their pointers are held in other free memory. One
out of every 32 pieces of memory contains 32 pointers. Thirty-one of the 32 pointers
point only at available memory, and the last pointer points at both free memory and
32 more pointers.

The FPA hardware unit can internally hold up to 512 pointers, with each pool using
64 pointers for its in-unit store.

Figure 6–1 FPA Free Memory Pointers

Free Memory Free Memory

Fr
ee

 M
em

or
y

Free M
em

ory

Free Memory
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
PTR PTR
254 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Free Pool Unit (FPA):
CN50XX hardware can also automatically issue “don’t-write-back” (DWB) commands
on the coherent memory bus (CMB) for free memory blocks to ensure that DRAM
bandwidth is not unnecessarily wasted writing cache blocks back to memory. This
chapter describes operations that include fields to indicate the number of DWBs to
execute, but the I/O bridge (IOB) unit implements the DWB functionality (refer to
Section 3.2).

Each pool has high (= 56) and low (= 16) watermarks for its in-unit stores (see Figure
6–2.). CN50XX overflows and underflows the pointers to/from L2/DRAM based on
these watermarks. When the pool has more pointers in the unit than the high
watermark for the pool allows, CN50XX writes 32 pointers from the pool’s in-unit
store into L2/DRAM. When the pool has fewer pointers in the unit than the low
watermark for the pool allows, CN50XX reads 32 pointers from L2/DRAM into the
pool’s in-unit store.

When a core requests a pointer from a pool that does not have enough pointers to
satisfy the request, the FPA hardware returns a NULL pointer (all 0s) to the core.

The eight available subDIDs select the pool for a particular operation. Pool 0 is
special since the centralized input packet processing hardware uses storage allocated
from it to store packet data. The centralized input packet processing hardware also
allocates work queue entries from a programmable pool. Whenever pool 0 or the work
queue entry pool are empty, the centralized input packet processing hardware cannot
receive packets.

Figure 6–2 FPA Free Memory Pointers

Pool 0

Pool 1 through 7

Free Allocate

Underflow Overflow

Low Watermark = 16

High Watermark = 56

IOBI

IOBO
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 255

Owner
下划线

Owner
下划线

 Free Pool Unit (FPA): Free Pool Unit Operations
CN50XX’s centralized input packet processing unit is the only hardware unit that
can allocate storage from FPA. The packet-output (see Chapter 8), PCI DMA
engine (see Chapter 9), and Timer (see Chapter 10) units free buffers to FPA.

The FPA hardware checks for corruption of the free list in DRAM. These checks
can detect ordinary memory corruption, and can also detect pointer duplications
in some circumstances. The FPA hardware sets one of
FPA_INT_SUM[Qn_COFF,Qn_PERR,Qn_UND] when it detects these errors. In
addition to the 32 pointers written to L2/DRAM, CN50XX writes out the page
index for the pool (FPA_QUEn_PAGE_INDEX) and the pool number. If the values
mismatch when it reads pointers back, the FPA hardware sets
FPA_INT_SUM[Qn_PERR] and loads FPA_QUE_EXP/FPA_QUE_ACT.

Core software can read the FPA_QUEn_AVAILABLE[QUE_SIZ] register to find
the number of buffers that are currently free in a pool.

Load and IOBDMA operations from the cores allocate memory. (The result is a
byte pointer to the free memory.) Store operations free memory.

6.1 Free Pool Unit Operations

This section shows the detailed bit formats and codes for the various transactions.

6.1.1 Load Operations

Physical Address for Load

● subdid - pool number

Result for a Load

● Ptr - Pointer to free memory. If all zeroes, the selected pool is empty.

Ptr must be aligned on a 128 byte boundary, thus Ptr <6:0> will always be
zero.

48 47 43 42 40 39 0

1
Major DID

00101
sub-DID Reserved

0

NOTE: The FPA hardware behavior is unpredictable when anything but a
64-bit load (i.e. anything other than an LD) is used.

63 40 39 0

0 Ptr
256 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Free Pool Unit (FPA): Free Pool Unit Operations
6.1.2 IOBDMA Operations

IOBDMA Addressing

● scraddr - Defined in “cnMIPS™ Cores” on page 143.

● len - can legally be from 1 to 16

● subdid - pool number

Result for an IOBDMA Request

● Ptr - Pointer to free memory. If all zeroes, the selected pool is empty.

Ptr must be aligned on a 128 byte boundary, thus Ptr <6:0> will always be
0x0.

If len is larger than the number of available pointers in the selected pool (i.e.
if len > FPA_QUEn_AVAILABLE[QUE_SIZ]), then all (len) Ptrs returned for
the IOBDMA operation are all 0s, indicating that the pool does not have an
adequate number of pointers to satisfy the IOBDMA.

6.1.3 Store Operations

Physical Address to Store to FPA

● subdid - pool number

● addr - pointer to available memory

Pointer must be aligned on 128 byte boundary (or unpredictable results)

Pointer must point to at least 128 bytes of free memory (or FPA hardware
may over-write some useful data with pointers)

Store Data on a Store to FPA

● The lowest N bits contain the DWB_count. DWB_count is the number of cache
lines for which the hardware (in IOB) should try to execute “don’t-write-back”
commands. The hardware starts from the beginning of the free memory (i.e. to
where the address points) and marches forward linearly. As the DWB command
can modify the value of memory locations, software must ensure that DWB_count
× 128 does not exceed the number of available bytes. As the DWB commands
consume CMB bandwidth, software should keep the DWB_count low to cover only
those cache blocks that may have been modified.

63 56 55 48 47 43 42 40 39 0

scraddr len
Major DID

00101
sub-DID Reserved

0

63 40 39 0

0 Ptr

48 47 43 42 40 39 0

1
Major DID

00101
sub-DID

addr

NOTE: The FPA hardware behavior is unpredictable when anything but a
64-bit store (i.e. anything other than an SD) is used.

63 9 8 0
Reserved

0
DWB count
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 257

 Free Pool Unit (FPA): FPA Registers
6.2 FPA Registers

The FPA CSRs are listed in Table 6–1.

Table 6–1 FPA Registers

Register Address

CSR

Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed
Description

FPA_INT_SUM 0x0001180028000040 RSL See page 259

FPA_INT_ENB 0x0001180028000048 RSL See page 260

FPA_CTL_STATUS 0x0001180028000050 RSL See page 261

FPA_QUE0_AVAILABLE
...
FPA_QUE7_AVAILABLE

0x0001180028000098
...
0x00011800280000D0

RSL See page 261

FPA_BIST_STATUS 0x00011800280000E8 RSL See page 262

FPA_QUE0_PAGE_INDEX
...
FPA_QUE7_PAGE_INDEX

0x00011800280000F0
...
0x0001180028000128

RSL See page 262

FPA_QUE_EXP 0x0001180028000130 RSL See page 262

FPA_QUE_ACT 0x0001180028000138 RSL See page 263
258 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Free Pool Unit (FPA): FPA Registers
FPA Interrupt Summary Register
FPA_INT_SUM

Contains the different interrupt summary bits of the FPA. See Table 6–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:28> — RAZ — — Reserved
<27> Q7_PERR R/W1C 0 0 Set when a queue7 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<26> Q7_COFF R/W1C 0 0 Set when a queue7 stack end tag is present and the count available is

greater than pointers present in the FPA.
<25> Q7_UND R/W1C 0 0 Set when a queue7 page count available goes negative.
<24> Q6_PERR R/W1C 0 0 Set when a queue6 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<23> Q6_COFF R/W1C 0 0 Set when a queue6 stack end tag is present and the count available is

greater than pointers present in the FPA.
<22> Q6_UND R/W1C 0 0 Set when a queue6 page count available goes negative.
<21> Q5_PERR R/W1C 0 0 Set when a queue5 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<20> Q5_COFF R/W1C 0 0 Set when a queue5 stack end tag is present and the count available is

greater than pointers present in the FPA.
<19> Q5_UND R/W1C 0 0 Set when a queue5 page count available goes negative.
<18> Q4_PERR R/W1C 0 0 Set when a queue4 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<17> Q4_COFF R/W1C 0 0 Set when a queue4 stack end tag is present and the count available is

greater than pointers present in the FPA.
<16> Q4_UND R/W1C 0 0 Set when a queue4 page count available goes negative.
<15> Q3_PERR R/W1C 0 0 Set when a queue3 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<14> Q3_COFF R/W1C 0 0 Set when a queue3 stack end tag is present and the count available is

greater than pointers present in the FPA.
<13> Q3_UND R/W1C 0 0 Set when a queue3 page count available goes negative.
<12> Q2_PERR R/W1C 0 0 Set when a queue2 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<11> Q2_COFF R/W1C 0 0 Set when a queue2 stack end tag is present and the count available is

greater than pointers present in the FPA.
<10> Q2_UND R/W1C 0 0 Set when a queue2 page count available goes negative.
<9> Q1_PERR R/W1C 0 0 Set when a queue1 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<8> Q1_COFF R/W1C 0 0 Set when a queue1 stack end tag is present and the count available is

greater than pointers present in the FPA.
<7> Q1_UND R/W1C 0 0 Set when a queue1 page count available goes negative.
<6> Q0_PERR R/W1C 0 0 Set when a queue0 pointer read from the stack in the L2C does not have

the FPA ownership bit set.
<5> Q0_COFF R/W1C 0 0 Set when a queue0 stack end tag is present and the count available is

greater than pointers present in the FPA.
<4> Q0_UND R/W1C 0 0 Set when a queue0 page count available goes negative.
<3> FED1_DBE R/W1C 0 0 Set when a single-bit error is detected in FPF1
<2> FED1_SBE R/W1C 0 0 Set when a double-bit error is detected in FPF1
<1> FED0_DBE R/W1C 0 0 Set when a single-bit error is detected in FPF0
<0> FED0_SBE R/W1C 0 0 Set when a double-bit error is detected in FPF0
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 259

 Free Pool Unit (FPA): FPA Registers
FPA Interrupt Enable Register
FPA_INT_ENB

The FPA interrupt-enable register. See Table 6–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:28> — RAZ — — Reserved
<27> Q7_PERR R/W 0 0 When set to 1 and bit[27] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<26> Q7_COFF R/W 0 0 When set to 1 and bit[26] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<25> Q7_UND R/W 0 0 When set to 1 and bit[25] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<24> Q6_PERR R/W 0 0 When set to 1 and bit[24] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<23> Q6_COFF R/W 0 0 When set to 1 and bit[23] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<22> Q6_UND R/W 0 0 When set to 1 and bit[22] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<21> Q5_PERR R/W 0 0 When set to 1 and bit[21] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<20> Q5_COFF R/W 0 0 When set to 1 and bit[20] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<19> Q5_UND R/W 0 0 When set to 1 and bit[19] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<18> Q4_PERR R/W 0 0 When set to 1 and bit[18] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<17> Q4_COFF R/W 0 0 When set to 1 and bit[17] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<16> Q4_UND R/W 0 0 When set to 1 and bit[16] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<15> Q3_PERR R/W 0 0 When set to 1 and bit[15] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<14> Q3_COFF R/W 0 0 When set to 1 and bit[14] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<13> Q3_UND R/W 0 0 When set to 1 and bit[13] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<12> Q2_PERR R/W 0 0 When set to 1 and bit[12] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<11> Q2_COFF R/W 0 0 When set to 1 and bit[11] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<10> Q2_UND R/W 0 0 When set to 1 and bit[10] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<9> Q1_PERR R/W 0 0 When set to 1 and bit[9] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<8> Q1_COFF R/W 0 0 When set to 1 and bit[8] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<7> Q1_UND R/W 0 0 When set to 1 and bit[7] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<6> Q0_PERR R/W 0 0 When set to 1 and bit[6] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<5> Q0_COFF R/W 0 0 When set to 1 and bit[5] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
<4> Q0_UND R/W 0 0 When set to 1 and bit[4] of the FPA_INT_SUM register is asserted, the

FPA asserts an interrupt.
260 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Free Pool Unit (FPA): FPA Registers
FPA Control and Status Register
 FPA_CTL_STATUS

This register provides FPA control and status information. See Table 6–1 for address.

FPA Queue 0-7 Free Page Available Registers
FPA_QUE(0..7)_AVAILABLE

This register specifies the number of page pointers that are available in the FPA and
local DRAM. See Table 6–1 for address.

<3> FED1_DBE R/W 0 0 When set to 1 and bit[3] of the FPA_INT_SUM register is asserted, the
FPA asserts an interrupt.

<2> FED1_SBE R/W 0 0 When set to 1 and bit[2] of the FPA_INT_SUM register is asserted, the
FPA asserts an interrupt.

<1> FED0_DBE R/W 0 0 When set to 1 and bit[1] of the FPA_INT_SUM register is asserted, the
FPA asserts an interrupt.

<0> FED0_SBE R/W 0 0 When set to 1 and bit[0] of the FPA_INT_SUM register is asserted, the
FPA asserts an interrupt.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved
<17> RESET R/W 0 0 When set causes a reset of the FPA with the exception of the RSL.
<16> USE_LDT R/W 0 0 When cleared to 0, the FPA uses LDT to load pointers from the L2C.
<15> USE_STT R/W 0 0 When cleared to 0, the FPA uses STT to store pointers to the L2C.
<14> ENB R/W 0 0 Enable. Must be set to 1 after writing all configuration registers and 10

cycles have passed. If any of the configuration registers are written after
writing this bit, the FPA may begin to operate incorrectly.

<13:7> MEM1_ERR R/W 0x0 0x0 Causes a flip of the ECC bit associated [38:32] respective to bit [6:0] of this
field, for FPF FIFO1.

<6:0> MEM0_ERR R/W 0x0 0x0 Causes a flip of the ECC bit associated [38:32] respective to bit [6:0] of this
field, for FPF FIFO0.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved
<28:0> QUE_SIZ RO 0x0 0x0 The number of free pages available in this queue.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 261

 Free Pool Unit (FPA): FPA Registers
BIST Status of FPA Memories Register
FPA_BIST_STATUS

This register provides the result of the BIST run on the FPA memories. See Table 6–
1 for address.

FPA Queue Page Index Registers
FPA_QUE(0..7)_PAGE_INDEX

These registers provide the present index page for each of queues 0..7. Each
PG_NUM field reflects the number of pages of pointers that have been written to
memory for the respective queue. See Table 6–1 for address.

FPA Queue Expected Value Register
FPA_QUE_EXP

When an FPA_INT_SUM[Qn_PERR] occurs, this register is latched with the
expected value. Once this register is latched with the first error, it is not latched
again until all errors have been cleared. See Table 6–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4> FRD RO 0 0 FPA_FRD memory BIST status.
<3> FPF0 RO 0 0 FPA_FPF0 memory BIST status.
<2> FPF1 RO 0 0 FPA_FPF1 memory BIST status.
<1> FFR RO 0 0 FPA_FFR memory BIST status.
<0> FDR RO 0 0 FPA_FDR memory BIST status.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:25> — RAZ — — Reserved
<24:0> PG_NUM RO 0x0 — Page number.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:29> — RO 0x0 0x7 Reserved.
<28:26> EXP_QUE RO 0x0 — Expected FPA queue number read from memory.
<25:0> EXP_INDX RO 0x0 — Expected page number read from memory.
262 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Free Pool Unit (FPA): FPA Registers
FPA Queue Actual Value Register
FPA_QUE_ACT

When an FPA_INT_SUM[Qn_PERR] occurs, this register is latched with the actual
value read from L2C. Once this register is latched with the first error, it is not
latched again until all errors have been cleared. See Table 6–1 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:29> — RO 0x0 0x7 Reserved.
<28:26> ACT_QUE RO 0x0 — FPA queue number read from memory.
<25:0> ACT_INDX RO 0x0 — Page number read from memory.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 263

 Free Pool Unit (FPA): FPA Registers
264 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 7

Packet Input Processing/Input Packet Data
Unit (PIP/IPD)
This chapter contains the following subjects:

● Overview

● Input Ports

● Input Packet Formats and Pre-IP Parsing

● Packet Buffering

● Packet Scheduling

● Work-Queue Entry

● Input Packet Data Unit (IPD) Quality of Service

● PIP/IPD Per-QOS Admission Control

● PIP Registers

● IPD Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 265

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Ports
Overview

This chapter discusses the CN50XX centralized packet input processing and input
packet data unit (PIP/IPD). It receives packet input data from any/all of the RGMII,
GMII, MII or PCI interfaces. It can have a combined total of up to 5 input ports for
receiving packets between all these sources. This effectively means that PIP/IPD
supports a total of up to 5 simultaneous in-flight packets. The packets arriving on the
different ports share the same PIP/IPD hardware resources, but logically the PIP/
IPD hardware treats the different in-flight packets independently.

The PIP/IPD units allocate and write packet data into buffers in a format that is
convenient to higher-layer software. The unit supports a programmable buffer size
(with pads at the top and bottom for software use), and can distribute packet data
across multiple buffers to support large packet input sizes.

The PIP/IPD also creates and allocates a work-queue entry for each packet. This
work-queue entry contains a pointer to the buffered packet, hardware parsing
results, and packet error checks. The unit performs many L2–L4 checks, including
the TCP/UDP checksum check. The unit can skip over a programmable amount of
user-defined input data before parsing the input packet. This is useful for user-
defined headers passed with the packets. The unit also implements packet-
instruction headers, which allow packet scheduling and decode information to be
more closely controlled, and has highly configurable automatic tuple and/or mask
packet tag generation.

7.1 Input Ports

The PIP/IPD hardware accepts packets from up to 5 input ports numbered as follows:

● PIP/IPD Ports 0–2 = packet interface ports 0–2
● PIP/IPD Ports 32–33 = PCI interface ports 0–1

The PIP/IPD hardware treats all the packet interface ports identically. The PIP/IPD
hardware treats the PCI interface ports slightly differently than the packet interface
ports, but in a similar manner. (There is no CRC checking on PCI interface ports, and
packet-instruction headers are created differently.)

A packet interface may only use some of the three available ports allocated to it. For
example, a packet interface can use at most three ports when it is in RGMII mode.

7.2 Input Packet Formats and Pre-IP Parsing

PIP/IDP supports the three different packet input parse modes.

● uninterpreted

● skip-to-L2

● skip-to-IP
266 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
矩形

Owner
高亮

Owner
矩形

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
Figure 7–1 depicts the packet formats supported by each parse mode.

When a packet does not have an instruction header, the PIP/IPD hardware creates
the packet scheduling and packet-decode information based solely on the packet data
and configuration. The optional packet instruction header (PKT_INST_HDR) allows
an external device to more directly control the packet scheduling and decoding on a
packet-by-packet basis (via RAWFULL and RAWSCH packets, defined in Section
7.2.1).

With the skip fields (and pad field), an application can attach some information in
addition to the normal packet. The skip-to-L2 mode parses various ethernet-like L2
header formats and can determine whether IP is present in the packet. The skip-to-
IP mode directs PIP/IPD to directly parse the contained IP packet.

Much PIP/IPD parsing is disabled for uninterpreted packets. (A raw hardware
checksum is still generated, the packet length is still checked against the skip
amount, and CRC may still be checked and discarded.)

The Skip I field may be present in all cases, except for PCI ports when a
PKT_INST_HDR is present. Skip is not allowed prior to a PKT_INST_HDR when a
packet arrives via a PCI input port. The number of Skip I bytes is configured
separately for each port that a packet arrives on (PIP_PRT_CFGn[SKIP]). It can be
any byte amount from 0 (where it is not present) to its maximum.

The Skip II field can only be present when a PKT_INST_HDR is present. The Skip II
field can be any byte amount from 0 (where it is not present) up to its maximum.

The total SKIP is the total number of bytes in the Skip I, PKT_INST_HDR, and Skip
II fields shown in Figure 7–1. The maximum allowed SKIP is discussed in Section
7.2.8.

The optional pad field is only relevant to the PIP/IPD hardware when the packet is
IP. For example, a 40-byte IP packet coming in via the packet interface may have
been padded out to the minimum defined packet size of 64 bytes. If any input packet
contains a pad beyond the end of the IP packet, the PIP/IPD hardware receives the
pad and buffers it like all other packet data. It does not get stripped, so the pad is
eventually passed on to core software with the rest of the packet.

Figure 7–1 Packet Input Format Modes

Uninterpreted Skip-to-L2 Skip-to-IP

CRC

PKT_INST_HDR

Skip II

Uninterpreted

Optional

Optional

Optional
(RGMII/SPI-4.2

only)

CRC

PKT_INST_HDR

Skip II

L2 HDR

L2 / IP

Pad Optional

Optional
(RGMII/SPI-4.2

only)

CRC

PKT_INST_HDR

Skip II

IP

Pad Optional

Optional
(RGMII/SPI-4.2

only)

Skip I Skip I Skip I

(only when
PKT_INST_HDR

Optional (not present
for PCI when
PKT_INST_HDR
is present)

Optional

Optional
(only when
PKT_INST_HDR

Optional (not present
for PCI when
PKT_INST_HDR
is present)

Optional

Optional
(only when
PKT_INST_HDR

Optional (not present
for PCI when
PKT_INST_HDR
is present)

is present) is present) is present)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 267

Owner
下划线

Owner
下划线

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
The optional CRC/FCS field protects the packet from transmission errors. Section
7.2.6 covers CRC in more detail.

7.2.1 Packet Instruction Header

The packet instruction header contains information to control packet scheduling and
decode. Figure 7–2 shows the packet instruction header that is optionally included at
the beginning of the packet. As shown, the full PKT_INST_HDR is eight bytes. All
eight bytes are not required in all cases, however.

The packet-instruction-header size for a given packet is effectively selected by
PKT_INST_HDR[SL], as the value in PKT_INST_HDR[SL] includes both the
number of PKT_INST_HDR bytes and Skip II bytes. Refer to the
PKT_INST_HDR[SL] description on page 269.

The packet instruction header format (PKT_INST_HDR) is similar to the PCI
instruction header format (PCI_INST_HDR).

The packet instruction header format is also similar to the format of the packet
scheduling information in WORD1 of the resultant work-queue entry. Refer to
Section 7.5 for more description of the work-queue entry format created on packet
arrival.

For the packet-interface ports (ports 0–2), the presence or absence of an instruction
header is selected on a per-port basis (PIP_PRT_CFG(0..2)[INST_HDR]). A
PKT_INST_HDR must be present for the corresponding port when
PIP_PRT_CFG(0..2)[INST_HDR] is set.

All PCI instructions (refer to Section 9.3) include a PCI_INST_HDR, but the
resultant packets that enter via the PCI interface ports (ports 32-33) only include a
PKT_INST_HDR in the following cases:

● the PCI instruction selects raw scheduling or decoding
(i.e. PCI_INST_HDR[R] is set, or the packet is RAWFULL or RAWSCH), or

● all packets arriving via the PCI port are forced to include PKT_INST_HDRs (i.e.
NPI_PORT(32/33)_INSTR_HDR[USE_IHDR] is set).

When a packet has an instruction header, it may be one of two special forms:

● RAWFULL (PKT_INST_HDR[R] is set and PKT_INST_HDR[PM] is
uninterpreted)

Figure 7–2 Packet Instruction Header Format (PKT_INST_HDR)

63 62 58 5756 55 54 48 47 42 41 39 38 35 34 3332 31 0

R
Reserved
000 00

PM
Reserved

0
SL

Reserved
0000 00

QOS GRP RS TT TAG

PKT_INST_HDR[R] = 1

PKT_INST_HDR[R] = 0,

PKT_INST_HDR[R] = 0,

and PKT_INST_HDR[RS] is not used

and PKT_INST_HDR[RS] is used

8 Bytes

4 Bytes

2 Bytes
268 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
PKT_INST_HDR directly specifies the packet scheduling information, and PIP/
IPD do not generate the decode information by decoding a RAWFULL packet.
(The decode information comes from a configuration register (PIP_RAW_WORD)
in this case.)

● RAWSCH (PKT_INST_HDR[R] is set and PKT_INST_HDR[PM] is skip-to-L2 or
skip-to-IP)

PKT_INST_HDR directly specifies the packet-scheduling information, and PIP/
IPD generate the packet decode information from RAWSCH packets.

RAWFULL and RAWSCH packets require an eight-byte PKT_INST_HDR. Other
PKT_INST_HDRs may be either two or four bytes, depending on whether
PKT_INST_HDR[RS] is used.

The following descriptions refer to Figure 7–2:

PKT_INST_HDR[R] If PKT_INST_HDR[R] = 1 and PKT_INST_HDR[PM] = 0 (i.e. if the packet is a
RAWFULL packet), then, PIP/IPD uses PKT_INST_HDR[QOS,GRP,TT,TAG] for
scheduling information (WORD 1), and PIP_RAW_WORD[WORD] for decode
information (WORD 2) in the work-queue entry.

If PKT_INST_HDR[R] = 1 and PKT_INST_HDR[PM] ≠ 0 (i.e. if the packet is a
RAWSCH packet), then PIP/IPD uses PKT_INST_HDR[QOS,GRP,TT,TAG] for
scheduling information (WORD 1), and parses the packet for decode information
(WORD 2) in the work-queue entry.

If PKT_INST_HDR[R] = 1, then PKT_INST_HDRs are eight bytes.

PKT_INST_HDR[PM] The mode used to parse the packet:
0 = uninterpreted
1 = skip-to-L2 mode
2 = skip-to-IP mode
3 = reserved

PKT_INST_HDR[SL] The number of bytes in the PKT_INST_HDR and Skip II fields (refer to Figure 7–1)
in the packet.

The Skip II field could have no bytes (i.e. it may not exist), but the PKT_INST_HDR
must exist and has minimum size constraints. The following bullets describe the
minimum PKT_INST_HDR size and, thus, the minimum PKT_INST_HDR[SL]
values for a packet:

● When PKT_INST_HDR[R] = 1, the PKT_INST_HDR is eight bytes, so
PKT_INST_HDR[SL] should be eight or more.

● When PKT_INST_HDR[R] = 0, the PKT_INST_HDR may be as small as two
bytes, so PKT_INST_HDR[SL] should be two or more. If PKT_INST_HDR[RS] is
needed, PKT_INST_HDR[SL] should be four or more bytes rather than two. (The
PKT_INST_HDR[RS] description below explains when PKT_INST_HDR[SL]
might be used.)

The total SKIP length (sum of Skip I, PKT_INST_HDR, and Skip II) is discussed in
Section 7.2.8.

PKT_INST_HDR[QOS,
GRP,TT,TAG]

When PKT_INST_HDR[R] = 1, PKT_INST_HDR[QOS,GRP,TT,TAG] are the selected
scheduling parameters that become WORD1[QOS,GRP,TT,TAG] of the work-queue
entry. Refer to Section 7.5.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 269

Owner
下划线

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
PKT_INST_HDR[RS] When PKT_INST_HDR[RS] = 1, it enables the packet to be buffered solely in the
work-queue entry, and not in L2/DRAM. Note the following points about
PKT_INST_HDR[RS]:

● PKT_INST_HDR[RS] is not used if any of the following are true:

PIP_PRT_CFGn[DYN_RS] = 1 for the given port, or

PIP_GBL_CFG[IGNRS] = 1 and the port is not a PCI port, or

the packet is not dynamic short. (i.e. It doesn’t fit entirely in the work-queue
entry. Refer to Section 7.5 for more details regarding dynamic-short packets.)

● If PIP_GBL_CFG[IGNRS] = 1 and the port is not a PCI port,
PKT_INST_HDR[RS] is effectively forced to 0.

● If PIP_PRT_CFGn[DYN_RS] = 1, the packet is always enabled to be buffered
solely in the work-queue entry, regardless of the PKT_INST_HDR[RS] value.

7.2.2 PCI Instruction-to-Packet Conversion

Figure 7–3 shows the hardware translation from a PCI instruction into a packet,
including the creation of a PKT_INST_HDR from a PCI_INST_HDR. Whenever a
PKT_INST_HDR is prepended to a PCI input packet, the packet size and buffering
are correspondingly increased to include the PKT_INST_HDR. A packet instruction
header is present on a PCI packet when PCI_INST_HDR[R] is set, or when
NPI_PORT(32/33)_INSTR_HDR[USE_IHDR] is set for the port the packet arrived
on.

The PKT_INST_HDR comes directly from the PCI_INST_HDR in the PCI
instruction, with the exception of bits <62:42>. PKT_INST_HDR[PM,SL] are the only
bits within <62:42> that are not reserved.

Figure 7–3 PCI Instruction to Packet Transformation

PKT_INST_HDR

Front Data

DPTR Data

DPTR

PCI_INST_HDR

Front Data

DPTR Data

R

NPI_PORTn_INSTR_HDR[42:22]

GRP RS TT TAG

NPI_PORTn_INSTR_HDR[PBP]

QOS

TransformationPCI
Instruction

Packet
Input
Format

PM SL PM SL

NPI_PORTn_INSTR_HDR[20:0]
270 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
When NPI_PORT(32/33)_INSTR_HDR[PBP] is set:

● NPI_PORT(32/33)_INSTR_HDR[USE_IHDR] must be set so that CN50XX
always creates a PKT_INST_HDR.

● PKT_INST_HDR[PM,SL] come from the individual PCI instruction.

When NPI_PORT(32/33)_INSTR_HDR[PBP] is clear:

● When PCI_INST_HDR[R] is set, PKT_INST_HDR[PM,SL] come from
NPI_PORT(32/33)_INSTR_HDR[RPARMODE,RSKIP_LEN].

● When PCI_INST_HDR[R] is clear and
NPI_PORT(32/33)_INSTR_HDR[USE_IHDR] is set for the port,
PKT_INST_HDR[PM,SL] come from
NPI_PORT(32/33)_INSTR_HDR[PAR_MODE,SKIP_LEN].

Refer to Section 9.3 for more detailed description of a PCI instruction.

7.2.3 Parse Mode and Skip Length Selection

The parse mode and skip lengths are selected by a combination of per-port
configuration and packet-by-packet information included in the optional
PKT_INST_HDR (see Figure 7–1).

For parse mode:

When a PKT_INST_HDR is not included in a packet, per-port configuration
(i.e. PIP_PRT_CFG(0..2,32,33)[MODE]) selects the parse mode used for the
packet.

When a PKT_INST_HDR is included in a packet, PKT_INST_HDR[R,PM]
select the parse mode used for the packet, and determine whether the packet
is RAWFULL or RAWSCHED.

For skip lengths:

Per-port configuration (i.e. PIP_PRT_CFGn[SKIP]) selects the number of
bytes in the Skip I field, except when a PKT_INST_HDR is present in a
packet arriving via a PCI port, in which case the Skip I field is not present.

Whenever a PKT_INST_HDR is included with a packet,
PKT_INST_HDR[SL] indicates the combined number of bytes in both the
PKT_INST_HDR and Skip II fields.

Note that, as described in Section 7.2.2, PKT_INST_HDR[PM,SL] (when present) are
derived from per-port configuration rather than packet-by-packet information for the
PCI ports (ports 32–33) if NPI_PORT(32/33)_INSTR_HDR[PBP] is clear.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 271

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
7.2.4 PIP/IPD L2 Parsing and Is_IP Determination

In the Skip-to-L2 mode, the PIP/IPD hardware parses the L2 HDR field to determine
its length and whether an IP packet follows. Figure 7–4 depicts the supported L2
HDR types, which are Ethernet II and IEEE 802.3 with zero, one, or two additional
VLAN fields. Regardless of the classification, the packet is considered to be IP only
when the last two bytes of a valid L2 HDR field (i.e. the TYPE field) equals 0x0800
(IPv4) or 0x86DD (IPv6).

In the skip-to-IP case, there is no L2 HDR field, but the PIP/IPD hardware acts much
the same as the case when the hardware considers the packet to be IP in the Skip-to-
L2 mode. Note that the skip field could be anything, including an L2 header field that
does not need to be interpreted by the PIP/IPD hardware.

7.2.5 Pre-IP Parsing Summary

The following pseudo-code describes the Pre-IP parsing in detail:

ethertype_val = 0;
LAST_SKIP = PIP_PRT_CFG[port][SKIP];
// port is the input port the packet arrived on (0..2)
if(port >= 32) { // if a PCI port
 if(PCI_INST_HDR[R] or NPI_PORT(32..33)_INSTR_HDR[USE_IHDR]) {
 PKT_INST_HDR = PCI_INST_HDR;
 pkt_inst_hdr_pres = true;
 SKIP = 0;
 if(PCI_INST_HDR[R])
 PKT_INST_HDR<62:42> = NPI_PORT[port]_INSTR_HDR<42:22>; // RPARMODE,RSKIP_LEN
 else
 PKT_INST_HDR<62:42> = NPI_PORT[port]_INSTR_HDR<20:0>; // PAR_MODE, SKIP_LEN
 if(NPI_PORT[port]_INSTR_HDR[PBP])
 PKT_INST_HDR[PM,SL] = from individual PCI instruction;
 // CN50XX PCI logic includes PKT_INST_HDR as first 8 bytes
 }
 else {
 skip SKIP bytes;
 pkt_inst_hdr_pres = false;
 }
}
else { // if a RGMII, GMII, MII port
 skip SKIP bytes;
 if(PIP_PRT_CFG(0..2)[INST_HDR]) {
 pkt_inst_hdr_pres = true;
 PKT_INST_HDR = next 8 bytes; // 2, 4, or 8 bytes may be used
 }

Figure 7–4 Supported L2 HDR Types in Skip-to-L2 Mode

Ethernet II

Ethernet II + VLAN

IEEE 802.3 + VLAN

Ethernet II + VLAN Stacked

IEEE 802.3 + VLAN Stacked

PIP/IPD L2 HDR Formats (Skip-to-L2 Mode)

UninterpretedDMAC

6 bytes

≤1500

IEEE 802.3

0x8100 VLAN0 Type

2 bytes6 bytes 2 bytes 2 bytes 2 bytes6 bytes

Uninterpreted

UninterpretedDMAC Type0x8100 VLAN0

UninterpretedDMAC

6 bytes

≤1500 Type

2 bytes

Uninterpreted

UninterpretedDMAC Type

UninterpretedDMAC

6 bytes

0x81000x8100 VLAN0 VLAN1

2 bytes6 bytes 2 bytes 2 bytes 2 bytes6 bytes

Uninterpreted

2 bytes 2 bytes

≤1500 Type

UninterpretedDMAC 0x81000x8100 VLAN0 VLAN1 Type

Is_IP = Type == 0x0800 (IPv4) or 0x86DD (IPv6)
272 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
 else
 pkt_inst_hdr_pres = false;
}
if(pkt_inst_hdr_pres) {
 MODE = PKT_INST_HDR[PM];
 SKIPSL = PKT_INST_HDR[SL]; // note that PKT_INST_HDR[SL] should account for
 // PKT_INST_HDR size (minimum two to eight bytes)
 ISRAWFULL = PKT_INST_HDR[R] && (MODE is uninterpreted);
 ISRAWSCH = PKT_INST_HDR[R] && (MODE is skip-to-L2 or skip-to-IP);
 skip SKIPSL bytes;
 SKIP = SKIP + SKIPSL;
}
else {
 MODE = PIP_PRT_CFG[port][MODE];
 ISRAWFULL = false;
 ISRAWSCH = false;
}
L2_Size = 0;
VV = VS = false;
VLAN0 = VLAN1 = 0;
if(MODE is skip-to-L2) {
 skip 14 bytes;
 L2_Size = L2_Size + 14;
 type = prior two bytes;
 if(type == 0x8100) { // VLAN
 VV = true;
 VLAN0 = next two bytes;
 skip 4 bytes;
 L2_Size = L2_Size + 4;
 ype = prior two bytes;
 if(type == 0x8100) { // STACKED VLAN
 VLAN1 = next two bytes;
 VS = true;
 skip 4 bytes;
 L2_Size = L2_Size + 4;
 type = prior two bytes;
 }
 }
 limit = PIP_GBL_CFG[MAX_L2] ? 1535 : 1500;
 if(type <= limit) {
 skip 8 bytes;
 L2_Size = L2_Size + 8;
 type = prior two bytes;
 }
 Is_IP = (type == 0x0800) || (type == 0x86DD);
}
else if(MODE == skip-to-IP)
 Is_IP = true;
else
 Is_IP = false;
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 273

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
7.2.6 Packet Input CRC

PIP/IPD can remove CRC from a packet, but never checks it. The packet interfaces
check CRC of inbound packets.

Note that the PIP/IPD hardware can never remove CRC for a packet that arrives via
the PCI interface (ports 32–33).

For packets arriving by the packet interfaces (ports 0-2), PIP/IPD can optionally
either remove or retain the CRC field for later processing. When
IPD_SUB_PORT_FCS[PORT_BIT<port>] is set for the port a packet arrives on, PIP/
IPD removes the CRC before buffering the packet.
IPD_SUB_PORT_FCS[PORT_BIT<port>] should only be set when both CRC is
present and should be removed.

7.2.7 Packet Length Checks

PIP/IDP is capable of two classes of length checks. The first class of checks ensures
that the packet is within a legal packet size. The second class is able to validate the
L2 length field when an L2 header is present.

These exceptions can be enabled by setting the appropriate bit in PIP_PRT_CFGX
for each port in which the checker is desired. If the bit is set, the exception is logged
in PIP_INT_REG. In addition, packets sent into CN50XX arrive with a receive error
(WQE WORD2[RE] = 1) and the opcode (WORD2[Opcode]) is set to the exception in
the work queue entry.

Table 7–1 lists the length exceptions, their causes, and how they are handled.

Table 7–1 Receive Errors/Exceptions
Exception Cause Notification
MAXERR A packet was received with

length > PIP_FRM_CHK0/1[MAXLEN] bytes.

For tagged frames, MAXLEN increases by
four bytes for each VLAN found up to a
maximum of two VLANs, or MAX + 8 bytes.

PIP_PRT_CFGn[MAXERR_EN] enables the check for port n.
If enabled, PIP_INT_REG[MAXERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0x3 (if packet has bad FCS) or
0x4 (if packet has good FCS).

MINERR A packet was received with
length < PIP_FRM_CHK0/1[MINLEN]
bytes.

PIP_PRT_CFGn[MINERR_EN] enables the check for port n.
If enabled, PIP_INT_REG[MINERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0x6 (if packet has bad FCS) or
0x8 (if packet has good FCS).

LENERR A packet’s received length does not match
the length field extracted from the L2
header within the packet. The check is only
valid for packets PARSE_MODE = skip-to-
L2 with a valid length field (64–1500
bytes).
Refer to Figure 7–5 for the length-check
algorithm.

PIP_PRT_CFGn[LENERR_EN] enables the check for port n.
When PIP_PRT_CFGn[VLAN_LEN] = 1, the check is
surpressed for VLAN packets. When
PIP_PRT_CFGn[PAD_LEN] = 1, the check is disabled for
packets with padding in the data.
If enabled, PIP_INT_REG[LENERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0xA.
274 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
Figure 7–5 Length-Check Algorithm

#define DMAC 6
#define SMAC 6
#define LENGTH 2
#define FCS 4
#define ETHERNET_HEADER_SIZE (DMAC+SMAC+LENGTH+FCS)
// parameters
// l2_length 16 bit field as extracted from the ethernet packet
// pkt_size total size for the received packet including any FCS bytes
// SKIP from Pre-IP Parsing (the sim of Skip I + PKT_INST_HDR + Skip II)
// vv VLAN Valid
// vs VLAN Stack
// return value
// true L2 Length field is ok and HW will not compute a LENERR
// false HW will compuete a LENERR
// notes
// algorithm assumes that FCS is in the packet. if this is not the case,
// the check should be disabled in PIP_PRT_CFG[LENERR_EN].
bool l2_length_ok(uint16 l2_length, uint16 pkt_size, uint16 SKIP, bool vv, bool vs) {
if (PKT_PARSE_MODE != skip-to-L2)

return true;
if (l2_length > PIP_GBL_CFG[MAX_L2] ? 1535 : 1500;

return true;
uint16 apply_pad_then_vlan;
{

apply_pad_then_vlan = (l2_length < 46) ? 46 : l2_length;
apply_pad_then_vlan += 4*vv + 4*vs;
apply_pad_then_vlan += ETHERNET_HEADER_SIZE;
apply_pad_then_vlan += SKIP;

}
uint16 apply_vlan_then_pad;
{

apply_vlan_then_pad = l2_length + 4*vv + 4*vs;
apply_vlan_then_pad = (apply_vlan_then_pad < 46) ? 46 : apply_vlan_then_pad;
apply_vlan_then_pad += ETHERNET_HEADER_SIZE;
apply_vlan_then_pad += SKIP;

}
bool result = false;
if ((pkt_size == apply_pad_then_vlan) || (pkt_size == apply_vlan_then_pad))

result = true;
if (VLAN_LEN && vv)

result = true;
if (PAD_LEN && ((l2_length+ETHERNET_HEADER_SIZE+SKIP < pkt_size) || (l2_length < 46 && SKIP != 0))

result = true;
return (result);

}

CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 275

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Formats and Pre-IP Parsing
7.2.8 Legal SKIP Values

The total SKIP (total number of bytes in the Skip I, PKT_INST_HDR, and Skip II
fields shown in Figure 7–1) must not be too large.

SKIP should always be less than the number of bytes in the packet. Otherwise
WORD2[RE] will be set in the work-queue entry and PIP_INT_REG[SKPRUNT] will
be set. WORD2[Opcode] will also be 12 or 17 if the packet was not already tagged
with a receive error that has a smaller WORD2[Opcode] code. (The packet may
commonly already be tagged with a WORD2[Opcode] = 6 or 8 (i.e. MINERR) receive
error, so WORD2[Opcode] = 12 or 17 may not be often seen.) The number of bytes in
the packet is before the optional CRC strip.

When the maximums specified in Table 7–2 are adhered to, PIP/IPD hardware is
fully functional, with no caveats.

PIP/IPD hardware can also function with some caveats at larger SKIP values.

● For example, PIP/IPD hardware supports packets and SKIP values in the ranges
specified in Table 7–3 with modest caveats.

CN50XX is fully functional for these IPv4/IPV6 packets in these SKIP ranges
when L4 QOS watchers are not enabled.

When L4 QOS watchers are enabled for these packets with a SKIP in this range,
the hardware may disable the L4 watchers when it generates the QOS value used
for admission control. This means that the QOS that the hardware uses for
admission control may differ from the QOS used for the work-queue entry.
(Sections 7.4.2 and 7.5 define the QOS value used for the work-queue entry, and
Section 7.7 defines the QOS generated for admission control.)

L4 QOS watchers are enabled for a packet when there exists an i such that
PIP_PRT_CFGn[QOS_WAT<i>] (for the port the packet arrives on) is set, while
PIP_QOS_WATCH[i][TYPE] is also TCP or UDP.

Table 7–2 SKIP Maximum Values (No Caveats Needed)

Packet Type Maximum SKIP (No Caveats Needed)

Uninterpreted, RAWFULL, or RAWSCH 127

Skip-to-L2, Is_IP=0 130 − L2_Size

Skip-to-L2, Is_IP=1, IPv4 104 − L2_Size

Skip-to-L2, Is_IP=1, IPv6 84 − L2_Size

Skip-to-IP, IPv4 104

Skip-to-IP, IPv6 84

Table 7–3 SKIP Value Ranges (QOS L4 Watcher Caveat)

Packet Type SKIP Range (QOS L4 Watcher Caveat)

Skip-to-L2, Is_IP=1, IPv4 (105 − L2_Size) to (116 − L2_Size)

Skip-to-L2, Is_IP=1, IPv6 (85 − L2_Size) to (98 − L2_Size)

Skip-to-IP, IPv4 105 to 116

Skip-to-IP, IPv6 85 to 98
276 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Buffering
● For example, PIP/IPD hardware supports packets and SKIP values in the ranges
shown in Table 7–4 with larger, but still modest caveats.

CN50XX is fully functional for these IPv6 packets in these SKIP ranges when
neither QOS watchers nor QOS DiffServ are enabled.

When either is enabled for these IPv6 packets in these SKIP ranges, the
hardware may disable QOS watchers and/or DiffServ when it generates the QOS
value used for admission control, so the QOS used for admission control may
differ from the QOS used for the work-queue entry.

QOS watchers are enabled for a packet when PIP_PRT_CFGn[QOS_WAT] (for
the port the packet arrives on) is not 0, and QOS DiffServ is enabled for a packet
when PIP_PRT_CFGn[QOS_DIFF] (for the port the packet arrives on) is set.

● Generally speaking, the PIP/IPD hardware does not support SKIP values larger
than the values specified in Table 7–5.

7.3 Packet Buffering

PIP/IPD normally writes a copy of the entire packet into L2/DRAM buffers, as well as
a portion or all the packet (depending on the packet size and configuration) into
WORD4–WORD15 of the work-queue entry.

There are several reasons why a packet may not be buffered in ordinary L2/DRAM
buffers in CN50XX:

● All bytes of some short packets can completely fit in WORD4–WORD15 of the
work-queue entry for some configurations, so the ordinary L2/DRAM packet
buffering is redundant and avoided. Refer to Section 7.5 for more details on this
dynamic short case and WORD4–WORD15 the work-queue entry.

● Packets may selectively be dropped by PIP/IPD. Refer to Section 7.7. In this case,
the packet is buffered neither in L2/DRAM, nor in the work-queue entry.

● Packets may be dropped due to buffer overflow outside of PIP/IPD. In this case
also, the packet is buffered neither in L2/DRAM nor in the work-queue entry.
Note that these external-buffer overflows can also result in partial packets (i.e.
WORD2[RE] is set and WORD2[OPCODE] is set to 1 (partial error) in this case.
See Section 7.5.), which are buffered in L2/DRAM.

The remainder of this section assumes that the packet is buffered in L2/DRAM.

Table 7–4 SKIP Value Ranges (QOS DiffServ/Watcher Caveat)

Packet Type SKIP Range (QOS DiffServ/Watcher Caveat)

Skip-to-L2, Is_IP=1, IPv6 (99 − L2_Size) to (112 − L2_Size)

Skip-to-IP, IPv6 99 to 112

Table 7–5 SKIP Maximum Values (All Caveats)

Packet Type Maximum SKIP (All Caveats)

Uninterpreted, RAWFULL, or RAWSCH 127

Skip-to-L2, Is_IP=0 130 − L2_Size

Skip-to-L2, Is_IP=1, IPv4 116 − L2_Size

Skip-to-L2, Is_IP=1, IPv6 112 − L2_Size

Skip-to-IP, IPv4 116

Skip-to-IP, IPv6 112
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 277

Owner
下划线

Owner
下划线

Owner
下划线

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Buffering
The PIP/IPD hardware both allocates buffers for a packet and writes packet data into
the buffers allocated for a packet. PIP/IPD gets the packet buffers it needs from free
pool 0, which is a hardware free pool managed by the FPA hardware unit (see
Chapter 6.) PIP/IPD prequeues a number of pointers to packet buffers that it receives
from FPA. The number of packet-buffer pointers currently held by IPD is

IPD_PTR_COUNT[PKT_PCNT] + IPD_PTR_COUNT[PFIF_CNT] +
IPD_PTR_COUNT[PKTV_CNT] + IPD_PRC_PORT_PTR_FIFO_CTL[MAX_PKT]

IPD holds no pointers if it has not yet been enabled.

Figure 7–6 depicts the way that the PIP/IPD hardware writes a large packet into L2/
DRAM. This example is a case where the packet is too large to fit in a single buffer
(in fact, it is too large to fit into three buffers), so the PIP/IPD hardware must
allocate multiple buffers, write the packet data into them, and link them together
with pointers. Ultimately, the PIP/IPD hardware places a pointer to the first buffer
holding the packet data in the work-queue entry that it creates to signal the arrival
of a packet. This work-queue entry also indicates the number of buffers that were
used (WORD2[Bufs]) and the total packet length in bytes (Len). Refer to Section 7.5
for more description of the work-queue entry and WORD2.

The PIP/IPD stores packets into buffers contiguously, but leaves space at the top and
bottom of a buffer if desired. Software can configure the number of 64-bit words at
the from the front of a buffer that are guaranteed not to contain packet data. There
are two configuration values for this reserved distance at the top of a buffer:
● one for the first buffer (IPD_1ST_MBUFF_SKIP[SKIP_SZ]) used by the packet.

● the other for all subsequent buffers (IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ])
used by the packet.

These reserved field sizes can be as small as zero and as large as 32 64-bit words.
Software can also configure the buffer size
(IPD_PACKET_MBUFF_SIZE[MB_SIZE]), again in 64-bit words, defined as the
distance from the start of the buffer to the first word that the PIP/IPD hardware
cannot write. IPD_PACKET_MBUFF_SIZE[MB_SIZE] must always be at least 18
64-bit words larger than IPD_1ST_MBUFF_SKIP[SKIP_SZ], and at least 16 64-bit
words larger than IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ]. Provided there is
enough packet data, the PIP/IPD hardware always fills the buffer with the maximum

Figure 7–6 PIP/IPD Hardware Allocating Multiple Buffers

Alignment
Pad Unpredictable

Bytes

Next Buf Ptr

Packet
Data

Unpredictable Bytes

Unpredictable Bytes

Next Buf Ptr

More
Packet
Data

Unpredictable Bytes

Unpredictable Bytes

Next Buf Ptr

More
Packet
Data

Unpredictable Bytes

Work-Queue Entry
WORD3
Buf Ptr

IP
D

_P
AC

KE
T_

M
BU

FF
_S

IZ
E

[M
B_

SI
ZE

]

IP
D

_P
AC

KE
T_

M
BU

FF
_S

IZ
E

[M
B_

SI
ZE

]

IPD_1ST_MBUFF_SKIP[SKIP_SZ]
(Reserved)

IP
D

_P
AC

K
E

T_
M

BU
FF

_S
IZ

E[
M

B
_S

IZ
E

]

IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ]
(Reserved)

. . .

64 bits

64 bits 64 bits
278 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Buffering
amount of packet data allowed by these configuration values (and the alignment pad
in the case of the first buffer). The bytes in the buffer that do not contain packet data
are unpredictable.

The PIP/IPD always writes packet data in complete (128 byte) cache blocks, including
when it writes the first and last data. This means that if a buffer ends within the
same cache block as the last buffer write allowed by
IPD_PACKET_MBUFF_SIZE[MB_SIZE], but not at the end of a cache block, the
memory immediately following the end of the buffer will be corrupted.

PIP/IPD has several modes to write packet data to L2/DRAM, selected by
IPD_CTL_STATUS[OPC_MODE]:

● Write all packet data into the L2 cache.

● Write all packet data, but don’t allocate space for it in the L2 cache.

● Write the first cache block of packet data into the L2 cache, and write any
remaining packet data without allocating space for it in the L2 cache.

● Write the first two cache blocks of packet data into the L2 cache.

● Write any remaining packet data without allocating space for it in the L2 cache.

The PIP/IPD hardware links the packet segments in Figure 7–6 together with buffer
pointers. It writes the first buffer pointer in the work-queue entry created for the
packet, and writes all subsequent buffer pointers exactly eight bytes before the first
byte of packet data. Figure 7–7 shows the format of each 64-bit buffer pointer. Note
that the buffer pointer field in the last buffer contains unpredictable data that should
never be used by core software. All other buffer pointers are valid ones. The PIP/IPD
hardware allocates space in every buffer for a buffer pointer prior to the packet data
in the buffer, though the buffer pointer field in the last buffer is invalid.

The Addr field in a valid-buffer pointer is always the physical L2/DRAM address of
the first byte of packet data in the buffer. The Addr field in the buffer pointer in the
work-queue entry may not be aligned on a 64-bit boundary, exactly like the start of
the packet data in the first buffer, but the buffer pointers in all subsequent buffers
are naturally aligned on a 64-bit boundary.

Except for the last valid-buffer pointer, the Size field in Figure 7–7 contains exactly
the number of bytes of packet data held in the buffer. The Size field in the last valid-
buffer pointer indicates the distance from Addr to the end of the buffer, just like the
Size field in all other valid-buffer pointers. However, the Size field in the last valid-
buffer pointer is larger than the number of bytes of packet data in the last buffer
unless the packet ends exactly on the buffer boundary. When there is only one buffer,
the last valid-buffer pointer is the one in the work-queue entry. Otherwise, the last
valid-buffer pointer is the one in the second-to-last buffer.

Figure 7–7 Format Of 64-bit Buffer Pointer

63 6259 5856 55 40 390

I
0

Back
Pool
000

Size Addr

Addr Byte address of start-of-packet in the buffer.

Size Size of the buffer in bytes.

Pool Always 0.

Back Distance from Addr to beginning of buffer (loaded from the configuration register).

I Always 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 279

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Buffering
CN38XX/CN36XX pass-2 versions have an erratum in which the Size field is too
large by 8. The current CN50XX version is compatible with this specification (in
which the Size field is correct) only when IPD_CTL_STATUS[LEN_M8] = 1. When
IPD_CTL_STATUS[LEN_M8] = 0 (default value), the Size field is too large by 8, as it
is in pass-2 CN38XX/CN36XX parts.

The value in the Back field in Figure 7–7 can indicate the distance from Addr to the
beginning of the buffer (in cache blocks). PIP/IPD hardware creates it from one of two
configuration variables:

IPD_1st_NEXT_PTR_BACK[BACK]
IPD_2nd_NEXT_PTR_BACK[BACK]):

one value for the first buffer pointer (i.e. the buffer pointer in the work-queue entry),
and another for all other buffer pointers (i.e. the buffer pointers in the buffers).
Software can precalculate these Back field values to match the reserved field sizes in
the two cases. Sections 8.4, 8.7, 9.5.2, and 9.5.6 describe usages of the Back field,
which generally specifies the number of 128-byte cache blocks.

The alignment-pad field in the first buffer in Figure 7–6 can be between 0 and 7
bytes. It places the packet data at a convenient alignment for core software
processing. For example, Figure 7–8 shows the alignment for IPv4 and IPv6 packets.
(The PIP hardware aligns a packet that it considers to be IP, but that has neither 4
nor 6 in the IP version field, as if it were an IPv4 packet.) In the non-IP cases,
configuration variables (PIP_GBL_CFG[NIP_SHF] and PIP_GBL_CFG[RAW_SHF])
select the alignment pad value.

Figure 7–8 Packet Alignment for IPv4 and IPv6 Packets

Ver Class Flow Len NHdr HOP

IP Src Addr

IP Dest Addr

IPv6 Alignment

64 bits

Ver HL TOS Length

ID Flow Offset TTL Prot Chksum

IP Src Addr IP Dest Addr

IPv4 Alignment

64 bits
280 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Buffering
The following pseudo code describes the number of alignment pad bytes added by the
PIP/IPD hardware:

 if (packet had an L1/L2 receive error) {
 // WORD2[RE] is set in this case
 if (pkt_len <= 128)
 alignment pad = PIP_GBL_CFG[NIP_SHF];
 else
 alignment pad = unpredictable; // but in the range 0..7
 }
 else if (ISRAWFULL)
 alignment pad = PIP_GBL_CFG[RAW_SHF];
 else if (Is_IP) {
 // WORD2[NI] is clear in this case
 if (IP.ver == 6)
 // WORD2[V6] is set
 alignment pad = (8 - (SKIP + L2_size)) & 0x7;
 else
 // WORD2[V6] is clear
 alignment pad = (4 - (SKIP + L2_size)) & 0x7;
 }
 else
 // WORD2<9> is set in this case
 alignment pad = PIP_GBL_CFG[NIP_SHF];

This code uses the following definitions from the pseudo-code in Section 7.2.5:

● L2_size is the number of L2 HDR bytes. L2_size is zero when in skip-to-IP mode.
Figure 7–6 shows the L2_size values for the skip-to-L2 mode

● SKIP is the total number of bytes in any Skip I, PKT_INST_HDR, and Skip II
fields, if present.

● Is_IP is set for an IP packet.

● ISRAWFULL is set for a RAWFULL packet.

Note that PIP_GBL_CFG[NIP_SHF] and PIP_GBL_CFG[RAW_SHF] are
common for all packets from all input ports.

Figures 7–6 and 7–8 depict the packet-data format when PIP/IPD is in big-endian
mode. The unit is in big-endian mode for the packet data in the buffers when
IPD_CTL_STATUS[PKT_LEND] is clear. In big-endian mode, the unit places
sequential packet bytes from most-significant to least-significant within a 64-bit
word in an L2/DRAM buffer, and stores the next buf pointers in big-endian format.

When IPD_CTL_STATUS[PKT_LEND] is set, the unit is in little-endian mode, and it
instead places sequential packet bytes from least significant to most significant
within a 64-bit word in an L2/DRAM buffer, and stores the next pointers in little-
endian format. Note that the number of alignment-pad bytes is identical in both big
and little endian modes, but the most-significant bytes are the pad bytes in big-
endian mode, while the least-significant bytes are the pad bytes in little-endian
mode. Note also that IPD_CTL_STATUS[PKT_LEND] does not affect the format of
the packet data in the work-queue entry.

Note that PIP/IPD can support a maximum of 255 buffers for a packet and a
maximum packet size of 65535 bytes.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 281

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Scheduling
7.4 Packet Scheduling

Unless it drops an inbound packet, PIP/IPD creates a work-queue entry for each
packet (refer to Sections 7.6 and 7.7 for PIP/IPD drop conditions). The work-queue
entry contains the following fields that are important for packet scheduling:

● QOS: Selects one of the POW input queues (one of eight).

● Grp: Selects the group attached to the work (one of sixteen).

● TT: Tag type: NULL, ORDERED, or ATOMIC.

● Tag: 32-bit tag value.

The remainder of this section qualitatively describes how these fields are generated
by PIP/IPD. Section 7.5 describes the fields in more detail. Refer to Chapter 5 for
more information on work-queue entries and how these fields affect work scheduling.

7.4.1 RAWFULL and RAWSCHED Packets

For RAWFULL and RAWSCHED packets, the QOS, Grp, TT and Tag generated by
PIP/IPD are directly specified in fields in the packet instruction header:
PKT_INST_HDR[QOS,GRP,TT,TAG].

7.4.2 QOS

The QOS value can be calculated by PIP/IPD in a variety of ways for non-RAWFULL
and non-RAWSCHED packets:

● The default QOS value for a packet may be used. This default value can be
configured separately for each input port.

● The VLAN priority field can override the default QOS when VLAN is present.
This can be enabled on a per-port basis, and there is an eight-entry table to
convert the three-bit VLAN priority field into a QOS value. VLAN stacking is
supported, and either VLAN priority field may be used when VLAN stacking is
used.

● The IP DiffServ field can override the QOS value for IP packets. This can be
enabled on a per-port basis, and there is a 64-entry table to convert the DiffServ
field (i.e. IP.TOS/CLASS<7:2>) into a QOS value.

● One of the four “QOS/Grp Watchers” can override the QOS value for IP packets
that match a protocol/next_header value or TCP/UDP port. Each QOS watcher is
individually enabled on a per-port basis.

7.4.3 Grp

The Grp value can be calculated by PIP/IPD in a number of ways for non-RAWFULL
and non-RAWSCHED packets:

● The default Grp for the packet may be used. This default value can be configured
separately for each port.

● For IP packets, low-order tag bits can override the Grp value. This can be enabled
on the per-port basis, and the tag width and base Grp value are also
programmable on a per-port basis.

● One of four “Qos/Grp Watchers” can override the Grp value for IP packets that
match a protocol/next_header value or TCP/UDP port. Each Grp watcher is
individually enabled on a per-port basis.
282 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Packet Scheduling
7.4.4 TT

For IP packets that are neither RAWFULL nor RAWSCHED, there are four per-port
configured TT values used by PIP/IPD:

● An IPv4 TCP TT value

● An IPv4 non-TCP value

● An IPv6 TCP TT value

● An IPv6 non-TCP value

For non-IP packets that are neither RAWFULL nor RAWSCHED, there is a per-port
configured TT value used by PIP/IPD.

7.4.5 Tag

There are two major tag-generation algorithms that are used for packets that are
neither RAWFULL nor RAWSCHED: tuple and mask.

In many cases, the goal of the PIP/IPD tag-generation algorithms is to generate
different tags for different flows, so CN50XX can schedule packets for different flows
freely to different cores. Tuple-tag generation can create a hash of up to a 7-tuple.
Tuple-tag generation is well-suited to IP TCP 5-tuple hash generation, for example.
The mask tag is useful for non-IP fixed headers, and also for including additional
information from user-defined headers.

The tuple and hash algorithms can be combined in the following ways based on a per-
port configured tag mode:

● Always use the tuple tag.

● Always use the mask tag.

● Use the tuple tag for IP packets, and the mask tag for non-IP packets.

● Exclusive-OR (XOR) the tuple and the mask tags.

For an IP packet, the tuple tag is an XOR of a source and destination hash value.
This XOR can give the same result for both directions of a TCP flow, for example. The
tuple-tag generation scheme also includes a secret configured value that makes it
difficult or impossible for potential denial-of-service attackers to predict tag/flow
collisions.

The PIP/IPD source tuple-hash value is a CRC of any combination of these two fields,
each selected by per-port configuration:

● IP source address

● IP TCP/UDP source port

PIP/IPD zeroes the source tuple-hash value for an initiating TCP SYN packet if
selected on a per-port basis.

The PIP/IPD destination tuple-hash value is a CRC of any combination of these
fields, each selected by per-port configuration:

● VLAN ID

Either or both in the stacked VLAN case

● IP Destination Address

● IP Protocol/next header value

● IP TCP/UDP destination port
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 283

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
The mask tag is a CRC of selected bytes from the first 128 bytes in the packet. The
bytes are selected by four 128-bit masks. Each bit in each mask represents one of the
first 128-bytes in the packet. (Note specifically that mask-tag generation is not
affected by any SKIP value.) Each port can be configured to use any one of the four
128-bit masks.

The resultant tuple/mask tag is up to 16 bits. If desired, fewer bits can be used,
generating fewer unique tag values. If desired, the port number can be included in
the tag generated by PIP/IPD.

7.5 Work-Queue Entry

The PIP/IPD hardware allocates and creates a work-queue entry for each packet that
arrives and that it does not decide to drop. (Sections 7.6 and 7.7 cover the PIP/IPD
drop conditions.) The hardware allocates the work-queue entry from a configured
hardware free pool (IPD_WQE_FPA_QUEUE[WQE_QUE]). PIP/IPD prequeues a
number of pointers to work-queue entries that it receives from FPA. The number of
work-queue-entry buffer pointers currently held by IPD is:

IPD_PTR_COUNT[WQE_PCNT] + IPD_PTR_COUNT[WQEV_CNT].

IPD holds no pointers if it has not yet been enabled.

Figure 7–9 depicts the work-queue entry created by the PIP/IPD hardware for input
packets. The work-queue entry is 128 bytes, or 16 64-bit words. WORD0 and WORD1
contain scheduling information and match the format in Figure 5–6, with some
additional information added into fields that are not used by the POW unit
hardware. WORD2 contains decode information that is described in Figure 7–10.
WORD3 contains a pointer to the packet data in the first buffer.

Words 4–15 contain packet data, in different formats as defined in Figure 7–11.
When the unit considers the packet to be an IP packet, it places the IP at an offset
defined by PIP_IP_OFFSET[OFFSET]. With this flexibility, the particular
configuration defines the position of the IP packet in the work-queue entry, and the
amount of (pre-IP) packet header data in the work-queue entry.

Note that Figures 7–9, 7–10, and 7–11 contain a simple description of the fields in
the figure. More-detailed descriptions of the fields are provided in the text following
the figures.
284 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
下划线

Owner
高亮

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
Figure 7–9 PIP/IPD Hardware Work-Queue Entry

63 48 4740 39 0

HW_Chksum 0000 0000 POW_Next_Ptr

63 48 47 42 41 39 38 35 34 32 31 0

Len iprt QOS Grp TT Tag

63 0

Packet Decode Information – See Figure 7–10

63 62 59 58 56 55 40 39 0

0 Back 000 Size Addr

63 0

Packet Data, see Figure 7–11

POW_Next_Ptr Reserved for POW hardware.

HW_Chksum Hardware-calculated checksum of packet bytes.

Len Total packet length in bytes.

iprt Input port number.

QOS POW input queue used for the work.

Grp Core group number used for the work.

TT Tag type used for the work (Atomic, Ordered, or Null)

Tag Tag used for the work.

Addr Byte address of start-of-packet in the first buffer.

Size Size of the first buffer in bytes.

Back Distance from Addr to beginning of the first buffer (loaded from the configuration
register).

WORD0

WORD1

WORD2

WORD3

WORD 4

WORD15
...
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 285

Owner
下划线

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
Figure 7–10 Work-Queue Entry Format; Word 2 Cases

WORD2 (RAWFULL and (No L2/L1 Error))

WORD2 (Is_IP and (No L2/L1 Error))

WORD2 (All Other Cases)

63 56 55 0

Bufs PIP_RAW_WORD[WORD]

63 56 55 48 47 46 45 44 43 32 31 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

Bufs IP_offset VV VS 0 VC VLAN_id 0 CO TU SE V6 0 LE FR IE B M NI
0

RE
0 Opcode

63 56 55 48 47 46 45 44 43 32 31 14 13 12 11 10 9 8 7 0

Bufs 0 VV VS 0 VC VLAN_id 0 IR IA B M NI
1 RE Opcode

Bufs Number of buffers used to store the packet.

IP_Offset Number of bytes from start-of-packet to the start of IP.

VV Set to 1 when VLAN is found in L2 HDR.

VS Set to 1 when stacked VLAN is present.

VC When VV = 1, the VLAN CFI bit; otherwise 0.

VLAN_id When VV = 1, the VLAN ID field; otherwise 0.

CO Set to 1 when IP packet is IPCOMP.

TU Set to 1 when IP packet is TCP or UDP.

SE Set to 1 when IP may packet require IPSEC decryption.

V6 IP version 6.

LE IP packet has TCP/UDP error.

FR IP packet is a fragment.

IE IP packet error.

B Packet’s DMAC is broadcast.

M Packet’s DMAC is multicast.

NI Not an IP packet.

RE Packet has L2/L1 error.

IR Packet’s Type indicates RARP.

IA Packet’s Type indicates ARP.
286 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
Figure 7–11 Work-Queue Entry Format; Word 4-15 Cases

IP Version Field = 6

0s if hdr short
Packet Header

Ver Class Flow Len NHdr HOP

IP Src Addr

IP Dest Addr

Remainder of Packet

0s if packet ends

IP Version Field ≠ 6

0s 0s if hdr short

Packet Header

Ver HL TOS Length

ID FL Offset TTL Prot Chksum

IP Src Addr IP Dest Addr

Remainder of Packet

0s if packet ends

64 bits64 bits

Is_IP

96
 b

yt
esPI

P
_I

P_
O

FF
S

E
T[

O
FF

S
ET

]

96
 b

yt
es P

IP
_I

P_
O

FF
S

E
T[

O
FF

S
E

T]

Other Cases

0s

Packet Data
(From First Byte)

0s if packet ends

64 bits

96
 b

yt
es

PIP_GBL_CFG[NIP_SHF or RAW_SHF]

Words 4–15 are unpredictable when WORD2[RE] = 1 and the packet is not RAWFULL.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 287

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
Figure 7–11 shows the packet data format in Words 4–15 when the PIP/IPD places
the packet data into the work-queue entry in big-endian format, as is the case when
IPD_CTL_STATUS[WQE_LEND] is clear. When IPD_CTL_STATUS[WQE_LEND] is
set, the unit instead inserts the packet data bytes in Words 4–15 of the work-queue
entry in little-endian format, from least-significant to most-significant within each
word rather than most-significant to least-significant. In other words, the unit byte-
swaps Words 4–15 when IPD_CTL_STATUS[WQE_LEND] is set.

PIP/IPD analyzes the packet length, work-queue-entry alignment configuration, and
dynamic alignment to determine if the packet will fit into Words 4–15 of the work-
queue-entry or if it requires buffering in L2/DRAM. A packet that meets such criteria
is said to be “dynamic short”. Basically, dynamic short means that all packet bytes
reside in Words 4–12 of the work-queue entry, so the ordinary L2/DRAM copy of the
packet might be considered redundant. In order for a packet to be dynamic short in
the IP case, all of the header prior to the IP packet must fit into
PIP_IP_OFFSET[OFFSET] words, and all of the IP packet and pad must fit into the
remaining Words 4–15 of the work-queue entry. Refer to Figure 7–1 for the definition
of pad.

Note that any packet that has an L2/L1 receive error is never dynamic short. Note
also that the packet includes any inbound CRC bytes that are not stripped (see
Section 7.2.6). Note specifically that for an IPv4 packet, the first four bytes in Word 4
of the work-queue entry can never buffer packet data, so the effective work-queue
buffer size is 92 bytes rather than the possible 96 bytes for IPv4, as Figure 7–11
shows.

When PIP/IPD classifies a packet as dynamic short, it will only (redundantly) buffer
the packet in the L2/DRAM buffer if it is not enabled to avoid the ordinary L2/DRAM
copy. When PIP/IPD does not write the ordinary copy, WORD2[Bufs] is set to 0 to
indicate that no buffers have been allocated for the packet (outside the work-queue
entry, that is).

PIP/IPD is enabled to avoid the ordinary L2/DRAM copy of dynamic short packets
whenever one of the following occurs:

● PIP_PRT_CFGn[DYN_RS] = 1, or

● the packet has a PKT_INST_HDR and both of the following are true:

PKT_INST_HDR[RS] =1, and

either PIP_GBL_CFG[IGNRS] = 0, or the port is a PCI port.

Note that the PIP/IPD hardware ignores both PIP_PRT_CFGn[DYN_RS] and
PKT_INST_HDR[RS] for packets that the hardware does not classify dynamic short,
and always creates ordinary L2/DRAM copies of these packets. Thus, it is legal for
PKT_INST_HDR[RS] to be set for large packets. For example, it can be set for all
packets, and PIP/IPD will buffer minimally.

The remainder of this section is a description of each field in WORD0 – WORD3 of
the work-queue entry. Section 7.2.5 describes the Pre-IP parsing that occurs prior to
the pseudo-code fragments included below, and defines Is_IP, ISRAWFULL, and
ISRAWSCH.
288 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
WORD0[HW_Chksum] Refer to Figure 7–9. A hardware-generated 16-bit one’s complement sum of the
packet data.

WORD0[HW_Chksum] is the 1’s complement sum calculated over the packet from
[SKIP + 20B] until the end of packet (including any optional CRC bytes). The packet
is padded with a zero octet at the end (if necessary) to make it a multiple of two
octets.

Software should not strip the FCS (i.e. IPD_SUB_PORT_FCS[PORT_BIT<n>] should
be clear, refer to Section 7.2.6) from ports for which WORD0[HW_Chksum] may be
used. This is because the CRC bytes are included in the WORD0[HW_Chksum]
value, and software will likely need to reference the calculated CRC value to
effectively use the WORD0[HW_Chksum] value.

The starting checksum value is 0. If the packet is less than the start of the checksum,
then the checksum will simply be 0.

WORD0[POW_Next_Ptr] Refer to Figure 7–9. Reserved for POW Unit. See Chapter 5.

WORD1[Len] Refer to Figure 7–9. The total number of bytes of packet data, from 1 to 65535. The
total packet length includes all the packet bytes shown in the formats in Figure 7–1,
except that the CRC field is discarded when IPD_SUB_PORT_FCS[PORT_BIT<n>] =
1. (If IPD_SUB_PORT_FCS[PORT_BIT<n>] = 0, both the Len value and the stored
packet (both the work-queue-entry copy and the ordinary copy) include the CRC
bytes. See Section 7.2.6 for more details on CRC processing.)

WORD1[Len] exactly matches the number of packet bytes written to the ordinary L2/
DRAM copy of the packet, except for dynamic short packets when PIP/IPD avoids the
ordinary L2/DRAM copy.

WORD1[iprt] Refer to Figure 7–9. The input port that the packet arrived on, as described in 7.1 on
page 266.

WORD1[QOS] Refer to Figure 7–9. The POW unit input queue used for the work. For RAWFULL
and RAWSCH packets, the group is PKT_INST_HDR[QOS]. Otherwise, PIP/IPD
selects this (differently for each port) based on a number of parameters, including:

● a default QOS value for each port (PIP_PRT_CFGn[QOS]).

● an eight-entry table (PIP_QOS_VLANn[VLAN.priority][QOS]) to convert a
VLAN priority (from the most-significant three bits of the VLAN field in Figure
7–4) to a QOS value.

● a VLAN enable bit for each port (PIP_PRT_CFGn[QOS_VLAN]) that causes the
calculated VLAN QOS value to be used when the packet has a VLAN field (as
shown in Figure 7–4) in the L2 HDR.

● a VLAN selection bit, used for all ports, that selects which VLAN priority to use
when VLAN stacking is detected. (In the pseudo-code below, VLAN0.priority is
the first in network order, and VLAN1.priority is the second in network order.)

● a 64-entry table (PIP_QOS_DIFFn[IP.TOS/CLASS<7:2>][QOS]) to convert a
diffserv DSCP field (the most-significant six bits of IPv4 TOS / IPv6 CLASS) to a
QOS value.

● a diffserv-enable bit for each port (PIP_PRT_CFGn[QOS_DIFF]) that causes the
calculated diffserv QOS value to be used when the packet is IP.

● four QOS watchers (PIP_QOS_WATCHn[i]), including a QOS value, that can
match IP protocol/next_header values or TCP/UDP destination port numbers.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 289

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
● an enable bit for each watcher for each port (PIP_PRT_CFGn[QOS_WAT<i>])
that causes the QOS watcher QOS value to be used when the QOS watcher
matches for the packet.

The following pseudo code details the PIP/IPD work-queue QOS selection for a given
packet:

QOS = PIP_PRT_CFG[port][QOS];
if (there is an L1/L2 receive error) {
 // WORD2[RE] will be set in this case, as will WORD2[NI]
}
else if(ISRAWFULL || ISRAWSCH) {
QOS = PKT_INST_HDR[QOS];

}
else {
if(VV && PIP_PRT_CFG[port][QOS_VLAN]) {

VLAN = (VS && PIP_GBL_CFG[VS_QOS]) ? VLAN1 : VLAN0;
QOS = PIP_QOS_VLAN[VLAN<15:13>][QOS]; // VLAN<15:13> is priority

}
if(Is_IP && !WORD2[IE] && !WORD2[LE]) {

// WORD2[NI] is always clear in this case
if(PIP_PRT_CFG[port][QOS_DIFF] && !(VV && PIP_CRT_CFG[port][QOS_VLAN] &&
 PIP_CRT_CFG[port][QOS_VOD]))

QOS = PIP_QOS_DIFF[IP.TOS/CLASS<7:2>][QOS]; // the 6 msbs of TOS/CLASS
for (i=0; i<4; i++) {

if (PIP_PRT_CFG[port][QOS_WAT<i>] and PIP_QOS_WATCH[i][TYPE]!=0) {
mask16 = ~PIP_QOS_WATCH[i][MASK] & 0xffff;
mask8 = ~PIP_QOS_WATCH[i][MASK] & 0xff;
match16 = PIP_QOS_WATCH[i][MATCH] & mask16;
match8 = PIP_QOS_WATCH[i][MATCH] & mask8;
if(PIP_QOS_WATCH[i][TYPE] is protocol/next_header and
 match8 equals (IP protocol/next header field)&mask8) {

QOS = PIP_QOS_WATCH[i][WATCHER];
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is TCP and
 IP protocol/next header field is TCP and
 match16 equals (TCP destination port field)&mask16 and
 !WORD2[FR] and
 (WORD2[V6] || (ipv4.HL==5))) {

QOS = PIP_QOS_WATCH[i][WATCHER];
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is UDP and
 IP protocol/next header field is UDP and
 match16 equals (UDP destination port field)&mask16 and
 WORD2[FR] and
 (WORD2[V6] || (ipv4.HL==5))) {

QOS = PIP_QOS_WATCH[i][WATCHER];
break;

}
}

}
}

Note that the QOS watchers will resolve in watcher order if more than one watcher
matches the packet with different PIP_QOS_WATCHn[WATCHER] values. Note also
that for IPv6, the IP next-header field is the initial next-header field.

WORD1[Grp] Refer to Figure 7–9. The core group number used for the work. For RAWFULL and
RAWSCH packets, the group is PKT_INST_HDR[GRP], else this group value comes
from PIP_PRT_TAGn[GRP], a per-port configuration variable.

● There is a default GRP value for each port (PIP_PRT_TAG[port][Grp] below).
290 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
● For IP packets, there is an enable bit per port (PIP_PRT_TAG[port][GRPTAG])
that causes PIP/IPD to set WORD1[Grp] to the least-significant bits of
WORD1[Tag] (translated).

● There are four GRP watchers (PIP_QOS_WATCHn[i] below), including a GRP
value, that can match IP protocol/next_header values or TCP/UDP destination
port numbers.

● There are eight GRP watchers (PIP_QOS_WATCHn[i] below), including a GRP
value, that can match IP protocol/next_header values, TCP/UDP destination port
numbers, or ethertype.

● There is an enable bit for each watcher for each port
(PIP_PRT_CFGn[GRP_WAT<i>]) that causes the GRP watcher GRP value to be
used when the GRP watcher matches for the packet.

Grp = PIP_PRT_TAG[port][GRP];
if (there is an L1/L2 receive error) {
 // WORD2[RE] will be set in this case, as will WORD2[NI]
}
else if(ISRAWFULL || ISRAWSCH) {
Grp = PKT_INST_HDR[GRP];

}
else if(Is_IP) {
 // WORD2[NI] is always clear in this case
if(PIP_PRT_TAG[port][GRPTAG]) {

Grp = ((WORD1[Tag] & ~PIP_PRT_TAG[GRPTAGMASK])
 + PIP_PRT_TAG[GRPTAGBASE]) & 0xF;

}
if(!WORD2[IE] && !WORD2[LE]) {

for (i=0; i<4; i++) {
if (PIP_PRT_CFG[port][GRP_WAT<i>] and PIP_QOS_WATCH[i][TYPE]!=0) {

mask16 = ~PIP_QOS_WATCH[i][MASK] & 0xffff;
mask8 = ~PIP_QOS_WATCH[i][MASK] & 0xff;
match16 = PIP_QOS_WATCH[i][MATCH] & mask16;
match8 = PIP_QOS_WATCH[i][MATCH] & mask8;
if(PIP_QOS_WATCH[i][TYPE] is protocol/next_header and
 match8 equals (IP protocol/next header field)&mask8) {

Grp = PIP_QOS_WATCH[i][GRP];
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is TCP and
 IP protocol/next header field is TCP and
 match16 equals (TCP destination port field)&mask16 and
 !WORD2[FR] and
 (WORD2[V6] || (ipv4.HL==5))) {

Grp = PIP_QOS_WATCH[i][GRP];
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is UDP and
 IP protocol/next header field is UDP and
 match16 equals (UDP destination port field)&mask16 and
 !WORD2[FR] and
 (WORD2[V6] || (ipv4.HL==5))) {

Grp = PIP_QOS_WATCH[i][GRP];
break;

}
}

}
}

}

Note that the GRP watchers resolve in watcher order if more than one watcher
matches the packet with different PIP_QOS_WATCHn[GRP] values. Note also that
for IPv6, the IP next header field is the initial next header field.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 291

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
WORD1[TT] Refer to Figure 7–9. The initial tag type, (NULL, ORDERED, or ATOMIC), for the
work-queue entry.

For both RAWFULL and RAWSCH packets, TT is PKT_INST_HDR[TT].

For other packets, there are per-port configuration variables (PIP_PRT_TAGn below)
that control the tag type. The tag type can be:

● different for IP and non-IP packets

● different for IPv4 and IPv6 packets

● different for TCP and non-TCP packets

The following pseudo code details the hardware behavior:

// zero-extend the two-bit fields to make the three-bit TT field
TT = PIP_PRT_TAG[port][NON_TAG]
if(there is a L2/L1 receive error) {
 // WORD2[RE] will be set, as will WORD2[NI]
}
else if(ISRAWFULL || ISRAWSCH)
 TT = PKT_INST_HDR[TT]
else if(Is_IP) {
 if(WORD2[V6])
 proto_nh = IPv6.next_header; // the initial next header
 else
 proto_nh = IPv4.protocol;
 // WORD2[NI] will always be clear here
 if(!WORD2[IE] and (proto_nh==6)) {
 if(WORD2[V6])
 TT = PIP_PRT_TAG[port][TCP6_TAG]
 else
 TT = PIP_PRT_TAG[port][TCP4_TAG]
 }
 else {
 if(WORD2[V6])
 TT = PIP_PRT_TAG[port][IP6_TAG]
 else
 TT = PIP_PRT_TAG[port][IP4_TAG]
 }
}

WORD1[Tag] Refer to Figure 7–9. The initial tag for the work-queue entry.

For RAWFULL and RAWSCH packets, Tag is PKT_INST_HDR[TAG].

For other packets:

● Tag<31:24> is always 0x0.

● Tag<23:16> is either the port number that the packet arrived on or all 1s.

● Tag<15:0> is a hash of specific fields within the packet.

PIP_PRT_TAGn[TAG_MODE] picks from among various combinations of the two
different tag generation algorithms.

The first tag generation algorithm is the tuple hash. The tuple hash optionally
includes the IP source and destination addresses, the IP protocol/next_header value,
the TCP/UDP source and destination ports, and VLAN ID. There are per-port
configuration variables (PIP_PRT_TAG) that control these options. The IPv4 and
IPv6 configuration variables are separate. The tuple hash calculation also includes a
secret value. The tuple hash results and, most importantly, potential collisions
between different tuple hash results change with different secret values.
292 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
The second tag generation algorithm is the mask hash. The mask hash can optionally
include any user-defined range of bytes within the first 128B of a packet. This is
accomplished with four 128-bit masks (PIP_TAG_INC*). Each bit in each mask
represents one of the first 128 bytes in the packet. (Note specifically that the mask
hash is NOT affected by any SKIP values - each 128-bit mask refers strictly to the
first 128 bytes in the packet.) Each port can be configured to use any of the 4 masks
with PIP_PRT_CFGn[TAG_INC]. PIP_PRT_TAGn[TAG_MODE] picks the tuple
hash, the mask hash, or a combination of the two hashes.

The following C-like pseudo code details precisely how PIP/IPD creates the Tag field:
Tag = 0;
if(there is a L2/L1 receive error) {
 // WORD2[RE] will be set, as will WORD2[NI]
 inc_port = true;
}
else if(ISRAWFULL || ISRAWSCH) {
 inc_port = false;
 Tag = PKT_INST_HDR[TAG];
}
else {
 inc_port = true;
 if(PIP_PRT_TAG[port][TAG_MODE] == 0) // always tuple tag
 Tag<15:0> = hw_tuple_tag();
 else if(PIP_PRT_TAG[port][TAG_MODE] == 1) // always mask tag
 Tag<15:0> = hw_mask_tag();
 else if(PIP_PRT_TAG[port][TAG_MODE] == 2) { // Is_IP ? tuple tag : mask tag
 if(Is_IP) // i.e. is WORD2[9] clear
 Tag<15:0> = hw_tuple_tag();
 else
 Tag<15:0> = hw_mask_tag();
 }
 else // mask XOR tuple
 Tag<15:0> = hw_mask_tag() ^ hw_tuple_tag();
}
if(inc_port) {
 if(PIP_PRT_TAG[port][INC_PORT]) Tag<23:16> = port;
 else Tag<23:16> = 0xFF;
}

uint32 hw_tuple_tag() {
 Tag = 0;
 if(Is_IP) {
 // WORD2[NI] will always be clear here
 if(WORD2[V6])
 Tag = hw_ipv6_hash(port, WORD2, IP source address, IP destination address,
 initial IP next_header, tcp/udp source port, tcp/udp destination port,
 TCP_flag_SYN, TCP_flag_ACK, VLAN0, VLAN1);
 else
 Tag = hw_ipv4_hash(port, WORD2, IP source address, IP destination address,
 IP protocol, tcp/udp source port, tcp/udp destination port,
 TCP_flag_SYN, TCP_flag_ACK, VLAN0, VLAN1);
 }
 return(Tag);
}

uint16 crc16(uint16 iv, uint64 p) {
 int i;
 int j;
 uint b;
 uint16 poly = 0x1021;

 for (i=7; i>=0; i--) {
 b = (p >> (i*8)) & 0xff;
 for (j=7; j>=0; j--) {
 iv = ((iv << 1) ^ ((((iv >> 15)&1) ^ ((b >> j)&1)) ? poly : 0))
 & 0xffff;
 }
 }
 return iv;
}

CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 293

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
uint16 hw_ipv4_hash(uint8 port, uint64 WORD2, uint32 IPsrc, uint32 IPdest,
 uint8 protocol, uint16 tcp_udp_sprt, uint16 tcp_udp_dprt,
 bool TCP_flag_SYN, TCP_flag_ACK,
 uint16 VLAN0, uint16 VLAN1)
{
 uint16 src_crc = 0xffff;
 uint16 dst_crc = 0xffff;
 uint16 prot_crc = 0xffff;
 uint16 result = 0;

 uint16 src_secret16 = (PIP_TAG_SECRET[SRC]);
 uint32 src_secret32 = (((uint32)src_secret16) << 16) | src_secret16;

 uint16 dst_secret16 = (PIP_TAG_SECRET[DST]);
 uint32 dst_secret32 = (((uint32)dst_secret16) << 16) | dst_secret16;

 // WORD2[NI] will always be clear here
 if(!WORD2[IE]) {
 if(PIP_PRT_TAG[port][IP4_SRC])
 src_crc = crc16(src_crc, ((uint64)IPsrc+src_secret32)<<32);
 if(PIP_PRT_TAG[port][IP4_DST])
 dst_crc = crc16(dst_crc, ((uint64)IPdest+dst_secret32)<<32);
 if (PIP_PRT_TAG[port][IP4_PCTL]
 || (WORD2[VV] && !WORD2[VS] && PIP_PRT_TAG[port][INC_VLAN])
 || (WORD2[VS] && PIP_PRT_TAG[port][INC_VS])) {
 uint64 pctl_vlan_dat = 0;
 if(PIP_PRT_TAG[port][IP4_PCTL])
 pctl_vlan_dat |= (((uint64)protocol)<<56);
 if ((WORD2[VV] && !WORD2[VS] && PIP_PRT_TAG[port][INC_VLAN])
 || (WORD2[VS] && (PIP_PRT_TAG[port][INC_VS]&1))) {
 vlan0 = 0x8000 | VLAN0<11:0>;
 pctl_vlan_dat |= (((uint64)vlan0)<<32);
 }
 if (WORD2[VS] && (PIP_PRT_TAG[port][INC_VS]&2)) {
 vlan1 = 0x8000 | VLAN1<11:0>;
 pctl_vlan_dat |= (((uint64)vlan1)<<16);
 }
 prot_crc = crc16(prot_crc, pctl_vlan_dat);
 }
 if(WORD2[TU] && !WORD2[FR] && !WORD2[LE] && (IPv4.HL==5)) {
 if(PIP_PRT_TAG[port][IP4_SPRT])
 src_crc = crc16(src_crc, ((uint64)tcp_udp_sprt+src_secret16)<<48);
 if(PIP_PRT_TAG[port][IP4_DPRT])
 dst_crc = crc16(dst_crc, ((uint64)tcp_udp_dprt+dst_secret16)<<48);
 if(PIP_GBL_CFG[TAG_SYN] && protocol==TCP
 && TCP_flag_SYN && !TCP_flag_ACK)
 src_crc = 0;
 }
 result = (src_crc ^ dst_crc ^ prot_crc) & ~PIP_TAG_MASK[MASK];
 }
 return(result);
}

uint32 hw_ipv6_hash(uint8 port, uint64 WORD2, uint64 IPsrc[2], uint64 IPdest[2],
 uint8 next_header, uint16 tcp_udp_sprt, uint16 tcp_udp_dprt,
 bool TCP_flag_SYN, TCP_flag_ACK,
 uint16 VLAN0, uint16 VLAN1)
{
 uint16 src_crc = 0xffff;
 uint16 dst_crc = 0xffff;
 uint16 prot_crc = 0xffff;
 uint16 result = 0;

 uint16 src_secret16 = (PIP_TAG_SECRET[SRC]);
 uint32 src_secret32 = (((uint32)src_secret16) << 16) | src_secret16;

 uint16 dst_secret16 = (PIP_TAG_SECRET[DST]);
 uint32 dst_secret32 = ()(uint32)dst_secret16) << 16) | dst_secret16;

 // WORD2[NI] will always be clear here
 if(!WORD2[IE]) {
 if(PIP_PRT_TAG[port][IP6_SRC]) {
294 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
 src_crc = crc16(src_crc, ((IPsrc[0]+src_secret32)&0xffffffff)
 | (((IPsrc[0]>>32)+src_secret32)<<32));
 src_crc = crc16(src_crc, ((IPsrc[1]+src_secret32)&0xffffffff)
 | (((IPsrc[1]>>32)+src_secret32)<<32));
 }
 if(PIP_PRT_TAG[port][IP6_DST]) {
 dst_crc = crc16(dst_crc, ((IPdest[0]+dst_secret32)&0xffffffff)
 | (((IPdest[0]>>32)+dst_secret32)<<32));
 dst_crc = crc16(dst_crc, ((IPdest[1]+dst_secret32)&0xffffffff)
 | (((IPdest[1]>>32)+dst_secret32)<<32));
 }
 if (PIP_PRT_TAG[port][IP6_NXTH]
 || (WORD2[VV] && !WORD2[VS] && PIP_PRT_TAG[port][INC_VLAN])
 || (WORD2[VS] && PIP_PRT_TAG[port][INC_VS])) {
 uint64 nxth_vlan_dat = 0;
 if(PIP_PRT_TAG[port][IP6_NXTH])
 nxth_vlan_dat |= (((uint64)next_header)<<56);
 if ((WORD2[VV] && !WORD2[VS] && PIP_PRT_TAG[port][INC_VLAN])
 || (WORD2[VS] && (PIP_PRT_TAG[port][INC_VS]&1))) {
 vlan0 = 0x8000 | VLAN0<11:0>;
 nxth_vlan_dat |= (((uint64)vlan0)<<32);
 }
 if (WORD2[VS] && (PIP_PRT_TAG[port][INC_VS]&2)) {
 vlan1 = 0x8000 | VLAN1<11:0>;
 nxth_vlan_dat |= (((uint64)vlan1)<<16);
 }
 prot_crc = crc16(prot_crc, nxth_vlan_dat);
 }
 if(WORD2[TU] && !WORD2[FR] && !WORD2[LE]) {
 if(PIP_PRT_TAG[port][IP6_SPRT]) src_crc =
 crc16(src_crc, ((uint64)tcp_udp_sprt+src_secret16)<<48);
 if(PIP_PRT_TAG[port][IP6_DPRT]) dst_crc =
 crc16(dst_crc, ((uint64)tcp_udp_dprt+dst_secret16)<<48);
 if(PIP_GBL_CFG[TAG_SYN] && next_header==TCP
 && TCP_flags_SYN && !TCP_flags_ACK)
 crc_src = 0;
 }
 result = (src_crc ^ dst_crc ^ prot_crc) & ~PIP_TAG_MASK[MASK];
 }
 return(result);
}

// NOTE: pkt_dat is from the first byte - no SKIP is applied
uint16 hw_mask_tag(uint16 pkt_len, uint8* pkt_dat, uint8 port)
{
 uint16 crc = 0xffff;
 uint16 result = 0;
 int i;
 int j;
 uint16 pkt_cnt = 0;
 for (i=0; i<16; i++) {
 uint8 tag_inc = PIP_TAG_INC[i + (PIP_PRT_CFG[port][TAG_INC]*16)];
 uint8 mod_inc = 0;
 if ((pktLen & 7) == 0) {
 if (pktLen > (i*8)) {
 mod_inc = 0xff;
 }
 }
 else {
 if ((pktLen>>3) == i)
 mod_inc = (0xff << (8-(pktLen&7)));
 else if ((pktLen>>3) > i)
 mod_inc = 0xff;
 }
 if((tag_inc & mod_inc) != 0) {
 uint64 dat = 0;
 for (j=7; j>=0; j--, pkt_cnt++)
 dat |= (((tag_inc&mod_inc)>>j)&1) ?
 ((uint64)pkt_dat[pkt_cnt] << (j*8)) : 0;
 crc16(crc, dat);
 }
 else
 pkt_cnt += 8;
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 295

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
 }
 result = crc & ~PIP_TAG_MASK[MASK];

 return(result);
}

WORD3[Back, Size,
Addr]

Refer to Figure 7–9. Fields in the first buffer pointer. Figure 7–7 details these fields.
Back, Size, and Addr are 0 when there is no ordinary DRAM copy of the packet,
which happens when the packet is dynamic short and PIP/IPD is enabled to avoid the
ordinary L2/DRAM copy.

WORD2[Bufs] Refer to Figure 7–10. The number of buffers used to store the packet data. Any value
for this field is possible. The value 0 happens (only) for dynamic short packets when
PIP/IPD is enabled to avoid the ordinary L2/DRAM copy, and it indicates that PIP/
IPD created no ordinary L2/DRAM of the packet.

WORD2[IP_offset] Note that WORD2[IP_offset] is not present when there is an L2/L1 receive error, nor
when the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. The number of bytes from the first byte of packet data to the
first byte of the IP packet.

WORD2[VV] Note that WORD2[VV] is not present for a RAWFULL packet.

Refer to Figure 7–10. Indicates that one or more VLAN fields were found in the L2
HDR for the packet. This bit asserts only when in skip-to-L2 mode and the L2 HDR
type is Ethernet II + VLAN (stacked) or IEEE 802.3 + VLAN (stacked).

Also see the VV definition in the pseudo-code in Section 7.2.5 and Figure 7–4.
WORD2[VV] is unpredictable when WORD2[RE] = 1.

WORD2[VS] Note that WORD2[VS] is not present for a RAWFULL packet.

Refer to Figure 7–10. Indicates that multiple VLAN fields were found in the L2 HDR
for the packet. This bit asserts only when in skip-to-L2 mode and the L2 HDR type is
Ethernet II + VLAN Stacked or IEEE 802.3 + VLAN Stacked.

Also see the VS definition in the pseudo-code in Section 7.2.5 and Figure 7–4.
WORD2[VS] is unpredictable when WORD2[RE] = 1 (and the packet is not
RAWFULL).

WORD2[VC] Note that WORD2[VC] is not present for a RAWFULL packet.

Refer to the VLAN CFI bit (i.e. VLAN<12>) in Figure 7–10.

If WORD2[VS] = 1, PIP_GBL_CTL[VS_WQE] selects which of the two VLAN fields
(VLAN0 or VLAN1, as described in Section 7.2.5 and Figure 7–4) the CFI comes
from.

if PIP_GBL_CTL[VS_WQE] = 0, VLAN0 is selected.

if PIP_GBL_CTL[VS_WQE] = 1, VLAN1 is selected.

WORD2[VC] is 0 when WORD2[VV] = 0, and is unpredictable when WORD2[RE] = 1
(and the packet is not RAWFULL).

WORD2[VLAN_id] Note that WORD2[VLAN_id] is not present for a RAWFULL packet.

Refer to the VLAN ID field (i.e. VLAN<11:0>) in Figure 7–10.

If WORD2[VS] = 1, PIP_GBL_CTL[VS_WQE] selects which of the two VLAN fields
(VLAN0 or VLAN1, as described in Section 7.2.5 and Figure 7–4) is present here.
296 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
if PIP_GBL_CTL[VS_WQE] = 0, VLAN0 is selected.

if PIP_GBL_CTL[VS_WQE] = 1, VLAN1 is selected.

This field is 0x0 when WORD2[VV] is clear, and is unpredictable when WORD2[RE]
is set (and the packet is not RAWFULL).

WORD2[CO] Note that WORD2[CO] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. Set when the IP packet is IPCOMP (i.e. when the IPv4 protocol
value or the initial IPv6 next header equals 108). This bit is always clear when
WORD2[IE] = 1, and when WORD2[V6] and WORD2[FR] are both set.

WORD2[TU] Note that WORD2[TU] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. Set when the IP packet is TCP or UDP (i.e. when the IPv4
protocol value or the initial IPv6 next header equals 6 (TCP) or 17 (UDP)). This bit is
always clear when WORD2[IE] = 1, and when WORD2[V6] and WORD2[FR] are both
set.

WORD2[SE] Note that WORD2[SE] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. Set when the IP packet may require IPSEC decryption. This bit
gets set in a number of ways:

● The packet is IPSEC ESP (i.e. the IPv4 protocol value or the initial IPv6 next
header equals 50).

● The packet is IPSEC AH (i.e. the IPv4 protocol value or the initial IPv6 next
header equals 51).

● The packet is TCP (i.e. the IPv4 protocol value or the initial IPv6 next header
equals 6) and the TCP destination port matches one of four possible programmed
values and (WORD2[V6] || (IPv4.HL==5)).

● The packet is UDP (i.e. the IPv4 protocol value or the initial IPv6 next header
equals 17) and the UDP destination port matches one of four possible
programmed values and (WORD2[V6] || (IPv4.HL==5)).

There are four programmable destination port values (PIP_DEC_IPSEC[0..3])
shared by TCP and UDP. Each programmed port can match TCP and/or UDP.
WORD2[SE] = 0 whenever any of WORD2[IE], WORD2[FR], or WORD2[LE] are set.

WORD2[V6] Note that WORD2[V6] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. This bit is set when the IP version number field is 6.

WORD2[LE] Note that WORD2[LE] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. This bit is set when WORD2[TU] is set and the PIP/IPD
hardware found an error in the TCP/UDP header and/or data. When this bit is set,
WORD2[Opcode] contains one of the following possible (non-zero) codes:

1 = Malformed L4:
IPv4/TCP

ipv4_total_length < IP_header(20B) + (TCP_data_offset × 4)
 or

TCP_data_offset < 5
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 297

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
IPv6/TCP
ipv6_payload_length < TCP_data_offset × 4

 or
TCP_data_offset < 5

IPv4/UDP

ipv4_total_length < IP_header(20B) + UDP_header(8B)

IPv6/UDP

ipv6_payload_length < UDP_header(8B)

2 = L4 checksum error: the L4 checksum value is bad.

3 = UDP length error: The UDP length field would make the UDP data longer than
what remains in the IP packet (as defined by the IP header length field).
IP/TCP

Will not assert

IPv4/UDP

ipv4_total_length < IP_header(20B) + UDP_length

IPv6/UDP

ipv6_payload_length < UDP_length

4 = Bad L4 Port: either the source or destination TCP/UDP port is 0.
8 = TCP FIN Only: the packet is TCP and only the FIN flag set.
9 = TCP No Flags: the packet is TCP and no flags are set.
10 = TCP FIN RST: the packet is TCP and both FIN and RST are set.
11 = TCP SYN URG: the packet is TCP and both SYN and URG are set.
12 = TCP SYN RST: the packet is TCP and both SYN and RST are set.
13 = TCP SYN FIN: the packet is TCP and both SYN and FIN are set.

WORD2[FR] Note that WORD2[FR] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. Set when the packet is a fragment.

For IPv4, this bit is set when either the MF bit is set or the offset field is non-zero.

For IPv6, this bit is set when the initial next header value is fragmentation (i.e. 44).
WORD2[FR] is never set when WORD2[IE] is set.

WORD2[IE] Note that WORD2[IE] is not present when there is an L2/L1 receive error, nor when
the packet is RAWFULL, nor when the packet is not IP.

Refer to Figure 7–10. Set when the packet has an IP exceptional condition. When this
bit is set, WORD2[Opcode] contains one of the following possible (non-zero) codes:

1 = Not IP: the IP version field is neither 4 nor 6.

NOTE: For a UDP packet that has a UDP length (specified in the UDP L4 header)
that indicates a larger packet than the IP length indicates (specified in the
IP L3 header), either a UDP L4 checksum error (WORD2[Opcode] = 2) or a
UDP length error (WORD2[Opcode] = 3) is possible.

NOTE: The hardware does not consider it an error when the UDP length field
makes the UDP data shorter than the IP packet.

NOTE: WORD2[LE] is never set when WORD2[IE] or WORD2[FR] are set,
and is never set for IPv4 packets when (IPv4.HL ≠ 5).
298 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
2 = IPv4 header checksum error: the IPv4 header has a checksum violation. Note
that the CN50XX hardware does not check IPv4-header checksums for IPv4
packets with options (i.e. HLEN > 5.

3 = IP malformed header: the packet is not long enough to contain the IP header.
IPv6 packet

received packet length − crc < SKIP+L2_Size+IPv6_header(40 bytes)
not IPv6 packet (IPv4 packet)

received packet length − crc < SKIP+L2_Size+IPv4_header(20 bytes)
 or

ipv4_header_length < 5
 or

ipv4_total_length < 20

Note that CN50XX’s IPv4 malformed-header check assumes that the IPv4 header
is 20 bytes. This means that for IPv4 packets with options
(i.e. HLEN > 5), the hardware may not signal an IP malformed error even though
the header size is larger than the IP packet size. Thus, as part of the IPv4 options
handler, software should check that HLEN × 4 does not exceed the IP packet size.

4 = IP malformed: the packet is not long enough to contain the bytes indicated by the
IP header. Pad is allowed.

IPv6 packet

received packet length − crc <
SKIP+L2_Size+IPv6_header(40)+ipv6_payload_length

not IPv6 packet (IPv4 packet)

received packet length − crc < SKIP+L2_Size+IPv4_total_length

5 = IP TTL hop: the IPv4 TTL field or the IPv6 hop count field are zero.
6 = IP options:

For IPv4, the packet has options (i.e. the IP HLEN field is not 5. Note that the
case where HLEN < 5 is flagged in the IP malformed-header check). Also note
that the CN50XX hardware does not check header checksums of IPv4 packets
with options and only partially performs an IP malformed-header check.
Upon receipt of an IPv4 packet with an IP-options exception, software should
perform an IPv4-header checksum check, and check that HLEN × 4 does not
exceed the IP length indicated in the IPv4 header.

For IPv6, the packet has early extension headers.
When PIP_GBL_CTL[IP6_EEXT<1>] = 1, this violation occurs when the (initial)
next header field in the IPv6 header does not contain one of the following values:

– 6 (TCP)
– 17 (UDP)
– 44 (fragmentation)
– 58 (ICMP)
– 50 (ESP)
– 51 (AH)
– 108 (IPCMP)

When PIP_GBL_CTL[IP6_EEXT<1>] = 0 and PIP_GBL_CTL[IP6_EEXT<0>] =
1, this violation occurs when the (initial) next header field in the IPv6 header
contains one of the following values:

– 0 (hop-by-hop)
– 60 (destination)
– 43 (routing)

NOTE: The IP length can legally indicate fewer bytes than are in the packet
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 299

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Work-Queue Entry
WORD2[B] Note that WORD2[B] is not present when there is not an L2/L1 receive error and the
packet is RAWFULL.

Refer to Figure 7–10. Set when the packet’s destination MAC address field in the L2
HDR is the broadcast address (i.e. all 1s). This bit is unpredictable when
WORD2[RE] is set, and always clear when not in skip-to-L2 mode.

WORD2[M] Note that WORD2[M] is not present when there is not an L2/L1 receive error and the
packet is RAWFULL.

Refer to Figure 7–10. Set when the packet’s destination MAC address field in the L2
HDR is a multicast address (i.e. the group bit is set, and at least one of the remaining
bits is a zero). This bit is unpredictable when WORD2[RE] is set, and always clear
when not in skip-to-L2 mode.

WORD2[NI] Note that WORD2[NI] is not present when the packet is RAWFULL.

Refer to Figure 7–10. Set when the packet is not an IP packet or has L2/L1 errors.

WORD2[RE] Note that WORD2[RE] is not present when there is not an L2/L1 receive error and
the packet is RAWFULL.

Refer to Figure 7–10. Set when the packet had an L2/L1 receive error. Some of these
errors are generated by PIP/IPD and others are generated by GMX. When
WORD2[RE] is set, WORD2[Opcode] contains one of the following possible (non-zero)
codes:

1 = partial error: a packet was partially received, but internal buffering/bandwidth
was not adequate to receive the entire packet.

2 = jabber error: the RGMII/GMII/MII packet was too large and is truncated.
3 = overrun error: the RGMII/GMII/MII packet is longer than allowed and had an

FCS error.
4 = oversize error: the RGMII/GMII/MII packet is longer than allowed.
5 = alignment error: the RGMII/GMII/MII packet is not an integer number of bytes

and had an FCS error (100M and 10M only).
6 = fragment error: the RGMII/GMII/MII packet is shorter than allowed and had an

FCS error.
7 = GMX FCS error: the RGMII/GMII/MII packet had an FCS error.
8 = undersize error: the RGMII/GMII/MII packet is shorter than allowed.
9 = extend error: the RGMII packet had an extend error (100M only for RGMII, half-

duplex mode only for GMII/MII).
10 = length mismatch error: the RGMII/GMII/MII packet had a length that did not

match the length field in the L2 HDR.
11 = RGMII/GMII/MII RX error: the RGMII/GMII/MII packet had one or more data

reception errors (RXERR).
12 = RGMII/GMII/MII skip error: the RGMII/GMII/MII packet was not large enough

to cover the skipped bytes
13 = RGMII nibble error: the RGMII packet had a stutter error (data not repeated -

10/100M only)
17 = PIP Skip error: a packet was not large enough to cover the skipped bytes.
18 = L2 header malformed: the packet is not long enough to contain the L2 header.

WORD2[Opcode] Note that WORD2[Opcode] is not present when there is not an L2/L1 receive error
and the packet is RAWFULL.

Normally zero, but contains a (non-zero) exception opcode when any one of
WORD2[RE], WORD2[IE], or WORD2[LE] are set.
300 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
高亮

Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Data Unit (IPD) Quality of Service
WORD2[IR] Note that WORD2[IR] is not present when there is not an L2/L1 receive error and the
packet is RAWFULL or IP.

Refer to Figure 7–10. Set when the packet’s L2 HDR TYPE field indicates RARP (i.e.
equals 0x0835). This bit is unpredictable when WORD2[RE] is set, and always clear
when not in skip-to-L2 mode.

WORD2[IA] Note that WORD2[IA] is not present when there is not an L2/L1 receive error and the
packet is RAWFULL or IP.

Refer to Figure 7–10. Set when the packet’s L2 HDR TYPE field indicates ARP (i.e.
equals 0x0806). This bit is unpredictable when WORD2[RE] is set, and always clear
when not in skip-to-L2 mode.

7.6 Input Packet Data Unit (IPD) Quality of Service
There are many facets to the packet input quality of service capabilities of CN50XX
in general. This section and the next focus on CN50XX’s backpressure and packet
drop capabilities. The PIP/IPD unit implements important components of CN50XX’s
backpressure and packet drop capabilities.

First, when there are no buffers available for PIP/IPD from the hardware pool 0 (i.e.
when IPD_QUE0_FREE_PAGE_CNT and/or FPA_QUE(0..7)_AVAILABLE are
almost zero) or from the FPA pool selected by IPD_WQE_FPA_QUEUE (i.e. the
configured pool that PIP/IPD allocates work-queue entries from), the PIP/IPD
hardware stops accepting input packet data from any of RGMII/GMII/MII or PCI
sources, until buffers become available in the hardware free pool. This may cause
GMX/SPX (i.e. the RGMII/GMII/MII interface logic) to drop packets indiscriminately
and/or backpressure the ports on the interfaces, and will cause the PCI interface
hardware to stop fetching instructions and input packet data for the four PCI input
ports.

In many systems, it will be desirable to avoid this buffer exhaustion situation. There
are multiple CN50XX mechanisms that can keep the input packets from exhausting
the available buffer space.

One mechanism is per-port backpressure. This can prevent the packet from arriving
at PIP/IPD, and, thus, may prevent CN50XX from dropping packets. The PIP/IPD
hardware maintains a counter per port (IPD_PORT_BP_COUNTERS_PAIRn) that
PIP/IPD may increment when PIP/IPD buffers packets. When a packet arrives and
PIP/IPD creates a work-queue entry for the packet, PIP/IPD adds to the counter for a
port according to the following table:

Thus, the per-port counter can simply track FPA pool 0 buffers used, packets arrived,
or the total of both. Note that when IPD_CTL_STATUS[ADDPKT] is clear,
IPD_PORT_BP_COUNTERS_PAIRn counts only buffers and not packets, and PIP/
IPD does not change IPD_PORT_BP_COUNTERS_PAIRn for dynamic short packets
that are solely buffered in the work-queue entry.

IPD_CTL_STATUS

Add to Counter[NADDBUF] [ADDPKT]

0 0 WORD2[Bufs]

0 1 WORD2[Bufs] + 1

1 0 Undefined

1 1 1
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 301

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): Input Packet Data Unit (IPD) Quality of Service
When IPD_PORT_BP_COUNTERS_PAIRn exceeds the threshold for the port
(IPD_PORT(0/1/2)_BP_PAGE_CNT[PAGE_CNT] is the threshold), the threshold
check is active, and PIP/IPD can backpressure the port when backpressure is enabled
for the port. A 0→1 transition on IPD_CTL_STATUS[PBP_EN] is necessary to enable
per-port backpressure. Each port has an individual backpressure enable –
IPD_PORTn_BP_PAGE_CNT[BP_ENB].

When backpressure is both enabled and active for a port, the hardware attempts to
prevent packet arrival on the port. If the port is a PCI port, CN50XX prevents its PCI
interface hardware from fetching packet data for the port. If the port is a RGMII port,
CN50XX can send pause frames to prevent packets from arriving on the port.

In addition to or alternative to per-port backpressure, the PIP/IPD unit can also drop
packets whenever the counter for the port (i.e. IPD_PORT_BP_COUNTERS_PAIRn)
exceeds the threshold for the port. (IPD_PORTn_BP_PAGE_CNT[PAGE_CNT] is
also the counter threshold for this packet drop mechanism.) Though the per-port
backpressure and this per-port drop mechanism share a counter and a threshold, the
per-port drop mechanism can be enabled independently of per-port backpressure. A
0→1 transition on IPD_CTL_STATUS[PBP_EN] is required to enable per-port packet
drop, as it is for per-port backpressure, but there is a separate per-port enable for per-
port packet drop (IPD_BP_PRT_RED_END[PRT_ENBn]).

Note that when PIP_PRT_CFGn[RAWDRP] is clear, RAWFULL and RAWSCH
packets are never dropped by this per-port drop mechanism, but that when
PIP_PRT_CFGn[RAWDRP] is set, RAWFULL and RAWSCH packets are treated as
other packets.

For the per-port backpressure and/or per-port packet drop mechanisms (that use
IPD_PORT_BP_COUNTERS_PAIRn and the
IPD_PORTn_BP_PAGE_CNT[PAGE_CNT] threshold) to work correctly when
enabled, the core software must eventually decrement
IPD_PORT_BP_COUNTERS_PAIRn after a packet and/or its buffers should no
longer be assigned to the port, and the port is free to receive more packets. When core
software writes the IPD_SUB_PORT_BP_PAGE_CNT register with the appropriate
values (2’s complement of the amount to decrement), PIP/IPD decrements
IPD_PORT_BP_COUNTERS_PAIRn for a port. The simplest scheme would be to
decrement the counter for a port once the core software first gets the work that PIP/
IPD creates for the packet, but this is not required and many other options are
possible. Each decrement can be millions, so core software is free to decrement the
port back pressure counter for many input packets using only a single CSR write.

The final mechanism that CN50XX provides to keep from exhausting the pool 0
buffers is IPD’s per-QOS admission control. If desired, when the FPA pool 0 buffers
get low (i.e. when IPD_QUE0_FREE_PAGE_CNT and/or
FPA_QUE(0..7)_AVAILABLE get low), PIP/IPD can drop packets. The different QOS
levels can be configured with different thresholds on the FPA pool 0 buffer count -
packets with some QOS values can drop sooner than other packets with different
QOS values. PIP/IPD hardware does not allocate buffers for, nor writes any data into,
buffers for packets that it chooses to drop by either the per-QOS admission control or
by the per-port packet drop mechanism. The details of the per-QOS admission control
algorithm are described in the next section.
302 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP/IPD Per-QOS Admission Control
7.7 PIP/IPD Per-QOS Admission Control

As Section 7.5 describes, PIP/IPD uses input port, configuration variables, and
packet parsing to select one of eight QOS levels. It then tags the work-queue entry for
the packet with the QOS level (assuming the packet is not dropped) before sending
the work to POW. PIP/IPD normally uses the exact same calculation to produce a
QOS value to differentiate and prioritize packets for admission control, but the
admission control QOS can be different than the value specified for the work-queue
entry when the packet has one of the following:

● an L2/L1 receive error (WORD2[RE] = 1)
● an IP error (WORD2[IE] = 1)
● a TCP/UDP error (WORD2[LE] = 1)

The two QOS calculations are slightly different since PIP/IPD performs the
admission-control check before the entire packet is received, and checksums and
other errors cannot be checked before the hardware completes the admission control
calculations. The admission control QOS logic assumes that these error conditions
are not present when it calculates the QOS value.

The following pseudocode details the PIP/IPD admission control QOS selection for a
given packet:

bool not_present_or_in_last_pip_tick(uint _skip, uint _pkt_len, uint _byte_num) {
uint pkt_accumulate = ((_skip % 8) ? (8-(_skip % 8)) : 0);
uint last_tick = (pkt_accumulate + ((_pkt_len % 8) ? (_pkt_len % 8) : 8));
return (_pkt_len - last_tick) < _byte_num;

}

QOS = PIP_PRT_CFG[port][QOS];
if (there is an L1/L2 receive error and the packet is ≤ 136 bytes) {
;

}
else if(ISRAWFULL || ISRAWSCH) {
QOS = PKT_INST_HDR[QOS];

}
else {
if(VV && PIP_PRT_CFG[port][QOS_VLAN]) {

VLAN = (VS && PIP_GBL_CFG[VS_QOS]) ? VLAN1 : VLAN0;
QOS = PIP_QOS_VLAN[VLAN<15:13>][QOS]; // VLAN<15:13> is priority

}
if(Is_IP && ((IP.version==4) || (IP.version==6)) &&
 (IP.version is present in packet)) {

if(PIP_PRT_CFG[port][QOS_DIFF])) {
use_diffserv = !not_present_or_in_last_pip_tick(l2_skip, pkt_len,

 IP.TOS/CLASS<7:2>);
tos_class = use_diffserv ? IP.TOS/CLASS<7:2> : 0;
QOS = PIP_QOS_DIFF[tos_class][QOS]; // the 6 msbs of TOS/CLASS }

}
for (i=0; i<4; i++) {

if (PIP_PRT_CFG[port][QOS_WAT<i>] and PIP_QOS_WATCH[i][TYPE]!=0) {
mask16 = ~PIP_QOS_WATCH[i][MASK] & 0xffff;
mask8 = ~PIP_QOS_WATCH[i][MASK] & 0xff;
match16 = PIP_QOS_WATCH[i][MATCH] & mask16;
match8 = PIP_QOS_WATCH[i][MATCH] & mask8;
protnh = IP protocol/next header field is present in packet ?
 IP protocol/next header field : 0;
if (packet is IP malformed and
 not_present_or_in_last_pip_tick(l2_skip, pkt_len, PROT/NH) and
 PIP_QOS_WATCH[i][TYPE] is protocol/next_header) {

QOS = UNPREDICTABLE;
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is protocol/next_header and
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 303

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP/IPD Per-QOS Admission Control
 match8 equals protnh&mask8) {
QOS = PIP_QOS_WATCH[i][WATCHER];
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is TCP and protnh is TCP and
 match16 equals (TCP destination port field)&mask16 and
 ((packet is IPv6) or ((IPv4.HL==5) && !IPv4.MF && !IPv4.offset)) and
 TCP destination port field is present in packet) {

QOS = PIP_QOS_WATCH[i][WATCHER];
break;

}
else if(PIP_QOS_WATCH[i][TYPE] is UDP and protnh is UDP and
 match16 equals (UDP destination port field)&mask16 and
 ((packet is IPv6) or ((IPv4.HL==5) && !IPv4.MF && !IPv4.offset)) and
 UDP destination port field is present in packet) {

QOS = PIP_QOS_WATCH[i][WATCHER];
break;

}
}

}
}

}

Each of the eight QOS levels has:

● Independent pass and drop marks for RED-like probabilistic drop scheme

● Independent mixing to calculate a moving average of
IPD_QUE0_FREE_PAGE_CNT (i.e. the number of buffers available in FPA pool
0)

Figure 7–12 shows how PIP/IPD calculates the packet-drop probability for a QOS
level using the configured values IPD_QOS(0..7)_RED_MARKS[PASS] and
IPD_QOS*_RED_MARKS[DROP]. (IPD_RED_QUE(0..7)_PARAM[PRB_CON] must
also be set properly for correct operation.) The actual hardware calculates the drop
probability for the eight QOS levels only periodically and at a granularity of 1/256.
PIP/IPD recalculates the drop probability once every
8×(IPD_RED_PORT_ENABLE[PRB_DLY]+68) clock cycles, using the moving
average of IPD_QUE0_FREE_PAGE_CNT for the QOS level at that time.
IPD_RED_PORT_ENABLE[PRB_DLY] should typically be set to 0x0.

Upon packet arrival, whenever the current moving average for the QOS level is
between the pass and drop marks, PIP/IPD compares the precalculated drop
probability to a pseudo-random number to determine whether to drop a packet due to
per-QOS admission control. The precalculated drop probability is not used by PIP/
IPD whenever the current moving average is below the drop or above the pass mark.

PIP/IPD also recalculates the moving average of IPD_QUE0_FREE_PAGE_CNT
(equivalently, FPA_QUE(0..7)_AVAILABLE) once every
8 × (IPD_RED_PORT_ENABLE[PRB_DLY]+10) cycles:

 avg = ((avg × IPD_RED_QUE*_PARAM[AVG_CON]) + (IPD_QUE0_FREE_PAGE_CNT ×

IPD_RED_QUE*_PARAM[NEW_CON])) / 256

where:

avg = moving average of IPD_QUE0_FREE_PAGE_CNT for the QOS level

IPD_RED_QUE*_PARAM[AVG_CON] = AVG_CON config for the QOS level

IPD_RED_QUE*_PARAM[NEW_CON] = NEW_CON config for the QOS level

IPD_QUE0_FREE_PAGE_CNT = number of buffers in FPA pool 0.
304 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP/IPD Per-QOS Admission Control

The moving average for a QOS level tracks changes to
IPD_QUE0_FREE_PAGE_CNT more closely when AVG_CON for the QOS level is
smaller, and less closely when AVG_CON is larger. (AVG_CON and NEW_CON must
total to 256.) Note that the fractional part of avg is ignored, and this can lead to an
inherent error of as much as 256/(256-AVG_CON) in the avg calculation.

Note that there are two methods to make the moving average track the actual
average less closely:

● Larger IPD_RED_PORT_ENABLE[AVG_DLY] values cause the moving averages
of ALL QOS levels to track less closely

● Larger AVG_CON values cause the moving averages of individual QOS levels to
track less closely

The avg equation above assumes that
IPD_RED_QUE(0..7)_PARAM[USE_PCNT] = 0.

If IPD_RED_QUE*_PARAM[USE_PCNT] = 1, avg for the selected QOS level is
simply a periodic sample of IPD_QUE0_FREE_PAGE_CNT (assuming AVG_CON
and NEW_CON total to 256).

RAWFULL and RAWSCH packets are never dropped due to per-QOS admission
control when PIP_PRT_CFGn[RAWDRP] is clear. Otherwise, admission control is
enabled on an individual port basis via IPD_RED_PORT_ENABLE[PRT_ENB<n>].

Figure 7–12 PIP/IPD Packet-Drop Probability

Moving average of

(calculated for the QOS level)

P
ac

ke
t D

ro
p

P
ro

ba
bi

lit
y

1.0

IP
D

_Q
O

S*
_R

E
D

_M
A

R
KS

[D
R

O
P

]

IP
D

_Q
O

S
*_

R
ED

_M
AR

KS
[P

A
SS

]

0

IPD_QUE0_FREE_PAGE_CNT
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 305

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
7.8 PIP Registers
All the PIP registers are 64 bits long (eight bytes) and are shown in Table 7–6.
Table 7–6 PIP Registers

Register Address CSR Type1 Detailed Description
PIP_BIST_STATUS 0x00011800A0000000 RSL See page 307
PIP_INT_REG 0x00011800A0000008 RSL See page 308
PIP_INT_EN 0x00011800A0000010 RSL See page 309
PIP_STAT_CTL 0x00011800A0000018 RSL See page 309
PIP_GBL_CTL 0x00011800A0000020 RSL See page 310
PIP_GBL_CFG 0x00011800A0000028 RSL See page 311
PIP_SFT_RST 0x00011800A0000030 RSL See page 312
PIP_IP_OFFSET 0x00011800A0000060 RSL See page 313
PIP_TAG_SECRET 0x00011800A0000068 RSL See page 313
PIP_TAG_MASK 0x00011800A0000070 RSL See page 314
PIP_TODO_ENTRY 0x00011800A0000078 RSL See page 314
PIP_DEC_IPSEC0
...
PIP_DEC_IPSEC3

0x00011800A0000080
...
0x00011800A0000098

RSL See page 314

PIP_RAW_WORD 0x00011800A00000B0 RSL See page 314
PIP_QOS_VLAN0
...
PIP_QOS_VLAN7

0x00011800A00000C0
...
0x00011800A00000F8

RSL See page 315

PIP_QOS_WATCH0
...
PIP_QOS_WATCH7

0x00011800A0000100
...
0x00011800A0000138

RSL See page 315

PIP_PRT_CFG0
...
PIP_PRT_CFG2

0x00011800A0000200
...
0x00011800A0000210

RSL See page 316

PIP_PRT_CFG32
PIP_PRT_CFG33

0x00011800A0000300
0x00011800A0000308

RSL See page 316

PIP_PRT_TAG0
...
PIP_PRT_TAG2

0x00011800A0000400
...
0x00011800A0000410

RSL See page 317

PIP_PRT_TAG32
PIP_PRT_TAG33

0x00011800A0000500
0x00011800A0000508

RSL See page 317

PIP_QOS_DIFF0
...
PIP_QOS_DIFF63

0x00011800A0000600
...
0x00011800A00007F8

RSL See page 318

PIP_STAT0_PRT0
PIP_STAT0_PRT1
PIP_STAT0_PRT2

0x00011800A0000800
0x00011800A0000850
0x00011800A00008A0

RSL See page 319

PIP_STAT0_PRT32
PIP_STAT0_PRT33

0x00011800A0001200
0x00011800A0001250

RSL See page 319

PIP_STAT1_PRT0
PIP_STAT1_PRT1
PIP_STAT1_PRT2

0x00011800A0000808
0x00011800A0000858
0x00011800A00008A8

RSL See page 319

PIP_STAT1_PRT32
PIP_STAT1_PRT33

0x00011800A0001208
0x00011800A0001258

RSL See page 319

PIP_STAT2_PRT0
PIP_STAT2_PRT1
PIP_STAT2_PRT2

0x00011800A0000810
0x00011800A0000860
0x00011800A00008B0

RSL See page 319

PIP_STAT2_PRT32
PIP_STAT2_PRT33

0x00011800A0001210
0x00011800A0001260

RSL See page 319

PIP_STAT3_PRT0
PIP_STAT3_PRT1
PIP_STAT3_PRT2

0x00011800A0000818
0x00011800A0000868
0x00011800A00008B8

RSL See page 320

PIP_STAT3_PRT32
PIP_STAT3_PRT33

0x00011800A0001218
0x00011800A0001268

RSL See page 320
306 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP BIST Results Register
PIP_BIST_STATUS

BIST status register. See Table 7–6 for address.

PIP_STAT4_PRT0
PIP_STAT4_PRT1
PIP_STAT4_PRT2

0x00011800A0000820
0x00011800A0000870
0x00011800A00008C0

RSL See page 320

PIP_STAT4_PRT32
PIP_STAT4_PRT33

0x00011800A0001220
0x00011800A0001270

RSL See page 320

PIP_STAT5_PRT0
PIP_STAT5_PRT1
PIP_STAT5_PRT2

0x00011800A0000828
0x00011800A0000878
0x00011800A00008C8

RSL See page 320

PIP_STAT5_PRT32
PIP_STAT5_PRT33

0x00011800A0001228
0x00011800A0001278

RSL See page 320

PIP_STAT6_PRT0
PIP_STAT6_PRT1
PIP_STAT6_PRT2

0x00011800A0000830
0x00011800A0000880
0x00011800A00008D0

RSL See page 320

PIP_STAT6_PRT32
PIP_STAT6_PRT33

0x00011800A0001230
0x00011800A0001280

RSL See page 320

PIP_STAT7_PRT0
PIP_STAT7_PRT1
PIP_STAT7_PRT2

0x00011800A0000838
0x00011800A0000888
0x00011800A00008D8

RSL See page 320

PIP_STAT7_PRT32
PIP_STAT7_PRT33

0x00011800A0001238
0x00011800A0001288

RSL See page 320

PIP_STAT8_PRT0
PIP_STAT8_PRT1
PIP_STAT8_PRT2

0x00011800A0000840
0x00011800A0000890
0x00011800A00008E0

RSL See page 321

PIP_STAT8_PRT32
PIP_STAT8_PRT33

0x00011800A0001240
0x00011800A0001290

RSL See page 321

PIP_STAT9_PRT0
PIP_STAT9_PRT1
PIP_STAT9_PRT2

0x00011800A0000848
0x00011800A0000898
0x00011800A00008E8

RSL See page 321

PIP_STAT9_PRT32
PIP_STAT9_PRT33

0x00011800A0001248
0x00011800A0001298

RSL See page 321

PIP_TAG_INC0
...
PIP_TAG_INC63

0x00011800A0001800
...
0x00011800A00019F8

RSL See page 318

PIP_STAT_INB_PKTS0
PIP_STAT_INB_PKTS1
PIP_STAT_INB_PKTS2

0x00011800A0001A00
0x00011800A0001A20
0x00011800A0001A40

RSL See page 322

PIP_STAT_INB_PKTS32
PIP_STAT_INB_PKTS33

0x00011800A0001E00
0x00011800A0001E20

RSL See page 322

PIP_STAT_INB_OCTS0
PIP_STAT_INB_OCTS1
PIP_STAT_INB_OCTS2

0x00011800A0001A08
0x00011800A0001A28
0x00011800A0001A48

RSL See page 322

PIP_STAT_INB_OCTS32
PIP_STAT_INB_OCTS33

0x00011800A0001E08
0x00011800A0001E28

RSL See page 322

PIP_STAT_INB_ERRS0
PIP_STAT_INB_ERRS1
PIP_STAT_INB_ERRS2

0x00011800A0001A10
0x00011800A0001A30
0x00011800A0001A50

RSL See page 322

PIP_STAT_INB_ERRS32
PIP_STAT_INB_ERRS33

0x00011800A0001E10
0x00011800A0001E30

RSL See page 322

1. RSL-type registers are accessed indirectly across the I/O Bus.

Table 7–6 PIP Registers (Continued)

Register Address CSR Type1 Detailed Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved
<17:0> BIST RO 0x0 0x0 BIST results. Hardware sets a bit in BIST for memory that fails BIST.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 307

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Interrupt Register
PIP_INT_REG

Any exception event that occurs is captured in the PIP_INT_REG. PIP_INT_REG
will set the exception bit regardless of the value of PIP_INT_EN. PIP_INT_EN only
controls if an interrupt is raised to software. See Table 7–6 for address.

Notes:

● TODOOVR: The PIP to-do list stores packets that have been received and require
work-queue-entry generation.

● SKPRUNT: If a [packet size] < [amount programmed in the per-port skippers],
there is nothing to parse and the entire packet is skipped over. This is probably
not the desired effect, so there is an indication to software.

● BADTAG: A tag is considered bad when it is resumed by a new packet before it
was released by PIP. PIP considers a tag released by one of two methods.

QOS dropped so that it is released over the pip_ipd_release bus.

Work-queue entry is validated by the pip_ipd_done signal.

● PRTNXA: CN50XX supports ports 0–2, 32, 33. If PIP receives a packet that is not
in the range, the address processed is mapped into the valid address space (the
mapping is currently unpredictable) and the bit is set.

For packet ports (0–31), PRTNXA is asserted for packets received on ports 3–31
regardless of mode.

For upper (PCI) ports (32–63), PRTNXA is asserted for packets received on ports
34–63.

● BCKPRS: PIP can assert backpressure to the receive logic when the to-do list
exceeds a high-water mark. When this occurs, PIP can raise an interrupt to
software.

● PKTDRP: PIP can drop packets based on QOS results received from IPD. If the
QOS algorithm decides to drop a packet, PIP asserts an interrupt.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved.
<11> LENERR R/W1C 0 0 Frame was received with length error.
<10> MAXERR R/W1C 0 0 Frame was received with length > max_length.
<9> MINERR R/W1C 0 0 Frame was received with length < min_length.
<8> BEPERR R/W1C 0 0 Parity error in back-end memory.
<7> FEPERR R/W1C 0 0 Parity error in front-end memory.
<6> TODOOVR R/W1C 0 0 To-do list overflow.
<5> SKPRUNT R/W1C 0 0 Skip runt packets. Packet was engulfed by skipper.
<4> BADTAG R/W1C 0 0 A bad tag was sent from IPD.
<3> PRTNXA R/W1C 0 0 Nonexistent port.
<2> BCKPRS R/W1C 0 0 PIP asserted backpressure.
<1> — RAZ — — Reserved.
<0> PKTDRP R/W1C 0 0 Packet dropped due to QOS.
308 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Interrupt Enable Register
PIP_INT_EN

Determines if hardware should raise an interrupt to software when an exception
event occurs.

PIP Stat Control Register
PIP_STAT_CTL

Controls how the PIP statistics counters are handled. See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved
<11> LENERR R/W 0 0 Frame was received with length error.
<10> MAXERR R/W 0 0 Frame was received with length > max_length.
<9> MINERR R/W 0 0 Frame was received with length < min_length.
<8> BEPERR R/W 0 0 Parity error in back end memory
<7> FEPERR R/W 0 0 Parity error in front end memory
<6> TODOOVR R/W 0 0 To-do list overflow
<5> SKPRUNT R/W 0 0 Packet was engulfed by skipper
<4> BADTAG R/W 0 0 A bad tag was sent from IPD
<3> PRTNXA R/W 0 0 Nonexistent port
<2> BCKPRS R/W 0 0 PIP asserted backpressure
<1> — RAZ — — Reserved
<0> PKTDRP R/W 0 0 Packet dropped due to QOS

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

63:1> — RAZ — — Reserved
<0> RDCLR R/W 1 1 Stat registers are read and clear:

0 = stat registers hold value when read
1 = stat registers are cleared when read
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 309

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Global Control Register
PIP_GBL_CTL

Global control information. These are the enable signals global-checker for IPv4/IPv6
and TCP/UDP parsing. The enable signals affect all ports. See Table 7–6 for address.

The following text describes the conditions in which each checker asserts and flags
an exception. When the checker is disabled, the exception is not flagged and the
packet is parsed as best it can be parsed.

● TCP_FLAG: Indicates any of the following conditions:
{URG, ACK, PSH, RST, SYN, FIN}: tcp_flag
6'b000001 = (FIN only)
6'b000000 = (0)
6'bxxx1x1 = (RST+FIN+*)
6'b1xxx1x = (URG+SYN+*)
6'bxxx11x = (RST+SYN+*)
6'bxxxx11 = (SYN+FIN+*)

● L4_LEN: Indicates that the TCP or UDP length does not match the IP length.
● L4_CHK: Indicates that a packet classified as either TCP or UDP contains an L4

checksum failure.
● L4_PRT: Indicates that a TCP or UDP packet has an illegal port number – either

the source or destination port is 0.
● L4_MAL: Indicates that a TCP or UDP packet is not long enough to cover the

TCP or UDP header.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved
<19:17> SPARE R/W 0x0 0x0 Spare bits.
<16> IGNRS R/W 0 0 Ignore RS bit. When set to 1, ignore PKT_INST_HDR[RS]. Applies

only to ports 0–31.
<15> VS_WQE R/W 0 0 Indicates which VLAN CFI and ID to use when VLAN stacking:

0 = use 1st VLAN (network order), 1 = use 2nd VLAN (network
order)

<14> VS_QOS R/W 0 0 Indicates which VLAN priority to use when VLAN stacking:
0 = use 1st VLAN (network order), 1 = use 2nd VLAN (network
order)

<13> L2_MAL R/W 1 1 Enable L2 malformed packet check.
<12> TCP_FLAG R/W 1 1 Enable TCP flags checks.
<11> L4_LEN R/W 1 1 Enable TCP/UDP length check.
<10> L4_CHK R/W 1 1 Enable TCP/UDP checksum check.
<9> L4_PRT R/W 1 1 Enable TCP/UDP illegal port check.
<8> L4_MAL R/W 1 1 Enable TCP/UDP malformed packet check.
<7:6> — RAZ — — Reserved.
<5:4> IP6_EEXT R/W 0x1 0x3 Enable IPv6 early extension headers.
<3> IP4_OPTS R/W 1 1 Enable IPv4 options check.
<2> IP_HOP R/W 1 1 Enable TTL (IPv4) / hop (IPv6) check.
<1> IP_MAL R/W 1 1 Enable malformed check.
<0> IP_CHK R/W 1 1 Enable IPv4 header checksum check.

NOTE: By disabling conditions, packets can be parsed incorrectly (.i.e. IP_MAL
and L4_MAL could cause bits to be seen in the wrong place. IP_CHK
and L4_CHK mean that the packet was corrupted).
310 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
● IP6_EEXT: Indicates the presence of IPv6 early extension headers. These bits
only apply to packets classified as IPv6. Bit 0 flags early extensions when
next_header is any one of the following:

Hop-by-hop (0)
Destination (60)
Routing (43)

Bit 1 flags early extentions when next_header is not any of the following:

TCP (6)
UDP (17)
Fragmentation (44)
ICMP (58)
IPSEC ESP (50)
IPSEC AH (51)
IPCOMP

● IP4_OPTS: Indicates the presence of IPv4 options. It is set when the
length ≠ 5. This only applies to packets classified as IPv4.

● IP_HOP: Indicates that the IPv4 TTL field or IPv6 HOP field is 0.

● IP_MAL: Indicates that the packet was malformed. Malformed packets are
defined as packets that are not long enough to cover the IP header or not long
enough to cover the length in the IP header.

● IP_CHK: Indicates that an IPv4 packet contained an IPv4 header checksum
violations. Only applies to packets classified as IPv4.

PIP Global Config Register
PIP_GBL_CFG

Global configuration information that applies to all ports. See Table 7–6 for address.

Note:

● IP6_UDP: IPv4 allows an optional UDP checksum by sending the all-0s patterns.
IPv6 outlaws this and the spec says to always check UDP checksum. This mode
bit allows the user to treat IPv6 as IPv4, meaning that the all-0s pattern will
cause a UDP checksum pass.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:19> — RAZ — — Reserved.
<18> TAG_SYN R/W 0 0 Do not include src_crc for TCP/SYN&!ACK packets

0 = include src_crc
1 = tag hash is dst_crc for TCP/SYN&!ACK packets

<17> IP6_UDP R/W 1 1 IPv6/UDP checksum is not optional
0 = Allow optional checksum code
1 = Do not allow optional checksum code

<16> MAX_L2 R/W 0 0 Config bit to choose the largest L2 frame size Chooses the value of the L2
Type/Length field to classify the frame as length.

0 = 1500 / 0x5dc
1 = 1535 / 0x5ff

<15:11> — RAZ — — Reserved.
<10:8> RAW_SHF R/W 0x0 0x0 RAW Packet shift amount Number of bytes to pad a packet.
<7:3> — RAZ — — Reserved.
<2:0> NIP_SHF R/W 0x0 0x0 Non-IP shift amount. Number of bytes to pad a packet that has been

classified as not IP.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 311

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Soft Reset Register
PIP_SFT_RST

Allows soft reset. See Table 7–6 for address.

This bit resets much of PIP’s internal state. The following CSRs are not reset:

● PIP_BIST_STATUS
● PIP_STATn_PRTm
● PIP_STAT_INB_PKTSn
● PIP_STAT_INB_OCTSn
● PIP_STAT_INB_ERRSn
● PIP_TAG_INCn

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> RST R/W 0 0 Reset. When set to 1 by software, PIP gets a short reset pulse (three cycles

in duration).
312 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP IP Offset Into the Work-Queue-Entry Register
PIP_IP_OFFSET

Specifies the eight-byte offset to find the start of the IP header in the data portion of
IP work-queue entries. OFFSET is restricted in that the entire IP and TCP/UDP
header must be buffered by hardware. In general, OFFSET must be set in the 0–4
range. If the system restricts all IPv6 packets, the full range of 0–7 can be used if
desired. See Table 7–6 for address.

PIP Initial-Value Register
PIP_TAG_SECRET

The source and destination initial values (IVs) in tag generation provide a
mechanism for each CN50XX to be unique. See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> OFFSET R/W 0x0 0x0 Byte offset. The number of eight-byte ticks to include in the work-queue

entry prior to IP data.
0 = 0 bytes (IP data starts at WORD4 of work-queue entry)
1 = 8 bytes (IP data starts at WORD5 of work-queue entry)
2 = 16 bytes (IP data starts at WORD6 of work-queue entry)
3 = 24 bytes (IP data starts at WORD7 of work-queue entry)
4 = 32 bytes (IP data starts at WORD8 of work-queue entry)
5 = 40 bytes (IP data starts at WORD9 of work-queue entry)
6 = 48 bytes (IP data starts at WORD10 of work-queue entry)
7 = 56 bytes (IP data starts at WORD11 of work-queue entry)

In normal configurations, OFFSET must be set in the 0–4 range to allow the
entire IP and TCP/UDP headers to be buffered in hardware and calculate the
L4 checksum for TCP/UDP packets.

The maximum value of OFFSET is determined by the types of packets that
can be sent to PIP as follows:

Packet Type MAX OFFSET
IPv4/TCP/UDP 7
IPv6/TCP/UDP 5
IPv6/without L4 parsing 6

If the L4 can be ignored, the maximum value of OFFSET for IPv6 packets
can increase to 6. Here are the following programming restrictions for IPv6
packets and OFFSET = 6:

PIP_GBL_CTL[TCP_FLAG] = 0
PIP_GBL_CTL[L4_LEN] = 0
PIP_GBL_CTL[L4_CHK] = 0
PIP_GBL_CTL[L4_PRT] = 0
PIP_GBL_CTL[L4_MAL] = 0
PIP_DEC_IPSEC[TCP] = 0
PIP_DEC_IPSEC[UDP] = 0
PIP_PRT_TAG[IP6_DPRT] = 0
PIP_PRT_TAG[IP6_SPRT] = 0
PIP_GBL_CTL[TCP6_TAG] = 0
PIP_PRT_TAG[TAG_SYN] = 0

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:16> DST R/W 0x0 0x0 Secret for the destination tuple tag CRC calculation.
<15:0> SRC R/W 0x0 0x0 Secret for the source tuple tag CRC calculation.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 313

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Mask-Bit Register
PIP_TAG_MASK

Provides the mask-bit field in tag generation. See Table 7–6 for address.

PIP To-Do List Entry Register
PIP_TODO_ENTRY

Head entry of the to-do list (debug only). Summary of the current packet that has
completed and is waiting to be processed. See Table 7–6 for address.

PIP UDP/TCP Ports to Watch for DEC IPSEC Registers
PIP_DEC_IPSEC(0..3)

PIP sets the dec_ipsec based on TCP or UDP destination port. See Table 7–6 for
address.

PIP RAW Word2 of the Work-Queue-Entry Register
PIP_RAW_WORD

The RAW Word2 to be inserted into the work-queue entry of RAW packets. See Table
7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved.
<15:0> MASK R/W 0x0 0x0 When set, clears the individual bits of the lower 16 bits of the computed tag.

Does not affect RAW or INST_HDR packets.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> VAL RO — — Entry is valid.
<62> — RAZ — — Reserved.
<61:0> ENTRY RO — — To-do list entry summary.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved
<17> TCP R/W 0 0 This DPRT should be used for TCP packets.
<16> UDP R/W 0 0 This DPRT should be used for UDP packets.
<15:0> DPRT R/W 0x0 0x0 UDP or TCP destination port to match on.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:56> — RAZ — — Reserved.
<55:0> WORD R/W 0x0 0x0 Word2 of the workQ entry. The 8-bit bufs field is still set by hardware (IPD)
314 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP QOS VLAN Tables Registers
PIP_QOS_VLAN(0..7)

If the PIP indentifies a packet to be VLAN tagged, the QOS can be set based on the
VLAN user priority. These eight registers comprise the QOS values for all VLAN
user priority values. See Table 7–6 for address.

PIP QOS Watcher-Table Registers
PIP_QOS_WATCH(0..7)

Sets up the configuration CSRs for the four QOS watchers. Each watcher can be set
to look for a specific protocol, Ethertype, or TCP/UDP destination port to override the
default QOS value. Note that the watchers have overlapping criteria. See Table 7–6
for address

PIP Frame Length Check Registers
PIP_FRM_LEN_CHK0/1

PIP_FRM_LEN_CHK0 is used for packets on packet interface0, and PCI, and PKO
loopback ports. PIP_FRM_LEN_CHK1 is used for PCI RAW packets.

See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> QOS R/W 0x0 0x0 VLAN QOS value.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:32> MASK R/W 0x0 0x0 Mask off a range of values.
<31:28> — RAZ — — Reserved
<27:24> GRP R/W 0x0 0x0 The group number of the watcher.
<23> — RAZ — — Reserved
<22:20> WATCHER R/W 0x0 0x0 The QOS level of the watcher.
<19> — RAZ — — Reserved
<18:16> TYPE R/W 0x0 0x0 The field for the watcher match against:

0x0 = disable across all ports
0x1 = protocol (IPv4) or next_header (IPv6)
0x2 = TCP destination port
0x3 = UDP destination port
0x4 = Ethertype
0x5–7 = Reserved

<15:0> MATCH R/W 0x0 0x0 The value to watch for.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

63:32> — RAZ — — Reserved
<31:16> MAXLEN R/W 0x600 0x60 Byte count for max-sized frame check. Failing packets set the MAXERR

interrupt and are optionally sent with opcode==MAXERR. The effective
MAXLEN used by hardware is
PIP_FRM_LEN_CHK[MAXLEN] + 4 × VV + 4 × VS

<15:0> MINLEN R/W 0x40 0x40 Byte count for min-sized frame check. Failing packets set the MINERR
interrupt and are optionally sent with opcode==MINERR.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 315

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Per-Port Configuration Registers
PIP_PRT_CFG(0..2, 32/33)

Contains per-port configuration information. See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:53> — RAZ — — Reserved.
<52> PAD_LEN R/W 0 0 When set, disables the length check for packets with padding in the client

data.
<51> VLAN_LEN R/W 0 0 When set, disables the length check for VLAN packets.
<50> LENERR_EN R/W 0 1 L2 length error check enable. Frame was received with length error.
<49> MAXERR_EN R/W 0 1 Max frame error check enable. Frame was received with length >

max_length.
<48> MINERR_EN R/W 0 1 Min frame error check enable. Frame was received with length <

min_length.
<47:44> GRP_WAT_47 R/W 0x0 0x0 GRP Watcher enable. Provides an enable bit for each watcher for each of

four ports. When set to 1, GRP number in PIP_QOS_WATCHn[GRP] is
used when the GRP watcher matches for the packet. (Watchers 4–7)

<43:40> QOS_WAT_47 R/W 0x0 0x0 QOS Watcher enable. Provides an enable bit for each of four watchers for
each port. When set to 1, QOS level in PIP_QOS_WATCHn[WATCHER]
is used when the QOS watcher matches for the packet.(Watchers 4–7)

<39:37> — RAZ — — Reserved.
<36> RAWDRP R/W 0 0 Allow RAW packet drop.

0 = never drop packets that PIP indicates are RAW
1 = allow the IPD to drop RAW packets based on RED algorithm

<35:34> TAG_INC R/W 0x0 0x0 Tag include. Specifies which of the four PIP_TAG_INCn registers to use
when calculating the mask tag hash

0 = registers 0–15 2 =registers 32–47
1 = registers 16–31 3 = registers 48–63

<33> DYN_RS R/W 0 0 Dynamic RS. Dynamically calculate RS based on packet size.
<32> INST_HDR R/W 0 0 INST header. When set, the eight-byte INST_HDR is present on all

packets (except PCI ports 32–35).
<31:28> GRP_WAT R/W 0x0 0x0 GRP watcher enable. Provides an enable bit for each watcher for each of

four ports. When set to 1, GRP number in PIP_QOS_WATCHn[GRP] is
used when the GRP watcher matches for the packet. (Watchers 0–3)

<27> — RAZ — — Reserved.
<26:24> QOS R/W 0x0 0x0 Default QOS level of the port
<23:20> QOS_WAT R/W 0x0 0x0 QOS watcher enable. Provides an enable bit for each of four watchers for

each port. When set to 1, QOS level in PIP_QOS_WATCHn[WATCHER]
is used when the QOS watcher matches for the packet. (Watchers 0–3)

<19> — RAZ — — Reserved.
<18> QOS_VOD R/W 0 0 QOS VLAN over Diffserv.

If VLAN exists, it is used,
else, if IP exists, Diffserv is used,
else, the per-port default is used.

Watchers are still highest priority.
<17> QOS_DIFF R/W 0 0 QOS Diffserv
<16> QOS_VLAN R/W 0 0 QOS VLAN
<15:10> — RAZ — — Reserved.
<9:8> MODE R/W 0x0 0x0 Parse mode

0 = no packet inspection 2 = IP parsing / skip-to-L3
1 = L2 parsing/skip-to-L2 3 = Illegal

<7> — RAZ — — Reserved.
316 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Per-Port Tag Configuration Registers
PIP_PRT_TAG(0..2, 32/33)

Contains per-port tag configuration information. See Table 7–6 for address.

<6:0> SKIP R/W 0x0 0x0 Optional SKIP I amount for packets. Does not apply to packets on PCI
ports when a PKT_INST_HDR is present. See Section 7.2.8, Legal SKIP
Values for further details.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ — — Reserved
<39:36> GRPTAGBASE R/W 0x0 0x0 When GRPTAG = 1, specifies the offset to use to compute the work-

queue entry group from tag bits.
<35:32> GRPTAGMASK R/W 0x0 0x0 When GRPTAG = 1, specifies which of the least-significant bits of the

work-queue entry Tag field to exclude from the computation.
<31> GRPTAG R/W 0 0 Use work-queue entry tag. Enables the use of the least-significant bits

of the work-queue entry Tag field to determine the work-queue entry
group.

group = (WORD2[Tag<3:0>] AND GRPTAGMASK) +
GRPTAGBASE

For more information on the work-queue entry, refer to 7.5 on page
284.

<30> GRPTAG_MSKIP R/W 0 0 When set, GRPTAG is used regardless if the packet IS_IP.
<29:28> TAG_MODE R/W 0x0 0x0 Specifies the tag algorithm to use

0 = always use tuple tag algorithm 2 = use tuple if IP, else use
mask

1 = always use mask tag algorithm 3 = tuple XOR mask
<27:26> INC_VS R/W 0x0 0x0 Specifies the VLAN ID (VID) to be included in the tuple tag

generation when VLAN stacking is detected
0 = do not include VID 2 = include VID (VLAN1) in

hash
1 = include VID (VLAN0) in hash 3 = include VID

({VLAN0,VLAN1)} in hash
<25> INC_VLAN R/W 0 0 Specifies whether the VID is included in the tuple tag generation

when VLAN stacking is not detected: 0 = do not include VID, 1 =
include VID in hash

<24> INC_PRT R/W 0 0 Indicates whether the port is included in tag.
<23> IP6_DPRT R/W 0 0 Indicates whether the TCP/UDP dst port is included in tuple tag for

IPv6 packets.
<22> IP4_DPRT R/W 0 0 Indicates whether the TCP/UDP dst port is included in tuple tag for

IPv4 packets.
<21> IP6_SPRT R/W 0 0 Indicates whether the TCP/UDP src port is included in tuple tag for

IPv6 packets
<20> IP4_SPRT R/W 0 0 Indicates whether the TCP/UDP src port is included in tuple tag for

IPv4 packets.
<19> IP6_NXTH R/W 0 0 Indicates whether IPv6 includes next header in tuple tag hash
<18> IP4_PCTL R/W 0 0 Indicates whether IPv4 includes protocol in tuple tag hash
<17> IP6_DST R/W 0 0 Indicates whether IPv6 includes dst address in tuple tag hash
<16> IP4_DST R/W 0 0 Indicates whether IPv4 includes dst address in tuple tag hash
<15> IP6_SRC R/W 0 0 Indicates whether IPv6 includes src address in tuple tag hash
<14> IP4_SRC R/W 0 0 Indicates whether IPv4 includes src address in tuple tag hash
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 317

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP QOS Diffserv Tables Registers
PIP_QOS_DIFF(0..63)

See Table 7–6 for address.

PIP Include Registers
PIP_TAG_INC(0..63)

Specifies which bytes to include in the new tag hash algorithm. See Table 7–6 for
address.

<13:12> TCP6_TAG R/W 0x0 0x0 Sets the tag_type of a TCP packet (IPv6)
0 = ordered tags 2 = null tags
1 = atomic tags 3 = reserved

<11:10> TCP4_TAG R/W 0x0 0x0 Sets the tag_type of a TCP packet (IPv4)
0 = ordered tags 2 = null tags
1 = atomic tags 3 = reserved

<9:8> IP6_TAG R/W 0x0 0x0 Sets whether IPv6 packet tag type
0 = ordered tags 2 = null tags
1 = atomic tags 3 = reserved

<7:6> IP4_TAG R/W 0x0 0x0 Sets whether IPv4 packet tag type
0 = ordered tags 2 = null tags
1 = atomic tags 3 = reserved

<5:4> NON_TAG R/W 0x0 0x0 Sets whether non-IP packet tag type
0 = ordered tags 2 = null tags
1 = atomic tags 3 = reserved

<3:0> GRP R/W 0x0 0x0 Core group number. Specifies the core group (0-15) to use for the work.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> QOS R/W 0x0 0x0 Diffserv QOS level. Specifies the Diffserv QOS level.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7:0> EN R/W 0x0 0x0 Indicates which bytes to include in the mask tag algorithm. It is broken into

four 16-entry masks to cover 128 bytes. The PIP_PRT_CFGn[TAG_INC] field
selects which of the four:

if PIP_PRT_CFG[TAG_INC] = 00, use registers 0–15
if PIP_PRT_CFG[TAG_INC] = 01, use registers 16–31
if PIP_PRT_CFG[TAG_INC] = 10, use registers 32–47
if PIP_PRT_CFG[TAG_INC] = 11, use registers 48–63

Bit [7] corresponds to the MSB and bit [0] corresponds to the LSB of the 8-
byte word.
318 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
7.8.1 PIP Statistics Counters

These counters work with RGMII ports: 0–2/PCI ports: 32–33.

Special Statistics Counter Behavior

1. Read and write operations must arbitrate for the statistics resources along with
the packet engines that are incrementing the counters. In order to not drop
packet information, the packet hardware is always a higher priority and the CSR
requests are only satisfied when there are idle cycles. This can potentially cause
long delays if the system becomes full.

2. Stat counters can be cleared in two ways.
a. If PIP_STAT_CTL[RDCLR] is set, all read accesses clear the register.
b. Any write to a stats register also resets the register to zero.

Note that the clearing operations must obey rule #1 above.

3. All counters are wrapping. Software must ensure they are read periodically.

PIP Port Status 0 Registers
PIP_STAT0_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 1 Registers
PIP_STAT1_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 2 Registers
PIP_STAT2_PRT(0..2, 32/33)

See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> DRP_PKTS R/W 0x0 — Inbound packets dropped by the IPD QOS widget per port
<31:0> DRP_OCTS R/W 0x0 — Inbound octets dropped by the IPD QOS widget per port

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:0> OCTS R/W 0x0 — Number of octets received by PIP (good and bad)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

63:32> PKTS R/W 0x0 — Number of packets processed by PIP.
<31:0> RAW R/W 0x0 — RAWFULL and RAWSCH packets without an L1/L2 error received by PIP

per port.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 319

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Port Status 3 Registers
PIP_STAT3_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 4 Registers
PIP_STAT4_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 5 Registers
PIP_STAT5_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 6 Registers
PIP_STAT6_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 7 Registers
PIP_STAT7_PRT(0..2, 32/33)

See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> BCST R/W 0x0 — Number of identified L2 broadcast packets. Does not include multicast
packets. Only includes packets whose parse mode is SKIP_TO_L2.

<31:0> MCST R/W 0x0 — Number of identified L2 multicast packets. Does not include broadcast
packets. Only includes packets whose parse mode is SKIP_TO_L2.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> H65to127 R/W 0x0 — Number of 65-to-127-byte packets.
<31:0> H64 R/W 0x0 — Number of 64-byte packets.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> H256to511 R/W 0x0 — Number of 256-to-511-byte packets.
<31:0> H128to255 R/W 0x0 — Number of 128-to-255-byte packets.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> H1024to1518 R/W 0x0 — Number of 1024-to-1518-byte packets
<31:0> H512to1023 R/W 0x0 — Number of 512-to-1023-byte packets

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> FCS R/W 0x0 — Number of packets with FCS or Align opcode errors
<31:0> H1519 R/W 0x0 — Number of 1519-to-max packets

NOTE: FCS is not checked on the PCI ports 32–35.
320 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
PIP Port Status 8 Registers
PIP_STAT8_PRT(0..2, 32/33)

See Table 7–6 for address.

PIP Port Status 9 Registers
PIP_STAT9_PRT(0..2, 32/33)

See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> FRAG R/W 0x0 — Number of packets with length < minimum and FCS error
<31:0> UNDERSZ R/W 0x0 — Number of packets with length < minimum

NOTE: FCS is not checked on the PCI ports 32–35.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> JABBER R/W 0x0 — Number of packets with length > maximum and FCS error
<31:0> OVERSZ R/W 0x0 — Number of packets with length > maximum

NOTE: FCS is not checked on the PCI ports 32–35.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 321

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): PIP Registers
7.8.2 PIP Inbound Statistics Registers

The inbound statistics registers collect all data sent to PIP from all the packet
interfaces, providing the raw counts of everything that comes into the block. The
counts reflect all error packets and packets dropped by the PKI RED engine.

These counts are intended for system debug, but could convey useful information in
production systems.

PIP Statistic Inbound Packets Registers
PIP_STAT_INB_PKTS(0..2, 32/33)

Inbound packets received by PIP per port. See Table 7–6 for address.

PIP Statistic Inbound Octets Registers
PIP_STAT_INB_OCTS(0..2, 32/33)

Inbound octets received by PIP per port. See Table 7–6 for address.

PIP Statistic Inbound Error Registers
PIP_STAT_INB_ERRS(0..2, 32/33)

Inbound error packets received by PIP per port. See Table 7–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> PKTS R/W 0x0 — Number of packets without errors received by PIP.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:0> OCTS R/W 0x0 — Total number of octets from all packets received by PIP.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> ERRS R/W 0x0 — Number of packets with errors received by PIP.
322 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
7.9 IPD Registers
The IPD registers are shown in See Table 7–7.

Table 7–7 IPD Registers

Register Address

CSR

Type1

1. NCB-type registers are accessed directly across the I/O Bus.

Detailed
Description

IPD_1ST_MBUFF_SKIP 0x00014F0000000000 NCB See page 324
IPD_NOT_1ST_MBUFF_SKIP 0x00014F0000000008 NCB See page 324
IPD_PACKET_MBUFF_SIZE 0x00014F0000000010 NCB See page 324
IPD_CTL_STATUS 0x00014F0000000018 NCB See page 325
IPD_WQE_FPA_QUEUE 0x00014F0000000020 NCB See page 326
IPD_PORT0_BP_PAGE_CNT
...
IPD_PORT2_BP_PAGE_CNT

0x00014F0000000028
...
0x00014F0000000038

NCB See page 326

IPD_PORT32_BP_PAGE_CNT
IPD_PORT33_BP_PAGE_CNT

0x00014F0000000128
0x00014F0000000130

NCB See page 326

IPD_SUB_PORT_BP_PAGE_CNT 0x00014F0000000148 NCB See page 326
IPD_1st_NEXT_PTR_BACK 0x00014F0000000150 NCB See page 327
IPD_2nd_NEXT_PTR_BACK 0x00014F0000000158 NCB See page 327
IPD_INT_ENB 0x00014F0000000160 NCB See page 327
IPD_INT_SUM 0x00014F0000000168 NCB See page 328
IPD_SUB_PORT_FCS 0x00014F0000000170 NCB See page 328
IPD_QOS0_RED_MARKS
...
IPD_QOS7_RED_MARKS

0x00014F0000000178
...
0x00014F00000001B0

NCB See page 328

IPD_PORT_BP_COUNTERS_PAIR0
...
IPD_PORT_BP_COUNTERS_PAIR2

0x00014F00000001B8
...
0x00014F00000001C8

NCB See page 329

IPD_PORT_BP_COUNTERS_PAIR32
IPD_PORT_BP_COUNTERS_PAIR33

0x00014F00000002B8
0x00014F00000002C0

NCB See page 329

IPD_RED_PORT_ENABLE 0x00014F00000002D8 NCB See page 329
IPD_RED_QUE0_PARAM
...
IPD_RED_QUE7_PARAM

0x00014F00000002E0
...
0x00014F0000000318

NCB See page 330

IPD_PTR_COUNT 0x00014F0000000320 NCB See page 330
IPD_BP_PRT_RED_END 0x00014F0000000328 NCB See page 331
IPD_QUE0_FREE_PAGE_CNT 0x00014F0000000330 NCB See page 331
IPD_CLK_COUNT 0x00014F0000000338 NCB See page 331
IPD_PWP_PTR_FIFO_CTL 0x00014F0000000340 NCB See page 331
IPD_PRC_HOLD_PTR_FIFO_CTL 0x00014F0000000348 NCB See page 332
IPD_PRC_PORT_PTR_FIFO_CTL 0x00014F0000000350 NCB See page 332
IPD_PKT_PTR_VALID 0x00014F0000000358 NCB See page 332
IPD_WQE_PTR_VALID 0x00014F0000000360 NCB See page 333
IPD_BIST_STATUS 0x00014F00000007F8 NCB See page 333
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 323

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD First Memory-Buffer Word-Skip Size Register
IPD_1ST_MBUFF_SKIP

The number of words that the IPD will skip when writing the first memory buffer
(MBUF). See Table 7–7 for address.

IPD Not First MBUF Word-Skip Size Register
IPD_NOT_1ST_MBUFF_SKIP

The number of words that the IPD will skip when writing any MBUF that is not the
first. See Table 7–7 for address.

IPD PACKET MBUF Size In Words Register
IPD_PACKET_MBUFF_SIZE

The number of words in a MBUF used for packet data store. See Table 7–7 for
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved
<5:0> SKIP_SZ R/W 0 0 The number of eight-byte words from the top of the first MBUF that the IPD

stores the next pointer. Legal values for this field are 0 to 32, but the
SKIP_SZ+18 ≤ IPD_PACKET_MBUFF_SIZE[MB_SIZE].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved
<5:0> SKIP_SZ R/W 0 0 The number of eight-byte words from the top of any MBUF that is not the

first MBUF that the IPD writes the next-pointer. Legal values are 0 to
IPD_PACKET_MBUFF_SIZE[MB_SIZE] − 16 (to a max of 32).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved
<11:0> MB_SIZE R/W 0x20 0x20 The number of eight-byte words in an MBUF. This must be a number in the

range of 32 to 2048. This is also the size of the FPA’s queue 0 free page.
324 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD Control Status Register
IPD_CTL_STATUS

The number of words in a MBUF used for packet data store. See Table 7–7 for
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:15> — RAZ — — Reserved.
<14> NO_WPTR R/W 0 0 When set, the WQE pointers are not used and the WQE is located at the

front of the packet.
<13> PQ_APKT R/W 0 0 When set, IPD_PORT_QOS_(0..31,128..159,256..319)_CNT is incremented

by one for each work queue entry that is sent to POW.
<12> PQ_NABUF R/W 0 0 When set, IPD_PORT_QOS_(0..31,128..159,256..319)_CNT is not

incremented when IPD allocates a buffer for a packet.
<11> IPD_FULL R/W 0 0 IPD full. When this bit is set to 1, the IPD drives the IPD_BUFF_FULL

line to the IOB arbiter, telling it to not give grants to I/O-bus devices
sending packet data; when it is clear to 0, the IPD acts normally.

<10> PKT_OFF R/W 0 0 Packet buffer off. When this bit is set to 1, the IPD does not buffer the
received packet data; when it is clear to 0, the IPD works normally,
buffering the received packet data.

<9> LEN_M8 R/W 0 1 Data length minus 8. When this bit is set to 1, 8 is subtracted from the
data-length field in the header written to the POW and the top of an
MBUFF.

The CN50XX generates a length that includes the length of the data plus 8
for the header field. By setting this bit, the 8 for the Instr field is not
included in the Length field of the header.

NOTE: When this bit is set, the CN50XX is compliant with the IPD
specification.

<8> RESET R/W 0 0 Reset. When set, causes a reset of the IPD, except RSL.
<7> ADDPKT R/W 0 0 Additional packet. When set to 1,

IPD_PORT_BP_COUNTERS_PAIRn[CNT_VAL] is incremented by one for
every work-queue entry that is sent to POW.

<6> NADDBUF R/W 0 0 When set to 1, IPD_PORT_BP_COUNTERS_PAIRn[CNT_VAL] is not
incremented when IPD allocates a buffer for a packet on the port.

<5> PKT_LEND R/W 0 0 Packet little-endian. Changes PKT to little-endian write operations to L2C.
<4> WQE_LEND R/W 0 0 Work-queue entry little-endian. Changes WQE to little-endian write

operations to L2C.
<3> PBP_EN R/W 0 0 Port backpressure enable. When set, enables the sending of port-level

backpressure to the OCTEON Plus input ports. Once enabled, the sending
of port-level backpressure can not be disabled by changing the value of this
bit. GMX_INF_MODE[EN] must be set to 1 for each packet interface that
requires port backpressure prior to setting PBP_EN to 1.

<2:1> OPC_MODE R/W 0x0 0x0 Select the style of write to the L2C.
0 = all packet data and next-buffer pointers are written through to
memory.
1 = all packet data and next-buffer pointers are written into the cache.
2 = the first aligned cache block holding the packet data and initial

next-buffer pointer is written to the L2 cache. All remaining cache
blocks are not written to the L2 cache.

3 = the first two aligned cache blocks holding the packet data and
initial next-buffer pointer is written to the L2 cache. All remaining
cache blocks are not written to the L2 cache.

<0> IPD_EN R/W 0 0 IPD enable. When set to 1, enables the operation of the IPD. When clear to
0, the IPD appears to the IOB arbiter to be applying backpressure, which
causes the IOB arbiter to not send grants to I/O-bus devices requesting to
send packet data to the IPD.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 325

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD Work-Queue Entry FPA Page Size Register
IPD_WQE_FPA_QUEUE

Specifies from which FPA queue (0-7) to fetch page pointers for work-queue entries.
See Table 7–7 for address.

IPD Port Backpressure Page-Count Registers
IPD_PORT(0..2, 32/33)_BP_PAGE_CNT

Specifies the maximum number of pages the port may use before backpressure (BP)
is applied to the port. BP is applied once the maximum is exceeded. See Table 7–7 for
address.

IPD Subtract Port Backpressure Page-Count Register
IPD_SUB_PORT_BP_PAGE_CNT

Supplies a 2’s-complement value that is added to the indicated port’s page-count
register, with the net result of the page count lowered. The value should be the 2’s
complement of the value that needs to be subtracted. Users would add 2’s
complement values to the IPD_PORTn_BP_PAGE_CNT register to return MBUFs
(i.e. lower the count) to the counter in order to avoid port-level backpressure being
applied to the port. Backpressure is applied when the MBUF-used count of a port
exceeds the value in the IPD_PORTn_BP_PAGE_CNT. See Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> WQE_QUE R/W 0 0 Specifies the FPA queue from which to fetch page-pointers for work-queue

entries.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved
<17> BP_ENB R/W 0 0 Backpressure enable: 1 = BP will be applied, 0 = BP will not be applied to

port.
<16:0> PAGE_CNT R/W 0x0 0x0 The maximum number of page pointers assigned to the port, which, when

exceeded, will cause BP to be applied to the port. This value is in 256 page-
pointer increments, (i.e. 0x0 = 0 page pointers, 0x1 = 256 page pointers,
0x2 = 512 page pointers, etc.)

NOTE: This register can’t be written from the PCI via a window write.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:31> — RAZ — — Reserved
<30:25> PORT R/W 0x0 0x0 The port whose page-count register receives the PAGE_CNT field.
<24:0> PAGE_CNT R/W 0x0 0x0 The number of page pointers to add to the port counter pointed to by the

PORT field.
326 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD First Next Pointer Back Values Register
IPD_1ST_NEXT_PTR_BACK

Contains the BACK field used to create the next pointer header for the first MBUF.
See Table 7–7 for address.

IPD Second Next Pointer Back Value Register
IPD_2ND_NEXT_PTR_BACK

Contains the BACK field for use in creating the next pointer header for the first
MBUF. See Table 7–7 for address.

IPD Interrupt Enable Register
IPD_INT_ENB

Used to enable the various interrupting conditions of IPD. See Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3:0> BACK R/W 0x0 0 Used to find head of buffer from the next pointer header.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3:0> BACK R/W 0x0 0 Used to find head of buffer from the next pointer header.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved
<11> PQ_SUB R/W 0 0 Enables an interrupt when a port-QOS does a subtract to the count that

causes the counter to wrap.
<10> PQ_ADD R/W 0 0 Enables an interrupt when a port-QOS does an add to the count that causes

the counter to wrap.
<9> BC_OVR R/W 0 0 Enables interrupt when the byte-count to the IOB overflows.
<8> D_COLL R/W 0 0 Enables interrupt when the packet/WQE data to IOB collides.
<7> C_COLL R/W 0 0 Enables interrupt when the packet/WQE commands to IOB collide.
<6> CC_OVR R/W 0 0 Enables interrupt when the command credits to the IOB overflow.
<5> DC_OVR R/W 0 0 Enables interrupt when the data credits to the IOB overflow.
<4> BP_SUB R/W 0 0 Enables interrupts when a backpressure subtract has an illegal value.
<3> PRC_PAR3 R/W 0 0 Enables parity error interrupts for bits [127:96] of the PBM memory.
<2> PRC_PAR2 R/W 0 0 Enables parity error interrupts for bits [95:64] of the PBM memory.
<1> PRC_PAR1 R/W 0 0 Enables parity error interrupts for bits [63:32] of the PBM memory.
<0> PRC_PAR0 R/W 0 0 Enables parity error interrupts for bits [31:0] of the PBM memory.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 327

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD Interrupt Summary Register
IPD_INT_SUM

Fields are set when an interrupt condition occurs, write 1 to clear. See Table 7–7 for
address.

IPD Subtract Ports FCS Register
IPD_SUB_PORT_FCS

When a bit is set, the port corresponding to the set bit position subtracts four bytes
from the end of the packet. See Table 7–7 for address.

IPD QOS (0..7) Marks Red High/Low Registers
IPD_QOS(0..7)_RED_MARKS

Set the pass-drop marks for QOS level. See Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved
<11> PQ_SUB R/W1C 0 0 Set when a port-QOS does a subtract to the count that causes the counter

to wrap.
<10> PQ_ADD R/W1C 0 0 Set when a port-QOS does an add to the count that causes the counter to

wrap.
<9> BC_OVR R/W1C 0 0 Set when the byte-count to the IOB overflows.
<8> D_COLL R/W1C 0 0 Set when the packet/WQE data to IOB collides.
<7> C_COLL R/W1C 0 0 Set when the packet/WQE commands to IOB collide.
<6> CC_OVR R/W1C 0 0 Set when the command credits to the IOB overflow.
<5> DC_OVR R/W1C 0 0 Set when the data credits to the IOB overflow.
<4> BP_SUB R/W1C 0 0 Set when a backpressure subtract is done with a supplied illegal value.
<3> PRC_PAR3 R/W1C 0 0 Set when a parity error is detected for bits [127:96] of the PBM memory.
<2> PRC_PAR2 R/W1C 0 0 Set when a parity error is detected for bits [95:64] of the PBM memory.
<1> PRC_PAR1 R/W1C 0 0 Set when a parity error is detected for bits [63:32] of the PBM memory.
<0> PRC_PAR0 R/W1C 0 0 Set when a parity error is detected for bits [31:0] of the PBM memory.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ — — Reserved
<39:36> PORT_BIT2 R/W 0xF 0xF When a bit is set, the port corresponding to the bit position

set subtracts the FCS for packets on that port.
<35:32> — RAZ — — Reserved
<31:0> PORT_BIT R/W 0xFFFFFFFF 0xFFFFFFFF When a bit is set, the port corresponding to the bit position

set subtracts the FCS for packets on that port.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> DROP R/W 0x0 — Packet will be dropped if the average queue size is equal to or less than this
value.

<31:0> PASS R/W 0x0 0 Packet will be passed if the average queue size is larger than this value.
328 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
MBUF Counters Port Registers
IPD_PORT_BP_COUNTERS_PAIR(0..2, 32/33)

Ports used to generate backpressure per-port. See Table 7–7 for address.

IPD RED Port Enable Register
IPD_RED_PORT_ENABLE

Set the pass-drop marks for QOS level. See Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:25> — RAZ — — Reserved
<24:0> CNT_VAL RO 0x0 — Number of MBUFs being used by data on this port.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:50> PRB_DLY R/W 0x0 0x0 Pass-drop probability delay. The number of core-clock cycles to wait
([PRB_DLY + 68] × 8) before calculating the new packet-drop probability for
each QOS level.

<49:36> AVG_DLY R/W 0x0 — Average-queue-size delay. The number of core-clock cycles to wait
([AVG_DLY + 10] × 8) before calculating the moving average for each QOS
level.

Larger AVG_DLY values cause the moving averages of all QOS levels to
track changes in the actual free space more slowly. Smaller
IPD_RED_QUEn_PARAM[NEW_CON] (and larger
IPD_RED_QUEn_PARAM[AVG_CON]) values can have a similar effect, but
only affect an individual QOS level, rather than all.

<35:0> PRT_ENB R/W 0x0 0x0 Port enable. Any bit that is set enables the corresponding port’s ability to
have packets dropped by RED probability.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 329

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD RED Queue(0..7) Parameters Registers
IPD_RED_QUE(0..7)_PARAM

The parameter values that control the passing and dropping of packets by the RED
engine for QOS level n. See Table 7–7 for address.

IPD Page Pointer Count Register
IPD_PTR_COUNT

Shows the number of work-queue entries and packet page pointers stored in the IPD.
See Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:49> — RAZ — — Reserved.
<48> USE_PCNT R/W 0 0 Use packet/page count. When this bit is set, RED uses the actual packet-

page count in place of the average for RED calculations.
<47:40> NEW_CON R/W 0x0 0x0 This value is used control how much of the present actual queue size is used

to calculate the new average queue size. The value is a number from 0 to
256, which represents
NEW_CON/256 of the actual queue size that is used in the calculation. The
number in this field plus the value of AVG_CON must be equal to 256.

Larger IPD_RED_PORT_ENABLE[AVG_DLY] values cause the moving
averages of all QOS levels to track changes in the actual free space more
slowly. Smaller NEW_CON (and larger AVG_CON) values can have a
similar effect, but only affect an individual QOS level, rather than all.

<39:32> AVG_CON R/W 0x0 0x0 This value is used control how much of the present average queue size is
used to calculate the new average queue size. The value is a number from 0
to 256, which represents AVG_CON/256 of the average queue size that will
be used in the calculation. The number in this field plus the value of
NEW_CON must be equal to 256.

Larger IPD_RED_PORT_ENABLE[AVG_DLY] values cause the moving
averages of all QOS levels to track changes in the actual free space more
slowly. Smaller NEW_CON (and larger AVG_CON) values can have a
similar effect, but only affect an individual QOS level, rather than all.

<31:0> PRB_CON R/W 0x0 0x0 Used in computing the probability of a packet being passed or drop by the
WRED engine. The field is calculated to be

(255 × 224)/(PASS-DROP)

where PASS and DROP are the field from the IPD_QOSn_RED_MARKS
register.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:19> — RAZ — — Reserved
<18> PKTV_CNT RO 0 0 Packet pointer valid.
<17> WQEV_PCNT RO 0 0 Work-queue-entry pointer valid. This value is 1 when a work-queue entry

is being held for use by the IPD. The value of this field should be added to
the value of WQE_PCNT for a total count of the work-queue-entry page
pointers being held by IPD.
When IPD_CTL_STATUS[NO_WPTR] is set, this field represents a
packet pointer, not a WQE pointer.

<16:14> PFIF_CNT RO 0x0 0x0 PFIF count. (PKT_PCNT + PFIF_CNT + 16) is the number of packet page
pointers in IPD.

<13:7> PKT_PCNT RO 0x0 0x0 Packet count. (PKT_PCNT + PFIF_CNT + 16) is the number of packet
page pointers in IPD.

<6:0> WQE_PCNT RO 0x0 0x0 Number of page pointers for work-queue-entry storage that are buffered
in the IPD.
330 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD Backpressure Port RED-Enable Register
IPD_BP_PRT_RED_END

When IPD applies backpressure to a port and the corresponding enable bit in this
register is set, the RED unit will drop packets for that port. See Table 7–7 for
address.

IPD Queue0 Free Page Count Register
IPD_QUE0_FREE_PAGE_CNT

The number of free-page pointers that are available for use in the FPA for Queue 0.
See Table 7–7 for address.

IPD Clock Count Register
IPD_CLK_COUNT

This register counts the number of core-clock cycles since the deassertion of reset.
See Table 7–7 for address.

IPD PWP Pointer FIFO Control Register
IPD_PWP_PTR_FIFO_CTL

This register allows reading of the page pointers stored in the IPD PWP FIFO. See
Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ — — Reserved
<39:0> PRT_ENB R/W 0x0 0x0 Port enable. The ports corresponding to set bit positions in this field allow

RED to drop back when port-level backpressure is applied to the port. The
applying of port-level backpressure for this RED dropping does not take
into consideration the value of IPD_PORTn_BP_PAGE_CNT[BP_ENB].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> Q0_PCNT RO 0x0 0x0 Queue 0 page-pointer count. The number of Queue 0 page pointers available.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> CLK_CNT RO 0x0 0x0 Clock count. This counter is cleared to 0x0 when reset is applied and
increments on every rising edge of the core clock.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:61> — RAZ — — Reserved.
<60:54> MAX_CNTS RO 0x8 0x8 Maximum count. Maximum number of packet pointers or WQE pointers

that could be in the FIFO.

When IPD_CTL_STATUS[NO_WPTR] is set, this field only represents the
maximum number of packet pointers; WQE-Pointers are not used in this
mode.

<53:46> WRADDR RO — — WQE read address. The current FIFO work-queue-entry read address.
<45:38> PRADDR RO — — Packet read address. The current FIFO packet read address.
<37:9> PTR RO — — The output of the PWP_FIFO.
<8> CENA R/W 1 1 Low-active chip enable to the read port of the PWP_FIFO. This field also

controls the multiplexer select that steers RADDR to the PWP_FIFO.

WARNING:Setting this field to 0 allows reading of the memories through
the PTR field, but causes unpredictable operation of the IPD
under normal operation.

<7:0> RADDR R/W 0x0 0x0 Sets the address to read from in the PWP_FIFO. Addresses 0 through 63
contain packet pointers while addresses 64 through 127 contain WQE
pointers.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 331

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD PRC Holding Pointer FIFO Control Register
IPD_PRC_HOLD_PTR_FIFO_CTL

This register allows reading of the page pointers stored in the IPD PRC holding
FIFO. See Table 7–7 for address.

IPD PRC Port Pointer FIFO Control Register
IPD_PRC_PORT_PTR_FIFO_CTL

This register allows reading of the page pointers stored in the IPD PRC port FIFO.
See Table 7–7 for address.

IPD Packet Pointer Valid Register
IPD_PKT_PTR_VALID

This register contains the value of the fetched packet pointer. See Table 7–7 for
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:39> — RAZ — — Reserved.
<38:36> MAX_PKT RO 0x5 0x5 Maximum packet count. Maximum number of packet pointers that could be

in the FIFO.
<35:33> PRADDR RO — — Packet read address. The current packet pointer read address.
<32:4> PTR RO — — The output of the PRC holding FIFO.
<3> CENA R/W 1 1 Low-active chip enable that controls the multiplexer select that steers

RADDR to the holding FIFO.

WARNING:Setting this field to 0 allows reading of the memories through
the PTR field, but causes unpredictable operation of the IPD
under normal operation.

<2:0> RADDR R/W 0x0 0x0 Sets the address to read from in the holding FIFO in the PRC. This FIFO
holds packet pointers to be used for packet-data storage.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:44> — RAZ — — Reserved.
<43:37> MAX_PKT RO 0x10 0x10 Maximum packet. Maximum number of packet pointers that are in the

FIFO.
<36:8> PTR RO — — The output of the PRC port pointer FIFO.
<7> CENA R/W 1 1 Low-active chip enable to the read port of the PWP_FIFO. This field also

controls the multiplexer select that steers RADDR to the PWP_FIFO.

WARNING:Setting this field to 0 allows reading of the memories through
the PTR field, but causes unpredictable operation of the IPD
under normal operation.

<6:0> RADDR R/W 0x0 0x0 Sets the address to read from in the port FIFO in the PRC. This FIFO holds
packet pointers to be used for packet-data storage.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved.
<28:0> PTR RO — — Packet pointer value.
332 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
IPD Work-Queue Entry Pointer Valid Register
IPD_WQE_PTR_VALID

This register contains the value of the fetched work-queue-entry pointer. See Table
7–7 for address.

IPD BIST STATUS Register
IPD_BIST_STATUS

This register is the BIST status for IPD memories. See Table 7–7 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved.
<28:0> PTR RO — — Work-queue-entry pointer value.

When IPD_CTL_STATUS[NO_WPTR] is set, this field represents a packet
pointer, not a WQE pointer.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved
<17> CSR_MEM RO 0 0 CSR Register Memory Bist Status.
<16> CSR_NCMD RO 0 0 CSR IOB Commands Memory Bist Status.
<15> PWQ_WQED RO 0 0 PWQ PIP WQE DONE memory BIST status.
<14> PWQ_WP1 RO 0 0 PWQ WQE PAGE1 PTR memory BIST status.
<13> PWQ_POW RO 0 0 PWQ POW MEM memory BIST status.
<12> IPQ_PBE1 RO 0 0 IPQ PBE1 memory BIST status.
<11> IPQ_PBE0 RO 0 0 IPQ PBE0 memory BIST status.
<10> PBM3 RO 0 0 PBM3 memory BIST status.
<9> PBM2 RO 0 0 PBM2 memory BIST status.
<8> PBM1 RO 0 0 PBM1 memory BIST status.
<7> PBM0 RO 0 0 PBM0 memory BIST status.
<6> PBM_WORD RO 0 0 PBM_WORD memory BIST status.
<5> PWQ1 RO 0 0 PWQ1 memory BIST status.
<4> PWQ0 RO 0 0 PWQ0 memory BIST status.
<3> PRC_OFF RO 0 0 PRC_OFF memory BIST status.
<2> IPD_OLD RO 0 0 IPD_OLD memory BIST status.
<1> IPD_NEW RO 0 0 IPD_NEW memory BIST status.
<0> PWP RO 0 0 PWP memory BIST status.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 333

 Packet Input Processing/Input Packet Data Unit (PIP/IPD): IPD Registers
334 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 8

Packet Output Processing Unit (PKO)
This chapter contains the following subjects:

● Overview

● Output Ports

● PKO Output Queue

● PKO Commands

● PKO Queue Arbitration Algorithm

● PKO Don’t-Write-Back (DWB) Calculation

● PKO Performance

● PKO Operations

● PKO Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY335

 Packet Output Processing Unit (PKO):
Overview

This chapter discusses the CN50XX centralized packet-output processing (PKO) unit.
It gathers packet data from L2/DRAM and sends it out on any/all of the RGMII or
PCI interfaces. It can have a combined total of up to 5 output ports for sending
packets between all these destinations. This effectively means that PKO supports a
total of up to 5 simultaneous in-flight packets. The packets sent out to the different
ports share some of the same PKO hardware resources, but logically the PKO unit
treats the different in-flight packets independently.

The PKO unit supports up to 32 queues to buffer the packets to be sent out to the 5
available hardware ports. Figure 8–1 shows the conceptual architecture. Each port
can have a variable number of queues attached to it, up to a maximum of 16, that
must be contiguous.

Figure 8–2 shows the PKO unit internal architecture in more detail. The packet data
and queue commands enter the unit from L2/DRAM via the PKOB bus. The PKO
unit buffers the packet data and transfers it to the RGMII or PCI output ports via the
POB bus.

Figure 8–1 PKO Conceptual Architecture

Figure 8–2 PKO Internal Architecture

5
Output
Ports

32
Output
Queues

IOBI

IOBO

POB

To IOB PKOB

Backpressure

Per-Port State

Per-Q State

Perf Counts

64

Doorbell Count
Q Chunk Ptr

To FPA, FAU, POW

32 Command Queues

64

5 × 1.5KB L4 Chksum

PKO
336 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
下划线

Packet Output Processing Unit (PKO): Output Ports
Each output queue is a chunked list of commands in L2/DRAM. Each packet transfer
is one command in an output queue. The core software writes a queue doorbell
register inside the PKO unit after it adds commands to a queue. These doorbell
writes arrive at the PKO unit via the IOBO bus. The PKO hardware reads commands
from L2/DRAM and can cache four (or more) commands per queue inside the unit.
The PKO unit performs a mixed weighted-fair/static-priority arbitration among
queues to select packets to send out a port. The PKO unit also obeys per-port back-
pressure indications (from the RGMII and PCI interfaces) when transferring packet
data out the POB bus.

The PKO unit also contains hardware to calculate the L4 checksum for a flexibly-
positioned IP TCP/UDP packet. When this checksum option is selected for a packet,
the PKO unit can often buffer an entire packet in its internal store before inserting
the checksum as it sends the packet out the POB bus. The internal store is 7.5 KB,
giving 1.5 KB of internal store per port. The PKO hardware only reads the packet
data from L2/DRAM once to send out a packet, unless it is directed to calculate the
checksum for a TCP/UDP packet that is too large to fit in the internal buffering for a
port.

The PKO unit has both a linked mode and a true-gather mode that can construct full
packets from multiple packet segments in L2/DRAM, and can optionally (on a per-
segment basis) free up the buffers containing the packet data and/or gather list after
sending a packet. The PKO unit is bi-endian and supports L2 cache bypass on a
packet-by-packet basis. The PKO unit frees queue chunks/buffers after it reads all
the command words from the chunk. All these gather/packet/chunk buffer frees exit
the PKO unit by the IOBI bus.

The queue commands can optionally direct PKO to perform up to two Fetch-and-Add
(FAU) register decrements after sending a packet. They can also direct PKO to either
submit a work queue entry or write an L2/DRAM byte to zero. All of these operations
require IOBI bus transactions.

8.1 Output Ports

The PKO unit sends packets to up to 5 output ports numbered as follows:

● PKO ports 0–2 = packet interface 0 ports 0–2
● PKO ports 32–33 = PCI interface ports 0–1

The packet interface may not use all the available ports allocated to it. When an
interface uses fewer ports, only the lower port numbers exist.

The PKO unit treats all ports identically.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 337

Owner
下划线

Owner
下划线

 Packet Output Processing Unit (PKO): Output Packet Format and TCP/UDP Checksum Insertion
8.2 Output Packet Format and TCP/UDP Checksum Insertion

Figure 8–3 shows the format requirements for packets entering and exiting the PKO
unit.

If the command for a packet does not direct the PKO unit to calculate a TCP/UDP
checksum, there is no format requirement. The PKO unit simply interprets the
output packet data as a byte stream. The packet may actually contain an L2 header,
an IP packet, and other fields, but the PKO unit does not interpret them.

If the command for a packet directs the PKO unit to calculate a TCP/UDP checksum,
the command also contains a field (IPoffp1) that indicates the first byte of the IP
packet. The following are the requirements to use the PKO unit TCP/UDP L4
checksum generation:

● The IP must be TCP or UDP (i.e. the protocol/next_header field must be either
TCP (6) or UDP (17)) and must entirely reside in this packet. The IP can be
followed by a trailer.

● If IPv4, the packet must not have options and must not be a fragment (i.e. HLEN
must equal 5 and both MF and offset must be zero).

● If IPv6, the packet must not have any extension headers prior to the TCP/UDP
header (i.e. the next_header field in the IPv6 header must be either TCP (6) or
UDP (17)).

● In the UDP case, the PKO unit uses the UDP header length field to calculate the
checksum, so the UDP length value must be legal (e.g. it must not indicate that
the UDP data is longer than the IP length allows).

Figure 8–3 Format Requirements for Packets

Uninterpreted

IP
IP need only be present
when IPoffp1 ≠ 0

(IPoffp1 − 1) bytes Uninterpreted

Length in IP header
338 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Packet Output Processing Unit (PKO): PKO Output Queue
8.3 PKO Output Queue

Figure 8–4 shows the structure of each output queue. Each output queue is a linked-
list of chunks, or buffers. Software allocates these chunks and the PKO hardware
frees them. The PKO hardware reads words from the output queue (starting at the
tail), and traverses the next chunk buffer pointer to the next chunk when it reaches
the last word of a chunk. When the PKO hardware jumps chunks like this, it frees
the earlier chunk/buffer to the FPA hardware-managed pool selected by the
PKO_REG_CMD_BUF[POOL] CSR.

The PKO_REG_CMD_BUF[SIZE] CSR indicates the size of a chunk. Figure 8–4
shows an example where the chunk size is 16 64-bit words, the minimum legal value.
The final word in a chunk is a next chunk buffer ptr, but all other words are valid
command words. Each command has the information the PKO hardware needs to
send out a single packet. This example shows ten commands, or ten packets, in the
output queue. The commands are numbered from 0 to 9, with smaller numbers for
the older commands. The packets for the older commands are sent first. Every
command is either two or three words. Note that the words of an individual command
may straddle a chunk boundary. This happens for commands 1 and 8 in Figure 8–4.

The PKO hardware maintains the tail pointer for the queue and the core software
maintains the head pointer. To insert a packet into a queue, software must first write
the command words for the packet into the queue, allocating chunks if necessary, and
then write the PKO doorbell address for the queue with the number of words added
to the queue. (“PKO Operations” on page 349 describes the store operations to the
PKO unit that are a doorbell write.) Software must guarantee that L2/DRAM
contains the number of words indicated in the doorbell write before the doorbell write
reaches the PKO.

Figure 8–4 Structure of Output Queue

Command 1 Word 1
Command 1 Word 2
Command 2 Word 0
Command 2 Word 1
Command 3 Word 0
Command 3 Word 1
Command 4 Word 0
Command 4 Word 1
Command 5 Word 0
Command 5 Word 1
Command 6 Word 0
Command 6 Word 1
Command 7 Word 0
Command 7 Word 1
Command 8 Word 0

Next Chunk/Buffer PtrNext Chunk/Buffer Ptr
Command 1 Word 0
Command 0 Word 1
Command 0 Word 0

Command 8 Word 1
Command 9 Word 0
Command 9 Word 1
Command 9 Word 2

Boot-time seeded by a write operation to
PKO_MEM_QUEUE_PTRS[BUF_PTR]

Chunk/BufferChunk/Buffer Chunk/Buffer

PKO Hardware
Tail Pointer

Software
Head

Pointer

64 bits 64 bits 64 bits

P
KO

_R
E

G
_C

M
D

_B
U

F[
S

IZ
E]

PK
O

_R
EG

_C
M

D
_B

U
F[

S
IZ

E
]

P
KO

_R
E

G
_C

M
D

_B
U

F[
S

IZ
E

]

Next Chunk/Buffer Ptr MBZ Addr
0394063
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 339

Owner
下划线

Owner
下划线

Owner
下划线

 Packet Output Processing Unit (PKO): PKO Commands
The distance between the head pointer and the tail pointer is both the size of the
output queue and the outstanding doorbell count. The size of the output queue is
limited only by the available memory and the 20-bit outstanding doorbell counter for
a queue. Core software must guarantee that each queue is smaller than 220 words.

Note that the PKO hardware may read the next chunk buffer ptr as soon as the
doorbell count indicates that the next-to-last word in a chunk contains a valid
command word. This implies that software must allocate the next chunk buffer, and
set the next chunk buffer ptr in the prior chunk to point to it, as soon as it writes the
next-to-last chunk word.

Software can “ring the doorbell” with any number of command words. Software can
issue a doorbell write for each individual command word, or can issue exactly one
doorbell write for each command, or can accumulate the words from multiple
commands into a single doorbell write. The only requirements are that the number of
valid command words in the queue must be at least as large as the doorbell count,
and the next chunk buffer pointers interspersed among the words must also be set up
properly. Section 8.8 describes the operations needed to ring the queue doorbells.

Figure 8–4 shows only a single output queue. The PKO hardware can manage 32
possible output queues. The command cache is 8words per queue.

At boot time, software must configure each queue with the original next chunk buffer
pointer (i.e. the starting tail pointer) and must attach a queue to a port. This is done
with writes to the PKO_MEM_QUEUE_PTRS CSR. This configuration can attach
from one to eight queues to a given output port. All queues attached to a single port
must have contiguous queue IDs, but otherwise there are no queue/port attachment
constraints. Software must supply both the queue ID and its attached port ID with
each doorbell write operation.

Figure 8–4 also shows the next chunk buffer pointer format. The primary component
is the Addr field that selects a legal L2/DRAM byte location. Though Addr is a byte
address, it must be naturally aligned on a 128-byte cache block boundary, so its least-
significant seven bits must be 0x0.

8.4 PKO Commands

The PKO reads packets from L2/DRAM memory and passes them out a port
whenever one of the queues attached to the port have valid commands. Each
command can individually specify whether the PKO hardware should calculate and
insert the IP TCP/UDP checksum.

Each command can also specify either linked or gather mode to construct the packet.
In either case, the PKO hardware reads the packet segments from L2/DRAM, and
can also optionally free the buffers containing the segments to one of the eight
available hardware-managed free pools. (See “Free Pool Unit (FPA)” on page 253.)
The free pool selection and the decision whether to free the buffer containing a
segment can be on a segment-by-segment basis. A command can also specify whether
to free buffers on a command-by-command basis.

Figure 8–5 shows an example of usage of the linked packet construction mode. This
example shows a packet consisting of three segments. A segment is simply
contiguous packet bytes which, except for the last segment, must be preceded by a
64-bit pointer to the next segment. In the example, the entire packet is the
concatenation of all of segment 0, all of segment 1, and the first bytes of segment 2.
340 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Packet Output Processing Unit (PKO): PKO Commands
Figure 8–5 also shows the format of the 64-bit segment pointer. It has the byte
address (Addr), the size in bytes (size), the hardware free pool (Pool), the distance
from the start of the segment to the start of the buffer (Back), and free selection bit
(I) for the next segment. This segment pointer format matches the format of WORD 1
in the command and is described below.

In linked mode, the segment pointer in WORD 1 of the command must be naturally-
aligned on a 64-bit boundary. All other segment pointers precede the start of the
segment data by exactly eight bytes and so are not aligned on a 64-bit boundary
when the segment start is not aligned on a 64-bit boundary.

Figure 8–6 shows the same packet example as Figure 8–5, but it shows the packet
segments connected with gather mode rather than linked mode.

Figure 8–5 Usage of the Linked Packet Construction Mode

63 6259 5856 5540 390

I Back Pool Size Addr

Segment Ptr 1

Segment 0
Bytes

Segment 2
Bytes

Unused Bytes

Segment Ptr 2

Segment 1
Bytes

Buffer
Buffer

64 Bits

64 Bits

PKO Command
WORD 1

Segment Ptr 0

Segment Ptr

Figure 8–6 Packet Segments Connected with Gather Mode

Segment 0
Bytes

Segment 2
Bytes

Unused Bytes

Segment 1
BytesSegment Ptr 0

Segment Ptr 1
Segment Ptr 2

Buffer

Buffer

Buffer

64 Bits

64 Bits

64 Bits

PKO Command
WORD 1

Gather List Ptr
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 341

 Packet Output Processing Unit (PKO): PKO Commands
Gather mode is different from linked mode in the following three ways:

● There need not be any segment pointers preceding any segment data.
● Instead, all segment pointers are contained in a gather list. The gather list (i.e.

all segment pointers) must be aligned on a 64-bit boundary. The buffer containing
a gather list can be freed just like the buffer containing any segment can be freed.

● WORD 1 of the command points indirectly to the gather list rather than directly
to the first segment. The format of this gather list pointer is similar to a segment
pointer.

Note the distinction between a segment and a buffer in Figures 8–5 and 8–6. Buffers
that the PKO hardware frees must start on a 128 byte boundary and be at least 128
bytes. A segment can be as small as one byte and can start on any byte alignment.
Multiple segments may reside in a single buffer. The first and last segment in Figure
8–5 share the same buffer, and the second segment resides in a different buffer.
Segments can share buffers freely, but when they do, software must guarantee that
the PKO hardware does not free a buffer before reading all segments contained in the
buffer. When the command/buffer pointer directs the PKO hardware to free the
buffer containing a segment, PKO may free the buffer immediately after it reads the
segment. This implies that when multiple segments share a buffer, only the last
segment in the list (in both linked and gather mode) can direct the PKO to free the
buffer.

The last segment is special in both linked and gather modes. First, in linked mode, a
segment pointer need not precede the last segment. The field does not need to exist,
and the PKO hardware will never read it. Second, in both linked and gather mode,
the last segment may be larger than needed to contain the packet. The total bytes
field in the command determines the number of bytes in the packet. The PKO
hardware uses this field to determine when to stop taking bytes from the last
segment. This total bytes field must be larger than the sum of the sizes of the
segments other than the last, and less than or equal to the sum of the sizes of all
segments including the last. In other words, the last segment must hold at least one
byte of the packet.

Figures 8–5 and 8–6 show PKO in the default big-endian mode. PKO also supports
full little-endian mode on a packet-by-packet basis. In little-endian mode, the
following apply:

● The output queue and commands, segment pointers, and gather-list formats are
unchanged.

● The Addr field of a segment pointer is a little-endian byte pointer rather than a
big-endian one.

● Segment bytes are fetched from L2/DRAM in little-endian format rather than
big-endian format.

● Unaligned segment pointers (in linked-packet mode) must be in correct little-
endian format, eight bytes prior to the segment bytes (i.e. the least-significant
eight bytes of the pointer are first, the next least-significant bytes are next, etc.).

Each command may individually specify that the PKO hardware complete up to
three additional operations after it sends the packet out the port:

● Decrement up to two Fetch-and-Add (FAU) registers. The particular register, the
size of the decrement operation (64, 32, 16, or 8-bits), and the decrement amount
(either one or the packet (i.e. WORD0[Total Bytes]) size in bytes) can be specified
individually for each decrement. With these operations, software can maintain
accurate queue sizes (bytes and/or packets) for each queue in selected FAU
registers.

● Either:
write an L2/DRAM byte to zero, or
342 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Packet Output Processing Unit (PKO): PKO Commands
submit a work queue entry

With the L2/DRAM write, software can poll until the PKO hardware sends a packet.
The work queue entry is pre-constructed by software, so can cause the software to
perform arbitrary tasks.

Figure 8–7 shows the format of commands in the PKO output queues. Every
command is either two or three 64-bit words. The last word only exists when
WORD0[R] is set.

The WORD1 format matches the segment pointer format shown in Figure 8–5,
though WORD1 is a gather list pointer rather than a segment pointer when
WORD0[G] is set. The description of the WORD1 fields describe all their uses.

The remainder of this section provides descriptions of each field in the command.

WORD0[SZ1] Size of the WORD0[Reg1] FAU subtract (0 = 8-bit, 1 = 16-bit, 2 = 32-bit, 3 = 64-bit)
that can follow a packet send. Must be zero when WORD0[Reg1] is zero.

WORD0[SZ0] Size of the WORD0[Reg0] FAU subtract (0 = 8-bit, 1 = 16-bit, 2 = 32-bit, 3 = 64-bit)
that can follow a packet send. Must be zero when WORD0[Reg0] is zero.

WORD0[S1] If set, the WORD0[Reg1] FAU subtract value is 1, else the WORD0[Reg1] subtract
value is WORD0[Total Bytes]. Must be zero when WORD0[Reg1] is zero.

WORD0[Reg1] If non-zero, PKO subtracts from the WORD0[Reg1] FAU register after it sends the
packet. If WORD0[Reg1] is zero, PKO does not subtract from WORD0[Reg1] after it
sends the packet. WORD0[Reg1] is a byte address in the FAU register file, and must
be naturally-aligned based on SZ1. (i.e. The WORD0[SZ1] least-significant bits of
WORD0[Reg1] must be zero.)

When IOB_CTL_STATUS[PKO_ENB] is clear, WORD0[Reg1] is a big-endian
pointer; when it is set, WORD0[Reg1] is a little-endian pointer

WORD0[S0] If set, the WORD0[Reg0] FAU subtract value is 1, else the WORD0[Reg0] subtract
value is WORD0[Total Bytes]. Must be zero when WORD0[Reg0] is zero.

WORD0[Reg0] If non-zero, PKO subtracts from the WORD0[Reg0] FAU register after it sends the
packet. If WORD0[Reg0] is zero, PKO does not subtract from WORD0[Reg0] after it
sends the packet. WORD0[Reg0] is a byte address in the FAU register file, and must
be naturally-aligned based on SZ0. (i.e. The WORD0[SZ0] least-significant bits of
WORD0[Reg0] must be zero.)

Figure 8–7 Format of Commands in the PKO Output Queues

WORD1 is an ordinary
segment pointer when
WORD0[G] is clear

WORD2 exists only
when WORD0[R] is set.

63 62 59 58 56 55 40 39 36 35 0

I Back Pool Size Reserved
0000 Addr

63 62 6160 59 58 48 47 46 36 35 34 33 32 31 30 24 23 22 21 16 15 0

SZ1 SZ0 S1 Reg1 S0 Reg0 LE N2 Q R G IPoffp1 II DF Segs Total Bytes

PKO Command Format

63 36 35 0

Reserved
0000 0000 0000 0000 0000 0000 0000 Ptr

WORD0

WORD1

WORD2
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 343

 Packet Output Processing Unit (PKO): PKO Commands
When IOB_CTL_STATUS[PKO_ENB] is clear, WORD0[Reg0] is a big-endian
pointer; when it is set, WORD0[Reg0] is a little-endian pointer

WORD0[LE] Determines PKO’s endian mode. When clear (default), PKO operates in big-endian
mode, as the diagrams in this section show. When set, all segment pointers and
segment bytes are interpreted in little-endian order.

WORD0[N2] Determines PKO’s L2 cache allocation. When clear, PKO allocates all load data into
the L2 cache. When set, PKO does not allocate blocks containing segment bytes into
the L2 cache.

WORD0[N2] affects performance, but otherwise does not affect OCTEON behavior. It
may be advantageous to set WORD0[N2] if packet data will not be used after PKO
sends the packet, which will allow the L2 cache to retain other more useful
information.

WORD0[Q] If set and WORD0[R] is set, WORD2 contains a pointer to a work queue entry, and
PKO will submit the work to POW after it sends the packet. If WORD0[Q] is clear
and WORD0[R] is set, WORD2 contains an L2/DRAM byte pointer, and PKO will
write the byte to zero after it sends the packet. WORD0[Q] must be zero when
WORD0[R] is zero.

WORD0[R] If set, WORD2 exists and PKO will either submit a work queue entry or write a byte
to zero after it sends the packet, depending on WORD0[Q]. If clear, WORD2 does not
exist.

WORD0[G] Determines whether the PKO hardware operates in linked or gather mode for the
packet. If set, PKO is in gather mode and WORD1 points to a gather list. If clear,
PKO is in linked mode and WORD1 points to the first segment.

WORD0[IPoffp1] Determines whether the PKO hardware calculates the TCP/UDP checksum for a
packet and specifies the location of the first byte of the IP packet. If WORD0[IPoffp1]
is zero, PKO does not insert a TCP/UDP checksum into the packet. If
WORD0[IPoffp1] is non-zero, PKO hardware will generate and insert the TCP or
UDP checksum for an IP packet. The IP packet must be exactly WORD0[IPoffp1]−1
bytes from the beginning of the packet. Section 8.2 discusses requirements for and
restrictions for TCP/UDP checksum generation.

WORD0[II] If set, ignore the I bit (effectively, force them all to zero) in all segment and gather
pointers.

WORD0[DF] If set, by default buffers should not be freed for all segments (and any gather list, if
present). If clear, by default buffers should be freed for any segments (or any gather
list, if present). If WORD0[II] is set, WORD0[DF] is more than the default – it
completely controls whether a buffer is freed by the PKO hardware. If WORD0[II] is
clear, the I bit in the segment/gather pointer can invert the default behavior (i.e. If
WORD0[II] is clear, the buffer containing the segment is freed when
{WORD0[DF] ⊕ (segment/gather pointer I bit)} = 0.)

WORD0[Segs] The number of segments. If WORD0[G] is clear, WORD0[Segs] indicates the number
of linked segments. If WORD0[G] is set, WORD0[Segs] is also the number of entries
in the gather list.

NOTE: PKO always allocates command chunks and gather lists into the L2
cache.

Also, PKO always allocates packet data into the cache on the first
packet read of a two-pass TCP/UDP checksum calculation. Refer to
Section 8.7 for more performance details regarding this calculation.
344 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Commands
WORD0[Total Bytes] The number of bytes in the packet. All packet bytes must reside in exactly
WORD0[Segs] segments. Must not exceed 216 − 8 bytes (65528 bytes).

I (WORD1 and all
segment pointers)

Invert bit of the segment/gather list pointer. Used to change the default freeing
behavior for the buffer containing the segment or gather list. I exists both in WORD1
and in all segment pointers. When WORD0[II] is clear, I inverts the free behavior
described by the WORD0[DF] bit. I is never used by the PKO hardware when
WORD0[II] is set.

Back (WORD1 and all
segment pointers)

Back field of the segment/gather list pointer. When freeing the buffer containing this
segment or gather list, the PKO hardware finds the start address of the buffer using
the Back and Addr fields:

Buffer Start Address = ((Addr >> 7) - Back) << 7

Pool (WORD1 and all
segment pointers)

Pool field of the segment/gather list pointer. The PKO hardware frees to this (FPA
hardware-managed) free pool when it frees the buffer containing this segment or
gather list.

Size (WORD1 and all
segment pointers)

Size field of the segment/gather list pointer.

If WORD0[G] is clear or the pointer does not reside in WORD1 of the
command, Size is the number of bytes in the segment pointed at by Addr.
If WORD0[G] is set, WORD1[Size] is the number of segments and must
exactly equal WORD0[Segs].

Note that for all segment pointers other than the last, Size is also the number of
packet bytes pointed at by Addr, but that the last segment may contain fewer than
Size packet bytes. Size must not exceed 216 − 8 bytes (65528 bytes).

Addr (WORD1 and all
segment pointers)

Addr field of the segment/gather list pointer. Addr is always a physical memory byte
pointer.

If WORD0[G] is clear or the pointer does not reside in WORD1 of the
command, Addr points to the start of the packet data for this segment and can
be any byte alignment.
If WORD0[G] is set, Addr points to the gather list – an array of segment
pointers – and must be 64-bit aligned (i.e. the least-significant three bits must
be clear).
If WORD0[LE] is set, Addr is a little-endian byte pointer. Otherwise, Addr is
a big-endian byte pointer.

WORD2[Ptr] A physical L2/DRAM byte pointer used after sending the packet. Ptr does not exist
when WORD0[R] is clear. If WORD0[Q] and WORD0[R] are set, WORD2[Ptr] points
to a work queue entry that PKO will add to a POW output work queue, and must be
aligned on a 64-bit boundary. (See Section 7.5 in Chapter 7, for a description of the
output work queues and work queue entries.) If WORD0[Q] is clear and WORD0[R]
is set, WORD2[Ptr] points to a byte that will be written to zero, and may be any byte
alignment. In the byte-pointer case, the pointer is a big-endian pointer when
PKO_REG_FLAGS[STORE_BE] is set. Otherwise, the pointer is a little-endian
pointer.

NOTE: The Back value can specify a Buffer Start Address that is from 0-2047
bytes prior to Addr, and the Buffer Start Address must always be
aligned on a 128 byte cache block boundary.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 345

 Packet Output Processing Unit (PKO): PKO Queue Arbitration Algorithm
8.5 PKO Queue Arbitration Algorithm

When PKO needs to send a packet through a port, the PKO hardware uses a mixed-
priority/weighted-fair algorithm to select from among the queues attached to the
port (a variable number, up to eight queues).

Write operations to PKO_MEM_QUEUE_PTRS configure the mapping of PKO
output queues to ports. All queues that map to a single port must reside in a
contiguous range of queue identifiers (QIDs). Boot-time mapping of queue QID to
port PID via PKO_MEM_QUEUE_PTRS[QID, PID, IDX,TAIL] also establishes the
position of the queue in the range for the port.

● IDX must be the relative position of QID in the range (i.e. QID − min(QID)).

● TAIL must be set only for the last queue in the range for the port - i.e. only for the
one with the largest QID.

This output queue to port configuration should be done only once at boot time before
any output packets flow on the queues/ports.

Each queue has an associated QOS_MASK field. Software must configure
QOS_MASK for each used queue at boot time via
PKO_MEM_QUEUE_PTRS[QOS_MASK]. During normal operation, software can
also optionally update the QOS_MASK fields for the queues via
PKO_MEM_QUEUE_QOS[QOS_MASK]. QOS_MASK controls scheduling of the
queue. When QOS_MASK is set to zero, the queue is disabled, and can no longer
send packets through the port.

The priority algorithm allows a configurable number of queues to be designated
(static) high priority. When present, these priority queues must be the lowest-index
queues attached to the port. The lower the queue index, the (statically) higher the
priority of the queue. PKO visits these priority queues in order prior to visiting the
remaining weighted-fair queues. All priority queues are higher-priority than the
weighted-fair queues. The QOS_MASK value for a priority queue must be either all
1s (0xFF) or all 0s.

All queues that are not priority queues are weighted-fair queues. The weighted-fair
algorithm has eight rounds, where each weighted-fair queue can optionally
participate in each round. With weighted-fair queues, QOS_MASK is a bit-mask
that determines the rounds that a queue participates in. The fewer rounds that a
queue participates in, i.e. the fewer bits set in QOS_MASK, the lower priority the
queue is. Of course, all disabled queues (QOS_MASK is all 0s) never participate in
any round, and any enabled queue must participate in at least one of the eight
rounds.

To use static queues within a port:
● The static priority queues must be the first queues attached to the port (highest

priority first).
● PKO_MEM_QUEUE_PTRS[STATIC_P] must be set for all queues attached to

the port.
● PKO_MEM_QUEUE_PTRS[STATIC_Q] must be set for the queues attached to

the port that are static priority queues.
● PKO_MEM_QUEUE_PTRS[S_TAIL] must be set for the last static priority queue

attached to the port.
● PKO_MEM_QUEUE_PTRS[QOS_MASK] for a static queue must be either all 1s

(to enable the queue) or all 0s (to disable the queue).

In the pseudo-code below:
346 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Queue Arbitration Algorithm
● current_round and queue_within_round are the current weighted round-
robin state of the port.

● max_queue_idx is the number of queues attached to the port minus one.
● queue_base is the first queue attached to the port.
● num_static_priority is the number of static priority queues attached to the

port.
● QOS_MASK is PKO_MEM_QUEUE_PTRS[QOS_MASK] for the queue
● doorbell_count is the doorbell count for the queue (Sections 8.3 and 8.8

explain the doorbell).

The following pseudo-code shows the details of the algorithm:
struct {
 int current_round, queue_within_round;
 int queue_base; int max_queue_idx;
 int num_static_priority;
} port_state[36];

struct {
 int QOS_MASK;
 int doorbell_count;
} queue_state[128];

// port_queue_arb() only runs when at least one queue attached
// to the port has a non-zero doorbell count and has a QOS_MASK
// that is non-zero.

// port_queue_arb() returns the queue to select from.
int port_queue_arb(int port) {
 bool found = false;
 int queue;
 int loops = 0;
 do {
 int rel_q;
 bool is_static = (loops < port_state[port].num_static_priority);
 if(is_static)
 rel_q = loops;
 else
 rel_q = port_state[port].queue_within_round;
 queue = port_state[port].queue_base + rel_q;
 bool participate = (queue_state[queue].QOS_MASK >> port_state[port].current_round) & 1;
 if(participate && queue_state[queue].doorbell_count)
 found = true;
 if(!is_static) {
 if(port_state[port].queue_within_round == port_state[port].max_queue_idx) {
 port_state[port].current_round = (port_state[port].current_round + 1) & 7;
 port_state[port].queue_within_round = port_state[port].num_static_priority;
 }
 else
 port_state[port].queue_within_round ++;
 }
 loops++;
 } while(!found);
 return(queue);
 }

For example, for a four-queue configuration with these requirements:

● one static priority queue (highest priority)
● one (generally, but not statically) higher-priority queue
● two low-priority queues

One reasonable configuration might be:

● queue 0: static priority, QOS_MASK = 0xFF
● queue 1: weighted-fair queue, QOS_MASK = 0xFF
● queue 2: weighted-fair queue, QOS_MASK = 0x80
● queue 3: weighted-fair queue, QOS_MASK = 0x08
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 347

 Packet Output Processing Unit (PKO): PKO Don’t-Write-Back (DWB) Calculation
Example 8–1 Four-Queue Configuration Example, After Queue 0 is Drained

If all four queues had packets to send with this configuration, first all queue 0
packets would be sent. Then, after eight rounds, eight packets would be sent
through queue 1, and one packet would be sent through each of queue 2 and queue
3. Also, as configured, four packets would flow through queue 1 between
interruptions in the flow from queue 2 or queue 3. Example 8–1 indicates the order
of packet transition after queue 0 is drained.

8.6 PKO Don’t-Write-Back (DWB) Calculation

A hardware-pool free command includes a don’t-write-back (DWB) argument that
specifies the maximum number of don’t-write-back commands to execute on the
coherent memory bus. When PKO_REG_FLAGS[ENA_DWB] is clear, these DWB
counts will always be zero.

If PKO_REG_FLAGS[ENA_DWB] is set, the DWB count for output queue chunks is:

((PKO_REG_CMD_BUF[SIZE] × 8) + 127) >> 7

If PKO_REG_FLAGS[ENA_DWB] is set, the DWB count for the buffer containing a
segment that is freed is:

(((Addr & 127) + Size + 127) >> 7) + Back

which may result in a coherent memory bus DWB command for all cache blocks from
the start of the buffer up to the block that includes the last byte of the segment.

Addr and Back here come directly from the segment pointer.

Size is always the number of bytes in the segment or gather list that are used
by PKO.

– For all gather lists and all segments except the last one for a packet, Size
is the number of bytes in the segment/gather list.

– For the last segment of a packet, Size may be less than the number of
bytes in the segment since the number of bytes used in the segment can
be limited by the total number of bytes in the packet.

Rounds

0 1 2 3 4 5 6 7

Q
u
e
u
e
s

1 1 3 4 5 6 8 9 10

2 2 – – – – – – –

3 – – – – 7 – – –
348 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Performance
8.7 PKO Performance

The PKO can send 20 million or more small packets per second when many ports are
used. When only a single port is used, PKO can send 8–12 million or more small
packets per second through the single port. PKO performance is better when the
output (command) queue, gather lists, and packet data reside in the L2 cache rather
than in DRAM.

If the command for a packet directs the PKO unit to calculate a TCP/UDP checksum,
and the entire packet fits inside the internal buffer space allocated to the port (i.e.,
the entire packet is less than 1.5 KB), then the PKO unit reads the packet once,
buffers it internally and calculates the checksum. It then inserts the checksum as it
reads the packet from its internal buffer and sends it out an output port. The PKO
unit cannot send any part of the packet out the POB bus until it reads all packet data
from L2/DRAM.

If the command for a packet directs the PKO unit to calculate a TCP/UDP checksum,
but the entire packet does not fit inside the internal buffer space allocated to the port
(i.e., the entire packet is greater than 1.5 KB), then the PKO unit reads the packet
twice from L2/DRAM. It calculates the TCP/UDP checksum during the first read.
The data from the second read flows through the internal buffering and immediately
out the POB bus, and the checksum logic inserts the checksum as it is sent out. In
this case, the PKO unit starts sending the packet out the POB bus before it finishes
reading the packet the second time.

If the command for a packet does not direct the PKO unit to calculate a TCP/UDP
checksum, the PKO unit only reads the packet data from L2/DRAM once and the
data flows through the internal buffering to the POB bus. In this case, the PKO unit
starts sending the packet out the POB bus before it finishes reading the packet.

PKO has two performance counters for each port: one that counts the number of
packets sent out the port, and another that counts the number of bytes sent out the
port. The packet counts can be read through PKO_MEM_COUNT0 (after setting up
PKO_REG_READ_IDX), and the byte counts can be read through
PKO_MEM_COUNT1 (again, after setting up PKO_REG_READ_IDX).

8.8 PKO Operations

This section shows the detailed bit formats and codes for the various PKO
transactions.

8.8.1 Store Operations
Doorbell Writes Physical Address to Store to PKO

● qid - queue identifier (0–31 legal)

● pid - port identifier (0–35 legal). The port identifier must match the port
previously attached to the selected queue. (The port was attached to a queue by a
previous write for the queue to the PKO_MEM_QUEUE_PTRS CSR.)

NOTE: Only 64-bit stores are allowed (i.e. only SDs are allowed); no loads or
IOBDMA operations.

48 47 43 42 40 39 16 17 12 11 3 2 0

1 Major DID
01010

sub-DID
010

Reserved
0 pid qid 0
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 349

 Packet Output Processing Unit (PKO): PKO Operations
Store Data on a Store to PKO

● wdc - contains the number of words to add to the doorbell count

63 20 19 0
Reserved

0 wdc
350 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
8.9 PKO Registers

The packet-output processing registers are listed in Table 8–1

Table 8–1 PKO Registers

Register Address
CSR

Type1

1. RSL-type registers are accessed indirectly across the I/O bus.

Detailed
Description

PKO_REG_FLAGS 0x0001180050000000 RSL See page 352
PKO_REG_READ_IDX 0x0001180050000008 RSL See page 353
PKO_REG_CMD_BUF 0x0001180050000010 RSL See page 352
PKO_REG_GMX_PORT_MODE 0x0001180050000018 RSL See page 353
PKO_REG_QUEUE_MODE 0x0001180050000048 RSL See page 353
PKO_REG_BIST_RESULT 0x0001180050000080 RSL See page 353
PKO_REG_ERROR 0x0001180050000088 RSL See page 354
PKO_REG_INT_MASK 0x0001180050000090 RSL See page 354
PKO_REG_DEBUG0 0x0001180050000098 RSL See page 354
PKO_REG_DEBUG1 0x00011800500000A0 RSL See page 354
PKO_REG_DEBUG2 0x00011800500000A8 RSL See page 354
PKO_REG_DEBUG3 0x00011800500000B0 RSL See page 355
PKO_REG_QUEUE_PTRS1 0x0001180050000100 RSL See page 355
PKO_MEM_QUEUE_PTRS 0x0001180050001000 RSL See page 355
PKO_MEM_QUEUE_QOS 0x0001180050001008 RSL See page 355
PKO_MEM_COUNT0 0x0001180050001080 RSL See page 357
PKO_MEM_COUNT1 0x0001180050001088 RSL See page 358
PKO_MEM_DEBUG0 0x0001180050001100 RSL See page 358
PKO_MEM_DEBUG1 0x0001180050001108 RSL See page 358
PKO_MEM_DEBUG2 0x0001180050001110 RSL See page 359
PKO_MEM_DEBUG3 0x0001180050001118 RSL See page 359
PKO_MEM_DEBUG4 0x0001180050001120 RSL See page 359
PKO_MEM_DEBUG5 0x0001180050001128 RSL See page 360
PKO_MEM_DEBUG6 0x0001180050001130 RSL See page 360
PKO_MEM_DEBUG7 0x0001180050001138 RSL See page 361
PKO_MEM_DEBUG8 0x0001180050001140 RSL See page 361
PKO_MEM_DEBUG9 0x0001180050001148 RSL See page 361
PKO_MEM_DEBUG10 0x0001180050001150 RSL See page 362
PKO_MEM_DEBUG11 0x0001180050001158 RSL See page 362
PKO_MEM_DEBUG12 0x0001180050001160 RSL See page 362
PKO_MEM_DEBUG13 0x0001180050001168 RSL See page 363
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 351

 Packet Output Processing Unit (PKO): PKO Registers
PKO Flags Register
PKO_REG_FLAGS

See Table 8–1 for the address.

PKO Read Index Register
PKO_REG_READ_IDX

This register provides the read index during a CSR read operation to any of the CSRs
that are physically stored as memories (i.e. the CSRs that begin with the prefix
PKO_MEM_). IDX[7:0] is the read index and INC[7:0] is an increment that is added
to IDX[7:0] after any CSR read. The intended use is to initially write this CSR such
that IDX = 0x0 and INC = 0x1. Then, the entire contents of a CSR memory can be
read with consecutive CSR read commands.

See Table 8–1 for the address.

PKO Command Buffer Parameters Register
PKO_REG_CMD_BUF

This register sets the command buffer parameters. See Table 8–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ X 0 Reserved. MBZ.
<3> RESET RAZ 0 0 Reset PKO. When set to 1, causes a one-cycle reset pulse to the entire PKO

unit.
<2> STORE_BE R/W 0 0 Force to big endian. When set to 1, inverts bits[2:0] of all zero-byte write

addresses.
<1> ENA_DWB R/W 0 0 Enable don’t-write-backs. When set to 1, enables the use of Don’t-Write-

Backs during the buffer freeing operations.
<0> ENA_PKO R/W 0 0 Enable the PKO picker. When set to 1, enables the PKO picker and places

the PKO in normal operation.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ X 0x0 Reserved. Must be zero.
<15:8> INC R/W 0x0 0x0 Increment to add to current index for next index.
<7:0> IDX R/W 0x0 0x0 Index to use for next memory CSR read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:23> — RAZ X 0x0 Reserved. Must be zero.
<22:20> POOL R/W 0x0 0x0 Pool number. Specifies the free list used to free command-buffer segments
<19:13> — R/W X 0x0 Reserved. Must be zero.
<12:0> SIZE R/W 0x0 0x0 Size. Specifies the number of uint64s per command-buffer segment
352 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
PKO GMX Port Mode Register
PKO_REG_GMX_PORT_MODE

See Table 8–1 for the address.

PKO Queue Mode Register
PKO_REG_QUEUE_MODE

Sets the number of queues and amount of local storage per queue. The system has a
total of 256 queues and (256 × 8) words of local command storage. This register sets
the number of queues that are used. Increasing the value of MODE by 1 decreases
the number of queues by a power of 2 and increases the local storage per queue by a
power of 2.

See Table 8–1 for the address.

PKO BIST Result Register
PKO_REG_BIST_RESULT

This register provides access to the internal BIST results. Each bit is the BIST result
of an individual memory (0 = pass and 1 = fail). See Table 8–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ X 0x0 Must be zero.
<5:3> MODE1 R/W 0x0 0x0 Must be zero.
<2:0> MODE0 R/W 0x0 0x0 Must be zero.

MODEn Queues Storage/Queue
0 256 64 bytes (8 words)
1 128 128 bytes (16 words)
2 64 256 bytes (32 words)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ X 0x0 Must be zero.
<1:0> MODE R/W 0x0 0x0 PKO queue modes, must be 0, 1, or 2.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:33> — RAZ X 0x0 Must be zero.
<32> CSR RO X 0 BIST result of the CSR memories.
<31> IOB RO X 0 BIST result of the IOB memories.
<30> — RO X 0 Reserved.
<29:27> OUT_CTL RO X 0x0 BIST result of the OUT_CTL memories.
<26> OUT_STA RO X 0 BIST result of the OUT_STA memories.
<25> OUT_WIF RO X 0 BIST result of the OUT_WIF memories.
<24:22> PRT_CHK RO X 0x0 BIST result of the PRT_CHK memories.
<21> PRT_NXT RO X 0 BIST result of the PRT_NXT memories.
<20:15> PRT_PSB RO X 0x0 BIST result of the PRT_PSB memories.
<14:13> NCB_INB RO X 0x0 BIST result of the NCB_INB memories.
<12:11> PRT_QCB RO X 0x0 BIST result of the PRT_QCB memories.
<10:8> PRT_QSB RO X 0x0 BIST result of the PRT_QSB memories.
<7:4> DAT_DAT RO X 0x0 BIST result of the DAT_DAT memories.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 353

 Packet Output Processing Unit (PKO): PKO Registers
PKO Error Register
PKO_REG_ERROR

This register contains error flags for PKO. See Table 8–1 for the address.

PKO Interrupt-Mask Register
PKO_REG_INT_MASK

This register contains interrupt-enable mask bits for the PKO errors listed in
PKO_REG_ERROR. When a mask bit is set, the corresponding interrupt is enabled.
See Table 8–1 for the address.

PKO Debug Register
PKO_REG_DEBUG0

See Table 8–1 for the address.

PKO Debug Register 1
PKO_REG_DEBUG1

Internal debug register. See Table 8–1 for address.

PKO Debug Register 2
PKO_REG_DEBUG2

<3:0> DAT_PTR RO X 0x0 BIST result of the DAT_PTR memories.
Bit Pos Field Name

Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ X 0x0 Must be zero.
<2> CURRZERO R/W1C 0 0 A packet-data pointer has size = 0.
<1> DOORBELL R/W1C 0 0 A doorbell count has overflowed.
<0> PARITY R/W1C 0 0 A read-parity error has occurred in the port data buffer.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ X 0x0 Reserved. Must be zero.
<2> CURRZERO R/W 0 0 Interrupt-enable bit for packet-data pointer = 0.
<1> DOORBELL R/W 0 0 Interrupt-enable bit for doorbell overflow errors.
<0> PARITY R/W 0 0 Interrupt-enable bit for read-parity errors.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> ASSERTS RO 0x0 0x0 Assertion checks.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> ASSERTS RO 0x0 0x0 Various assertion checks.
354 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
Internal debug register. See Table 8–1 for address.

PKO Debug Register 3
PKO_REG_DEBUG3

Internal debug register. See Table 8–1 for address.

PKO Interrupt Mask Register
PKO_REG_QUEUE_PTRS1

This register is used with PKO_MEM_QUEUE_PTRS and
PKO_MEM_QUEUE_QOS to allow access to queues 128–255, and to allow mapping
of up to 16 queues per port.

See Table 8–1 for address.

PKO Memory Queue Pointers Register
PKO_MEM_QUEUE_PTRS

This register sets the queue-to-port mapping and the initial command-buffer pointer
per queue. Each queue may map to at most one port, and no more than 16 queues
may map to a port. The set of queues that is mapped to a port must be a contiguous
array of queues.

● The queue designated in QID is mapped to the port designated in PID.
● The index of queue QID in port PID’s queue list is IDX.
● The last queue in port PID’s queue array must have its TAIL bit set.
● Unused queues must be mapped to port 63.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> ASSERTS RO 0x0 0x0 Various assertion checks.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> ASSERTS RO 0x0 0x0 Various assertion checks.

NOTE: When programming queues 128–255, the programming sequence must first write
PKO_REG_QUEUE_PTRS1 and then write PKO_MEM_QUEUE_PTRS or
PKO_MEM_QUEUE_QOS for each queue. See the descriptions of PKO_MEM_QUEUE_PTRS
and PKO_MEM_QUEUE_QOS for further explanation of queue programming.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ X 0x0 Reserved. Must be zero.
<1> IDX3 R/W 0 0 Bit[3] of Index (distance from head) in the queue array. See

PKO_MEM_QUEUE_PTRS[IDX].
<0> QID7 R/W 0 0 Bit[7] of the Queue ID. See PKO_MEM_QUEUE_PTRS[QID]

NOTE: This register is used with PKO_MEM_QUEUE_PTRS to allow access to queues 128–255 and to
allow mapping of up to 16 queues per port.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 355

 Packet Output Processing Unit (PKO): PKO Registers
STATIC_P marks the port PID to which QID is mapped as having at least one queue
with static priority. If any QID that maps to PID has static priority, then all QID that
map to PID must have STATIC_P set. Queues marked as static priority must be
contiguous and begin at IDX 0. The last queue that is marked as having static
priority must have its S_TAIL bit set.

This CSR is a memory of 256 entries and consequently the PKO_REG_READ_IDX
CSR must be written before any CSR read operations to this address can be
performed. A read of any entry that has not been previously written is illegal and
results in unpredictable CSR read data. See Table 8–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> S_TAIL R/W X 0 Set if this QID is the tail of the static queues
<62> STATIC_P R/W X 0 Set if any QID in this PID has static priority
<61> STATIC_Q R/W X 0 Set if this QID has static priority
<60:53> QOS_MASK R/W X 0x0 Mask to control priority across eight QOS rounds.
<52:17> BUF_PTR R/W X 0x0 Command buffer pointer, bits <23:17> must be 0x0.
<16> TAIL R/W X 0 Set if this QID is the tail of the queue array.
<15:13> IDX WR0 X 0x0 Index[2:0] (distance from head) in the queue array.
<12:7> PID WR0 X 0x0 Port ID to which this queue is mapped.
<6:0> QID R/W X 0x0 Queue ID[6:0].
356 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
PKO Memory QOS Register
PKO_MEM_QUEUE_QOS

This register sets the QOS mask per queue. The QOS_MASK field is logically and
physically the same QOS_MASK field in PKO_MEM_QUEUE_PTRS. This CSR
allows the QOS_MASK bits to be written during PKO operation without affecting
any other queue state. The port to which queue QID is mapped is port PID. Note that
the queue-to-port mapping must be the same as was programmed via
PKO_MEM_QUEUE_PTRS.

This CSR is a memory of 256 entries and consequently the PKO_REG_READ_IDX
CSR must be written before any CSR read operations to this address can be
performed. A read of any entry that has not been previously written is illegal and
results in unpredictable CSR read data.

See Table 8–1 for the address.

PKO Memory Count0 Register
PKO_MEM_COUNT0

This register provides the total number of packets seen by PKO per port. Writing to
this address clears the entry whose index is specified as COUNT[5:0].

This register is a memory of 36 entries, and consequently PKO_REG_READ_IDX
must be written before any CSR read operations to this address can be performed. A
read of any entry that has not been previously written is illegal and results in
unpredictable CSR read data. If the counter reaches the maximum value, it wraps to
0x0 and starts over. See Table 8–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:61> — RAZ X 0x0 Must be zero.
<60:53> QOS_MASK R/W X 0x0 Mask to control priority across eight QOS rounds.
<52:13> — RAZ X 0x0 Must be zero.
<12:7> PID WR0 X 0x0 Port ID to which this queue is mapped.
<6:0> QID R/W X 0x0 Queue ID.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> COUNT R/W1C X 0x0 Total number of packets seen by PKO.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 357

 Packet Output Processing Unit (PKO): PKO Registers
PKO Memory Count1 Register
PKO_MEM_COUNT1

This register provides the total number of bytes seen by PKO per port. Writing to this
address clears the entry whose index is specified as COUNT[5:0].

This register is a memory of 36 entries and consequently PKO_REG_READ_IDX
must be written before any CSR read operations to this address can be performed. A
read of any entry that has not been previously written is illegal and results in
unpredictable CSR read data. See Table 8–1 for the address.

PKO Memory Debug0 Register
PKO_MEM_DEBUG0

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug1 Register
PKO_MEM_DEBUG1

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved.
<47:0> COUNT R/W1C X 0x0 Total number of bytes seen by PKO.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> FAU RO X 0x0 Fetch and add command words.
<35:22> CMD RO X 0x0 Command word.
<21:16> SEGS RO X 0x0 Number of segments/gather size.
<15:0> SIZE RO X 0x0 Packet length in bytes.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> I RO X 0 I value used for free operation.
<62:59> BACK RO X 0x0 Back value used for free operation.
<58:56> POOL RO X 0x0 Pool value used for free operation.
<55:40> SIZE RO X 0x0 Size in bytes.
<39:0> PTR RO X 0x0 Data pointer.
358 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
PKO Memory Debug2 Register
PKO_MEM_DEBUG2

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug3 Register
PKO_MEM_DEBUG3

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug4 Register
PKO_MEM_DEBUG4

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> I RO X 0 I value used for free operation.
<62:59> BACK RO X 0x0 Back value used for free operation.
<58:56> POOL RO X 0x0 Pool value used for free operation.
<55:40> SIZE RO X 0x0 Size in bytes.
<39:0> PTR RO X 0x0 Data pointer.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> DATA RO X 0x0 Work-queue data or Store0 pointer

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:61> CMND_SEGS RO X 0x0 Internal state.
<60:45> CMND_SIZ RO X 0x0 Internal state.
<44:39> CMND_OFF RO X 0x0 Internal state.
<38:36> UID RO X 0x0 Internal state.
<35> DREAD_SOP RO X 0 Internal state.
<34> INIT_DWRITE RO X 0 Internal state.
<33> CHK_ONCE RO X 0 Internal state.
<32> CHK_MODE RO X 0 Internal state.
<31> ACTIVE RO X 0 Internal state.
<30> STATIC_P RO X 0 Internal state.
<29:27> QOS RO X 0x0 Internal state.
<26:22> QCB_RIDX RO X 0x0 Internal state.
<21:18> QID_OFF_MAX RO X 0x0 Internal state.
<17:14> QID_OFF RO X 0x0 Internal state.
<13:6> QID_BASE RO X 0x0 Internal state.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 359

 Packet Output Processing Unit (PKO): PKO Registers
PKO Memory Debug5 Register
PKO_MEM_DEBUG5

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug6 Register
PKO_MEM_DEBUG6

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

<5> WAIT RO X 0 Internal state.
<4:3> MINOR RO X 0x0 Internal state.
<2:0> MAJOR RO X 0x0 Internal state.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:35> CURR_PTR RO X 0x0 Internal state.
<34:19> CURR_SIZ RO X 0x0 Internal state.
<18:3> CURR_OFF RO X 0x0 Internal state.
<2:0> CURR_SEGS RO X 0x0 Internal state.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:11> — RAZ X 0x0 Must be zero.
<10:0> CURR_PTR RO X 0x0 Internal state.
360 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
PKO Memory Debug7 Register
PKO_MEM_DEBUG7

This register provides internal per-queue state intended for debug use only. It is a
memory of 256 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug8 Register
PKO_MEM_DEBUG8

This register provides internal per-port state intended for debug use only. It is a
memory of 256 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug9 Register
PKO_MEM_DEBUG9

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:59> QOS RO X 0x0 QOS mask to enable the queue when set.
<58> TAIL RO X 0 This queue is the last (tail) in the queue array.
<57:45> BUF_SIZ RO X 0x0 Command buffer remaining size in words.
<44:12> BUF_PTR RO X 0x0 Command word pointer.
<11:6> QCB_WIDX RO X 0x0 Buffer write index for QCB.
<5:0> QCB_RIDX RO X 0x0 Buffer read index for QCB.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:28> — RO X 0x0 Must be zero.
<27:8> DOORBELL RO X 0x0 Doorbell count.
<7:6> — RAZ X 0x0 Must be zero.
<5> STATIC_P RO X 0 Static priority.
<4> S_TAIL RO X 0 Static tail.
<3> STATIC_Q RO X 0 Static priority.
<2:0> QOS RO X 0x0 QOS mask to enable the queue when set

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:49> — RO X 0x0 Must be zero.
<48:32> PTRS0 RO X 0x0 Internal state.
<31:17> — RAZ X 0x0 Must be zero.
<16:0> PTRS3 RO X 0x0 Internal state.
<63:28> — RO X 0x0 Must be zero.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 361

 Packet Output Processing Unit (PKO): PKO Registers
PKO Memory Debug10 Register
PKO_MEM_DEBUG10

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug11 Register
PKO_MEM_DEBUG11

This register provides internal per-port state intended for debug use only. It is a
memory of 36 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

PKO Memory Debug12 Register
PKO_MEM_DEBUG12

This register provides internal per-port state intended for debug use only. It is a
memory of 144 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:49> — RO X 0x0 Must be zero.
<48:32> PTRS1 RO X 0x0 Internal state.
<31:17> — RAZ X 0x0 Must be zero.
<16:0> PTRS2 RO X 0x0 Internal state.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:23> — RO X 0x0 Must be zero.
<22> MAJ RO X 0x0 Internal state.
<21:19> UID RO X 0x0 Internal state.
<18> SOP RO X 0x0 Internal state.
<17> LEN RO X 0x0 Internal state.
<16> CHK RO X 0x0 Internal state.
<15:3> CNT RO X 0x0 Internal state.
<2:0> MOD RO X 0x0 Internal state.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> FAU RO X 0x0 Fetch and add command words.
<35:22> CMD RO X 0x0 Command word.
<21:16> SEGS RO X 0x0 Number of segments/gather size.
<15:0> SIZE RO X 0x0 Packet length in bytes.
362 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Packet Output Processing Unit (PKO): PKO Registers
PKO Memory Debug13 Register
PKO_MEM_DEBUG13

This register provides internal per-port state intended for debug use only. It is a
memory of 144 entries, and consequently PKO_REG_READ_IDX must be written
before any CSR read operations to this address can be performed. See Table 8–1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> I RO X 0 I value used for free operation.
<62:59> BACK RO X 0x0 Back value used for free operation.
<58:56> POOL RO X 0x0 Pool value used for free operation.
<55:40> SIZE RO X 0x0 Size in bytes.
<39:0> PTR RO X 0x0 Data pointer.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 363

 Packet Output Processing Unit (PKO): PKO Registers
364 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 9

PCI Bus
This chapter contains the following subjects:

● Overview

● CN50XX PCI Features

● CN50XX Addressing as a PCI Target

● PCI Instruction Input From an External Host

● PCI Packet Output From CN50XX

● PCI DMA Engine Access From Cores

● PCI Memory Space Loads/Stores to BAR1/2

● CN50XX PCI Internal Arbiter

● CN50XX PCI MSI Support

● Endian Swapping

● PC Bus Operations

● PCI Reset Sequence

● PCI Configuration Registers

● PCI Bus Registers

● NPI Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 365

 PCI Bus: CN50XX PCI Features
Overview

9.1 CN50XX PCI Features

● 32/66 MHz PCI 2.3

● PCI Host Support

Internal 4-way bus arbiter

Internal PCI clock generator

Four interrupt inputs

Expanded BAR memory space: 4GB of PCI memory space can map to L2C/
DRAM

Direct core PCI I/O space, PCI configuration space, PCI IACK, and PCI
special command generation

● PCI Memory Space Master Support

Four separate 36-bit windows (translated to 64-bit) available for direct core
access to PCI memory space

Two packet-input ports with efficient host interface

Two packet-output ports with efficient host buffer input and condensed
interrupts

Two DMA engines, each accessible by all cores with flexible host queuing
support

● PCI Target Support

CN50XX internal CSR access through a PCI memory space BAR0

128MB PCI Memory Space BAR1 (32-entry, translated and protected) 32-bit
compatible access to entire L2/DRAM

PCI memory space BAR2 (protected) for direct access to L2/DRAM

BAR0 can expand to 2GB, mapping the first 2GB of CN50XX’s L2/DRAM.

BAR1 can expand, ranging up to 2GB, mapping the next portion of CN50XX’s
L2/DRAM.

PCI configuration space access

PCI expansion ROM BAR (forwarded to the boot bus)

● Full endian-swapping
366 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
下划线

PCI Bus: CN50XX Addressing as a PCI Target
9.2 CN50XX Addressing as a PCI Target

As per the PCI specification, CN50XX access via the PCI bus is dictated by the
base address registers (BARs) in PCI configuration space. There are three BARs:
BAR0, BAR1, and BAR2.

All of the CN50XX BAR0, BAR1, and BAR2 are 64-bit base-address registers
supporting PCI memory-space operations as a target. CN50XX has no BARs that
accept PCI I/O space operations (as a target).

9.2.1 BAR0 - Memory-Mapped CSR Region

● Can also map the first 2GB of L2/DRAM

● CN50XX’s BAR0 PCI control registers reside at offset 0x10–0x17 in PCI
configuration space.

When PCI_CTL_STATUS_2[BB0] = 0, BAR0 is a 64-bit base-address register of
4KB that provides access to CN50XX configuration registers. The CN50XX
configuration registers are typically only accessed via BAR0 when CN50XX is a
PCI device.

When PCI_CTL_STATUS_2[BB0] = 1, BAR0 is a 64-bit base-address register of
2GB that provides access to CN50XX configuration registers as well as the first
2GB of the L2/DRAM. PCI_CTL_STATUS_2[BB0] is typically clear when
CN50XX is a PCI device. CN50XX’s BAR0 becomes burstable when
PCI_CTL_STATUS_2[BB0] = 1, not single-phase disconnecting.

In all cases, the first 4KB of BAR0 (i.e. addresses on the PCI bus in the range
[BAR0 + 0] ... [BAR0 + 0xFFF]) access CN50XX’s PCI-type CSRs.

When PCI_CTL_STATUS_2[BB0] = 1, the remaining address space (i.e. addresses
on the PCI bus in the range [BAR0 + 0x1000] ... [BAR0 + 0x7FFFFFFF]) are
accepted by CN50XX and are mapped to L2/DRAM addresses as follows:

The consequences of any burst that crosses the end of the PCI address range for
BAR0 are unpredictable. CN50XX may disconnect PCI references at this
boundary. The results of any burst read that crosses the boundary between
[BAR0 + 0x0FFFFFFF] and [BAR0 + 0x10000000] are unpredictable. The
consequences of any burst write that crosses this same boundary are
unpredictable. The results of any burst read that crosses the boundary between
[BAR0 + 0x1FFFFFFF] and [BAR0 + 0x20000000] are unpredictable. The
consequences of any burst write that crosses this same boundary are
unpredictable.

● CN50XX either retries BAR0 PCI read accesses or responds with a single-data
phase and disconnects when PCI_CTL_STATUS_2[BB0] = 0.

Prefetchable 1

Type Locate anywhere within 64-bit address space.

Size 4KB when PCI_CTL_STATUS_2[BB0] = 0,
2GB when PCI_CTL_STATUS_2[BB0] = 1.

PCI Address Range CN50XX L2/DRAM Address Range
BAR0 + 0x00001000 ... BAR0 + 0x0FFFFFFF 0x000001000 ... 0x00FFFFFFF

BAR0 + 0x10000000 ... BAR0 + 0x1FFFFFFF 0x410000000 ... 0x41FFFFFFF

BAR0 + 0x20000000 ... BAR0 + 0x7FFFFFFF 0x020000000 ... 0x07FFFFFFF
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 367

Owner
下划线

Owner
下划线

Owner
下划线

Owner
矩形

 PCI Bus: CN50XX Addressing as a PCI Target
● CN50XX either retries BAR0 PCI write accesses or accepts a single-data phase
and disconnects when PCI_CTL_STATUS_2[BB0] = 0.

When CN50XX L2/DRAM is accessed via BAR0, PCI_CTL_STATUS_2[BB_ES] is the
endian-swap and PCI_CTL_STATUS_2[BB_CA] is the L2 cache-allocation bit for
these references.

9.2.2 BAR1 - 32-Bit Memory-Mapped Region

● Can also map the next 2GB of L2/DRAM

● CN50XX’s BAR1 PCI control registers reside at offset 0x18–0x1F in PCI
configuration space.

BAR1 is a 64-bit base-address register of 128MB–2GB that is typically used when
CN50XX is a PCI host. The first 128MB of BAR1 provides indirect access to the L2/
DRAM. When PCI_CTL_STATUS_2[BB1] = 1, the remainder of BAR1, if any,
provides direct access to CN50XX low memory (beyond that provided by BAR0).

CN50XX always accepts the first 128MB of BAR1 (i.e. addresses on the PCI bus in
the range [BAR1 + 0] ... [BAR1 + 0x07FFFFFF]. When CN50XX receives an address
in this BAR1 range, it decodes the lower 27 address bits as follows:

BAR1 27-bit Address

● Entry - Selects one of 32 BAR map-table entries.

● EntryOff - Offset within the region selected by the BAR1 map table entry.

BAR1 Map-Table Entry Format
There are 32 entries configured via the PCI_BAR1_INDEX(0...31) CSRs

● CA - Cache attribute. When set, hardware does not allocate into L2 cache.

● ES - Endian-swap mode. Refer to Section 9.9.

● V - Valid bit. When set, entry is valid. When clear, the entry is invalid and cannot
be referenced. When entry is invalid, the operations that reference BAR1 are
treated as follows:

PCI read - target abort, set PCI_INT_SUMn[ILL_RD]

PCI write - accept but ignore write, set PCI_INT_SUMn[ILL_WR]

The final 36-bit L2/DRAM address referenced by the PCI read/write operations in
BAR1 space is:

Prefetchable 1

Type Locate anywhere within 64-bit address space.

Size 128MB when PCI_CTL_STATUS_2[BB1] = 0.

1GB (or less) when
PCI_CTL_STATUS_2[BB1]=1 and PCI_CTL_STATUS_2[BB1_SIZ]=0.

2GB (or less) when
PCI_CTL_STATUS_2[BB1]=1 and PCI_CTL_STATUS_2[BB1_SIZ]=1.

26 22 21 0

Entry EntryOff

17 4 3 2 1 0

L2/DRAM Base Address CA ES V
368 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

PCI Bus: CN50XX Addressing as a PCI Target
PCI read/write streams that cross a 4MB boundary access different entries.

● PCI reads disconnect at the 4MB boundary.

● All other BAR1 accesses that cross the 4MB boundary are processed normally.

When PCI_CTL_STATUS_2[BB1] = 1, BAR1 becomes larger than 128 MB, in the
512MB–2GB range. In this case CN50XX maps the remaining address space (i.e.
addresses on the PCI bus in the range [BAR1 + 0x08000000] ... [BAR1 + size - 1],
where size is the size of BAR1) to CN50XX physical DRAM addresses as follows:

Table 9–1 shows the effective size of BAR1 when PCI_CTL_STATUS_2[BB1] = 1.

● When PCI_CTL_STATUS_2[BB1] = 1 and
PCI_CTL_STATUS_2[BB1_HOLE] = 0, the BAR1 acts completely like an
ordinary PCI-defined power-of-2-size BAR.

● When PCI_CTL_STATUS_2[BB1_HOLE] ≠ 0, the BAR1 acts much like an
ordinary PCI-defined power-of-2 size BAR, except that CN50XX does not respond
to a portion of the PCI addresses. In other words, there is a hole in BAR1. Please
note, however, that the hole is always at the end of the BAR1 address range,
meaning there really is no hole.

Table 9–1 indicates the effective size of BAR1 when
PCI_CTL_STATUS_2[BB1] = 1 (power-of-two minus hole).

The consequences of any burst that crosses the end of the PCI address range for
BAR1 are unpredictable. CN50XX may disconnect PCI references at this boundary.

35 22 21 0
L2/DRAM Base Address

(From map table)
EntryOff

(From BAR1 address)

PCI Address Range CN50XX L2/DRAM Address Range
BAR1 + 0x08000000 ... BAR0 + size − 1 0x88000000 ... 0x7FFFFFFF + size

Table 9–1 Effective Size of BAR1
PCI_CTL_STATUS_2

Effective Size Comment[BB1_SIZ] [BB1_HOLE]
0 0 1024 MB Normal 1GB BAR
0 1 1008 MB 1GB, 16 MB hole
0 2 992 MB 1GB, 32 MB hole
0 3 960 MB 1GB, 64 MB hole
0 4 896 MB 1GB, 128 MB hole
0 5 768 MB 1GB, 256 MB hole
0 6 512 MB 1GB, 512 MB hole
0 7 Illegal
1 0 2048 MB Normal 2GB BAR
1 1 2032 MB 2GB, 16 MB hole
1 2 2016 MB 2GB, 32 MB hole
1 3 1984 MB 2GB, 64 MB hole
1 4 1920 MB 2GB, 128 MB hole
1 5 1792 MB 2GB, 256 MB hole
1 6 1536 MB 2GB, 512 MB hole
1 7 Illegal
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 369

 PCI Bus: CN50XX Addressing as a PCI Target
When L2/DRAM is accessed via the BAR1 address space above 128MB,
PCI_CTL_STATUS_2[BB_ES] is the endian-swap and PCI_CTL_STATUS_2[BB_CA]
is the L2 cache-allocation bit for these references. Section 9.9 describes the endian-
swap modes. Section 9.6 describes the response of CN50XX to BAR1 load/store
operations as a target.

9.2.3 BAR2 - 64-bit Memory-Mapped Region

CN50XX’s BAR2 PCI control registers reside at offset 0x20–0x27 in PCI
configuration space.

PCI_CTL_STATUS_2[BAR2PRES] controls the behavior of BAR2 control registers.
Note that PCI_CTL_STATUS_2[BAR2PRES] controls whether external devices can
observe the presence of or use BAR2, while PCI_CTL_STATUS_2[BAR2_ENB]
determines what happens to accesses by a remote device.
PCI_CTL_STATUS_2[BAR2_ENB] is only relevant when
PCI_CTL_STATUS_2[BAR2PRES] is set.

When PCI_CTL_STATUS_2[BAR2PRES] = 1, it appears that CN50XX has a BAR2.

When PCI_CTL_STATUS_2[BAR2PRES] = 0, it appears that CN50XX does not have
a BAR2:

● reads of offset 0x20–0x27 in PCI configuration space return all 0s

● CN50XX never matches a PCI memory space reference to its BAR2 space.

The discussion in the remainder of this section assumes that
PCI_CTL_STATUS_2[BAR2PRES] is set.

Direct local DRAM addressing.

Provides direct access to attached DRAM memory. This BAR is typically used when
CN50XX is a PCI host.

CN50XX interprets the lower 39 bits of the PCI address as follows in BAR2:

BAR2 39-bit PCI Addressing

● CAX - after XORing with a CSR default (PCI_CTL_STATUS_2[BAR2_CAX]),
determines the L2 cache attribute.

If CAX ⊕ PCI_CTL_STATUS_2[BAR2_CAX] = 1, load/store operations are not
allocated to L2 cache.

● ESX - after XORing with a CSR default (PCI_CTL_STATUS_2[BAR2_ESX]),
determines the endian-swap mode.

NOTE: Note that the reset value for PCI_CTL_STATUS_2[BAR2PRES] equals
MIO_FUS_DAT3[BAR2_EN]. When MIO_FUS_DAT3[BAR2_EN] = 0, BAR2 appears not present
out of reset, and standard PCI discovery sequence firmware (running on a remote host) will not
attempt to map BAR2. This is advantageous in systems whose PCI discovery firmware cannot
properly map BARs as large as CN50XX’s BAR2.

Prefetchable 1

Type Locate anywhere within 64-bit address space.

Size 239

38 37 36 35 0

CAX ESX L2/DRAM Address
370 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Instruction Input From an External Host
● L2/DRAM Address - the CN50XX L2/DRAM address.

There is also a CSR enable (PCI_CTL_STATUS_2[BAR2_ENB]) for this region.
When this region is disabled, the operations that reference BAR2 are treated as
follows:

PCI read - target abort, set PCI_INT_SUMn[ILL_RD]

PCI write - accept but ignore write, set PCI_INT_SUMn[ILL_WR]

CA and ES are generated only for the first address referenced. Subsequent addresses
use the original value and do not change as the address increments.

Section 9.6 details the response of CN50XX to BAR2 references as a target.

9.2.4 Expansion ROM

CN50XX supports a PCI expansion ROM of 64 KB. CN50XX forwards these
expansion ROM reads to its boot bus. See Chapter 12.

● CN50XX either retries expansion ROM PCI read accesses or responds with a
single-data phase and disconnects.

9.3 PCI Instruction Input From an External Host

A PCI host may submit instructions to CN50XX. This is a way to feed packets and/or
commands into CN50XX, and to create work-queue entries. Instructions are typically
submitted to CN50XX when CN50XX is a device on the PCI bus, and are usually not
used when CN50XX is the PCI host.

There are two PCI input ports, (enabled via
NPI_CTL_STATUS[INS0/1_ENB]). The priority (higher to lower) is Port 0>1. Ports
0/1 correspond to CN50XX internal ports 32/33 (refer to Chapter 7). CN50XX
hardware maintains the following for an instruction input ring associated with each
port:

● a configured base address (NPI_BASE_ADDR_INPUT0/1

● a configured ring size (NPI_SIZE_INPUT0/1)

● a tail pointer (NPI_P0/1_INSTR_ADDR[NADDR], which gives an approximate
view of the tail)

Host software maintains the head of the ring and uses doorbell writes (to
PCI_DBELL0/1) to notify CN50XX that the head advanced.

The hardware maintains the doorbell count (PCI_INSTR_COUNT0/1), which also
indicates the current number of PCI instructions in the input queue, as well as the
distance from head to tail. Another measure of the doorbell count held by the
hardware is

NPI_P0/1_INSTR_CNTS[AVAIL] + NPI_P0/1_INSTR_CNTS[FCNT].

Host software can poll the doorbell count to determine how far the hardware has
advanced (and prevent ring overflow). The hardware only decrements
PCI_INSTR_COUNTn after it has read the instruction and all its associated data
and gather lists. Thus, when PCI_INSTR_COUNTn decrements, host software can
reuse the associated host memory locations of the tail PCI instruction.

9.3.1 PCI Instruction Format

Each PCI instruction is either 32 or 64 bytes, controlled by
NPI_CTL_STATUS[INSn_64B]. Figure 9–1 shows the instruction format:
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 371

Owner
下划线

 PCI Bus: PCI Instruction Input From an External Host
The PCI_INST_HDR format is as follows:

● R - RAW* packet.

When R is set, the packet is either RAWFULL or RAWSCH, depending on the
parse mode selected for the packet. RAWFULL and RAWSCH packets, as defined
in Section 7.2.1, use the QOS, GRP, TT, and TAG fields in the PCI_INST_HDR for
their scheduling information (refer to Chapter 7 for more details).

When R is clear, the packet is neither RAWFULL nor RAWSCH, and the QOS,
GRP, TT, and TAG fields are ignored by the hardware.

● G - gather is used.

When G is set, DPTR points at gather-list components (see Figure 9–3) in the
host’s memory, and the pointers in the gather list point at the packet data in the
host’s memory. In the case when the G-bit is set:

DLENGSZ is the number of entries in the gather list.
The length of the packet is
[sum of the lengths of the gather-list entries] + FSZ + IHI × 8

where IHI = 1 when the PCI instruction header is included at the beginning of
the constructed packet.

When G is clear, DPTR points directly at the packet data in the host’s memory.

The length of the packet is DLENGSZ + FSZ + IHI × 8

● DLENGSZ - data length/gather-list size.

When gather is not used (the G bit is clear), this field indicates the length of the
packet data (length in bytes) directly pointed at by DPTR.

When gather is used (the G bit is set), this field indicates the number of entries
in the gather list. DLENGSZ must not be zero when the G bit is set. Note that
when the G bit is set, the number of gather components used by the instruction
is (DLENGSZ + 3)/4.

● FSZ - front-data size. Indicates the number of bytes of packet data before the
DPTR data (and after the PKT_INST_HDR when it is included in the constructed
packet).

FSZ must be ≤ 23 with a 32-byte instruction, and ≤ 55 with a 64-byte instruction.

Figure 9–1 Instruction Format

63 62 6148 4742 41 39 38 35 34 3332 31 0

R G DLENGSZ FSZ QOS GRP RS TT TAG

32 or 64 Bytes

8 Bytes

DPTR

PCI_INST_HDR

Front Data
372 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Instruction Input From an External Host
An FSZ value between 17 and 23 with a 32-byte instruction can be used to insert
a pad between the front data and the DPTR data. The hardware inserts
unpredictable bytes for the extra bytes that are not actually contained in the PCI
instruction in this case. The same is true for FSZ values between 49 and 55 with
a 64-byte instruction.

● QOS - quality of service. Selects the one of the eight POW queues that holds the
work-queue entry when the R bit is set (i.e. when the packet is RAWFULL or
RAWSCH). QOS is ignored by the hardware when the R bit is clear. Refer to
Chapters 5 and 7 for more details.

● GRP - group. Selects the core group that the work-queue entry is scheduled to
when the R bit is set (i.e. when the packet is RAWFULL or RAWSCH). GRP is
ignored by the hardware when the R bit is clear. Refer to Chapters 5 and 7 for
more details.

● RS - real short. When RS is set, the ordinary L2/DRAM copy of the packet is
avoided if the packet is dynamically considered short. Section 7.4 describes
dynamic-short packets in more detail, but they are largely packets that can fit
entirely in the work-queue entry created for the packet.

The hardware ignores the RS bit if the corresponding
PIP_PRT_CFG32/33[DYN_RS] bit is set, which indicates that the port should
always avoid buffering dynamic-short packets. The hardware also ignores the RS
bit if a PCI_INST_HDR is not included with the constructed packet (i.e. if both
the R bit and corresponding NPI_PORT32/33INSTR_HDR[USE_IHDR] are
clear).

● TT - tag type. Selects the tag type that the work-queue entry has when the R bit
is set (i.e. when the packet is RAWFULL or RAWSCH). TT is ignored by the
hardware when the R bit is clear. Refer to Chapters 5 and 7 for more details.

● TAG. Selects the tag that the work-queue entry has when the R bit is set (i.e.
when the packet is RAWFULL or RAWSCH). TAG is ignored by the hardware
when the R bit is clear. Refer to Chapters 5 and 7 for more details.

9.3.2 PCI Input Packet

Figure 9–2 shows the packet that the hardware creates from the PCI instruction. The
complete packet is the PKT_INST_HDR (optionally included, converted from the
PCI_INST_HDR), front data (if any), plus the DPTR data.

Figure 9–2 Input Packet Format

8 Bytes

DPTR Data

PKT_INST_HDR

Front Data

PKT_INST_HDR is 8 bytes, is converted from
PCI_INST_HDR, and is present when
PCI_INST_HDR[R] is set, or when the corresponding
NPI_PORT32/33_INSTR_HDR[USE_IHDR] is set.

Front data size is FSZ bytes and comes directly from
the PCI instruction.

DPTR data size is either DLENSZ (non-gather) or the
sum of gather-list lengths (gather).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 373

 PCI Bus: PCI Instruction Input From an External Host
The PKT_INST_HDR is included with the packet constructed for a PCI instruction
when one or both of the two following conditions is met:

PCI_INST_HDR[R] is set

the corresponding NPI_PORT32/33INSTR_HDR[USE_IHDR] bit is set,
indicating that the PCI instruction header should be included with all
packets.

Whenever the PCI instruction header is included in the constructed packet, it is first
converted to a PKT_INST_HDR. Sections 7.2.2 and 7.2.5 and Figure 7-2 describe the
transformation from PCI_INST_HDR to PKT_INST_HDR in that case.
NPI_PORT(0..32)_INSTR_HDR provides the default values for <62:42> of the
constructed header for each corresponding port. Additionally, when the
corresponding NPI_PORT32/33_INSTR_HDR[PBP] is set, the parse mode and skip
values come from the DPTR field directly in the PCI instruction, as described below.
Refer to Section 7.2 for more details on parse mode and skip.

When a PCI instruction does not use gather mode (i.e. when PCI_INST_HDR[G] is
clear), DPTR in the PCI instruction directly points to the DPTR data in the memory
of the remote host. When a PCI instruction uses gather mode, the DPTR in the PCI
instruction points to the gather list in the memory of the remote host. A gather list is
as many gather components as necessary to contain the entire gather list. Figure 9–3
shows the structure of a gather component. Each LEN, DPTR pair specifies a
fragment of the DPTR data in the memory of the remote host. Each gather
component must be aligned on a 64-bit boundary (i.e. the DPTR<2:0> must be 0x0 in
the PCI instruction when in gather mode), but the DPTRs in the component can have
any byte alignment, and the LENs can be any (non-zero) byte length.

The CN50XX PCI hardware constructs PCI input packets by PCI read operations for
the necessary PCI instructions, gather components, and DPTR data from the remote
hosts memory. These PCI read requests require the following elements:

an address
an endian-swap mode (see Section 9.9)

There are four possible formats for the DPTRs in the PCI instruction and in the
gather components: format 0, format 1, format 2, and format 3.

These four formats produce the following six elements via various means:

1. PCI addresses

2. endian-swap modes

3. no-snoop modes

4. relaxed order

5. parse mode

6. skip lengths

Figure 9–3 Structure of a Gather Component

63 48 4732 31 16 150

LEN 0 LEN 1 LEN 2 LEN 3

DPTR 0

DPTR 1

DPTR 2

DPTR 3
374 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Instruction Input From an External Host
The parse mode and skip lengths are only present in the DPTR in the PCI instruction
when selecting the parse mode and skip length on a packet-by-packet basis (i.e. when
NPI_PORT32/33_INSTR_HDR[PBP] is set for the port the packet arrived on).

9.3.3 DPTR Formats

There are four DPTR formats that may be used depending on
NPI_INPUT_CONTROL[USE_CSR] (See ‘NPI_INPUT_CONTROL” on page 444.)
and various NPI_PORT32/33_INSTR_HDR[PBP] values (See ‘NPI Port Instruction
Header Registers” on page 447.). Table 9–2 describes the DPTR formats used in all
cases.

DPTR Format 0

For format 0, the required elements are derived in the following manner:

1. PCIADD<63:0> = PCIADD field shown above
2. endian swap = NPI_INPUT_CONTROL[D_ESR]
3. no snoop = NPI_INPUT_CONTROL[D_NSR]
4. relaxed order = NPI_INPUT_CONTROL[D_ROR]
5. parse mode = N/A
6. skip length = N/A

● Not-gather mode: the DPTR in the PCI instruction is in DPTR format 0 when
both the following conditions are met:

NPI_INPUT_CONTROL[USE_CSR] = 1.

NPI_PORT32/33_INSTR_HDR[PBP] = 0 for the port that the packet arrived
on.

● Gather mode:

the DPTR in the PCI instruction is in DPTR format 0 when
NPI_PORT32/33_INSTR_HDR[PBP] = 0 for the port that the packet arrived
on.

the DPTRs in the PCI components that represent the gather list for the
instruction are in DPTR format 0 when NPI_INPUT_CONTROL[USE_CSR]
= 1.

Table 9–2 DPTR Formats

NPI_INPUT_CONTROL
[USE_CSR]

NPI_PORTn_
INSTR_HDR

[PBP] 1

1. Ports 32-33 only.

Not Gather2

2. Gather is not used: the DPTR field is found directly in the PCI instruction.

Gather, DPTR
in Instruction3

3. Gather is used: the DPTR field is found directly in the PCI instruction.

Gather, DPTRs
in Components4

4. Gather is used: the DPTR field is found in the gather component.

0 0 Format 1 Format 0 Format 1

0 1 Format 3 Format 2 Format 1

1 0 Format 0 Format 0 Format 0

1 1 Format 2 Format 2 Format 0

630

PCIADD
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 375

 PCI Bus: PCI Instruction Input From an External Host
DPTR Format 1

For format 1, the required elements are derived in the following manner:

1. PCIADD<59:0> = PCIADD field shown above
PCIADD<60> = NPI_INPUT_CONTROL[D_ROR]
PCIADD<61> = NPI_INPUT_CONTROL[D_NSR]
PCIADD<63:62> = NPI_INPUT_CONTROL[D_ESR]

2. endian swap = ES field shown above

3. no snoop = NS field shown above

4. relaxed order = RO field shown above

5. parse mode = N/A

6. skip length = N/A

● Not-gather mode: the DPTR in the PCI instruction is in DPTR format 1 when
both the following conditions are met:

NPI_INPUT_CONTROL[USE_CSR] = 0.

NPI_PORT32/33_INSTR_HDR[PBP] = 0 for the port that the packet arrived
on.

● Gather mode:

the DPTR in the PCI instruction is never DPTR format 1.

the DPTRs in the PCI components that represent the gather list for the
instruction are DPTR format 1 when
NPI_INPUT_CONTROL[USE_CSR] = 0.

DPTR Format 2

For format 2, the required elements are derived in the following manner:

1. PCIADD<54:0> = PCIADD field shown above
PCIADD<63:55> = NPI_INPUT_CONTROL[PBP_DHI<12:4>]

2. endian swap = NPI_INPUT_CONTROL[D_ESR]

3. no snoop = NPI_INPUT_CONTROL[D_NSR]

4. relaxed order = NPI_INPUT_CONTROL[D_ROR]

5. parse mode = PM field shown above

6. skip length = SL field shown above

● Not-gather mode: the DPTR in the PCI instruction is in DPTR format 2 when
both the following conditions are met:

NPI_INPUT_CONTROL[USE_CSR] = 1.

NPI_PORT32/33_INSTR_HDR[PBP] = 1 for the port that the packet arrived
on.

● Gather mode:

6362 61 60 59 0

ES NS RO PCIADD

6362 61 55 540

PM SL PCIADD
376 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Packet Output From CN50XX
the DPTR in the PCI instruction is in DPTR format 2 when NPI_PORT32/
33_INSTR_HDR[PBP] = 1 for the port that the packet arrived on.

the DPTRs in the PCI components that represent the gather list for the
instruction are never in DPTR format 2.

DPTR Format 3

For format 3, the required elements are derived in the following manner:

1. PCIADD<50:0> = PCIADD field shown above
PCIADD<59:51) = NPI_INPUT_CONTROL[PBP_DHI<8:0>]
PCIADD<60> = NPI_INPUT_CONTROL[D_ROR]
PCIADD<61> = NPI_INPUT_CONTROL[D_NSR]
PCIADD<63:62> = NPI_INPUT_CONTROL[D_ESR]

2. endian swap = ES field shown above

3. no snoop = NS field shown above

4. relaxed order = RO field shown above

5. parse mode = PM field shown above

6. skip length = SL field shown above

● Not-gather mode: the DPTR in the PCI instruction is in DPTR format 3 when
both the following conditions are met:

NPI_INPUT_CONTROL[USE_CSR] = 0.

NPI_PORT32/33_INSTR_HDR[PBP] = 1 for the port that the packet arrived
on.

● Gather mode:

the DPTR in the PCI instruction is never DPTR format 3.

the DPTRs in the PCI components that represent the gather list for the
instruction are never in DPTR format 3.

9.4 PCI Packet Output From CN50XX

There are two output ports destined for PCI in CN50XX, enabled by
NPI_CTL_STATUS[OUT0/1_ENB]. Internally, these ports appear much like other
ports that exit packet interfaces, until the packets reach the PCI interface (see
Chapter 8). These ports are generally used when CN50XX is a device on the PCI bus,
when there is a remote host, not when CN50XX is a PCI bus host itself. The CN50XX
PCI hardware implements the mechanisms to transfer the packets in the four output
ports to the remote host for further processing.

The (remote) host software receives packets by supplying buffer and info pointers.
The host software supplies buffer and info pointers to the packet output hardware via
an input ring. The ring head is managed by host software: host software rings the
doorbell to notify CN50XX of an advance.

The CN50XX hardware maintains the following information for each of the two
output queues:

63 62 61 60 59 58 57 51 50 0

ES NS RO PM SL PCIADD
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 377

 PCI Bus: PCI Packet Output From CN50XX
● INPUT RING BASE ADDRESS, INPUT RING SIZE
(NPI_BASE_ADDR_OUTPUTn[BADDR], NPI_NUM_DESC_OUTPUTn[SIZE]).
Describes the input ring that supplies buffer/information pairs to CN50XX.

● TAIL POINTER. The hardware uses this to fetch buffer/info pairs from the input
ring. NPI_P0/1_DBPAIR_ADDR[NADDR] contains a read-only approximation of
the tail pointer for the ring.

● DOORBELL (PCI_PKT_CREDITS0/1[PTR_CNT]). Write operations to the
doorbell increments the available size register that CN50XX maintains. Available
size is the number of buffer/info pairs that is available for the hardware to fetch
from the input ring. The sum of NPI_P0_PAIR_CNTS[AVAIL] and
NPI_P0_PAIR_CNTS[FCNT] is the current available-size value.

● PACKET/BYTE COUNT (PCI_PKTS_SENT0/1[PKT_CNT]). Indicates either the
number of unacknowledged packets or the number of unacknowledged bytes. The
CN50XX hardware increments the unacknowledged count once all buffer pointer
and info pointer writes corresponding to a packet are complete.
NPI_OUTPUT_CONTROL[P0/1_BMODE] determines whether the increment is
a 1 or the number of bytes in the packet. The remote PCI host processor
decrements this count (by writing PCI_PKT_CREDITS0/1[PKT_CNT]) to
indicate receipt of packets/bytes.

● BUFFER SIZE (NPI_BUFF_SIZE_OUTPUTn[BSIZE]). Indicates the number of
bytes available at each buffer pointer.

● INFO BYTES (NPI_BUFF_SIZE_OUTPUT0/1[ISIZE]). Indicates the number of
bytes from the front of the packet that should appear at the info pointer. The
remaining bytes in the packet appear at the data pointer. (In buffer-pointer-only
mode (see Section 9.4.2), the INFO BYTES information is not needed nor used.)

When a packet arrives at one of the two PCI output ports, CN50XX must first have
been given a buffer/info pointer pair to write the packet into. (If one is not available,
the PCI interface hardware will not send the packet (or any subsequent packet
arriving at the PCI output port) to the host until the host supplies data/info pairs (via
doorbell writes to PCI_PKT_CREDITS0/1[PTR_CNT]).) Once given a buffer/info pair,
CN50XX writes the packet into the supplied buffer pointer.

The remote host software should initialize a PCI packet output port by first setting
up all the input ring parameters and modes. After that, it should enable the port
(NPI_CTL_STATUS[OUT0/1_ENB]). Finally, it can ring the doorbell to provide data/
info pairs. The remote host software must not provide any data/info pairs prior to
enabling the PCI packet output port.

Figure 9–4 shows the format of a buffer/info pointer pair (in the host processors
memory):

Buffer pointers may point to any byte, but all info pointers must point to an aligned,
8-byte quantity (i.e. the lower 3-bits must be zero). The format of the 64-bit buffer
and info pointers depends on configuration.

Figure 9–4 Buffer/Info Pointer Pair

63 0

Buffer Pointer

Info Pointer
378 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Packet Output From CN50XX
● When the corresponding NPI_OUTPUT_CONTROL[O0/1_CSRM] for the port is
set, the formats of the buffer and info pointers are identical to DPTR format 0, as
shown in Section 9.3, except that
NPI_OUTPUT_CONTROL[O0/1_ES,O0/1_NS,O0/1_RO] are used as the effective
endian-swap, no-snoop, and relaxed ordering modes rather than
NPI_INPUT_CONTROL[D_ESR,D_NSR,D_ROR], respectively.

● When the corresponding NPI_OUTPUT_CONTROL[O0/1_CSRM] for the port is
clear, the formats of the buffer and info pointers is identical to DPTR format 1, as
shown in Section 9.3, except that
NPI_OUTPUT_CONTROL[O0/1_ES,O0/1_NS,O0/1_RO] are the upper bits
<63:60> of the effective PCI address rather than
NPI_INPUT_CONTROL[D_ESR,D_NSR,D_ROR], respectively.

The PCI interface can generate interrupts for a remote host in two ways, both based
on the PACKET/BYTE COUNT.

1. THRESHOLD COMPARE: whenever the packet/byte count (PCI_PKTS_SENT0/
1[PKT_CNT]) exceeds the programmed threshold for the port
(PCI_PKTS_SENT_INT_LEV0/1[PKT_CNT]), interrupt bits (PCI_INT_SUM0/
1[PCNT0/1]) are set.

2. TIME THRESHOLD INTERRUPT: whenever the packet/byte count
(PCI_PKTS_SENT0/1[PKT_CNT]) is non-zero for a selected time threshold
(PCI_PKTS_SENT_TIME0/1[PKT_TIME]), and the time interrupt bits are not
cleared, time-interrupt bits (PCI_INT_SUM0/1[PTIME0/1]) are set.

There are two packet-output modes (info-pointer mode and buffer-pointer-only
mode), selected by NPI_OUTPUT_CONTROL[IPTR_O0/1], and described in Sections
9.4.1 and 9.4.2. Both modes use the identical buffer/info pair format. However, when
NPI_OUTPUT_CONTROL[IPTR_O0/1] corresponding to a port is clear (Section 9.4.2
describes this case), the Info Pointer field is not used, though it is still read into
CN50XX (via the PCI bus), as it is when NPI_OUTPUT_CONTROL[IPTR_O0/1]
corresponding to a port is set (Section 9.4.1 describes this case).

9.4.1 Info-Pointer Mode

Info pointer mode is enabled for a port when the
NPI_OUTPUT_CONTROL[IPTR_O0/1] corresponding to the port is set. The
CN50XX hardware writes the information to the info pointer after writing the
remaining packet data to the buffer pointer in info-pointer mode, so the PCI host can
poll in its memory for packet arrival. (The packet is guaranteed to be available after
CN50XX writes the packet-length field, so the host can look for changes in the
memory at the next packet-length location.) The PCI host can also determine packet
arrivals in info-pointer mode by polling the packet/byte count information held in
CN50XX, or by receiving an interrupt that is the result of packet/byte-count changes.

The CN50XX hardware writes the packet into the hosts memory as follows in info-
pointer mode. In the typical case when the packet (minus Info Bytes) is less than the
buffer size for the port, CN50XX writes the packet, excluding the first Info-Bytes
bytes of the packet, to the Buffer Pointer location. After this, it writes the first Info-
Bytes bytes from the packet together with the packet-length field to the associated
info pointer.

If the packet (minus Info Bytes) is larger than the buffer size for the port, CN50XX
writes the first buffer-size bytes of the packet, excluding the first Info Bytes bytes of
the packet, at the first buffer pointer. It continues allocating and writing further
buffer-size byte chunks from the packet into subsequent buffer pointers. After
CN50XX writes the entire packet (excluding the first Info Bytes bytes) to the buffer
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 379

 PCI Bus: PCI Packet Output From CN50XX
pointers, it writes the first Info-Bytes bytes from the packet together with the packet-
length field to the info pointer associated with the first buffer pointer used to store
the packet. Note that when the packet spans across multiple buffer pointers in this
way, the info pointers other than the first are not used by CN50XX.

Figure 9–5 shows the format written to the Info Pointer:

As the info pointer must be 64-bit aligned, the Info Bytes are first written aligned at
the info pointer. The hardware adds Pad so that the packet-length field, like the Info-
Bytes bytes from the start of the packet, is also aligned on an 8-byte boundary. The
value of the Pad bytes is not defined.

The (64-bit) Packet Length field is the total number of bytes in the packet.

PCI host software can calculate the actual number of buffers the PCI hardware used
for a packet in info-pointer mode:

In info-pointer mode, the remote PCI host can learn that a packet arrived in any one
of the following ways:

● Receipt of an interrupt (PCI_INT_SUM[PCNT0/1,PTIME0/1] and corresponding
PCI_INT_ENB[IPCNT0/1,IPTIME0/1] set) due to a packet/byte count
(PCI_PKTS_SENT0/1[PKT_CNT]) change

● Polling packet/byte count (PCI_PKTS_SENTn[PKT_CNT]) directly

● Polling for changes in the packet-length field pointed at by an info pointer.

It is illegal to send packets with fewer than Info Bytes in info-pointer mode.
(NPI_INT_SUM[PO0/1_2SML] is set when this error happens.)

9.4.2 Buffer-Pointer-Only Mode

Buffer-pointer-only mode is enabled for a port when the
NPI_OUTPUT_CONTROL[IPTR_On] corresponding to the port is clear. In this
mode, CN50XX ignores the value of the info-pointer field in the buffer/info pair
format. Only the buffer pointer is used.

In buffer-pointer-only mode, CN50XX first writes the 8-byte packet-length field (the
same format as shown at the bottom of Figure 9–5) at the Buffer Pointer start
location, then follows this with the remaining packet data. The packet-length field
acts exactly as 8 bytes of additional packet data preceding the real packet data.

Figure 9–5 Format Written to the Info Pointer

63 0

Info Bytes

Pad

Packet Length

bufs = ((Packet Length

 - NPI_BUFF_SIZE_OUTPUT × [ISIZE]

 + NPI_BUFF_SIZE_OUTPUT × [BSIZE] - 1)

 / NPI_BUFF_SIZE_OUTPUT × [BSIZE])

// Info Bytes

// BUFFER SIZE - 1

// BUFFER SIZE
380 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI DMA Engine Access From Cores
As with info-pointer mode, the PCI hardware allocates and writes multiple buffer
pointers when necessary in buffer-pointer-only mode. The hardware accounts for the
packet-length field, and buffer size always limits the number of bytes written in each
supplied buffer pointer.

PCI host software can calculate the actual number of buffers the PCI hardware used
for a packet in buffer pointer only mode:

In buffer-pointer-only mode, the remote PCI host can learn that a packet arrived in
any one of the following ways:

● Receipt of an interrupt (PCI_INT_SUM[PCNT0/1,PTIME0/1] and corresponding
PCI_INT_ENB[IPCNTn,IPTIMEn] set) due to a packet/byte count
(PCI_PKTS_SENTn[PKT_CNT]) change

● Polling packet/byte count (PCI_PKTS_SENT0/1[PKT_CNT]) directly

9.5 PCI DMA Engine Access From Cores

The cores can move data between local (DRAM) memory and remote (PCI) memory
by submitting PCI DMA instructions to PCI DMA engines. The PCI DMA engines
perform the necessary PCI memory-space and L2/DRAM operations to perform the
data move asynchronously to core execution. The engines can notify the cores of
completion via either L2/DRAM polling or work-queue entry submittal.

A PCI DMA instruction can be from a minimum of 4 to a maximum of 32 (64-bit)
words. Figure 9–6 shows the format of a PCI DMA instruction.

Note that a single PCI DMA instruction may be either contiguous in memory or split
into two pieces, depending on how it resides within the PCI DMA instruction chunk,
which is defined in the following subsections.

bufs = (Packet Length

// for Packet Length field

// BUFFER SIZE - 1

// BUFFER SIZE

8

+ NPI_BUFF_SIZE_OUTPUT × [BSIZE] - 1)

/ NPI_BUFF_SIZE_OUTPUT × [BSIZE])

NOTE: A remote PCI host cannot learn of packet arrival by polling the
packet-length field in buffer-pointer-only mode, because the
hardware writes the packet-length field before writing the
remainder of the packet.

Figure 9–6 PCI DMA Instruction Format

630

DMA HDR

LOCAL POINTERS

PCI COMPONENTS

One 64-bit word

#words = HDR.NL

#words = HDR.NR + (HDR.NR + 3)/4
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 381

 PCI Bus: PCI DMA Engine Access From Cores
9.5.1 PCI DMA Instruction-Header Format

The DMA header describes the PCI DMA instruction. Figure 9–7 shows the header
format.

● DIR - Direction: 1 = inbound, 0 = outbound. A given PCI DMA transfer is either
inbound (load from PCI memory space, store into L2/DRAM) or outbound (load
from L2/DRAM, store into PCI memory space).

● WQP - Work-queue pointer: when WQP = 1, PTR (if non-zero) is a pointer to a
work-queue entry that is submitted by the hardware after completing the DMA;
when WQP = 0, PTR (if non-zero) is a pointer to a byte in local memory that is
written to 0 by the hardware after completing the DMA.

● C - Counter: 1 = use counter 1, 0 = use counter 0.

The C bit selects between the two counters (PCI_DMA_CNT0/PCI_DMA_CNT1)
that can optionally be updated after the transfer, and also selects between the
two forced-interrupt bits (PCI_INT_SUMn[DMA0_FI, DMA1_FI]) that can
optionally be set after the transfer. For an inbound PCI DMA operation, C must
never be set.

● CA - Counter add.

When CA = 1, the hardware updates the selected counter after it completes the
PCI DMA Instruction.

If C = 0, PCI_DMA_CNT0 is updated

If C = 1, PCI_DMA_CNT1 is updated.

Note that this update may indirectly cause
PCI_INT_SUMn*[DCNT0,DCNT1,DTIME0,DTIME1] to become set (depending
on the PCI_DMA_INT_LEV0* and PCI_DMA_TIME0* settings), so may cause
interrupts to occur on a remote PCI host.

If NPI_DMA_CONTROL[O_ADD1] = 1, the counter is updated by 1.

If NPI_DMA_CONTROL[O_ADD1] = 0, the counter is updated by the total
bytes in the transfer.

When CA = 0, the hardware does not update any counters.

For an inbound PCI DMA operation, CA must never be set, and the hardware
never adds to the counters.

● FI - When FI is set, the hardware sets a forced interrupt bit after it completes the
PCI DMA Instruction. If C = 0, PCI_INT_SUMn[DMA0_FI] is set, else
PCI_INT_SUMn[DMA1_FI] is set. For an inbound PCI DMA operation, FI must
never be set, and the hardware never generates interrupts.

● II - Ignore the I bit (i.e. the I bit of the PCI DMA instruction local pointer. See
Section 9.5.2).

For outbound operations (i.e. DIR = 0) when II = 1, ignore the I bit and the FL bit
alone determines whether the hardware frees any/all of the local buffers

– when FL = 1, the local buffer is freed.

– when FL = 0, the local buffer is not freed.

Figure 9–7 PCI DMA Instruction Header Format

63 55 54 53 52 51 50 49 48 47 44 43 40 39 0

Reserved
0000 0000 0 DIR WQP C CA FI II FL NR NL PTR
382 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI DMA Engine Access From Cores
For outbound operations (i.e. DIR = 0) when II = 0, the I bit in the local pointer
selects whether local buffers are freed on a pointer-by-pointer basis: the
hardware frees a given local buffer when (FL ⊕ I) is true.

For inbound PCI DMA operations (i.e. DIR = 1), II must never be set, and local
buffers are never freed.

● FL - Free local buffer.

When FL = 1, for an outbound operation, it indicates that the local buffer should
be freed.

If II = 1, the FL bit alone indicates whether the local buffer should be freed

– if FL = 1, the buffer is freed

– if FL = 0, the buffer is not freed

If II = 0, the local buffer is freed when (FL ⊕ I) is true, where I is the I bit in
the local pointer.

For an inbound PCI DMA operation, FL must never be set, and local buffers are
never freed.

● NR - The number of PCI pointers (i.e. the number of PCI memory space pointers).

● NL - The number of local pointers (i.e. the number of L2/DRAM pointers).

● PTR - Pointer, either a work-queue-entry pointer (when WQP = 1) or a local-
memory pointer (WQP = 0).

When WQP = 1 and PTR ≠ 0x0, the hardware inserts the work-queue entry
indicated by PTR into the work queue after the PCI DMA operation is
complete. When WQP = 1, PTR<2:0> must be 0x0.

When WQP = 0 and PTR ≠ 0x0, the hardware writes the single byte in local
memory indicated by PTR to 0x0 after the PCI DMA operation is complete.

When PTR = 0x0, the hardware performs no operation after the PCI DMA
operation is complete.

Section 9.5.5 describes when a PCI DMA instruction completes.

9.5.2 PCI DMA Instruction Local-Pointer Format

The local-pointer format, shown in Figure 9–8, describes a memory fragment in the
L2/DRAM attached to CN50XX. The number of local pointers in a PCI DMA
instruction is HDR.NL.

● I - Invert free. This bit gives the software the ability to free buffers independently
for an outbound PCI DMA instruction. See the II bit description in Section 9.5.1.

I is not used by the hardware when II is set. I must not be set, and buffers are
never freed, for an inbound PCI DMA instruction.

● Back - Backup amount: allows the start of a buffer that is to be freed to be
different from the ptr value. Back specifies the amount to subtract from the
pointer to reach the start when freeing a buffer for an outbound PCI DMA
instruction.

The address that is the start of the buffer being freed is:

Figure 9–8 Local Pointer Format

63 62 59 5856 55 54 53 5240 39 36 35 0

I Back Pool F A L Size Rsvd
0000 ptr
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 383

 PCI Bus: PCI DMA Engine Access From Cores
Buffer start address = ((ptr >> 7) − Back) << 7.

Back is only used by the hardware when the buffer corresponding to ptr is freed.
Back must be 0x0, and buffers are never freed, for an inbound PCI DMA
instruction.

● Pool - Specifies which pool (of the eight hardware-managed FPA free pools)
receives the buffer associated with ptr (refer to Chapter 6).

Pool is only used when the buffer corresponding to ptr is freed. Pool must be 0x0,
and buffers are never freed, for an inbound PCI DMA instruction.

● F - Full-block writes are allowed. When set, the hardware is permitted to write
all the bytes in the cache blocks covered by ptr, ptr + Size - 1. This can improve
memory system performance when the write misses in the L2 cache.

F must not be set for an outbound PCI DMA instruction.

● A - Allocate L2. This is a hint to the hardware that the cache blocks should be
allocated in the L2 cache, if they were not already allocated.

Should typically be set to allocate the referenced cache blocks into the L2 cache.

When the local pointer is a source of data (e.g. an OUTBOUND transfer), the
referenced cache blocks are not allocated into the L2 cache as part of completing
the DMA (when not already present in the L2) if the A bit is clear.

When the local pointer is a destination for data (e.g. an INBOUND transfer), the
referenced cache blocks are not allocated into the into the cache as part of
completing the DMA (when not already present in the L2) if the A bit is clear,
and:

either the entire cache block is written by this local pointer,
or the F bit is set so that the entire cache block can be written

● L - Little-endian. When L is set, the data at ptr is in little-endian format rather
than big-endian.

● Size - Size in bytes of the contiguous space specified by ptr, between 1 and 8184
(i.e. 8K−8).

● ptr - L2/DRAM byte pointer. Points to where the packet data starts.

Ptr can be any byte alignment. Note that ptr is interpreted as a big-endian byte
pointer when L is clear, a little-endian byte pointer when L is set.

Note that the sum of the size fields in the HDR.NL local pointers (i.e. the total
number of local-pointer bytes) must exactly equal the total number of remote pointer
bytes for a given PCI DMA instruction.
384 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI DMA Engine Access From Cores
9.5.3 PCI DMA Instruction PCI Components and Processing

The PCI components format is a compressed list of PCI memory space pointers and
their associated lengths. Up to four lengths are encoded in a length word. A
component is a length word and its associated pointers. For example, if HDR.NR = 9,
the PCI components portion of the PCI DMA instruction would consist of three
components as shown in Figure 9–9.

Note that the sum of the first HDR.NR length fields in the PCI components (i.e. the
total number of remote pointer bytes) must exactly equal the total number of local
pointer bytes for a given PCI DMA instruction.

Most components are five words: one for the length and four for the pointers. If
HDR.NR is not a multiple of 4, the last component is always truncated. The Figure
9–9 example shows a case where three PCI components are necessary to hold the
nine remote pointers. The last component is partial and is only two 64-bit words: one
to hold the necessary PCI length field, and one to hold the necessary ninth remote
pointer.

The format of the PCI length field is shown in Figure 9–10. The values in LEN must
be between 1 and 65828 (i.e. 64K−8).

Together with a corresponding length, the PCI pointer describes a fragment of up to
64KB in PCI memory space.

Each PCI pointer is a 64-bit PCI memory-space pointer that takes either DPTR
format 0 or DPTR format 1 (as described in Section 9.3), except that
NPI_DMA_CONTROL[0_ES,0_NS,0_RO] is used instead of
NPI_INPUT_CONTROL[D_ESR,D_NSR,D_ROR] in all places.
(NPI_INPUT_CONTROL[D_ESR,D_NSR,D_ROR] is never used by the PCI DMA
engines.)

Figure 9–9 PCI Component Format Example When HDR.NR = 9

PCI Lengths

PCI Pointers

PCI Lengths

PCI Pointers

PCI Lengths

PCI Pointer

One 64-bit Word

Four 64-bit Words

One 64-bit Word

Four 64-bit Words

One 64-bit Word

One 64-bit Word

Component 0

Component 1

Component 2

8 Bytes (64 Bits)

Figure 9–10 PCI Length Field Format

63 48 47 32 31 16 15 0

LEN 0 LEN 1 LEN 2 LEN 3
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 385

 PCI Bus: PCI DMA Engine Access From Cores
When NPI_DMA_CONTROL[0_MODE] is set, DPTR format 0 is used with
NPI_DMA_CONTROL[0_ES,0_NS,0_RO].
When NPI_DMA_CONTROL[0_MODE] is clear, DPTR format 1 is used with
NPI_DMA_CONTROL[0_ES,0_NS,0_RO].

With PCI, CN50XX creates either Memory Read or Memory Read Multiple
commands (depending on the size of the individual transfer in relation to
NPI_PCI_READ_CMD[CMP_SIZE]) to service an inbound PCI DMA request, and
Memory Write commands to service outbound PCI DMA transfers.

9.5.4 PCI DMA Instruction Fetching

There are two queues onto which core software pushes PCI DMA INSTRUCTIONS.
The PCI DMA engines service the instructions from the two queues at a fixed
priority.

Each queue is a linked-list of memory chunks in L2/DRAM memory containing PCI
DMA instruction information. Core software adds PCI DMA instructions at the head
of a queue and notifies the hardware of the arrival by writing the hardware doorbell
register for the corresponding queue (NPI_HIGHP_DBELL[DBELL] or
NPI_LOWP_DBELL[DBELL]), typically with the number of words in the
instructions. The hardware accumulates the doorbell write operations. The hardware
reads an instruction from the tail of a queue and performs the DMA operation. When
the hardware exhausts the chunk at the tail of the queue (i.e. reads all the
instructions that filled the chunk), the hardware frees the tail chunk and starts
reading instructions from the next chunk.

Figure 9–11 is an example of the list:

The hardware knows the chunk size through the configuration variable
NPI_DMA_CONTROL[CSIZE]. The NPI_DMA_CONTROL[FPA_QUEUE] field
selects the free pool that receives a chunk once the tail advances through the
next_ptr of the chunk (refer to Chapter 6, the FPA chapter).

The software writes, and the hardware reads, instructions contiguously in a chunk,
starting at the first word. A given PCI DMA instruction is normally contiguous in
local DRAM memory, but a single instruction must span two chunks if the contiguous

Figure 9–11 Example: Queue Linked-List Memory Chunks

64 bits

N
P

I_
D

M
A

_C
O

N
T

R
O

L[
C

S
IZ

E
]

Chunk / Buffer

64 bits

N
P

I_
D

M
A

_C
O

N
T

R
O

L[
C

S
IZ

E
]

Chunk / Buffer

64 bits

N
P

I_
D

M
A

_C
O

N
T

R
O

L[
C

S
IZ

E
]

Chunk / Buffer

Next Chunk Buffer Ptr

PCI DMA Inst. 0 WORD 0

PCI DMA Inst. 0 WORD 1

PCI DMA Inst. 0 WORD 2

PCI DMA Inst. 0 WORD 3

PCI DMA Inst. 0 WORD 4

PCI DMA Inst. 0 WORD 5

PCI DMA Inst. 1 WORD 0

PCI DMA Inst. 1 WORD 1

PCI DMA Inst. 1 WORD 2

PCI DMA Inst. 1 WORD 3

PCI DMA Inst. 1 WORD 4

PCI DMA Inst. 1 WORD 5

PCI DMA Inst. 2 WORD 0

PCI DMA Inst. 2 WORD 1

PCI DMA Inst. 2 WORD 2

PCI DMA Inst. 2 WORD 3

PCI DMA Inst. 2 WORD 4

PCI DMA Inst. 3 WORD 0

Next Chunk Buffer Ptr

PCI DMA Inst. 3 WORD 1

PCI DMA Inst. 3 WORD 2

PCI DMA Inst. 3 WORD 3

PCI DMA Inst. 3 WORD 4

PCI HW Tail
Pointer

Boot-time seeded by a write to
NPI_*P_IBUFF_SADDR[SADDR]

SW Head
Pointer

39 04063

Next Chunk Buffer Ptr AddrMBZ
386 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI DMA Engine Access From Cores
words in the instruction would otherwise over-run the next_ptr of the chunk. In this
case, the remainder of the instruction resides at the beginning of the next chunk. The
software must allocate the next chunk (and update the next_ptr in the previous
chunk) whenever it inserts an instruction that either abuts or over-runs the next
chunk buffer pointer. This allows the hardware to read the next_ptr, and traverse to
the next chunk, with the same fetch that it uses to read the last instruction word of
the chunk.

The hardware knows there are PCI DMA instructions available to be fetched from
the queue after the software updates the doorbell count (via writes to
NPI_HIGHP_DBELL[DBELL] or NPI_LOWP_DBELL[DBELL]). The software may
launch multiple instructions with a single doorbell write. Software can also use
multiple doorbell write operations to announce the availability of a single
instruction, but this provides poorer performance than a single write operation. For
this and other reasons, hardware does not assume that individual doorbell write
operations correlate to entire PCI DMA instructions. The hardware only uses the
doorbell write operations to indicate valid instruction words in the queue.

The distance between the head pointer and the tail pointer is both the size of the PCI
DMA instruction queue and the outstanding doorbell count. The size of the PCI DMA
instruction queue is limited only by the available memory.

At boot time, software must configure the PCI DMA instruction queues with the
original next chunk buffer pointer (i.e. the starting tail pointer) with a write to
NPI_*P_IBUFF_SADDR[SADDR].

Figure 9–11 also shows the next chunk buffer pointer format. The primary
component is the Addr field that selects a legal L2/DRAM byte location. Though Addr
is a byte address, it must be naturally aligned on a 128 byte cache block boundary, so
its least-significant 7 bits must be zero. The same is true for the original next chunk
buffer pointer.

Since the hardware maintains the doorbell counts and tail pointers for the queues,
the software normally does not need to know them. Approximations of them are
available for debug purposes, however.

● NPI_DMA_HIGHP_COUNTS[DBELL] + NPI_DMA_HIGHP_COUNTS[FCNT]
approximates the doorbell count for the high-priority queue.

● NPI_DMA_LOWP_COUNTS[DBELL] + NPI_DMA_LOWP_COUNTS[FCNT]
approximates the doorbell count for the low-priority queue.

● NPI_DMA_HIGHP_NADDR[ADDR] and NPI_DMA_LOWP_NADDR[ADDR]
approximate the tail pointers for the high and low-priority queues, respectively.

9.5.5 PCI DMA Instruction Ordering and Completion

If two outbound PCI DMA instructions use the same queue, the PCI write operations
for the two instructions appear on the PCI bus in the order that the instructions were
queued. Within an instruction, all write operations appear in order.

Similarly, the PCI read addresses from two inbound instructions in the same queue
appear on the PCI bus in queue order, and the read addresses from an individual
instruction appear in order.

An outbound PCI DMA transfer completes after the last PCI write transaction
appears on the PCI bus. CN50XX hardware does not increment the counter selected
by the C bit, nor does it set any interrupt, until the last PCI write appears on the PCI
bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 387

 PCI Bus: PCI DMA Engine Access From Cores
An inbound PCI DMA transfer completes only after all its local memory stores
commit and there are no “prior” uncommitted PCI BAR1/BAR2 stores (from external
devices). CN50XX does not guarantee the order of the local memory stores, though it
does guarantee that all local memory stores are complete/committed before the
instruction completes.

9.5.6 PCI DMA Engine Don’t-Write-Back Calculation

An FPA hardware pool free command includes a don't-write-back (DWB) argument
that specifies the maximum number of DWB commands to execute on the coherent
memory bus. The PCI DMA engine generates FPA free commands in two different
cases:

● To free an instruction chunk

● To free a buffer when directed for an outbound transfer

When freeing an instruction chunk, NPI_DMA_CONTROL[DWB_ICHK] is the DWB
count used.

When freeing a buffer, a DWB count of zero is used when
NPI_DMA_CONTROL[DWB_DENB] is clear. If
NPI_DMA_CONTROL[DWB_DENB] is set, the following equation specifies the DWB
count that is used:

(((ptr & 127) + Size + 127) >> 7) + Back

which may result in a coherent-memory-bus DWB command for all cache blocks from
the start of the buffer up to the block that includes the last byte of the segment. Back,
ptr, and Size here come directly from the local pointer that caused the FPA free to be
generated.

9.5.7 Host Output Queueing Via the PCI DMA Engine

The PCI DMA engine provides flexible primitives which, when combined with core
and host software protocols, can efficiently implement a variety of host output
queueing protocols and handle many simultaneous host queues.

We will illustrate with an example. Suppose one million host output queues are
required, and each host queue is a simple ring similar to the rings that are managed
by the hardware for the two PCI-instruction input ports and two PCI-packet output
ports. (This is just one simple example. Many other queue/buffer structures are also
possible.) Each ring has a head, tail, and outstanding doorbell count.

Here is how to implement the example one million queues using the hardware PCI
DMA engine:

● The core software maintains base and head/tail pointers for each of the one
million queues. This information resides in memory locations present in either
the L2 cache or the DRAM attached to CN50XX. The core software selects the
detailed format of the information.
388 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Memory Space Loads/Stores to BAR1/2
● The host software must issue “doorbell rings” to indicate space availability. For
the four hardware-managed packet output queues, a doorbell ring is a direct PCI
CSR write (to PCI_PKT_CREDITS0/1) by the host. But since the doorbells/heads/
tails for the one million queues are maintained by core software in this case, their
doorbell ring is instead a special work-queue entry or packet received by the core
software from the host. The host software can create/submit the special work-
queue entry or packet accomplishing the doorbell ring via PCI instruction input
as described in Section 9.3. Core and host software selects the detailed format of
the doorbell rings.

● In addition to the one million rings, the core and host software also maintain two
additional rings for control. These control rings are tied to PCI_DMA_CNT0/
PCI_DMA_CNT1 (and indirectly to PCI_INT_SUM[DCNT0, DCNT1, DTIME0,
DTIME1]), as selected by the C and CA bits in the PCI DMA instruction header.

As with the one million rings, the base and head/tail pointers for each of the two
control queues is maintained in memory, and “doorbell rings” for them would
arrive via PCI instruction input.

● When the core software wishes to send a packet to one of the one million rings, it
will write the packet data into the appropriate host memory ring and also write a
control packet to one of the two available control rings. This control packet
includes ring identifier and packet size fields and is the indication to host
software that the packet data arrived at the identified ring.

Both the packet and the control packet can be transferred via a single outbound
PCI DMA Instruction.

To construct the PCI DMA Instruction, the core software first creates PCI DMA local
pointers and PCI DMA host pointers (PCI components) to transfer the packet data
from L2/DRAM into the host memory. The core software then appends additional PCI
DMA local pointers and PCI DMA host pointers (PCI components) to the lists to
transfer the control packet into the host memory after the packet data.

The core software consults the base and head/tail pointers that it maintains in L2/
DRAM to determine the locations where both the packet data and the control packet
data should be placed in the host memory. These addresses are supplied in the PCI
DMA Instruction PCI components of the outbound transfer.

The core software can set the CA bit in the PCI DMA Instruction HDR to indicate the
arrival of the control packet. (Of course, it must also set the C bit correctly to select
which of the two control queues was used.)

9.6 PCI Memory Space Loads/Stores to BAR1/2

9.6.1 Referencing L2/DRAM With CN50XX as a PCI Target

CN50XX may retry, delay, complete, or disconnect a BAR1/2 PCI read (Memory Read,
Memory Read Multiple, or Memory Read Line). CN50XX may retry these reads if it
has already accepted a delayed read request that does not match the current read, or
if the delayed read has not returned sufficiently quickly. Otherwise, until part of the
data from the outstanding delayed read has been returned or configuration
controlled latency time-out occurs, all reads will be retried.

PCI read requests do not include a length. CN50XX contains a 512 byte prefetch
buffer to guarantee that long read bursts can be satisfied quickly. CN50XX launches
the memory loads to fill the prefetch buffer at the moment that it accepts a new
request for prefetch. (CN50XX accepts a new request for prefetch whenever there is
not already a pending prefetch. The request for prefetch may be delayed or may not
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 389

Owner
下划线

Owner
下划线

 PCI Bus: PCI Memory Space Loads/Stores to BAR1/2
be.) The amount of data CN50XX prefetches to service the request depends on the
command and CSR configuration (PCI_READ_CMD_*[PREFETCH]). (CN50XX also
puts the prefetched data into the L2 cache according to the specified attribute.)
Separately for each PCI command, (PCI_READ_CMD_*[PREFETCH]) selects the
prefetch depth from among these options:

● Only the requested 64 or 32-bit word (and disconnect after a single data phase)

● No more than one (128-byte) cache block ahead (i.e. fetch to the next cache block
boundary

● No more than two (128-byte) cache blocks ahead

● No more than three (128-byte) cache blocks ahead

● No more than four (128-byte) cache blocks ahead

CN50XX supplies the data for the PCI read from the prefetch buffer, and also
prefetches ahead as indicated by (PCI_READ_CMD_*[PREFETCH]). If the prefetch
buffer drains so that data cannot be provided to service the read in the minimum
“target subsequent latency” of eight PCI cycles (i.e. if the prefetch buffer
“underflows”), CN50XX disconnects. To reduce the likelihood of these underflow
disconnects (fewer underflows means less prefetched data and (possibly) lower
latency since CN50XX flushes the prefetch buffer after an underflow), CN50XX has
one (PCI_READ_CMD_*[MIN_DATA]) variable per each of the three input
commands. This configuration variable specifies the minimum amount of data in the
prefetch buffer before CN50XX responds with the first word. CN50XX flushes the
prefetch buffer whenever either:

a. It returns all the data for the original request, or
b. It returns all the data for the delayed request, or
c. It disconnects, or
d. The delayed read request times out.

All PCI writes (Memory Write and Memory Write and Invalidate) are treated
identically in BAR1/2. CN50XX may retry these requests when sufficient write
buffering is not available, but generally, CN50XX must service these write requests.
(For example, CN50XX must service PCI writes when the prefetch buffer is active
with a delayed read.) CN50XX accumulates sequential writes into aligned cache
blocks before sending the writes to memory.

Once the CN50XX hardware accumulates a cache block to write, it sends it to L2/
memory. CN50XX also sends unaccumulated stores to memory when the PCI store
transaction terminates. CN50XX waits for the commit of each cache block
individually before it writes the next cache block to L2/memory. This is necessary to
guarantee that the cores observe the writes in the same order as they occurred on the
PCI bus. (CN50XX also includes NPI_CTL_STATUS[WAIT_COM] for better
performance. When this mode-bit is clear, PCI cache block stores do not wait for prior
cache block stores to commit.)

NOTE: Full cache-block writes are efficient since they avoid address overhead
and memory/cache reads. CN50XX gets the performance improvement
from them for both the Memory Write and Memory Write and Invalidate
commands. Also, if the cache attribute specifies it, full cache-block
writes can be written-through to memory. Partial cache block writes
always enter the L2 cache, independent of the cache attribute.
390 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: CN50XX PCI Internal Arbiter
9.7 CN50XX PCI Internal Arbiter

CN50XX contains a PCI arbiter that can be used when CN50XX is a PCI host. It
supports up to four external devices, and bus parking on either the last device or a
fixed device. It is configured via NPI_PCI_INT_ARB_CFG.

9.8 CN50XX PCI MSI Support

CN50XX can support MSI as a device.

CN50XX also has a register in the BAR0 space (PCI_MSI_RCV) to receive message-
signalled interrupts when functioning as a PCI host. Write operations to
PCI_MSI_RCV[INT] cause the bit NPI_MSI_RCV[INT_VEC<PCI_MSI_RCV[INT]>]
to be set. There are four CN50XX-internal interrupt wires in the central interrupt
unit emanating from NPI_MSI_RCV, one for each of the following uses:

● when any of NPI_MSI_RCV[INT_VEC<15:0>] are set

● when any of NPI_MSI_RCV[INT_VEC<31:16>] are set

● when any of NPI_MSI_RCV[INT_VEC<47:32>] are set

● when any of NPI_MSI_RCV[INT_VEC<63:48>] are set.

Refer to Chapter 11, the CIU chapter.

9.9 Endian Swapping

For all cases, assume the 32-bit data on the PCI bus is represented as:

[E-F-G-H] (cycle 0)
[A-B-C-D] (cycle 1)

where each letter represents a byte. Four bytes represent 32-bits. A and E are the
most-significant bytes, D and H are the least-significant bytes.

In the case of 32-bit PCI bus transfers, [E-F-G-H] is the first 32-bits, corresponding to
the case when <2> of the PCI byte address is clear, and [A-B-C-D] is the second 32-
bits, corresponding to the case when <2> of the PCI byte address is set.

9.9.1 PASS_THRU MODE (== 0)

No swap by the PCI I/O bus device: [A-B-C-D-E-F-G-H]. CN50XX internal byte order
is A-B-C-D-E-F-G-H, from first to last.

An aligned 64-bit load/store references [A-B-C-D-E-F-G-H].

An aligned 32-bit load/store:

An aligned 16-bit load/store:

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [E-F-G-H] [A-B-C-D]

OFFSET<2:0> == 4 references [A-B-C-D] [E-F-G-H]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [G-H] [A-B]

OFFSET<2:0> == 2 references [E-F] [C-D]

OFFSET<2:0> == 4 references [C-D] [E-F]

OFFSET<2:0> == 6 references [A-B] [G-H]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 391

 PCI Bus: Endian Swapping
An 8-bit load/store:

9.9.2 64b_BYTE_SWAP Mode (== 1)

Full swap by the PCI I/O bus device, [H-G-F-E-D-C-B-A], CN50XX internal byte
order is H-G-F-E-D-C-B-A, from first to last.

An aligned 64-bit load/store references [H-G-F-E-D-C-B-A].

An aligned 32-bit load/store:

An aligned 16-bit load/store:

An 8-bit load/store:

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [H] [A]

OFFSET<2:0> == 1 references [G] [B]

OFFSET<2:0> == 2 references [F] [C]

OFFSET<2:0> == 3 references [E] [D]

OFFSET<2:0> == 4 references [D] [E]

OFFSET<2:0> == 5 references [C] [F]

OFFSET<2:0> == 6 references [B] [G]

OFFSET<2:0> == 7 references [A] [H]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [D-C-B-A] [H-G-F-E]

OFFSET<2:0> == 4 references [H-G-F-E] [D-C-B-A]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [B-A] [H-G]

OFFSET<2:0> == 2 references [D-C] [F-E]

OFFSET<2:0> == 4 references [F-E] [D-C]

OFFSET<2:0> == 6 references [H-G] [B-A]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [A] [H]

OFFSET<2:0> == 1 references [B] [G]

OFFSET<2:0> == 2 references [C] [F]

OFFSET<2:0> == 3 references [D] [E]

OFFSET<2:0> == 4 references [E] [D]

OFFSET<2:0> == 5 references [F] [C]

OFFSET<2:0> == 6 references [G] [B]

OFFSET<2:0> == 7 references [H] [A]
392 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: Endian Swapping
9.9.3 32b_BYTE_SWAP Mode (== 2)

No swap by the PCI I/O Bus device: [D-C-B-A-H-G-F-E]. CN50XX internal byte order
is D-C-B-A-H-G-F-E, from first to last.

An aligned 64-bit load/store references [D-C-B-A-H-G-F-E].

An aligned 32-bit load/store:

An aligned 16-bit load/store:

An 8-bit load/store:

9.9.4 32b_LW_SWAP Mode (== 3)

No swap by the PCI I/O Bus device: [E-F-G-H-A-B-C-D]. CN50XX internal byte order
is E-F-G-H-A-B-C-D, from first to last.

An aligned 64-bit load/store references [E-F-G-H-A-B-C-D].

An aligned 32-bit load/store:

An aligned 16-bit load/store:

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [H-G-F-E] [D-C-B-A]

OFFSET<2:0> == 4 references [D-C-B-A] [H-G-F-E]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [F-E] [D-C]

OFFSET<2:0> == 2 references [H-G] [B-A]

OFFSET<2:0> == 4 references [B-A] [H-G]

OFFSET<2:0> == 6 references [D-C] [F-E]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [E] [D]

OFFSET<2:0> == 1 references [F] [C]

OFFSET<2:0> == 2 references [G] [B]

OFFSET<2:0> == 3 references [H] [A]

OFFSET<2:0> == 4 references [A] [H]

OFFSET<2:0> == 5 references [B] [G]

OFFSET<2:0> == 6 references [C] [F]

OFFSET<2:0> == 7 references [D] [E]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [A-B-C-D] [E-F-G-H]

OFFSET<2:0> == 4 references [E-F-G-H] [A-B-C-D]

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [C-D] [E-F]

OFFSET<2:0> == 2 references [A-B] [G-H]

OFFSET<2:0> == 4 references [G-H] [A-B]

OFFSET<2:0> == 6 references [E-F] [C-D]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 393

 PCI Bus: PC Bus Operations
An 8-bit load/store:

9.10 PC Bus Operations

Operations by the cores to the PCI unit generate PCI read/write commands.

Cores access PCI bus addresses with physical addresses of the following format:

9.10.1 Load/Store Operations

Physical Address Format for Loads/Stores

● Major DID = 3 - Device ID of the PCI block.

● subDID - The Address space for SubDID values 1-6 to the PCI block are defined
below.

● Offset - Used differently depending on SubDID value.

9.10.2 IOBDMA Operations

IOBDMA Addressing

● scraddr - Defined in “cnMIPS™ Cores” on page 143.

● len - Indicates the length of the IOBDMA in 64-bit words. Can legally range from
1 to 128. Must be 0x1 for subDIDs 0 and 7.

● subDID - Selects the space from among those described in Sections 9.10.3,
9.10.6, and 9.10.7.

9.10.3 RSL Access Space (SubDID == 0)

Cores can access CN50XX’s various RSL-type CSRs via loads/stores to this
subDID==0 space. Any size load is allowed, but only 64-bit stores are allowed to this
space. IOBDMAs to this space must be of length 1 (8B).

Core in LE mode Core in BE mode
OFFSET<2:0> == 0 references [D] [E]

OFFSET<2:0> == 1 references [C] [F]

OFFSET<2:0> == 2 references [B] [G]

OFFSET<2:0> == 3 references [A] [H]

OFFSET<2:0> == 4 references [H] [A]

OFFSET<2:0> == 5 references [G] [B]

OFFSET<2:0> == 6 references [F] [C]

OFFSET<2:0> == 7 references [E] [D]

48 47 43 42 40 39 36 35 0

1
Major DID

00011
subDID

Reserved
0

offset

63 56 55 48 47 43 42 40 39 36 35 0

scraddr len
Major DID

00011
subDID Reserved

0 offset

NOTE: IOBDMAs are not supported to PCI Config / IACK / Special space
(subDID==1), PCI I/O space (subDID==2), nor to the PCI
Configuration registers (accessible via a portion of the CSR
subDID==7 space).
394 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PC Bus Operations
9.10.4 PCI Config / IACK / Special Space (SubDID == 1)

Cores can issue PCI CONFIG, PCI IACK, and PCI SPECIAL commands via loads/
stores to this subdid = 1 space. IOBDMA and 64-bit load/store operations are not
allowed to this space.

The following is the format of the OFFSET field.

OFFSET Field Format

● Bus # = selects a bus in the system.
● Dev. # = selects a device on the bus.
● Func. # = selects a function in the device.
● Reg. # = selects a register in the configuration space of the intended target.

The following is how the hardware decodes the loads/stores to this region:

If OFFSET<23:3> == 0x1FE0 (i.e. Bus = 0, Dev = 1's, Func = 1's, Reg = 0 or 1)

If the operation is a store:

The store must be an aligned 32-bit store. 8, 16, and 64-bit stores are illegal.

Generate a PCI Special Cycle. The value on the bus during the (single) data
phase is the data from the 32-bit store.

else if the operation is a load:

The load may be either 32, 16, or 8-bit naturally aligned. 64-bit loads are
illegal.

Generate a PCI IACK Cycle. The value on the bus during the (single) data
phase is returned to the load instruction. The mask value presented on the
PCI bus corresponds to the lower address bits, ES, and the size of the load.

else if OFFSET<23:16> == 0 (i.e. Bus == 0)

Generate a PCI config type 0 transaction. The address on the PCI bus is
generated according to the “PCI Type 1 to Type 0 Configuration Address” in
Figure 2-11 and Table 2-5 IDSEL Generation in “PCI Addendum to the PCI
Local Bus Specification”:

Type 0 Configuration Address

IDSEL Gen. is all zeroes if OFFSET<15> (i.e. device number<4>) is set,
otherwise, it is a decode of OFFSET<14:11> (i.e. device number <3:0>)

32-bit, 16-bit, and 8-bit aligned loads/stores are allowed. The mask value
presented on the PCI bus corresponds to the lower address bits, ES, and the size
of the load. 64-bit accesses are illegal.

else (i.e. if OFFSET<23:16> != 0, Bus != 0)

Generate a PCI config type 1 transaction. The address on the PCI bus is
generated as follows:

35 34 33 24 23 16 15 11 10 8 7 2 1 0

ES
Reserved

0
Bus # Dev. # Func. # Reg. # x

31 16 15 11 10 8 7 2 1 0

IDSEL Gen. Dev. # Func.# Reg. # 00
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 395

 PCI Bus: PC Bus Operations
Type 1 Configuration Address

32-bit, 16-bit, and 8-bit aligned loads/stores are allowed. The mask value
presented on the PCI bus corresponds to the lower address bits, ES, and the size
of the load. 64-bit accesses are illegal.

9.10.5 PCI I/O Space (SubDID == 2)

Cores can issue PCI I/O Loads/Stores in this space. OFFSET<31:0> is the
I/O address presented on the PCI bus. IOBDMA and 64-bit load/store operations are
not allowed are not allowed to this space.

OFFSET Field Format
in I/O space

● ES - Indicates the endian-swap mode.

9.10.6 Memory Space (SubDID == 3, 4, 5, 6)

Cores can issue PCI Memory Space Load/Store/IOBDMA operations in this space (i.e.
Memory Read Line/Block and Memory Write Commands). OFFSET<35:0> is the
Memory space address that is presented on the PCI bus. The four different SubDID
possibilities select from among four possible CSR values
(NPI_MEM_ACCESS_SUBID(3..6)[*]) for each of:

● ESR - endian-swap mode for read operations

● ESW - endian-swap mode for write operations

● NSR - No Snoop for read operations

● NSW - No Snoop for write operations

● ROR - Relaxed Ordering for read operations

● ROW - Relaxed Ordering for write operations

● BA - The PCI address bits <63:36>

OFFSET DECODE in MEMORY space

The 64-bit address presented on the PCI bus for these references is:

64-bit Form PCI Memory Offset

CN50XX cores perform no-store merging on stores to the PCI memory space. They
pass individual PCI memory-space stores on to the PCI hardware. The PCI hardware
can combine sequential stores in the same memory space and send them out as a
single (burst) PCI transaction of up to 256 bytes, with the maximum size selected by
NPI_CTL_STATUS[MAX_WORD]. The combining hardware is very simple and
limited by these constraints:

31 24 23 16 15 11 10 8 7 2 1 0

0 Bus # Dev. # Func.# Reg. # 01

35 34 33 32 31 0

ES
Rsvd

0
pci I/O address

35 0

PCI Memory Offset

63 36 35 0

BA PCI Memory Offset
396 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

PCI Bus: PCI Reset Sequence
● Both cores share a single active combining buffer, and CN50XX combines stores
originating from any core. A single combined store may contain store data
originating from different cores.

● CN50XX permits combining only when the new store references bytes within the
aligned 64-bit location, sequentially, after the one referenced by the last store
received by the PCI logic.

● CN50XX disables combining and activates the combined store if another store
does not arrive within a programmable time period
(NPI_CTL_STATUS[TIMER]).

● CN50XX disables combining and activates the previous combined store
immediately if a load, IOBDMA, or a store operation that will not combine
arrives. CN50XX does the same for load/store operations from the core in the I/O
or CONFIG/ACK/SPECIAL spaces.

● CN50XX does not combine store operations and sends out all store operations
immediately when combining is disabled. Combining is disabled when
NPI_CTL_STATUS[MAX_WORD] = 1.

● CN50XX disables combining and sends out the store when the size of the merged
store equals the maximum indicated by NPI_CTL_STATUS[MAX_WORD].

With PCI in this space, CN50XX creates the following commands:

Memory Read command to service an ordinary load operation

Memory Read or Memory Read Multiple command to service an IOBDMA
operation. This depends on the length by comparing against a configuration
variable.

Memory Write command to service a (possibly combined) store operation.

9.10.7 PCI-Related, NCB-Direct, PCICONFIG, and PCI_NCB CSR Access (SubDID == 7)

Cores can access CN50XX’s PCI NCB-direct (see Section 9.15), PCI configuration (see
Section 9.13), and PCI_NCB (see Section 9.14.1) registers through this space.
IOBDMA operations are allowed to the PCI NCB-direct and PCI_NCB registers, but
are not permitted to the PCICONFIG registers. IOBDMA operations to this space
must be of length 1 (8B).

9.11 PCI Reset Sequence

The reset sequence for the PCI varies depending on whether the PCI is in host mode
or non-host mode. The following subsections describe both situations.

9.11.1 PCI Reset Sequence in Host Mode

In host mode (i.e. when CN50XX’s external pin PCI_HOST_MODE=1), CN50XX
drives PCI_RST_L with the value selected by CIU_SOFT_PRST[SOFT_PRST].
CIU_SOFT_PRST only affects behavior in PCI host mode. (When
CIU_SOFT_PRST[SOFT_PRST] = 1, PCI_RST_L is driven low, to indicate an active
reset.)

In host mode, the system typically uses the PCI clocks generated and driven from
CN50XX (i.e. CN50XX’s external pins PCI_CLK_OUT_*). As CN50XX does not
internally use the PCI clocks it generates, it is also possible for the system to
generate the PCI clock externally. The selected PCI clock must be connected to
CN50XX’s PCI_PCLK input pin, and must also be connected to the clock inputs of the
other devices on the PCI bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 397

Owner
下划线

 PCI Bus: PCI Reset Sequence
CN50XX samples PCI_M66EN at the time of DCOK assertion. At that point,
CN50XX’s PCI_CLK_OUT_* are stable PCI clocks with the proper frequency. (This
assumes that PCI_REF_CLKIN is a 133-MHz reference clock.) CN50XX eventually
drives PCI_DEVSEL_L, PCI_STOP_L, and PCI_TRDY_L with the encoding
appropriate for the selected frequency and mode.

The reset value for CIU_SOFT_PRST[SOFT_PRST] is 1, so the PCI bus is in reset
while CN50XX boots up when CN50XX is a PCI host. CN50XX software must not
access any PCI_NCB or PCICONFIG CSRs whenever
CIU_SOFT_PRST[SOFT_PRST] = 1 in host mode.

Eventually, PCI-host boot software transitions CIU_SOFT_PRST[SOFT_PRST] from
1 to 0 to take the PCI bus out of reset in host mode. The PCI input clock to CN50XX,
PCI_PCLK, must be stable prior to this point. Figure 9–12 shows some events that
happen as this point.

CN50XX does not deassert the PCI reset pin immediately following
CIU_SOFT_PRST[SOFT_PRST] deassertion. Instead, CN50XX deasserts
PCI_RST_L approximately 16K core-clock cycles plus 15 PCI clock cycles later. Just
prior to deasserting PCI_RST_L, CN50XX drives PCI_REQ_L with the value selected
by CIU_SOFT_PRST[HOST64], and drives PCI_DEVSEL_L, PCI_STOP_L, and
PCI_TRDY_L to the value selected by PCI_M66EN. CN50XX and the other devices
on the PCI bus sample the PCI_REQ_L, PCI_DEVSEL_L, PCI_STOP_L, and
PCI_TRDY_L at the time that PCI_RST_L deasserts to determine bus frequency,
mode, and width.

Figure 9–12 PCI Reset Timing in Host Mode

Sample

Driven (value based on

10 or more PCI clock cycles

M66EN

~CIU_SOFT_PRST[HOST64]
Driven

DCOK

PCI_M66EN

PCI_RST_L

PCI_PCLK

PCI_DEVSEL_L
PCI_STOP_L
PCI_TRDY_L

PCI_REQ64_L

EPR_*

PCI_FRAME_L

~100K core clock cycles + 21K PCI clock cycles
from CIU_SOFT_PRST[SOFT_PRST]

deassertion to PCI reset pin deassertion

CIU_SOFT_PRST[SOFT_PRST]

PCI_CLK_OUT*

At most 20K PCI clock cycles

At most 2 ms from CIU_SOFT_PRST[SOFT_PRST] deassertion
until local PCI-related CSRs and PCI can be used

PCI EEPROM interface not usedPCI EEPROM interface not used PCI EEPROM interface used
398 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Reset Sequence
CN50XX also drives and samples the PCI EEPROM signals near the time that
PCI_RST_L deasserts. If an EEPROM is not present, as should be the case when
CN50XX is in host mode, the EEPROM load sequence completes quickly.

Following its CIU_SOFT_PRST[SOFT_PRST] deassertion, the PCI-host boot
software must continue to avoid accessing CN50XX’s NCB_PCI registers for at least
~16K cycles.

Also, it has the following restrictions until after the PCI EEPROM load is complete,
which is at most ~16K core-clock cycles + 20K PCI-clock cycles, or at most 2
milliseconds following the CIU_SOFT_PRST[SOFT_PRST] deassertion:

● it must not access the PCI bus
● it must not access any PCICONFIG CSRs
● it must not reassert CIU_SOFT_PRST[SOFT_PRST]

In host mode, whenever CIU_SOFT_PRST[SOFT_PRST] is set, CN50XX tri-states
all PCI bus signals until the first PCI bus transaction, except for the following four
signals:

● PCI_DEVSEL_L
● PCI_STOP_L
● PCI_TRDY_L
● PCI_REQ64_L

Eventually, PCI-host software may later transition CIU_SOFT_PRST[SOFT_PRST]
from 0 to 1 to reassert PCI_RST_L in host mode. Following its
CIU_SOFT_PRST[SOFT_PRST] reassertion, PCI-host software should read
CIU_SOFT_PRST, and wait for the result to return, before performing any other
operations. As mentioned above, no PCI_NCB or PCICONFIG CSRs can be accessed
when CIU_SOFT_PRST[SOFT_PRST] is set.

In host mode when CIU_SOFT_PRST[SOFT_PRST] is set, CN50XX resets its logic
directly connected to the PCI bus, as well as all PCI_NCB, PCI, and PCICONFIG
CSRs. By default, CN50XX resets no more internal logic when
CIU_SOFT_PRST[SOFT_PRST] is set. However, if CIU_SOFT_PRST[NPI] is set
when CIU_SOFT_PRST[SOFT_PRST] transitions from 0 to 1, logic blocks deeper
into CN50XX (NPI and PNI) are also briefly reset. Normally, it should not be
necessary to set CIU_SOFT_PRST[NPI], but the option is there. If
CIU_SOFT_PRST[NPI] is set when CIU_SOFT_PRST[SOFT_PRST] transitions
from 0 to 1, all PCI_* and NPI_* CSRs (of type NCB, PCI_NCB, PCI and
PCICONFIG) are reset, as is all PCI-related logic in CN50XX.

9.11.2 PCI Reset Sequence in Non-Host Mode

In non-host mode (i.e. when CN50XX’s external pin PCI_HOST_MODE=0),
PCI_RST_L has the following characteristics:

● it is a CN50XX input

● it is both the PCI bus reset and CN50XX’s chip reset

● it must be driven by the external system.

CIU_SOFT_PRST has no effect in non-host mode.

Also in non-host mode, CN50XX does the following:

● CN50XX typically receives its PCI clock from the remote host. The PCI clock
must be connected to CN50XX’s PCI input clock (PCI_PCLK).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 399

 PCI Bus: PCI Reset Sequence
● CN50XX tristates all PCI bus signals during the entire reset sequence up until
the first following PCI bus transaction.

Some of the events in a non-host-mode reset are shown in Figure 9–13.

CN50XX samples PCI_DEVSEL_L, PCI_STOP_L, PCI_TRDY_L, and PCI_REQ64_L
on the deassertion of PCI_RST_L to determine the bus characteristics.

Immediately following the deassertion of PCI_RST_L in non-host mode, CN50XX
locks its PCI DLL/PLLs and performs internal BIST.

Approximately 16K cycles following PCI_RST_L deassertion in non-host mode,
CN50XX’s internal PCI logic comes out of reset and attempts to read the PCI
EEPROM via the EPR_* external pins. If a PCI EEPROM is not present, the read
stops soon after it starts. If a PCI EEPROM is present, the read continues.

Approximately 180K cycles following PCI_RST_L deassertion in non-host mode, the
remainder of the logic (i.e. non-PCI logic) comes out of reset. At this point, core 0
comes out of reset if CN50XX is not in PCI boot mode (i.e. if PCI_BOOT=0). Core 0
must not access CN50XX’s PCICONFIG CSRs, nor the PCI bus, before the PCI
EEPROM load is complete. CN50XX’s PCI EEPROM load always completes within
20K PCI clocks.

When CN50XX is not in host mode, a remote PCI host must not access CN50XX via
the PCI bus until CN50XX completes both the PCI EEPROM load and its internal
reset sequence. In all circumstances in non-host mode, CN50XX can be accessed by
the remote host 2 ms after reset deasserts.

Figure 9–13 PCI Reset Timing in Non-Host Mode

Sampled

At most 20K PCI clock cycles

PCI_RST_L

PCI_DEVSEL_L
PCI_STOP_L
PCI_TRDY_L

PCI_REQ64_L

EPR_*

PCI_FRAME_L

PCI_PCLK

PCI EEPROM Interface Not Used PCI EEPROM Interface Used PCI EEPROM Interface

In Reset In Reset, except Core 0 comes out of reset when PCI_BOOT = 0Cores

~135K core clock cycles

At most 2 ms from PCI_RST_L deassertion until CN50XX PCI logic can be accessed

~100K core clock cycles + 21K PCI clock cycles

Not Used
400 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Checklist
9.12 PCI Checklist

The following checklist highlights important CN50XX PCI-related configuration
problems. The more likely problem areas are at the top of the list.

CSR/Field Comment

CIU_SOFT_PRST[SOFT_PRST] When CN50XX is a PCI host (i.e. when PCI_HOST_MODE = 1), this bit
controls PCI_RST_L. Refer to Section 9.11.1.

PCI_CFG01 ME and MSAE should always be set. Should normally be written with
0x346.

NPI_PCI_INT_ARB_CFG When CN50XX is a PCI host, most systems will use CN50XX’s internal
arbiter. For those that do, the internal arbiter must be enabled before any
PCI traffic can occur.

PCI_CFG19 TDOMC must be set to 0x1 in PCI mode. Otherwise, should not change from
its reset value.

Do not write PCI_CFG19 in PCI mode (0x82000001 is the reset value).

MRBCI, MDWE,and MDRE must be 0. MRBCM must be 1.

PCI_BAR1_INDEX(0..31) If ADDR_V = 0, CN50XX does not service the portion of its BAR1 serviced by
this table entry.

(CN50XX accepts these invalid writes, discards them, and sets
PCI_INT_SUM*[ILL_WR]. CN50XX target aborts these invalid PCI reads,
and returns an error response for these invalid PCI-X reads, setting
PCI_INT_SUM*[ILL_RD] for both.)

Endian-swapping is another typical problem area. END_SWP and
ADDR_IDX must also be set up properly. Refer to Section 9.2.2.

PCI_CFG22 Should be written to 0x4FF00.

MTTV must be 0x0, FLUSH must be 1, MRV should be 0xFF.

PCI_CFG16 Preferably written to 0x1 to set MLTD.

RDSATI, TRTAE, TWTAE, TMAE, and DPPMR must be 0. TILT must not
be set to 0x1..0x7.

PCI_CTL_STATUS_2
[BAR2PRES,BAR2_ENB]

It appears that CN50XX’s BAR2 does not exist when BAR2PRES clear.
CN50XX cannot service BAR2 references when either BAR2PRES or
BAR2_ENB are clear (refer to Section 9.2.3).

MIO_FUS_DAT3[BAR2_EN] is the reset value for
PCI_CTL_STATUS_2[BAR2PRES]. CN50XX accepts writes when
BAR2PRES = 1 AND BAR2_ENB = 0, discards them, and sets
PCI_INT_SUM*[ILL_WR]. CN50XX target aborts similarly invalid PCI read
operations, setting PCI_INT_SUM*[ILL_RD].

Endian-swapping is another typical problem area. BAR2_ESX must be set
up properly.

NPI_MEM_ACCESS_SUBID3
NPI_MEM_ACCESS_SUBID4
NPI_MEM_ACCESS_SUBID5
NPI_MEM_ACCESS_SUBID6

BA, ESR, and ESW should be set up properly for CN50XX core accesses to
physical addresses 0x1 1B0X XXXX XXXX, 0x1 1C0X XXXX XXXX, 0x1
1D0X XXXX XXXX, and 0x1 1E0X XXXX XXXX, respectively, to translate
into PCI bus read/write operations.

Endian-swapping is a common problem area. Review your ESR/ESW
settings carefully.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 401

Owner
矩形

 PCI Bus: PCI Checklist
NPI_NUM_DESC_OUTPUT(0..3)

NPI_BASE_ADDR_OUTPUT(0..3)

NPI_BUFF_SIZE_OUTPUT(0..3)

NPI_OUTPUT_CONTROL

NPI_CTL_STATUS
[OUT0_ENB,OUT1_ENB,
OUT2_ENB,OUT3_ENB]

PCI_PKTS_SENT_INT_LEV(0..3)
PCI_PKTS_SENT_TIME(0..3)

Configures CN50XX’s PCI packet output ports.

Endian-swapping is a common problem area. Review your
NPI_OUTPUT_CONTROL[ESR_SL*,O*_CSRM,O*_ES] settings (refer to
Section 9.4).

NPI_BASE_ADDR_INPUT(0..3)

NPI_SIZE_INPUT(0..3)

NPI_INPUT_CONTROL(0..3)

NPI_PORT32/33_INSTR_HDR

NPI_CTL_STATUS
[INS0_64B,INS1_64B,INS2_64B
,INS3_64B,INS0_ENB,INS1_EN
B,INS2_ENB,INS3_ENB]

Configures CN50XX’s PCI packet input ports.

Endian-swapping is a common problem area. Review your
NPI_INPUT_CONTROL[ESR,USE_CSR,D_ESR] and NPI_PORT32/
33_INSTR_HDR[PBP] settings and Section 9.3.

NPI_LOWP_IBUFF_SADDR
NPI_HIGHP_IBUFF_SADDR
NPI_DMA_CONTROL
PCI_DMA_INT_LEV(0..1)
PCI_DMA_TIME(0..1)

Configures CN50XX’s PCI DMA engine.

Endian-swapping is a common problem area. Review your
NPI_DMA_CONTROL[O_ES,O_MODE] settings and Section 9.5

PCI_READ_CMD_6

PCI_READ_CMD_C

PCI_READ_CMD_E

Affects PCI performance when CN50XX services reads to its BAR1/BAR2
(refer to Section 9.6.1). The recommended values are 0x22, 0x33, and 0x33
for PCI_READ_CMD_6, PCI_READ_CMD_C, and PCI_READ_CMD_E,
respectively.

Note that these values differ from their reset values.

NPI_PCI_READ_CMD Affects PCI performance by selecting a memory read or a memory read
multiple command. Recommended value depends on the system.

NPI_PCI_BURST_SIZE Affects PCI performance since it limits the size of individual read/write
bursts mastered by CN50XX. The recommended value is 0x2040.

Note this is not the reset value.

NPI_CTL_STATUS
[TIMER,MAX_WORD]

Affects PCI performance by changing the way that CN50XX merges core-
generated stores, (refer to Section 9.10.6).

PCI_READ_TIMEOUT Should be written to enable the timeout. The recommended value is
0x80010000. Note this is not the reset value.

PCI_CFG03 LT and CLS may be updated. 64 may be a reasonable LT value (write 0x4000
+ CLS). CALLS does not affect CN50XX behavior.

PCI_CFG15 Need not be written.

PCI_CFG17, PCI_CFG18,
PCI_CFG20, PCI_CFG21

Should not be written.

CSR/Field Comment
402 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

PCI Bus: PCI Configuration Registers
9.13 PCI Configuration Registers

The PCI configuration registers are of type PCICONFIG, which can be accessed
directly from the PCI bus and from the I/O bus.

● Each PCICONFIG register has both a PCI bus address and a CN50XX-internal
address.

Cores can access the PCICONFIG registers via the CN50XX-internal address.
Remote PCI devices/hosts can access PCICONFIG registers with a PCI config
space read or write that targets CN50XX.

● All PCI config registers are 32-bits. 32-bit load/store operations must be used by
cores to access the PCICONFIG registers.

Table 9–3 PCI Configuration Registers

Register
Address (Little-Endian)
(CN50XX internal)

Address (Big-Endian)
(CN50XX internal)

Address
(PCI Config Space) CSR Type1

Detailed
Description

PCI_CFG00 0x00011F0000001800 0x00011F0000001804 0x0000000000000000 PCICONFIG See page 404
PCI_CFG01 0x00011F0000001804 0x00011F0000001800 0x0000000000000004 PCICONFIG See page 404
PCI_CFG02 0x00011F0000001808 0x00011F000000180C 0x0000000000000008 PCICONFIG See page 405
PCI_CFG03 0x00011F000000180C 0x00011F0000001808 0x000000000000000C PCICONFIG See page 405
PCI_CFG04 0x00011F0000001810 0x00011F0000001814 0x0000000000000010 PCICONFIG See page 405
PCI_CFG05 0x00011F0000001814 0x00011F0000001810 0x0000000000000014 PCICONFIG See page 405
PCI_CFG06 0x00011F0000001818 0x00011F000000181C 0x0000000000000018 PCICONFIG See page 406
PCI_CFG07 0x00011F000000181C 0x00011F0000001818 0x000000000000001C PCICONFIG See page 406
PCI_CFG08 0x00011F0000001820 0x00011F0000001824 0x0000000000000020 PCICONFIG See page 406
PCI_CFG09 0x00011F0000001824 0x00011F0000001820 0x0000000000000024 PCICONFIG See page 406
PCI_CFG10 0x00011F0000001828 0x00011F000000182C 0x0000000000000028 PCICONFIG See page 406
PCI_CFG11 0x00011F000000182C 0x00011F0000001828 0x000000000000002C PCICONFIG See page 407
PCI_CFG12 0x00011F0000001830 0x00011F0000001834 0x0000000000000030 PCICONFIG See page 407
PCI_CFG13 0x00011F0000001834 0x00011F0000001830 0x0000000000000034 PCICONFIG See page 407
PCI_CFG15 0x00011F000000183C 0x00011F0000001838 0x000000000000003C PCICONFIG See page 407
PCI_CFG16 0x00011F0000001840 0x00011F0000001844 0x0000000000000040 PCICONFIG See page 408
PCI_CFG17 0x00011F0000001844 0x00011F0000001840 0x0000000000000044 PCICONFIG See page 409
PCI_CFG18 0x00011F0000001848 0x00011F000000184C 0x0000000000000048 PCICONFIG See page 409
PCI_CFG19 0x00011F000000184C 0x00011F0000001848 0x000000000000004C PCICONFIG See page 410
PCI_CFG20 0x00011F0000001850 0x00011F0000001854 0x0000000000000050 PCICONFIG See page 411
PCI_CFG21 0x00011F0000001854 0x00011F0000001850 0x0000000000000054 PCICONFIG See page 411
PCI_CFG22 0x00011F0000001858 0x00011F000000185C 0x0000000000000058 PCICONFIG See page 412
PCI_CFG58 0x00011F00000018E8 0x00011F00000018EC 0x00000000000000E8 PCICONFIG See page 413
PCI_CFG59 0x00011F00000018EC 0x00011F00000018E8 0x00000000000000EC PCICONFIG See page 413
PCI_CFG60 0x00011F00000018F0 0x00011F00000018F4 0x00000000000000F0 PCICONFIG See page 414
PCI_CFG61 0x00011F00000018F4 0x00011F00000018F0 0x00000000000000F4 PCICONFIG See page 414
PCI_CFG62 0x00011F00000018F8 0x00011F00000018FC 0x00000000000000F8 PCICONFIG See page 414
PCI_CFG63 0x00011F00000018FC 0x00011F00000018F8 0x00000000000000FC PCICONFIG See page 414

1. PCICONFIG-type registers can be accessed directly from either the PCI bus or the I/O Bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 403

 PCI Bus: PCI Configuration Registers
PCI Vendor and Device Register
PCI_CFG00

This register contains the first 32-bits of the PCI configuration space (PCI vendor
and device). See Table 9–3 for address.

Command/Status Register
PCI_CFG01

Second 32-bits of PCI configuration space (PCI command/status). See Table 9–3 for
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> DEVID RO 0x70 0x70 Device ID for CN50XX. The possible values are:
0x4 = CN38XX (pass 2) 0x40 = CN58XX 0x90 = CN51XX
0x5 = CN38XX (pass 3) 0x50 = CN54/5/6/7XX
0x20= CN31XX/CN3020 0x70 = CN5020/CN5000F
0x30= CN3010/CN3005 0x80 = CN52XX

<15:0> VENDID RO 0x177D 0x177D Cavium Networks’ vendor ID

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> DPE R/W1C 0 0 Detected parity error
<30> SSE R/W1C 0 0 Signaled system error
<29> RMA R/W1C 0 0 Received master abort
<28> RTA R/W1C 0 0 Received target abort
<27> STA R/W1C 0 0 Signaled target abort
<26:25> DEVT RO 0x1 0x1 DEVSEL# timing
<24> MDPE R/W1C 0 0 Master data parity error
<23> FBB RO 1 — Fast back-to-back transactions capable mode: must be set to 1 = PCI

mode.
<22> — RAZ — — Reserved.
<21> M66 RO 1 1 66MHz capable
<20> CLE RO 1 1 Capabilities list enable
<19> I_STAT RO 0 0 When INTx# is asserted by CN50XX, this bit is set. When deasserted by

CN50XX, this bit is cleared.
<18:11> — RAZ — — Reserved.
<10> I_DIS R/W 0 0 When set to 1, this bit disables the generation of INTx# by CN50XX. When

cleared to 0, allows assertion of INTx# by CN50XX.
<9> FBBE R/W 0 1 Fast back-to-back transaction enable
<8> SEE R/W 0 1 System error enable
<7> ADS RO 0 0 Address/data stepping. Note that CN50XX does not address/data stepping.
<6> PEE R/W 0 1 PERR# enable
<5> VPS RO 0 0 VGA palette snooping
<4> MWICE R/W 0 0 Memory Write & Invalidate command enable
<3> SCSE RO 0 0 Special cycle snooping enable
<2> ME R/W 0 1 Master enable. Must be set for CN50XX to master a PCI transaction.

This should always be set any time that CN50XX is connected to a PCI bus.
<1> MSAE R/W 0 1 Memory space access enable. Must be set to receive a PCI memory space

transaction. This must always be set any time that CN50XX is connected to
a PCI bus.

<0> ISAE RO 0 0 I/O space access enable. This bit must never be set. It is read-only and
CN50XX does not respond to I/O-space accesses.
404 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

PCI Bus: PCI Configuration Registers
Class Code/Revision ID Register
PCI_CFG02

This register contains the third 32-bits of the PCI configuration space. See Table 9–3
for address.

BIST, HEADER Type, Latency Timer, Line Size Register
PCI_CFG03

Fourth 32-bits of PCI configuration space. See Table 9–3 for address.

Base Address Register 0 - Low
PCI_CFG04

Fifth 32-bits of PCI configuration space. Description of BAR0: 4KB, 64-bit,
prefetchable memory space. See Table 9–3 for address.

Base Address Register 0 - High
PCI_CFG05

Sixth 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:8> CC RO 0x0B3000 0x0B3000 Class code (network encryption/decryption class). Possible values:
0x100000 = CN38XX (pass 2) and CN31XX
0x0B3000 = CN38XX (pass 3), CN30XX, CN58XX, and CN5020
0x0B = CN56XX [BCC]

<7:0> RID RO 0x0 0x0 Revision ID.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> BCAP RO 0 0 BIST capable
<30> BRB R/W 0 0 BIST request/busy-bit.

CN50XX does not support PCI BIST, therefore this bit should remain 0.
<29:28> — RAZ — — Reserved
<27:24> BCOD RO 0x0 0x0 BIST code
<23:16> HT RO 0x0 0x0 Header type (type 0)
<15:8> LT R/W 0x0 0x0 Latency timer
<7:0> CLS R/W 0x0 — Cache line size

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:12> LBASE R/W 0x0 — Base address[31:12]. User may define the base address. Base address[30:12]
is read as 0x0 if PCI_CTL_STATUS_2[BB0] is set to 1.

<11:4> LBASEZ RO 0x0 0x0 Base address[11:4] (read as 0x0 to imply 4KB of space).
<3> PF RO 1 1 Prefetchable space: 1 = prefetchable, 0 = not prefetchable
<2:1> TYP RO 0x2 0x2 Type: 0x0 = 32b, 0x1 = below 1MB, 0x2 = 64b. 0x3 = reserved
<0> MSPC RO 0 0 Memory space indicator

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> HBASE R/W 0x0 — Base address[63:32]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 405

 PCI Bus: PCI Configuration Registers
Base Address Register 1 - Low
PCI_CFG06

Seventh 32-bits of PCI configuration space. Description of BAR1: 128MB, 64-bit,
prefetchable memory space. See Table 9–3 for address.

Base Address Register 1 - High
PCI_CFG07

Eighth 32-bits of PCI configuration space. See Table 9–3 for address.

Base Address Register 2 - Low
PCI_CFG08

Ninth 32-bits of PCI configuration space. Description of BAR2: 239 (512GB), 64-bit,
prefetchable memory space. See Table 9–3 for address.

Base Address Register 2 - High Register
PCI_CFG09

Tenth 32-bits of PCI configuration space. See Table 9–3 for address.

Card Bus CIS Pointer Register
PCI_CFG10

Eleventh 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:27> LBASE R/W 0x0 — Base address[31:27]. User may define the base address. Base address[29:27]
is read as 000 if PCI_CTL_STATUS_2[BB1] is set to 1. Base address[30] is
read as 0 if both PCI_CTL_STATUS_2[BB1] and
PCI_CTL_STATUS_2[BB1_SIZE] are set to 1s.

<26:4> LBASEZ RO 0x0 0x0 Base address[26:4] (read as 0x0 to imply 128 MB of space).
<3> PF RO 1 1 Prefetchable space: 1 = prefetchable, 0 = not prefetchable
<2:1> TYP RO 0x2 0x2 Type: 0x0 = 32b, 0x1 = below 1MB, 0x2 = 64b. 0x3 = reserved
<0> MSPC RO 0 0 Memory space indicator

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> HBASE R/W 0x0 — Base Address[63:32]

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:4> LBASEZ RO 0x0 0x0 Base address[31:4] (read as 0x0).
<3> PF RO 1 1 Prefetchable space: 1 = prefetchable, 0 = not prefetchable
<2:1> TYP RO 0x2 0x2 Type: 0x0 = 32b, 0x1 = below 1MB, 0x2 = 64b. 0x3 = reserved
<0> MSPC RO 0 0 Memory space indicator

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:7> HBASE R/W 0x0 — Base address[63:39]
<6:0> HBASEZ RO 0x0 0x0 Base address[38:31] (read as 0x0)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> CISP RO 0x0 0x0 CardBus CIS pointer (unused)
406 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Configuration Registers
SubSystem ID/Subsystem Vendor ID Register
PCI_CFG11

Twelfth 32-bits of PCI configuration space. See Table 9–3 for address.

Expansion ROM Base Address Register
PCI_CFG12

Thirteenth 32-bits of PCI configuration space. See Table 9–3 for address.

Capabilities Pointer Register
PCI_CFG13

Fourteenth 32-bits of PCI configuration space. See Table 9–3 for address.

Interrupt/Arbitration/Latency Register
PCI_CFG15

Sixteenth 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> SSID RO 0x1 0x1 Subsystem ID
<15:0> SSVID RO 0x177D 0x177D Subsystem vendor ID

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> ERBAR R/W 0x0 — Expansion ROM base address <31:16>. 64KB in size.
<15:11> ERBARZ RO 0x0 0x0 Expansion ROM base address (read as 0)
<10:1> — RAZ — — Reserved
<0> ERBAR_EN R/W 0 0 Expansion ROM address decode enable.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:8> — RAZ — — Reserved
<7:0> CP RO 0xE0 0xE0 Capabilities pointer

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:24> ML RO 0x40 0x40 Maximum latency
<23:16> MG RO 0x40 0x40 Minimum grant
<15:8> INTA RO 0x1 0x1 Interrupt pin (INTA#)
<7:0> IL R/W 0x0 — Interrupt line
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 407

 PCI Bus: PCI Configuration Registers
Target Implementation Register
PCI_CFG16

Seventeenth 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> TRDNPR R/W1C 0 0 Target read delayed transaction for I/O and nonprefetchable regions
discarded.

<30> TRDARD R/W1C 0 0 Target read delayed transaction for all regions discarded.
<29> RDSATI R/W 0 0 Target (I/O and memory) read delayed/split at time-out/immediately

(default time-out).

NOTE: CN50XX requires that this bit be 0.
<28> TRDRS R/W 0 0 Target (I/O and memory) read delayed/split or retry select (of the

application interface is not ready)
0 = Delayed-split transaction
1 = Retry transaction (always immediate retry, no AT_REQ to
application).

<27> TRTAE R/W 0 0 Target (I/O and memory) read target abort enable (if application interface is
not ready at the latency time-out).

NOTE: CN50XX as target will never target-abort, therefore this bit should
never be set.

<26> TWSEI R/W 0 0 Target (I/O) write-split enable (at time-out/immediately; default time-out)
<25> TWSEN R/W 0 0 Target (I/O) write-split enable (if the application interface is not ready)
<24> TWTAE R/W 0 0 Target (I/O and memory) write target abort enable (if the application

interface is not ready at the start of the cycle).

NOTE: CN50XX as target will never split transactions, therefore this bit
should never be set.

<23> TMAE R/W 0 0 Target (read/write) master abort enable; check at the start of each
transaction.

NOTE: This bit can be used to force a Master Abort when CN50XX is acting
as the intended target device.

<22:20> TSLTE R/W 0x0 0x0 Target subsequent (2nd-last) latency time-out enable valid range: [1..7] and
0=8.

<19:16> TILT R/W 0x0 0x0 Target initial (1st data) latency time-out in PCI mode valid range: [8..15]
and 0=16.

<15:4> PBE R/W 0x0 0x0 Programmable boundary enable to disconnect/prefetch for target burst-read
cycles to prefetchable region in PCI. A value of 1 indicates end of boundary
(64KB down to 16 bytes).

<3> DPPMR R/W 0 0 Disconnect/prefetch to prefetchable memory regions enable. Prefetchable
memory regions are always disconnected on a region boundary. Non-
prefetchable regions for PCI are always disconnected on the first transfer.

NOTE: CN50XX as target will never target-disconnect, therefore this bit
should never be set.

<2> — RAZ — — Reserved
<1> TSWC R/W 0 0 Target split write control:

0 = Blocks all requests except PMW
1 = Blocks all requests including PMW until split completion occurs.

<0> MLTD R/W 0 1 Master latency timer disable. Cavium recommends that this bit be set.
408 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Configuration Registers
Target Split-Completion Message Enable Register
PCI_CFG17

Eighteenth 32-bits of PCI configuration space. This register is for debug purposes
only. It should only be written with all 0s. See Table 9–3 for address.

Target Delayed/Split Request Pending Sequences Register
PCI_CFG18

Nineteenth 32-bits of PCI configuration space. This register is for debug purposes
only. It should only be written with all 0s. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> TSCME R/W1C 0 — Target split-completion message enable.
[31:30]: 00
[29]: Split-completion error indication
[28]: 0
[27:20]: Split-completion message index
[19:0]: 0x00000

NOTE: This register is intended for debug use only. Cavium recommends
that only 0s be written to this register.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> TDSRPS R/W1C 0x0 0x0 Target delayed/split request pending sequences.
The application uses this address to remove a pending split sequence from
the target queue by clearing the appropriate bit. For example, clearing bit
<14> clears the pending sequence #14. An application or configuration write
to this address can clear this register.

NOTE: This register is intended for debug use only. Writes to this register
must only be all 0s.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 409

 PCI Bus: PCI Configuration Registers
Target Delayed/Split Request Pending Sequences Register
PCI_CFG19

Twentieth 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> MRBCM R/W 1 1 Master request (memory read) byte count/byte enable select.
0 = Byte enables valid. In PCI mode, a burst transaction cannot be

performed using Memory Read command=4’h6.
1 = DWORD byte-count valid (default). In PCI mode, the memory-read

byte enables are automatically generated by the core.

NOTE: This bit must always be 1 for proper operation.
<30> MRBCI R/W 0 0 Master request (I/O and CR cycles) byte count/byte enable select.

0 = Byte enables valid (default)
1 = DWORD byte count valid

NOTE: This bit must always be 0 for proper operation (in support of Type0/1
CfgWr Space accesses which require byte-enable generation directly
from a read mask).

<29> MDWE R/W 0 0 Master (retry) deferred write enable (allows read requests to pass).
0 = New read requests are not accepted until the current write cycle

completes. [Reads cannot pass writes]
1 = New read requests are accepted, even when there is a write cycle

pending [Reads can pass writes].

NOTE: This bit must always be 0 for proper operation.
<28> MDRE R/W 0 0 Master (retry) deferred read enable (allows read/write requests to pass).

0 = New read/write requests are NOT accepted until the current read
cycle completes. [Read/write requests CANNOT pass reads]

1 = New read/write requests are accepted, even when there is a read
cycle pending. Read/write requests CAN pass reads.

NOTE: This bit must always be 0 for proper operation.
<27> MDRIMC R/W 0 0 Master I/O deferred/split request outstanding maximum count.

0 = value in MDRRMC
1 = 1.

<26:24> MDRRMC R/W 0x2 0x2 Master deferred read request outstanding max count (PCI only).

Max SAC Cycles Max DAC Cycles
000 = 8 4
001 = 1 0
010 = 2 1
011 = 3 1
100 = 4 2
101 = 5 2
110 = 6 3
111 = 7 3

NOTE: For example, if these bits are programmed to 100, the core can
support two DAC cycles, four SAC cycles or a combination of one
DAC and two SAC cycles.

<23:16> TMES RO 0 0 Target/master error sequence number.
<15> TECI RO 0 0 Target error command indication: 0 = delayed/split, 1 = others
<14> TMEI RO 0 0 Target/master error indication: 0 = target, 1 = master
<13> TMSE R/W1C 0 0 Target/master system error. This bit is set whenever ATM_SERR_O is

active.
<12> TMDPES R/W1C 0 0 Target/master data PERR# error status. This bit is set whenever

ATM_DATA_PERR_O is active.
<11> TMAPES R/W1C 0 0 Target/master address PERR# error status. This bit is set whenever

ATM_ADDR_PERR_O is active.
410 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Configuration Registers
Master Deferred/Split Sequence Pending Register
PCI_CFG20

Twenty-first 32-bits of PCI configuration space. This register is for debug purposes
only. It should only be written with all 0s. See Table 9–3 for address.

Master Split Completion Message Register
PCI_CFG21

Twenty-second 32-bits of PCI configuration space. This register is for debug purposes
only. It should only be written with all 0s. See Table 9–3 for address.

<10:9> — RAZ — — Reserved
<8> TIBCD R/W1C 0 0 Target illegal I/O DWORD byte combinations detected.
<7> TIBDE R/W 0 0 Target illegal I/O DWORD byte detection enable
<6> — RAZ — — Reserved
<5> TIDOMC R/W 0 0 Target I/O delayed/split request outstanding maximum count.

0 = TDOMC[4:0]
1 = 1

<4:0> TDOMC R/W 0x1 0x1 Target delayed/split request outstanding maximum count. Values = 0x1–
0xFF, and 0 = 0x20.

NOTE: If you program these bits beyond the designed maximum
outstanding count, then the designed maximum table depth is used
instead. No additional deferred/split transactions are accepted if this
outstanding maximum count is reached. Furthermore, no additional
deferred/split transactions are accepted if the I/O delay/ I/O split
request outstanding maximum is reached.

NOTE: This field must be programmed to 0x1. (CN50XX can only handle 1
delayed read at a time).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> — R/W1C 0 — Reserved.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> — R/W1C 0 — Reserved.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 411

 PCI Bus: PCI Configuration Registers
Master Arbiter Control Register
PCI_CFG22

Twenty-third 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:25> MAC R/W 0 0 Master arbiter control
[31:26]: Used only in fixed priority mode (when [25]=1)
[31:30]: MSI request

00 = highest priority
01 = medium priority
10 = lowest priority
11 = Reserved

[29:28]: Target split completion
00 = highest priority
01 = medium priority
10 = lowest priority
11 = Reserved

[27:26]: New request; deferred read,deferred write
00 = highest priority
01 = medium priority
10 = lowest priority
11 = Reserved

[25]: Fixed/round robin priority selector
0 = round robin
1 = fixed

NOTE: When [25]=1, the three levels specified in [31:26] must be
programmed to have mutually exclusive priority levels for proper
operation. Failure to do so may result in the PCI becoming hung.

<24:19> — RAZ — — Reserved
<18> FLUSH R/W 1 1 AM_D0_FLUSH_I control.

NOTE: This bit must be 1 for proper CN50XX operation.
<17> MRA R/W1C 0 0 Master retry aborted
<16> MTTA R/W1C 0 0 Master TRDY time-out aborted
<15:8> MRV R/W 0x0 0xFF Master retry value [1..255] and 0=infinite
<7:0> MTTV R/W 0x0 0x0 Master TRDY time-out value [1..255] and 0=disabled

NOTE: This bit must be 0 for proper operation. CN50XX does not support
master TRDY time-out (target is expected to be well-behaved).
412 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Configuration Registers
Power Management Capabilities Register
PCI_CFG58

Fifty-ninth 32-bits of PCI configuration space. See Table 9–3 for address.

Power Management Data/PMCSR Register
PCI_CFG59

Sixtieth 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:27> PMES RO 0x0 0x0 PME support (D0 to D3cold)
<26> D2S RO 0 0 D2_support
<25> D1S RO 0 0 D1_support
<24:22> AUXC RO 0x0 0x0 AUX_current (0...375mA)
<21> DSI RO 0 0 Device specific initialization
<20> — RAZ — — Reserved
<19> PMEC RO 0 0 PME clock
<18:16> PCIMIV RO 0x2 0x2 Indicates the version of the PCI Management Interface Specification with

which the core complies.
0x2 = complies with PCI Management Interface Specification Revision 1.1

<15:8> NCP RO 0xF0 0xF0 Next capability pointer
<7:0> PMCID RO 0x1 0x1 Power management capability ID

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description 1

<31:24> PMDIA RO 0 0 Power Management data input from application (PME_DATA)
<23> BPCCEN RO 0 0 BPCC_En (bus power/clock control) enable
<22> BD3H RO 0 0 B2_B3#, B2/B3 Support for D3hot
<21:16> — RAZ — — Reserved
<15> PMESS R/W1C 0 0 PME_Status sticky bit
<14:13> PMEDSIA RO 0 0 PME_Data_Scale input from application Device

(PME_DATA_SCALE[1:0]) Specific
<12:9> PMDS R/W 0 0 Power Management Data_select
<8> PMEENS R/W 0 0 PME_En sticky bit
<7:2> — RAZ — — Reserved
<1:0> PS R/W 0 0 Power State (D0 to D3) - CN50XX does not support D1/D2 Power

Management states, therefore writing to this register has no effect.

1. This is not a conventional R/W style register.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 413

 PCI Bus: PCI Configuration Registers
MSI Capabilities Register
PCI_CFG60

Sixty-first 32-bits of PCI configuration space. See Table 9–3 for address.

MSI Lower Address Register
PCI_CFG61

Sixty-second 32-bits of PCI configuration space. See Table 9–3 for address.

MSI Upper Address Register
PCI_CFG62

Sixty-third 32-bits of PCI configuration space. See Table 9–3 for address.

MSI Message Data Register
PCI_CFG63

Sixty-fourth 32-bits of PCI configuration space. See Table 9–3 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:24> — RAZ — — Reserved
<23> M64 RO 1 1 32/64-bit message
<22:20> MME R/W 0x0 0x0 Multiple message enable:

000 = 1, 001 = 2, 010 = 4, 011 = 8, 100 = 16, 101 =32, 110, 111 = reserved
<19:17> MMC RO 0x0 0x0 Multiple message capable:

000 = 1, 001 = 2, 010 = 4, 011 = 8, 100 = 16, 101 = 32, 110,111 = reserved
<16> MSIEN R/W 0 0 MSI enable
<15:8> NCP RO 0x0 0x0 Next capability pointer
<7:0> MSICID RO 0x5 0x5 MSI capability ID

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:2> MSI31t2 R/W 0 — Application specific MSI address [31:2]
<1:0> — RAZ — — Reserved.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> MSI R/W 0 — MSI address [63:32]

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> — RAZ — — Reserved
<15:0> MSIMD R/W 0 — MSI message data
414 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
9.14 PCI Bus Registers

The PCI configuration-space registers and some of the BAR0 CSRs are of type
PCI_NCB. This indicates that they can be accessed by either of two mechanisms:

● A remote PCI (host) device can access these registers directly via PCI addresses.
● A local core can access these registers directly via normal CN50XX internal

I/O addresses.

The listed CSR addresses are all little-endian format. Note that as most CN50XX
CSRs are 64-bit, and all 64-bit addresses are endian-neutral, most addresses in this
specification are endian-neutral.

The PCI registers that are available to the CN50XX cores are listed in Table 9–4. The
PCI registers that unavailable to the cores are listed in Table 9–5.

Table 9–4 PCI Registers (Available to Cores)

Register
Address (Little-Endian)
(CN50XX Internal)

Address (Big-Endian)
(CN50XX Internal)

Address (PCI BAR0
Memory Space Offset) CSR Type1

Detailed
Description

PCI_BAR1_INDEX0
PCI_BAR1_INDEX1
...
PCI_BAR1_INDEX30
PCI_BAR1_INDEX31

0x00011F0000001100
0x00011F0000001104
...
0x00011F0000001178
0x00011F000000117C

0x00011F0000001104
0x00011F0000001100
...
0x00011F000000117C
0x00011F0000001178

0x0000000000000100
0x0000000000000104
...
0x0000000000000178
0x000000000000017C

32-bit
PCI_NCB

See
page 417

PCI_READ_CMD_6 0x00011F0000001180 0x00011F0000001184 0x0000000000000180 32-bit
PCI_NCB

See
page 417

PCI_READ_CMD_C 0x00011F0000001184 0x00011F0000001180 0x0000000000000184 32-bit
PCI_NCB

See
page 418

PCI_READ_CMD_E 0x00011F0000001188 0x00011F000000118C 0x0000000000000188 32-bit
PCI_NCB

See
page 418

PCI_CTL_STATUS_2 0x00011F000000118C 0x00011F0000001188 0x000000000000018C 32-bit
PCI_NCB

See
page 419

NPI_MSI_RCV 0x00011F0000001190 0x00011F0000001190 0x0000000000000190 64-bit
PCI_NCB

See
page 422

PCI_INT_SUM2 0x00011F0000001198 0x00011F0000001198 0x0000000000000198 64-bit
PCI_NCB

See
page 424

PCI_INT_ENB2 0x00011F00000011A0 0x00011F00000011A0 0x00000000000001A0 64-bit
PCI_NCB

See
page 423

1. NCB-type registers are accessed directly across the I/O Bus.
PCI_NCB-type registers can be accessed directly from either the PCI bus or the I/O Bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 415

 PCI Bus: PCI Bus Registers

Table 9–5 PCI Registers (Unavailable to Cores)

Register
Address (PCI BAR0 Memory
Space Offset) CSR Type1

1. PCI-type registers are accessed directly from the PCI bus and cannot be accessed by the local
cores.

Detailed
Description

PCI_WIN_WR_ADDR 0x0000000000000000 PCI See page 426
PCI_WIN_RD_ADDR 0x0000000000000008 PCI See page 426
PCI_WIN_WR_DATA 0x0000000000000010 PCI See page 427
PCI_WIN_WR_MASK 0x0000000000000018 PCI See page 427
PCI_WIN_RD_DATA 0x0000000000000020 PCI See page 427
PCI_INT_SUM 0x0000000000000030 PCI See page 427
PCI_INT_ENB 0x0000000000000038 PCI See page 429
PCI_PKTS_SENT0
PCI_PKTS_SENT1

0x0000000000000040
0x0000000000000050

PCI See page 429

PCI_PKT_CREDITS0
PCI_PKT_CREDITS1

0x0000000000000044
0x0000000000000054

PCI See page 430

PCI_PKTS_SENT_INT_LEV0
PCI_PKTS_SENT_INT_LEV1

0x0000000000000048
0x0000000000000058

PCI See page 430

PCI_PKTS_SENT_TIME0
PCI_PKTS_SENT_TIME1

0x000000000000004C
0x000000000000005C

PCI See page 430

PCI_DBELL0
PCI_DBELL_1

0x0000000000000080
0x0000000000000088

PCI See page 430

PCI_INSTR_COUNT0
PCI_INSTR_COUNT1

0x0000000000000084
0x000000000000008C

PCI See page 431

PCI_DMA_CNT0 0x00000000000000A0 PCI See page 431
PCI_DMA_INT_LEV0 0x00000000000000A4 PCI See page 431
PCI_DMA_CNT1 0x00000000000000A8 PCI See page 431
PCI_DMA_INT_LEV1 0x00000000000000AC PCI See page 431
PCI_DMA_TIME0 0x00000000000000B0 PCI See page 431
PCI_DMA_TIME1 0x00000000000000B4 PCI See page 431
PCI_MSI_RCV 0x00000000000000F0 PCI See page 431
416 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
9.14.1 PCI_NCB-Type Registers

All the registers in this section are PCI_NCB type registers, as described in Table 9–
4.

PCI BAR1 Index Registers
PCI_BAR1_INDEX(0...31)

Contains address index and control bits for access to memory ranges of BAR1. PCI-
supplied address bits [26:22] determine which register is selected. See Table 9–4 for
address.

PCI Read Command 6 Register
PCI_READ_CMD_6

Contains control information related to a received PCI Command 6. See Table 9–4 for
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:18> — RAZ — — Reserved.
<17:4> ADDR_IDX R/W 0x0 — Address bits <35:22> sent to L2C.
<3> CA R/W 0 0 Cache attribute. When set to 1, load/store operations are not cached in the L2

cache.
<2:1> END_SWP R/W 0x0 — Endian-swap mode.

0x0 = No swizzle
0x1 = Byte swizzle (per-quadword),
0x2 = Byte swizzle (per-longword)
0x3 = Longword swizzle

<0> ADDR_V R/W 0 — Address valid. Set to 1 when the selected address range is valid.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:9> — RAZ — — Reserved
<8:3> MIN_DATA R/W 0x0 0x4 The number of words to have buffered in the PNI before informing the PCI-

core that we have read data available for the outstanding delayed read. 0 is
treated as a 64. For read operations to the expansion, this value is not used.

<2:0> PREFETCH R/W 0x0 0x2 Controls the amount of data to be prefetched when this type of bhmstREAD
command is received.

000 = One 32/64-bit word.
001 = From address to end of 128-byte block.
010 = From address to end of 128-byte block plus 128 bytes.
011 = From address to end of 128-byte block plus 256 bytes.
100 = From address to end of 128-byte block plus 384 bytes.
101,110,111 = Reserved

For read operations to the expansion, this value is not used.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 417

 PCI Bus: PCI Bus Registers
PCI Read Command C Register
PCI_READ_CMD_C

Contains control information related to a received PCI Command C. See Table 9–4
for address.

PCI Read Command E Register
PCI_READ_CMD_E

Contains control information related to a received PCI Command E. See Table 9–4
for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:9> — RAZ — — Reserved
<8:3> MIN_DATA R/W 0x0 0x6 The number of words to have buffered in the PNI before informing the PCI-

core that we have read data available for the outstanding delayed read. 0 is
treated as a 64. For read operations to the expansion, this value is not used.

<2:0> PREFETCH R/W 0x0 0x3 Control the amount of data to be prefetched when this type of READ
command is received.

000 = One 32/64-bit word.
001 = From address to end of 128-byte block.
010 = From address to end of 128-byte block plus 128 bytes.
011 = From address to end of 128-byte block plus 256 bytes.
100 = From address to end of 128-byte block plus 384 bytes.
101,110,111 = Reserved

For read operations to the expansion, this value is not used.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:9> — RAZ — — Reserved
<8:3> MIN_DATA R/W 0x0 0x6 The number of words to have buffered in the PNI before informing the PCI-

core that we have read data available for the outstanding delayed read. 0 is
treated as a 64. For read operations to the expansion, this value is not used.

<2:0> PREFETCH R/W 0x0 0x3 Control the amount of data to be prefetched when this type of READ
command is received.

000 = One 32/64-bit word.
001 = From address to end of 128-byte block.
010 = From address to end of 128-byte block plus 128 bytes.
011 = From address to end of 128-byte block plus 256 bytes.
100 = From address to end of 128-byte block plus 384 bytes.
101,110,111 = Reserved

For read operations to the expansion, this value is not used.
418 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
PCI Control and Status 2 Register
PCI_CTL_STATUS_2

Control and status register accessible from both PCI and I/O bus. See Table 9–5 for
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:29> — RAZ — — Reserved
<28:26> BB1_HOLE R/W 0x0 0x0 Big BAR1 region hole. When BB1 = 1, defines an encoded size of the upper

BAR1 region that CN50XX masks out (i.e. does not respond to). (See
definition of BB1_HOLE and BB1_SIZ encodings in the BB1 description).

<25> BB1_SIZ R/W 0 0 Big BAR1 size. When BB1 = 1, defines the programmable size of BAR1:

0 = 1GB, 1 = 2GB
<24> BB_CA R/W 0 0 Big BAR0/1 cache allocation. When set to 1, references to Big BAR0/1 do not

allocate into the L2 cache.
<23:22> BB_ES R/W 0x0 0x0 Big BAR node endian-swap mode.

0 = No swizzle
1 = Byte swizzle (per-quadword),
2 = Byte swizzle (per-longword)
3 = Longword swizzle

<21> BB1 R/W 0 0 Big BAR1 enable. When set to 1, the following differences occur:

CN50XX’s BAR1 region becomes somewhere in the range 512–2048
MB rather than the default 128MB.
The following table indicates the effective size of BAR1 when BB1 is
set:

BB1_SIZ BB1_HOLE Effective Size Comment
0 0x0 1024 MB Normal 1 GB BAR
0 0x1 1008 MB 1 GB, 16 MB hole
0 0x2 992 MB 1 GB, 32 MB hole
0 0x3 960 MB 1 GB, 64 MB hole
0 0x4 896 MB 1 GB, 128 MB hole
0 0x5 768 MB 1 GB, 256 MB hole
0 0x6 512 MB 1 GB, 512 MB hole
0 0x7 Illegal
1 0x0 2048 MB Normal 2 GB BAR
1 0x1 2032 MB 2 GB, 16 MB hole
1 0x2 2016 MB 2 GB, 32 MB hole
1 0x3 1984 MB 2 GB, 64 MB hole
1 0x4 1920 MB 2 GB, 128 MB hole
1 0x5 1792 MB 2 GB, 256 MB hole
1 0x6 1536 MB 2 GB, 512 MB hole
1 0x7 Illegal

When BB1_SIZ = 0, PCI_CFG06[LBASE<2:0>] read as 0x0 and are
ignored on writes.
When BB1_HOLE = 0, BAR1 is an entirely ordinary 1 GB (power-of-
two) BAR in all aspects.
When BB1_HOLE ≠ 0, BAR1 addresses are programmed as if the BAR
were 1 GB, but CN50XX does not respond to addresses in the
programmed holes.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 419

 PCI Bus: PCI Bus Registers
When BB1_SIZ = 1, PCI_CFG06[LBASE<3:0>] read as 0x0 and are
ignored on writes.
When BB1_HOLE = 0, BAR1 is an entirely ordinary 2 GB (power-of-
two) BAR in all aspects.
When BB1_HOLE ≠ 0, BAR1 addresses are programmed as if the BAR
were 2 GB, but CN50XX does not respond to addresses in the
programmed holes.

NOTE: The BB1_HOLE value has no effect on the PCI_CFG06[LBASE]
behavior. BB1_HOLE only affects whether CN50XX accepts an
address. BB1_SIZ does affect PCI_CFG06[LBASE] behavior,
however.

The first 128MB (i.e. addresses on the PCI bus in the range
[BAR1+0 ... BAR1+0x07FFFFFF]) access CN50XX’s DRAM addresses
with PCI_BAR1_INDEX CSRs as usual.
The remaining address space (i.e. addresses on the PCI bus in the
range [BAR1+0x08000000 ... BAR1+size−1] where size is the size of
BAR1 as selected by the above table, based on the BB1_SIZ and
BB1_HOLE values), are mapped to CN50XX physical DRAM addresses
as follows:
PCI Address Range CN50XX Physical Address Range
BAR1+0x0800 0000 ... BAR1 + size−1 0x8800 0000 ... 0x7FFF FFFF + size

BB_ES is the endian-swap and BB_CA is the L2C allocation bit for
these references. The consequences of any burst that crosses the end of
the PCI address range for BAR1 are unpredicable.

The consequences of any burst access that crosses the boundary
between [BAR1 + 0x07FF FFFF] and [BAR1 + 0x0800 0000] are
unpredictable in PCI-X mode. CN50XX may disconnect PCI references
at this boundary.

<20> BB0 R/W 0 0 Big BAR0 enable. When set to 1, the following differences occur:

CN50XX BAR0 becomes 2GB rather than the default 4KB.
PCI_CFG04[LBASE<18:0>] reads as 0x0 and is ignored on writes.
CN50XX BAR0 becomes burstable. When BB0 = 0, CN50XX single-
phase disconnects PCI BAR0 reads and writes.
The first 4KB (i.e. addresses on the PCI bus in the range [BAR0 + 0 ...
BAR0 + 0xFFF]) access CN50XX PCI-type CSRs as in normal
operation (i.e. when BB0 = 0).
The remaining address space (i.e. addresses on the PCI bus in the
range [BAR0 + 0x1000 ... BAR0 + 0x7FFF FFFF] are mapped to
CN50XX physical DRAM addresses as follows:
PCI Address Range CN50XX Physical Address Range
BAR0+0x0000 1000 ... BAR0+0x0FFF FFF 0x0 0000 1000 ... 0x0 0FFF FFFF
BAR0+0x1000 0000 ... BAR0+0x1FFF FFF 0x4 1000 0000 ... 0x4 1FFF FFFF
BAR0+0x2000 0000 ... BAR0+0x7FFF FFF 0x0 2000 0000 ... 0x0 7FFF FFFF

BB_ES is the endian-swap and BB_CA is the L2 cache allocation bit for
these references. The consequences of any burst that crosses the end of
the PCI address range for BAR0 are unpredicable.

The consequences of any burst access that crosses the boundary
between [BAR0+0xFFF[and [BAR0+0x1000[are unpredictable in PCI-
X mode. CN50XX may disconnect PCI references at this boundary.
The results of any burst read that crosses the boundary between
[BAR0+0x0FFF FFFF] and [BAR0+0x1 000 0000] or between
[BAR0+0x1FFF FFFF] and [BAR0+0x2000 0000] are unpredictable.
The consequences of any burst write that crosses this same boundary
are unpredictable.

<19> ERST_N RO 1 1 Reset active low.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
420 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
<18> BAR2PRES R/W — — From fuse block:
When fuse MIO_FUS_DAT3[BAR2_EN] is not blown, the value of this
field is 0 after reset and BAR2 is not present.
When the fuse is blown, the value of this field is 1 after reset and BAR2
is present.

NOTE: Software can change this field after reset.
<17> SCMTYP RO 0 — Split completion message CMD type: 0 = RD, 1 = WR).

When SCM=1, SCMTYP specifies the CMD intent (R/W)
<16> SCM RO 0 — Split completion message detect (read or write): 1= detected, 0= not detected
<15> EN_WFILT R/W 0 1 Window-access filter enable: 1 = enabled, 0 = not enabled.

Unfiltered writes: Unfiltered reads
MIO, SubId0 MIO, SubId0
MIO, SubId7 MIO, SubId7
NPI, SubId0 NPI, SubId0
NPI, SubId7 NPI, SubId7
IPD, SubId7 IPD, SubId7
USBN, SubId7 USBN, SubId7
POW, SubId7 POW, SubId1

POW, SubId2
POW, SubId3
POW, SubId7

<14> — RAZ — — Reserved
<13> AP_PCIX RO 0 — PCX core mode status: 0 = PCI, 1 = PCIX
<12> AP_64AD RO 0 — PCX core bus status: 0 = 32-bit bus, 1 = 64-bit bus
<11> B12_BIST RO 0 0 Bist status for memory in B12
<10> PMO_AMOD R/W 0 0 PMO-ARB mode: 0 = FP mode {HP=CMD1,LP=CMD0}, 1 = RR mode
<9:7> PMO_FPC R/W 0x0 0x0 PMO-ARB fixed priority counter

When PMO_AMOD=0 (FP mode), this field represents the # of CMD1
requests that are issued (at higher priority) before a single lower-priority
CMD0 is allowed to issue (to ensure forward progress).

0 = one CMD1 request issued before CMD0 allowed
...
7 = eight CMD1 requests issued before CMD0 allowed

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 421

 PCI Bus: PCI Bus Registers
NPI MSI Receive Vector Register
NPI_MSI_RCV

A bit is set in this register relative to the vector received during an MSI. Cleared by
writing a 1 to the register. See Table 9–4 for the address.

<6:4> TSR_HWM R/W 0x1 — Target split-read allowable disconnect boundary (ADB) high-water mark.
Specifies the number of ADBs (128-byte aligned chunks) that are
accumulated (pending) before the target-split completion is attempted on
the PCI bus.

0x0 = Reserved/Illegal 0x4 = 5 (513-640 bytes)
0x1 = 2 (129-256 bytes) 0x5 = 6 (641-768 bytes)
0x2 = 3 (257-384 bytes) 0x6 = (769-896 bytes)
0x3 = 4 (385-512 bytes) 0x7 = (897-1024 bytes)

Example: Suppose a 1KB target-memory request with starting byte offset
address[6:0] = 0x7F is split by the CN50XX and the TSR_HWM=1 (2 ADBs).

The CN50XX starts the target split completion on the PCI bus after 1 byte
(1st ADB) + 128 bytes (2nd ADB) = 129 bytes of data have been received
from memory (even though the remaining 895 bytes have not yet been
received). CN50XX continues the split completion until it has consumed all
of the pended split data. If the full transaction length (1KB) of data was not
entirely transferred, CN50XX terminates the split completion and again
waits for another 2 ADB-aligned data chunks (256 bytes) of pended split
data to be received from memory before starting another split completion
request. This allows CN50XX (as split completer), to send back multiple
split completions for a given large split transaction without having to wait
for the entire transaction length to be received from memory.

NOTE: For split-transaction sizes smaller than the specified TSR_HWM
value, the split completion is started when the last datum has been
received from memory.

NOTE: This field must never be written to a 0x0 value. A value of 0x0 is
reserved/illegal and can result in PCI bus hangs.

<3> BAR2_ENB R/W 0 1 BAR2 enable.
1 = BAR2 is enabled and will respond
0 = BAR2 access is target-aborted.

<2:1> BAR2_ESX R/W 0x0 — Endian swap mode. Value is XORed with PCI_ADDRESS[37:36] to
determine the endian-swap mode:

0 = No swizzle
1 = Byte swizzle (per-quadword),
2 = Byte swizzle (per-longword)
3 = Longword swizzle

<0> BAR2_CAX R/W 0 0 L2 cache attribute. Value is XORed with PCI_ADDRESS[38] to determine
the L2 cache attribute. Refer to Section 9.2.3.

If BAR2_CAX ⊕ [38] = 1, load/store operations are not allocated to L2 cache.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> INT_VEC R/W1C 0 0 Refer to PCI_MSI_RCV.
422 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
PCI Interrupt Enable2 Register
PCI_INT_ENB2

Enables interrupt bits in the PCI_INT_SUM2 register. See Table 9–4 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ — — Reserved
<33> ILL_RD R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[ILL_RD]
<32> ILL_WR R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[ILL_WR]
<31> WIN_WR R/W 0 — RSL chain interrupt enable for PCI_INT_SUM[WIN_WR]
<30> DMA1_FI R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[DMA1_FI]
<29> DMA0_FI R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[DMA0_FI]
<28> RDTIME1 R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[DTIME1]
<27> RDTIME0 R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[DTIME0]
<26> RDCNT1 R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[RDCNT1]
<25> RDCNT0 R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[RDCNT0]
<24> SPR3 R/W 0 — Spare.
<23> SPR2 R/W 0 — Spare.
<22> SPR5 R/W 0 — Spare.
<21> RPTIME0 R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[PTIME0]
<20> SPR1 R/W 0 — Spare.
<19> SPR0 R/W 0 — Spare.
<18> SPR4 R/W 0 — Spare.
<17> RPCNT0 R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[PCNT0]
<16> RRSL_INT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[RSL_INT]
<15> ILL_RRD R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[ILL_RRD]
<14> ILL_RWR R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[ILL_RWR]
<13> RDPERR R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[DPERR]
<12> RAPERR R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[APERR]
<11> RSERR R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[SERR]
<10:9> — R/W 0 — Reserved.
<8> RMSI_MABT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MSI_MABT]
<7> RMSI_TABT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MSI_TABT]
<6> RMSI_PER R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MSI_PER]
<5> RMR_TTO R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MR_TTO]
<4> RMR_ABT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MR_ABT]
<3> RTR_ABT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[TR_ABT]
<2> RMR_WTTO R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MR_WTTO]
<1> RMR_WABT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[MR_WABT]
<0> RTR_WABT R/W 0 — RSL chain interrupt enable for PCI_INT_SUM2[TR_WABT]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 423

 PCI Bus: PCI Bus Registers
PCI Interrupt Summary2 Register
PCI_INT_SUM2

The PCI Interrupt Summary2 Register copy used for RSL interrupts. See Table 9–4
for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ — — Reserved
<33> ILL_RD R/W1C 0 0 A read to a disabled area of BAR1 or BAR2, when the mem area is disabled.
<32> ILL_WR R/W1C 0 0 A write to a disabled area of BAR1 or BAR2, when the mem area is disabled.
<31> WIN_WR R/W1C 0 0 A write to the disabled window write-data register took place.
<30> DMA1_FI R/W1C 0 0 A DMA operation finished that was required to set the FORCE-INT bit for

counter 1.
<29> DMA0_FI R/W1C 0 0 A DMA operation finished that was required to set the FORCE-INT bit for

counter 0.
<28> DTIME1 R/W1C 0 0 When the value in the PCI_DMA_CNT1 register is not 0, the DMA_CNT1

timer counts. When the DMA1_CNT timer has a value greater than the
PCI_DMA_TIME1 register, this bit is set. The timer is reset when the bit is
written with a one.

<27> DTIME0 R/W1C 0 0 When the value in the PCI_DMA_CNT0 register is not 0 the DMA_CNT0
timer counts. When the DMA0_CNT timer has a value greater than the
PCI_DMA_TIME0 register this bit is set. The timer is reset when the bit is
written with a one.

<26> DCNT1 R/W1C 0 0 This bit indicates that PCI_DMA_CNT1 value is greater than the value in
the PCI_DMA_INT_LEV1 register.

<25> DCNT0 R/W1C 0 0 This bit indicates that PCI_DMA_CNT0 value is greater than the value in
the PCI_DMA_INT_LEV0 register.

<24> SPR3 R/W1C 0 0 Spare.
<23> SPR2 R/W1C 0 0 Spare.
<22> SPR5 R/W1C 0 0 Spare.
<21> PTIME0 R/W1C 0 0 When the value in PCI_PKTS_SENT0 is not 0, the Sent0 timer counts.

When the Sent0 timer has a value greater than the
PCI_PKTS_SENT_TIME0 value, this bit is set. The timer is reset when the
bit is written with a 1.

<20> SPR1 R/W1C 0 0 Spare.
<19> SPR0 R/W1C 0 0 Spare.
<18> SPR4 R/W1C 0 0 Spare.
<17> PCNT0 R/W1C 0 0 This bit indicates that PCI_PKTS_SENT0 value is greater than the value in

the PCI_PKTS_SENT_INT_LEV0 register.
<16> RSL_INT RO 0 0 This bit is set when the RSL Chain has generated an interrupt.
<15> ILL_RRD R/W1C 0 0 A read to the disabled PCI registers took place.
<14> ILL_RWR R/W1C 0 0 A write to the disabled PCI registers took place.
<13> DPERR R/W1C 0 0 Data parity error detected by PCI core
<12> APERR R/W1C 0 0 Address parity error detected by PCI core
<11> SERR R/W1C 0 0 SERR# detected by PCI core
<10> TSR_ABT R/W1C 0 0 Target split-read abort detected
<9> MSC_MSG R/W1C 0 0 Master split completion message detected
<8> MSI_MABT R/W1C 0 0 PCI MSI master abort.
<7> MSI_TABT R/W1C 0 0 PCI MSI target abort.
<6> MSI_PER R/W1C 0 0 PCI MSI parity error.
<5> MR_TTO R/W1C 0 0 PCI master retry time-out on read.
<4> MR_ABT R/W1C 0 0 PCI master abort on read.
<3> TR_ABT R/W1C 0 0 PCI target abort on read.
<2> MR_WTTO R/W1C 0 0 PCI master retry time-out on write.
424 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
<1> MR_WABT R/W1C 0 0 PCI master abort detected on write.
<0> TR_WABT R/W1C 0 0 PCI target abort detected on write.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 425

 PCI Bus: PCI Bus Registers
9.14.2 PCI-Type Registers

All the registers in this section are PCI type registers, as described in Table 9–5.

PCI Window Write Address Register
PCI_WIN_WR_ADDR

Contains the address to be written to when a write operation is started by writing the
PCI_WIN_WR_DATA register. See Table 9–5 for address.

PCI Window Read Address Register
PCI_WIN_RD_ADDR

Writing the least-significant byte of this register causes a read operation to take
place, unless a read operation is already taking place. A read is considered to end
when the PCI_WIN_RD_DATA register is read. See Table 9–5 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:49> — RAZ — — Reserved
<48> IOBIT RAZ 0x0 0x0 A 1 or 0 can be written here, but this always reads as 0.
<47:3> WR_ADDR R/W 0x0 — The address that is written to when the PCI_WIN_WR_DATA register is

written.
[47:40] = I/O BUS_ID
[39:3] = address

When [47:43] = NPI AND [42:40] = 0x0 bits, [39:0] are the following:
[39:32] = don’t care (not used)
[31:27] = RSL_ID
[12:3] = RSL register offset
[2:0] = don’t care (not used)

<2:0> — RAZ — — Reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:49> — RAZ — — Reserved
<48> IOBIT RAZ 0x0 0x0 A 1 or 0 can be written here, but this will always read as 0.
<47:2> RD_ADDR R/W 0x0 — The address to be read from. Whenever the LSB of this register is written, the

read operation will take place.
[47:40] = I/O Bus_ID
[39:3] = Address

When [47:43] = NPI AND [42:40] = 0x0 bits, [39:0] are the following:
[39:32] = don’t care (not used)
[31:27] = RSL_ID
[12:2] = RSL register offset
[1:0] = don’t care (not used)

<1:0> — RAZ — — Reserved
426 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
PCI Window Write Data Register
PCI_WIN_WR_DATA

Contains the data to write to the address located in the PCI_WIN_RD_ADDR
register. Writing the least-significant byte of this register causes a write operation to
take place. See Table 9–5 for address.

PCI Window Write Mask Register
PCI_WIN_WR_MASK

Contains the mask for the data in the PCI_WIN_WR_DATA Register. See Table 9–5
for address.

PCI Window Read Data Register
PCI_WIN_RD_DATA

Contains the result from the read operation that took place when the least-
significant byte of the PCI_WIN_RD_ADDR register was written. See Table 9–5 for
address.

PCI Interrupt Summary Register
PCI_INT_SUM

See Table 9–5 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> WR_DATA R/W 0x0 — The data to be written. Whenever the least-significant byte of this register is
written, the window write takes place.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:0> WR_MASK R/W 0x0 0x0 Data-to-be-written mask. When a bit is set to 1, the corresponding byte is not

written.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> RD_DATA RO 0x0 — Read data.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ — — Reserved
<33> ILL_RD R/W1C 0 0 A read to a disabled area of BAR1 or BAR2, when the mem area is disabled.
<32> ILL_WR R/W1C 0 0 A write to a disabled area of BAR1 or BAR2, when the mem area is disabled.
<31> WIN_WR R/W1C 0 0 A write to the disabled window write-data or read-address register took

place.
<30> DMA1_FI R/W1C 0 0 A DMA operation that was required to set the FORCE-INT bit for counter 1

finished.
<29> DMA0_FI R/W1C 0 0 A DMA operation that was required to set the FORCE-INT bit for counter 0

finished.
<28> DTIME1 R/W1C 0 0 When the value in the PCI_DMA_CNT1 register is not 0, the DMA_CNT1

timer counts. When the DMA1_CNT timer has a value greater than the
PCI_DMA_TIME1 register this bit is set. The timer is reset when the bit is
written with a 1.

<27> DTIME0 R/W1C 0 0 When the value in the PCI_DMA_CNT0 register is not 0 the DMA_CNT0
timer counts. When the DMA0_CNT timer has a value greater than the
PCI_DMA_TIME0 register this bit is set. The timer is reset when the bit is
written with a one.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 427

 PCI Bus: PCI Bus Registers
<26> DCNT1 R/W1C 0 0 This bit indicates that PCI_DMA_CNT1 value is greater than the value in
the PCI_DMA_INT_LEV1 register.

<25> DCNT0 R/W1C 0 0 This bit indicates that PCI_DMA_CNT0 value is greater than the value in
the PCI_DMA_INT_LEV0 register.

<24> SPR3 R/W1C 0 0 Spare.
<23> SPR2 R/W1C 0 0 Spare.
<22> SPR5 R/W1C 0 0 Spare.
<21> PTIME0 R/W1C 0 0 When the value in the PCI_PKTS_SENT0 register is not 0, the Sent0 timer

counts. When the Sent0 timer has a value greater than the
PCI_PKTS_SENT_TIME0 register, this bit is set. The timer is reset when
the bit is written with a 1.

<20> SPR1 R/W1C 0 0 Spare.
<19> SPR0 R/W1C 0 0 Spare.
<18> SPR4 R/W1C 0 0 Spare.
<17> PCNT0 R/W1C 0 0 This bit indicates that PCI_PKTS_SENT0 value is greater than the value in

the PCI_PKTS_SENT_INT_LEV0 register.
<16> RSL_INT RO 0 0 This bit is set when the MIO_PCI_INTA_DR wire is asserted by the MIO.
<15> ILL_RRD R/W1C 0 0 Indicates a read to the disabled PCI registers took place.
<14> ILL_RWR R/W1C 0 0 Indicates a write to the disabled PCI registers took place.
<13> DPERR R/W1C 0 0 Data parity error detected by PCI core
<12> APERR R/W1C 0 0 Address parity error detected by PCI core
<11> SERR R/W1C 0 0 SERR# detected by PCI core
<10> TSR_ABT R/W1C 0 0 Target split-read abort detected. CN50XX (as completer), has encountered

an error that prevents the split transaction from completing. The format for
the SCM is defined in the PCI_CFG21 register, (Master Split Completion
Message Register). In this event, CN50XX (as completer), sends an SCM
(split completion message) to the initiator.

[31:28]: message class = 2 (completer error)
[27:20]: message index = 0x80
[18:12]: remaining lower address
[11:0]: remaining byte count

<9> MSC_MSG R/W1C 0 0 Master split completion message (SCM), detected for either a split-read/
-write error case. This bit is set if:

A split-write SCM is detected with SCE = 1.
A split-read SCM is detected (regardless of SCE status).

The split completion message(SCM) is also latched into the
PCI_SCM_REG[SCM] to assist SW with error recovery.

<8> MSI_MABT R/W1C 0 0 PCI MSI master abort.
<7> MSI_TABT R/W1C 0 0 PCI MSI target abort.
<6> MSI_PER R/W1C 0 0 PCI MSI parity error.
<5> MR_TTO R/W1C 0 0 PCI master retry time-out on read.
<4> MR_ABT R/W1C 0 0 PCI master abort on read.
<3> TR_ABT R/W1C 0 0 PCI target abort on read.
<2> MR_WTTO R/W1C 0 0 PCI master retry time-out on write.
<1> MR_WABT R/W1C 0 0 PCI master abort detected on write.
<0> TR_WABT R/W1C 0 0 PCI target abort detected on write.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
428 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
PCI Interrupt Enable Register
PCI_INT_ENB

Enables interrupt bits in the PCI_INT_SUM register See Table 9–5 for address.

PCI Packets Sent Registers
PCI_PKTS_SENT0/1

The number of packets sent to the host memory from PCI output 0/1. See Table 9–5
for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:34> — RAZ — — Reserved
<33> ILL_RD R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[ILL_RD]
<32> ILL_WR R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[ILL_WR]
<31> WIN_WR R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[WIN_WR]
<30> DMA1_FI R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DMA1_FI]
<29> DMA0_FI R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DMA0_FI]
<28> IDTIME1 R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DTIME1]
<27> IDTIME0 R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DTIME0]
<26> IDCNT1 R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DCNT1]
<25> IDCNT0 R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DCNT0]
<24> SPR3 R/W 0 — Spare.
<23> SPR2 R/W 0 — Spare.
<22> SPR5 R/W 0 0 Spare.
<21> IPTIME0 R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[PTIME0]
<20> SPR1 R/W 0 — Spare.
<19> SPR0 R/W 0 — Spare.
<18> SPR4 R/W 0 0 Spare.
<17> IPCNT0 R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[PCNT0]
<16> IRSL_INT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[RSL_INT]
<15> ILL_RRD R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[ILL_RRD]
<14> ILL_RWR R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[ILL_RWR]
<13> IDPERR R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[DPERR]
<12> IAPERR R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[APERR]
<11> ISERR R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[SERR]
<10> ITSR_ABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[TSR_ABT]
<9> IMSC_MSG R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MSC_MSG]
<8> IMSI_MABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MSI_MABT]
<7> IMSI_TABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MSI_TABT]
<6> IMSI_PER R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MSI_PER]
<5> IMR_TTO R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MR_TTO]
<4> IMR_ABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MR_ABT]
<3> ITR_ABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[TR_ABT]
<2> MR_WTTO R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MR_WTTO]
<1> IMR_WABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[MR_WABT]
<0> ITR_WABT R/W 0 — INTA# pin interrupt enable for PCI_INT_SUM[TR_WABT]

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> PKT_CNT RO 0 0 Each time a packet is written to the memory via PCI from CN50XX’s PCI
outputs 0/1, this counter is incremented by 1 or the byte count of the packet as
set in NPI_OUTPUT_CONTROL[P0/1_BMODE].
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 429

 PCI Bus: PCI Bus Registers
PCI Packet Credits For Output Credit Registers
PCI_PKT_CREDITS0/1

This register is used to decrease the number of packets to be processed by the host
from Output 0/1 and return buffer/info-pointer pairs to CN50XX Output 0/1. The
value in this register is acted upon when the least-significant byte of this register is
written. See Table 9–5 for address.

PCI Packets Sent Interrupt Level For Output Registers
PCI_PKTS_SENT_INT_LEV0/1

Interrupt when number of packets sent is equal to or greater than the register value.
See Table 9–5 for address.

PCI Packets Sent Timer For Output Registers
PCI_PKTS_SENT_TIME0/1

Time to wait from packet being sent to host from Output 0/1 before issuing an
interrupt. See Table 9–5 for address.

PCI Doorbell Registers
PCI_DBELL0/1

The value to write to the doorbell 0/1 register. The value in this register is acted upon
when the least-significant byte of this register is written. See Table 9–5 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> PKT_CNT R/W 0 — The value written to this field is subtracted from
PCI_PKTS_SENT0/1[PKT_CNT].

<15:0> PTR_CNT R/W 0 — This value is added to the NPI’s internal buffer/info-pointer pair count.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> PKT_CNT R/W 0 — When the corresponding port’s packet-sent register exceeds or is equal to the
value in this register, an interrupt occurs.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> PKT_TIME R/W 0 — The number of PCI clock cycles to wait before issuing an interrupt to the host
when a packet from this port has been sent to the host. The timer is reset
when the PCI_INT_SUM[21] is cleared.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> — RAZ — — Reserved
<15:0> INC_VAL R/W 0 — Software writes this register with the number of new instructions to be

processed on the instruction queue. When read, this register contains the last
write value.
430 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: PCI Bus Registers
PCI Instructions Outstanding Request Count Registers
PCI_INSTR_COUNT0/1

The number of instructions to be fetched by the Instruction 0/1 engines. See Table 9–
5 for address.

PCI DMA Count0/1 Registers
PCI_DMA_CNT0/1

Keeps track of the number of DMA operations or bytes sent by DMA operations. The
value in this register is acted upon when the least-significant byte of this register is
written. See Table 9–5 for address.

PCI DMA Sent Interrupt Level For DMA 0/1 Registers
PCI_DMA_INT_LEV0/1

Interrupt when the value in PCI_DMA_CNT0 is equal to or greater than the register
value. See Table 9–5 for address.

PCI DMA Sent Timer For DMA0/1 Registers
PCI_DMA_TIME0/1

Time to wait from the DMA operation being sent before issuing an interrupt. See
Table 9–5 for address.

PCI MSI Received Vector Register
PCI_MSI_RCV

A bit is set in this register relative to the vector received during a MSI. The value in
this register is acted upon when the least-significant byte of this register is written.
See Table 9–5 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> ICNT RO 0x0 0x0 Number of instructions to be fetched by the Instruction 0 engine in CN50XX.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> DMAn_CNT R/W 0x0 0x0 Update with the number of DMA operations completed or the number of bytes
sent for DMA operations associated with this counter. When this register is
written, the value written to [15:0] is subtracted from the value in this
register.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> PKT_CNT R/W 0x0 — When PCI_DMA_CNT0/1 register exceeds the value in this register, an
interrupt occurs if enabled.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> DMA_TIME R/W 0x0 — Number of PCI clock cycles to wait before issuing an interrupt to the host
when a DMA operation associated with this DMA counter is completed. The
timer is reset when the PCI_INT_SUM[DTIMEn] bit is cleared (bits [28,27]).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:6> — RAZ — — Reserved.
<5:0> INT WO 0x0 — When an MSI is received on the PCI, the bit selected by data [5:0] is set in this

register. To clear this bit, a write must take place to the NPI_MSI_RCV
register where any bit set to 1 is cleared. Reading this register returns an
unpredictable value.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 431

 PCI Bus: NPI Registers
9.15 NPI Registers
The NPI registers are listed in Table 9–6 and Table 9–7.
Table 9–6 NPI Registers

Register Address CSR Type1

1. NCB-type registers are accessed directly across the I/O Bus.

Detailed Description
NPI_RSL_INT_BLOCKS 0x00011F0000000000 NCB See page 433
NPI_DBG_SELECT 0x00011F0000000008 NCB See page 433
NPI_CTL_STATUS 0x00011F0000000010 NCB See page 434
NPI_INT_SUM 0x00011F0000000018 NCB See page 434
NPI_INT_ENB 0x00011F0000000020 NCB See page 436
NPI_MEM_ACCESS_SUBID3
...
NPI_MEM_ACCESS_SUBID6

0x00011F0000000028
...
0x00011F0000000040

NCB See page 438

NPI_PCI_READ_CMD 0x00011F0000000048 NCB See page 438
NPI_NUM_DESC_OUTPUT0
NPI_NUM_DESC_OUTPUT1

0x00011F0000000050
0x00011F0000000058

NCB See page 438

NPI_BASE_ADDR_INPUT0
NPI_BASE_ADDR_INPUT1

0x00011F0000000070
0x00011F0000000080

NCB See page 439

NPI_SIZE_INPUT0
NPI_SIZE_INPUT1

0x00011F0000000078
0x00011F0000000088

NCB See page 439

PCI_READ_TIMEOUT 0x00011F00000000B0 NCB See page 439
NPI_BASE_ADDR_OUTPUT0
NPI_BASE_ADDR_OUTPUT1

0x00011F00000000B8
0x00011F00000000C0

NCB See page 439

NPI_PCI_BURST_SIZE 0x00011F00000000D8 NCB See page 440
NPI_BUFF_SIZE_OUTPUT0
NPI_BUFF_SIZE_OUTPUT1

0x00011F00000000E0
0x00011F00000000E8

NCB See page 440

NPI_OUTPUT_CONTROL 0x00011F0000000100 NCB See page 441
NPI_LOWP_IBUFF_SADDR 0x00011F0000000108 NCB See page 441
NPI_HIGHP_IBUFF_SADDR 0x00011F0000000110 NCB See page 441
NPI_LOWP_DBELL 0x00011F0000000118 NCB See page 442
NPI_HIGHP_DBELL 0x00011F0000000120 NCB See page 442
NPI_DMA_CONTROL 0x00011F0000000128 NCB See page 443
NPI_PCI_INT_ARB_CFG 0x00011F0000000130 NCB See page 443
NPI_INPUT_CONTROL 0x00011F0000000138 NCB See page 444
NPI_DMA_LOWP_COUNTS 0x00011F0000000140 NCB See page 444
NPI_DMA_HIGHP_COUNTS 0x00011F0000000148 NCB See page 445
NPI_DMA_LOWP_NADDR 0x00011F0000000150 NCB See page 445
NPI_DMA_HIGHP_NADDR 0x00011F0000000158 NCB See page 445
NPI_P0_PAIR_CNTS
NPI_P1_PAIR_CNTS

0x00011F0000000160
0x00011F0000000168

NCB See page 445

NPI_P0_DBPAIR_ADDR
NPI_P1_DBPAIR_ADDR

0x00011F0000000180
0x00011F0000000188

NCB See page 445

NPI_P0_INSTR_CNTS
NPI_P1_INSTR_CNTS

0x00011F00000001A0
0x00011F00000001A8

NCB See page 446

NPI_P0_INSTR_ADDR
NPI_P1_INSTR_ADDR

0x00011F00000001C0
0x00011F00000001C8

NCB See page 446

NPI_WIN_READ_TO 0x00011F00000001E0 NCB See page 446
DBG_DATA 0x00011F00000001E8 NCB See page 446
NPI_PORT_BP_CONTROL 0x00011F00000001F0 NCB See page 440
NPI_PORT32_INSTR_HDR
NPI_PORT33_INSTR_HDR

0x00011F00000001F8
0x00011F0000000200

NCB See page 447

NPI_BIST_STATUS 0x00011F00000003F8 NCB See page 448
432 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
NPI RSL Interrupt Blocks Register
NPI_RSL_INT_BLOCKS

Reading this register returns a vector with a bit set to 1 for a corresponding RSL
block that presently has an interrupt pending. The field description below supplies
the name of the register that software should read to find out why that interrupt bit
is set. See Table 9–6 for the address.

NPI Debug Select Register
NPI_DBG_SELECT

Contains the debug select value last written to the RSLs. See Table 9–6 for the
address.

Table 9–7 NPI/PCI Register

Register Address (NCB) Address (PCI_NCB) CSR Type1
Detailed
Description

NPI_MSI_RCV 0x00011F0000001190 0x0000000000000190 NCB,
PCI_NCB

See page 422

1. NCB-type registers are accessed directly across the I/O Bus.
PCI_NCB-type registers can be accessed directly from either the PCI bus or the I/O Bus.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:31> — RAZ — — Reserved
<30> IOB RO 0 0 IOB_INT_SUM
<29:23> — RAZ — — Reserved
<22> ASX0 RO 0 0 ASX0_INT_REG
<21> — RAZ — — Reserved
<20> PIP RO 0 0 PIP_INT_REG
<19:18> — RAZ — — Reserved
<17> LMC RO 0 0 LMC_MEM_CFG0
<16> L2C RO 0 0 L2T_ERR and L2D_ERR
<15:14> — RAZ — — Reserved
<13> USB RO 0 0 USBN_INT_SUM
<12> POW RO 0 0 POW_ECC_ERR
<11> TIM RO 0 0 TIM_REG_ERROR
<10> PKO RO 0 0 PKO_REG_ERROR
<9> IPD RO 0 0 IPD_INT_SUM
<8:6> — RAZ — — Reserved
<5> FPA RO 0 0 FPA_INT_SUM
<4> — RAZ — — Reserved
<3> NPI RO 0 0 NPI_INT_SUM
<2> — RAZ — — Reserved
<1> GMX0 RO 0 0 GMX0_RXn_INT_REG & GMX0_TX_INT_REG
<0> MIO RO 0 0 MIO_BOOT_ERR

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> DBG_SEL R/W 0x0 0x0 When this register is written, its value is sent to all RSLs.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 433

 PCI Bus: NPI Registers
NPI Control Status Register
NPI_CTL_STATUS

Contains control and status for NPI. Writes to this register are not ordered with
write/read operations to the PCI memory space. To ensure that a write has
completed, read the register before making an access (i.e. PCI memory space) that
requires the value of this register to be updated. See Table 9–6 for the address.

NPI Interrupt Summary Register
NPI_INT_SUM

Set when an interrupt condition occurs, write 1 to clear. See Table 9–6 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> — RAZ — — Reserved
<62:55> CHIP_REV RO — — The revision of CN50XX.

0x0 = pass 1.0
0x1 = pass 1.1

<54> DIS_PNIW R/W 0 1 When set to 1, access from the PNI window registers are disabled.
<53> SPR5 R/W 0 1 Spare.
<52> SPR4 R/W 0 1 Spare.
<51> SPR8 R/W 0 0 Spare.
<50> OUT0_ENB R/W 0 1 When set to 1, the output0 engine is enabled. After enabling the values of

the associated address and size register should not be changed.
<49> SPR3 R/W 0 1 Spare.
<48> SPR2 R/W 0 1 Spare.
<47> SPR7 R/W 0 0 Spare.
<46> INS0_ENB R/W 0 1 When set to 1, the gather0 engine is enabled. After enabling the values of

the associated address and size register should not be changed.
<45> SPR1 R/W 0 0 Spare.
<44> SPR0 R/W 0 0 Spare.
<43> SPR6 R/W 0 — Spare.
<42> INS0_64B R/W 0 — When set to 1, the instructions read by the gather0 engine are 64 byte

instructions; when deasserted to 0, instructions are 32 bytes.
<41> PCI_WDIS R/W 0 0 When set to 1, disables access to registers in the PNI in address range

0x1000 - 0x17FF from the PCI.
<40> WAIT_COM R/W 0 1 When set to 1, causes the NPI to wait for a commit from the L2C before

sending additional access to the L2C from the PCI.
<39:37> SPARES1 R/W 0x0 0x0 These bits are reserved and should be set to 0.
<36:32> MAX_WORD R/W 0x2 0x0 The maximum number of words to merge into a single write operation from

the cores to the PCI. Legal values are 1 to 32, where a 0 is treated as 32.
<31:10> SPARES0 R/W 0x0 0x0 These bits are reserved and should be set to 0.
<9:0> TIMER R/W 0x0 0x32 When the NPI starts a core-to-PCI write, it waits no longer than the value of

TIMER in core clock cycles to merge additional writes from the cores into
one large write. The values for this field are 1 to 1024 where a value of 0 is
treated as 1024.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:62> — RAZ — — Reserved
<61> Q1_A_F R/W1C 0 0 Attempted to subtract when Queue 1 FIFO is empty.
<60> Q1_S_E R/W1C 0 0 Attempted to subtract when Queue 1 FIFO is empty.
<59> PDF_P_F R/W1C 0 0 Attempted to push a full PCN data FIFO.
<58> PDF_P_E R/W1C 0 0 Attempted to pop an empty PCN-data FIFO.
<57> PCF_P_F R/W1C 0 0 Attempted to push a full PCN-CNT FIFO.
434 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
<56> PCF_P_E R/W1C 0 0 Attempted to pop an empty PCN-CNT FIFO.
<55> RDX_S_E R/W1C 0 0 Attempted to subtract when DPI-XFR wait count is 0.
<54> RWX_S_E R/W1C 0 0 Attempted to subtract when RDN-XFR wait count is 0.
<53> PNC_A_F R/W1C 0 0 Attempted to add when PNI-NPI credits are max.
<52> PNC_S_E R/W1C 0 0 Attempted to subtract when PNI-NPI credits are 0.
<51> COM_A_F R/W1C 0 0 Attempted to add when PCN-commit counter is max.
<50> COM_S_E R/W1C 0 0 Attempted to subtract when PCN-commit counter is 0.
<49> Q3_A_F R/W1C 0 0 Attempted to add when Queue 3 FIFO is full.
<48> Q3_S_E R/W1C 0 0 Attempted to subtract when Queue 3 FIFO is empty.
<47> Q2_A_F R/W1C 0 0 Attempted to add when Queue 2 FIFO is full.
<46> Q2_S_E R/W1C 0 0 Attempted to subtract when Queue 2 FIFO is empty.
<45> PCR_A_F R/W1C 0 0 Attempted to add when POW credits is full.
<44> PCR_S_E R/W1C 0 0 Attempted to subtract when POW credits is empty.
<43> FCR_A_F R/W1C 0 0 Attempted to add when FPA credits is full.
<42> FCR_S_E R/W1C 0 0 Attempted to subtract when FPA credits is empty.
<41> IOBDMA R/W1C 0 0 Requested IOBDMA read size exceeded 128 words.
<40> P_DPERR R/W1C 0 0 Data written to L2C from PCI that had a data parity error.
<39> WIN_RTO R/W1C 0 0 Windowed load timed out.
<38> SPR17 R/W1C 0 0 Spare.
<37> SPR16 R/W1C 0 0 Spare.
<36> SPR26 R/W1C 0 0 Spare.
<35> I0_PPERR R/W1C 0 0 Port0 instruction had a parity error.
<34> SPR15 R/W1C 0 0 Spare.
<33> SPR14 R/W1C 0 0 Spare.
<32> SPR25 R/W1C 0 0 Spare.
<31> P0_PTOUT R/W1C 0 0 Port0 output had a read time-out on a data/info pair.
<30> SPR13 R/W1C 0 0 Spare.
<29> SPR12 R/W1C 0 0 Spare.
<28> SPR24 R/W1C 0 0 Spare.
<27> P0_PPERR R/W1C 0 0 Port0 output had a parity error on a data/info pair.
<26> SPR11 R/W1C 0 0 Spare.
<25> SPR10 R/W1C 0 0 Spare.
<24> SPR23 R/W1C 0 0 Spare.
<23> G0_RTOUT R/W1C 0 0 Port0 had a read time-out while attempting to read a gather list.
<22> SPR9 R/W1C 0 0 Spare.
<21> SPR8 R/W1C 0 0 Spare.
<20> SPR22 R/W1C 0 0 Spare.
<19> P0_PERR R/W1C 0 0 Port0 had a parity error on packet data.
<18> SPR7 R/W1C 0 0 Spare.
<17> SPR6 R/W1C 0 0 Spare.
<16> SPR21 R/W1C 0 0 Spare.
<15> P0_RTOUT R/W1C 0 0 Port0 had a read time-out while attempting to read packet data.
<14> SPR5 R/W1C 0 0 Spare.
<13> SPR4 R/W1C 0 0 Spare.
<12> SPR20 R/W1C 0 0 Spare.
<11> I0_OVERF R/W1C 0 0 Port0 had a doorbell overflow. Bit[31] of the doorbell count was set.
<10> SPR3 R/W1C 0 0 Spare.
<9> SPR2 R/W1C 0 0 Spare.
<8> SPR19 R/W1C 0 0 Spare.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 435

 PCI Bus: NPI Registers
NPI Interrupt Enable Register
NPI_INT_ENB

Used to enable the various interrupting conditions of IPD. See Table 9–6 for the
address.

<7> I0_RTOUT R/W1C 0 0 Port0 had a read time-out while attempting to read instructions.
<6> SPR1 R/W1C 0 0 Spare.
<5> SPR0 R/W1C 0 0 Spare.
<4> SPR18 R/W1C 0 0 Spare.
<3> PO0_2SML R/W1C 0 0 The packet being sent out on Port0 is smaller than the

NPI_BUFF_SIZE_OUTPUT0[ISIZE] field.
<2> PCI_RSL RO 0 0 Set to 1 when any bit in PCI_INT_SUM2 and the corresponding bit in the

PCI_INT_ENB2 are both set to 1.
<1> RML_WTO R/W1C 0 0 Set to 1 when the RML does not receive a commit back from an RSL after

sending a write command to an RSL.
<0> RML_RTO R/W1C 0 0 Set to 1 when the RML does not receive read data back from an RSL after

sending a read command to an RSL.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:62> — RAZ — — Reserved
<61> Q1_A_F R/W 0 1 Enables NPI_INT_SUM[Q1_A_F] to generate an interrupt.
<60> Q1_S_E R/W 0 1 Enables NPI_INT_SUM[Q1_S_E] to generate an interrupt.
<59> PDF_P_F R/W 0 1 Enables NPI_INT_SUM[PDF_P_F] to generate an interrupt.
<58> PDF_P_E R/W 0 1 Enables NPI_INT_SUM[PDF_P_E] to generate an interrupt.
<57> PCF_P_F R/W 0 1 Enables NPI_INT_SUM[PCF_P_F] to generate an interrupt.
<56> PCF_P_E R/W 0 1 Enables NPI_INT_SUM[PCF_P_E] to generate an interrupt.
<55> RDX_S_E R/W 0 1 Enables NPI_INT_SUM[RDX_S_E] to generate an interrupt.
<54> RWX_S_E R/W 0 1 Enables NPI_INT_SUM[RWX_S_E] to generate an interrupt.
<53> PNC_A_F R/W 0 1 Enables NPI_INT_SUM[PNC_A_F] to generate an interrupt.
<52> PNC_S_E R/W 0 1 Enables NPI_INT_SUM[PNC_S_E] to generate an interrupt.
<51> COM_A_F R/W 0 1 Enables NPI_INT_SUM[COM_A_F] to generate an interrupt.
<50> COM_S_E R/W 0 1 Enables NPI_INT_SUM[COM_S_E] to generate an interrupt.
<49> Q3_A_F R/W 0 1 Enables NPI_INT_SUM[Q3_A_F] to generate an interrupt.
<48> Q3_S_E R/W 0 1 Enables NPI_INT_SUM[Q3_S_E] to generate an interrupt.
<47> Q2_A_F R/W 0 1 Enables NPI_INT_SUM[Q2_A_F] to generate an interrupt.
<46> Q2_S_E R/W 0 1 Enables NPI_INT_SUM[Q2_S_E] to generate an interrupt.
<45> PCR_A_F R/W 0 1 Enables NPI_INT_SUM[PCR_A_F] to generate an interrupt.
<44> PCR_S_E R/W 0 1 Enables NPI_INT_SUM[PCR_S_E] to generate an interrupt.
<43> FCR_A_F R/W 0 1 Enables NPI_INT_SUM[FCR_A_F] to generate an interrupt.
<42> FCR_S_E R/W 0 1 Enables NPI_INT_SUM[FCR_S_E] to generate an interrupt.
<41> IOBDMA R/W 0 1 Enables NPI_INT_SUM[IOBDMA] to generate an interrupt.
<40> P_DPERR R/W 0 1 Enables NPI_INT_SUM[P_DPERR] to generate an interrupt.
<39> WIN_RTO R/W 0 1 Enables NPI_INT_SUM[WIN_RTO] to generate an interrupt.
<38> SPR17 R/W 0 1 Enables NPI_INT_SUM[SPR17] to generate an interrupt.
<37> SPR16 R/W 0 1 Enables NPI_INT_SUM[SPR16] to generate an interrupt.
<36> SPR26 R/W 0 1 Enables NPI_INT_SUM[SPR26] to generate an interrupt.
<35> I0_PPERR R/W 0 1 Enables NPI_INT_SUM[I0_PPERR] to generate an interrupt.
<34> SPR15 R/W 0 1 Enables NPI_INT_SUM[SPR15] to generate an interrupt.
<33> SPR14 R/W 0 1 Enables NPI_INT_SUM[SPR14] to generate an interrupt.
436 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
<32> SPR25 R/W 0 1 Enables NPI_INT_SUM[SPR25] to generate an interrupt.
<31> P0_PTOUT R/W 0 1 Enables NPI_INT_SUM[P0_PTOUT] to generate an interrupt.
<30> SPR13 R/W 0 1 Enables NPI_INT_SUM[SPR13] to generate an interrupt.
<29> SPR12 R/W 0 1 Enables NPI_INT_SUM[SPR12] to generate an interrupt.
<28> SPR24 R/W 0 1 Enables NPI_INT_SUM[SPR24] to generate an interrupt.
<27> P0_PPERR R/W 0 1 Enables NPI_INT_SUM[P0_PPERR] to generate an interrupt.
<26> SPR11 R/W 0 1 Enables NPI_INT_SUM[SPR11] to generate an interrupt.
<25> SPR10 R/W 0 1 Enables NPI_INT_SUM[SPR10] to generate an interrupt.
<24> SPR23 R/W 0 1 Enables NPI_INT_SUM[SPR23] to generate an interrupt.
<23> G0_RTOUT R/W 0 1 Enables NPI_INT_SUM[G0_RTOUT] to generate an interrupt.
<22> SPR9 R/W 0 1 Enables NPI_INT_SUM[SPR9] to generate an interrupt.
<21> SPR8 R/W 0 1 Enables NPI_INT_SUM[SPR8] to generate an interrupt.
<20> SPR22 R/W 0 1 Enables NPI_INT_SUM[SPR22] to generate an interrupt.
<19> P0_PERR R/W 0 1 Enables NPI_INT_SUM[P0_PERR] to generate an interrupt.
<18> SPR7 R/W 0 1 Enables NPI_INT_SUM[SPR7] to generate an interrupt.
<17> SPR6 R/W 0 1 Enables NPI_INT_SUM[SPR6] to generate an interrupt.
<16> SPR21 R/W 0 1 Enables NPI_INT_SUM[SPR21] to generate an interrupt.
<15> P0_RTOUT R/W 0 1 Enables NPI_INT_SUM[P0_RTOUT] to generate an interrupt.
<14> SPR5 R/W 0 1 Enables NPI_INT_SUM[SPR5] to generate an interrupt.
<13> SPR4 R/W 0 1 Enables NPI_INT_SUM[SPR4] to generate an interrupt.
<12> SPR20 R/W 0 1 Enables NPI_INT_SUM[SPR20] to generate an interrupt.
<11> I0_OVERF R/W 0 1 Enables NPI_INT_SUM[I0_OVERF] to generate an interrupt.
<10> SPR3 R/W 0 1 Enables NPI_INT_SUM[SPR3] to generate an interrupt.
<9> SPR2 R/W 0 1 Enables NPI_INT_SUM[SPR2] to generate an interrupt.
<8> SPR19 R/W 0 1 Enables NPI_INT_SUM[SPR19] to generate an interrupt.
<7> I0_RTOUT R/W 0 1 Enables NPI_INT_SUM[I0_RTOUT] to generate an interrupt.
<6> SPR1 R/W 0 1 Enables NPI_INT_SUM[SPR1] to generate an interrupt.
<5> SPR0 R/W 0 1 Enables NPI_INT_SUM[SPR0] to generate an interrupt.
<4> SPR18 R/W 0 1 Enables NPI_INT_SUM[SPR18] to generate an interrupt.
<3> PO0_2SML R/W 0 1 Enables NPI_INT_SUM[PO0_2SML] to generate an interrupt.
<2> PCI_RSL R/W 0 1 Enables NPI_INT_SUM[PCI_RSL] to generate an interrupt.
<1> RML_WTO R/W 0 1 Enables NPI_INT_SUM[RML_WTO] to generate an interrupt.
<0> RML_RTO R/W 0 1 Enables NPI_INT_SUM[RML_RTO] to generate an interrupt.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 437

 PCI Bus: NPI Registers
NPI Memory Access SubID Registers
NPI_MEM_ACCESS_SUBID(3..6)

Carries Read/Write parameters for core access to PCI memory that use NPI SubIDs
3..6. See Table 9–6 for the address.

NPI / PCI Read Command Register
NPI_PCI_READ_CMD

Controls the type of read command sent. Write operations to this register are not
ordered with write/read operations to the PCI memory space. To ensure that a write
operation has completed, read the register before making an access that requires the
value of this register to be updated (i.e. to PCI memory space).

Also, any previously issued read/write operations to PCI memory space that are still
stored in the outbound FIFO use the value of this register after it has been updated.
See Table 9–6 for the address.

NPI Number Of Descriptors Available For Outputs Registers
NPI_NUM_DESC_OUTPUT0/1

The size of the buffer/info pointer pair ring for output 0/1. See Table 9–6 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:38> — RAZ — — Reserved
<37> SHORT R/W 0 — Generate CMD-6 on PCI when 1. Load operations from the cores to the

corresponding Subid that are 32-bits or smaller generate a PCI Memory Read
command, regardless of the NPI_PCI_READ_CMD[CMD_SIZE] value.

<36> NMERGE R/W 0 — No merge.
<35:34> ESR R/W 0x0 — Endian swap on read.
<33:32> ESW R/W 0x0 — Endian swap on write.
<31> NSR R/W 0 — No snoop on read.
<30> NSW R/W 0 — No snoop on write.
<29> ROR R/W 0 — Relax read on read.
<28> ROW R/W 0 — Relax order on write.
<27:0> BA R/W 0x0 — PCI address bits [63:36].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:11> — RAZ — — Reserved
<10:0> CMD_SIZE R/W 0x9 0x9 When the number bytes to be read is equal to or greater than this size, the

PCI in PCI mode uses a Memory-Read-Multiple. This register has a value
from 8 to 2048. Values of 0–7 are treated as a value of 2048.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> SIZE R/W 0x0 — The size of the buffer/info-pointer pair ring.
438 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
NPI Base Address Input Registers
NPI_BASE_ADDR_INPUT0/1

The address to start reading instructions from for inputs 0/1. See Table 9–6 for the
address.

NPI Size for Input Registers
NPI_SIZE_INPUT0/1

The address to start reading instructions from, for Input0/1. See Table 9–6 for the
address.

PCI Read Time-out Register
PCI_READ_TIMEOUT

The address to start reading instructions from for input 3. See Table 9–6 for address.

NPI Base Address Output Registers
NPI_BASE_ADDR_OUTPUT0/1

The address to start reading instructions from for outputs 0/1. See Table 9–6 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> BADDR R/W 0x0 — The address from which to read the instruction for inputs 0/1. This address is
8-byte aligned, meaning address bits [2:0] are always 0x0.

<2:0> — RAZ — — Reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> SIZE R/W 0x10 — Specifies the size of the instruction queue used by CN50XX. The value

represents the number of instructions. A value of 0x0 in this field is illegal.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31> ENB R/W 0 1 Enable the use of the time-out function.
<30:0> CNT R/W 0x2710 0x2710 The number of core clock cycles to wait after issuing a read request to the

PNI before setting a time-out and not expecting the data to return. This is
considered a fatal condition by the NPI.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> BADDR R/W 0x0 — The address from which to read the instruction for output 0/1. This address is
8-byte aligned, meaning address bits [2:0] are always 0x0.

<2:0> — RAZ — — Reserved
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 439

 PCI Bus: NPI Registers
NPI PCI Burst Size Register
NPI_PCI_BURST_SIZE

Controls the number of words the NPI will attempt to read/write to/from the PCI. See
Table 9–6 for the address.

NPI D/I Buffer Sizes For Output Registers
NPI_BUFF_SIZE_OUTPUT0/1

The size in bytes of the data buffer and information buffer for outputs 0/1. See Table
9–6 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:14> — RAZ — — Reserved
<13:7> WR_BRST R/W 0x10 0x40 The number of 8-byte words to write to PCI in any one write operation.

A 0x0 is equal to 0x80. This value is used the packet reads and is clamped at a
maximum of 0x70 for DMA write operations. DMA write values greater than
0x70 are equal to 0x70.

<6:0> RD_BRST R/W 0x11 0x40 Number of 8-byte words to read from PCI in any one read operation. Legal
values are 0x1 to 0x7F, where a 0 is treated as a 1. For reading of packet data,
value is limited to 0x40. This value does not control the size of a read caused
by an IOBDMA from a core.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:23> — RAZ — — Reserved
<22:16> ISIZE R/W 0x0 — The number of bytes to move to the info-pointer from the front of the packet.

Legal values are 0–120.
<15:0> BSIZE R/W 0x400 — The size in bytes of the area pointed to by buffer pointer for output packet data.
440 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
NPI Output Control Register
NPI_OUTPUT_CONTROL

The address to start reading instructions from for Output 3. See Table 9–6 for the
address.

NPI DMA Low-Priority Instruction-Buffer Starting-Address Register
NPI_LOWP_IBUFF_SADDR

The address to start reading Instructions from for LOWP. See Table 9–6 for the
address.

NPI DMA High Priority Instruction Buffer Starting Address
NPI_HIGHP_IBUFF_SADDR

The address to start reading instructions from for HIGHP. See Table 9–6 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:45> SPR5 R/W 0x0 0x0 Spare.
<44> P0_BMODE R/W 0 0 When set to 1, the PCI_PKTS_SENT0 register is updated with the number of

bytes in the packet sent; when 0, the register has a value of 1 added.
<43:32> SPR4 R/W 0x0 0x0 Spare
<31:30> O0_ES R/W 0x0 — Endian swap for output0 data.

0x0 = No swizzle 0x2 = Byte swizzle (per-longword)
0x1 = Byte swizzle (per-quadword), 0x3 = Longword swizzle

<29> O0_NS R/W 0x0 — No-snoop mode enable for output0 data.
<28> O0_RO R/W 0x0 — Relaxed ordering enable for output0 data.
<27:25> SPR3 R/W 0x0 0x0 Spare.
<24> O0_CSRM R/W 0 1 When set to 1, the bits[63:60] of the address for write-packet data come from

DPTR0[63:60]; and the ES, NS, and RO bits come from O0_ES, O0_NS, and
O0_RO.

When set to 0, the address bits [63:60] of the address the packet will be
written to come from the O0_ES[1:0], O0_NS, and O0_RO respectively; and
the ES, NS, and RO bits come from DPTR0[63:60] respectively.

<23:20> SPR2 R/W 0x0 0x0 Spare.
<19:17> SPR1 R/W 0x0 0 Spare.
<16> IPTR_O0 R/W 0x0 1 Uses the info-pointer to store length and data for Output0.
<15:4> SPR0 R/W 0x0 0x0 Spare.
<3:2> ESR_SL0 R/W 0x0 — Indicates the endian-swap mode for Slist0 reads.
<1> NSR_SL0 R/W 0 — Enables no-snoop mode for Slist0 reads.
<0> ROR_SL0 R/W 0 — Enables relaxed ordering for Slist0 reads.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ — — Reserved
<35:0> SADDR R/W 0x0 — The starting address to read the first instruction.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ — — Reserved
<35:0> SADDR R/W 0x0 — The starting address to read the first instruction.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 441

 PCI Bus: NPI Registers
NPI Low-Priority Doorbell Register
NPI_LOWP_DBELL

The doorbell register for the low-priority DMA queue. See Table 9–6 for the address.

NPI High Priority Doorbell Register
NPI_HIGHP_DBELL

The doorbell register for the high-priority DMA queue. See Table 9–6 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> DBELL R/W 0x0 — The value written to this register is added to the number of 8-byte words to be

read and processed for the low-priority DMA queue.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> DBELL R/W 0x0 — The value written to this register is added to the number of 8-byte words to be

read and processed for the high-priority DMA queue.
442 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
NPI DMA Control Register
NPI_DMA_CONTROL

Controls operation of the DMA I/O of the NPI. See Table 9–6 for the address.

NPI Configuration For PCI Arbiter Register
NPI_PCI_INT_ARB_CFG

Controls operation of the internal PCI arbiter. This register should only be written
when PRST# is asserted. NPI_PCI_INT_ARB_CFG[EN] should only be set when
CN50XX is a host. See Table 9–6 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ — — Reserved
<35> B0_LEND R/W 0 0 When set to 1 and the NPI is in the mode to write 0x0 to L2C when a DMA is

done, the address to be written to is treated as a little-endian address.
<34> DWB_DENB R/W 0 0 When set to 1, the NPI sends a value in the DWB field for a free-page

operation for the memory that contained the data in CN50XX.
<33:25> DWB_ICHK R/W 0x0 0x0 When instruction chunks for DMA operations are freed, this value is used

for the DWB field of the operation.
<24:22> FPA_QUE R/W 0x0 0x0 The FPA queue that the instruction-chunk page is returned to when used.
<21> O_ADD1 R/W 0 1 When set to 1, 1 is added to the DMA counters; when set to 0, the number of

bytes in the DMA transfer is added to the count register.
<20> O_RO R/W 0 0 Relaxed ordering mode for DMA.
<19> O_NS R/W 0 0 No-snoop mode for DMA.
<18:17> O_ES R/W 0x0 — Endian-swap mode for DMA.

0x0 = No swizzle 0x2 = Byte swizzle (per-longword)
0x1 = Byte swizzle (per-quadword), 0x3 = Longword swizzle

<16> O_MODE R/W 0 1 Select PCI_POINTER MODE to be used.
1 = use pointer values for address, and register values for RO, ES, NS
0 = use register values for address, and pointer values for RO, ES, NS.

<15> HP_ENB R/W 0 1 Enables the high-priority DMA. When this bit is cleared to 0, the value in
NPI_HIGHP_IBUFF_SADDR is reinitialized. When this bit is 0, the value
in CSIZE is reloaded for the high-priority DMA engine.

<14> LP_ENB R/W 0 1 Enables the low-priority DMA. When this bit is cleared to 0, the value in
NPI_LOWP_IBUFF_SADDR is reinitialized. When this bit is 0, the value in
CSIZE is reloaded for the low-priority DMA engine.

<13:0> CSIZE R/W 0x0 — The size in words of the DMA instruction chunk. This value should only be
written once. After writing this value, a new value will not be recognized
until the end of the DMA I-chunk is reached.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4> EN R/W 0 — Internal arbiter enable.
<3> PARK_MOD R/W 0 — Bus park mode: 0 = park on last, 1 = park on device.
<2:0> PARK_DEV R/W 0x0 — Bus park device: 0–3 = external device, 4 = CN50XX.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 443

 PCI Bus: NPI Registers
NPI Input Control Register
NPI_INPUT_CONTROL

Control for reads for the gather list and instructions. See Table 9–6 for the address.

NPI Low Priority DMA Counts Register
NPI_DMA_LOWP_COUNTS

Values for determining the number of instructions for low-priority DMA in the NPI.
See Table 9–6 for the address.

NPI High Priority DMA Counts Register
NPI_DMA_HIGHP_COUNTS

Values for determining the number of instructions for high-priority DMA in the NPI.
See Table 9–6 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:22> — RAZ — — Reserved
<21:9> PBP_DHI R/W 0x0 — When NPI_PORT32/33_INSTR_HDR[PBP] is set to 1, this field is used to

calculate a DPTR.
<8> D_NSR R/W 0 — Enables no-snoop mode for reading of gather data.
<7:6> D_ESR R/W 0x0 — Endian-swap mode for reading of gather data.

0x0 = No swizzle 0x2 = Byte swizzle (per-longword)
0x1 = Byte swizzle (per-quadword), 0x3 = Longword swizzle

<5> D_ROR R/W 0 — Enables relaxed ordering for reading of gather data.
<4> USE_CSR R/W 0 1 When set to 1, the CSR value is used for ROR, ESR, and NSR. When cleared to

0, the value in DPTR is used. In turn, the bits not used for ROR, ESR, and
NSR are used for bits [63:60] of the address used to fetch packet data.

<3> NSR R/W 0 — Enables no-snoop mode for reading of gather list and gather instruction.
<2:1> ESR R/W 0x0 — Endian-swap mode for reading of gather list and gather instruction.

0x0 = No swizzle 0x2 = Byte swizzle (per-longword)
0x1 = Byte swizzle (per-quadword), 0x3 = Longword swizzle

<0> ROR R/W 0 — Enables relaxed ordering for reading of gather list and gather instruction.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:39> — RAZ — — Reserved
<38:32> FCNT RO 0x0 0x0 Number of words in the instruction FIFO.
<31:0> DBELL RO 0x0 0x0 Number of available words of instructions to read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:39> — RAZ — — Reserved
<38:32> FCNT RO 0x0 0x0 Number of words in the instruction FIFO.
<31:0> DBELL RO 0x0 0x0 Number of available words of instructions to read.
444 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
NPI Low Priority DMA Next Ichunk Address Register
NPI_DMA_LOWP_NADDR

The place NPI will read the next Ichunk data from. This is valid when state is 0. See
Table 9–6 for the address.

NPI High Priority DMA Next Ichunk Address Register
NPI_DMA_HIGHP_NADDR

The place NPI will read the next Ichunk data from. This is valid when state is 0. See
Table 9–6 for the address.

NPI Port Instruction Counts For Packets Out Registers
NPI_P0/1_PAIR_CNTS

Used to determine the number of instruction in the NPI and to be fetched for output-
packets. See Table 9–6 for the address.

NPI Port Data-Buffer Pair Next-Read Address Registers
NPI_P0/1_DBPAIR_ADDR

Contains the next address to read for the Port 0/1 data/buffer pair. See Table 9–6 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ — — Reserved
<39:36> STATE RO 0x0 0x0 The DMA instruction engine state vector. Typical value is 0x0 (IDLE).
<35:0> ADDR RO 0x0 — The next L2C address to read DMA instructions from for the low-priority

DMA engine.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ — — Reserved
<39:36> STATE RO 0x0 0x0 The DMA instruction engine state vector. Typical value is 0x0 (IDLE).
<35:0> ADDR RO 0x0 — The next L2C address to read DMA instructions from for the high-priority

DMA engine.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:37> — RAZ — — Reserved
<36:32> FCNT RO 0x0 0x0 16 - number entries in the data/info pair FIFO.
<31:0> AVAIL RO 0x0 0x0 Doorbell count to be read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> — RAZ — — Reserved
<62:61> STATE RO 0x0 0x0 State. POS state-machine vactor.
<60:0> NADDR RO 0x0 — Bits [63:3] of the next data/info pair to read, valid only when STATE = 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 445

 PCI Bus: NPI Registers
NPI Port Instruction Counts For Packets In Registers
NPI_P0/1_INSTR_CNTS

Used to determine the number of instruction in the NPI and to be fetched for input
packets. See Table 9–6 for the address.

NPI Port Instruction Next Read Address Registers
NPI_P0/1_INSTR_ADDR

Contains the next address to read for Port 0/1 instructions. See Table 9–6 for the
address.

NPI Window Read Time-out Register
NPI_WIN_READ_TO

Provides the number of core-clock cycles to wait before timing out on a WINDOW-
READ to the IOB. See Table 9–6 for the address.

Debug Data Register
DBG_DATA

Value returned on the debug-data lines from the RSLs. See Table 9–6 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:38> — RAZ — — Reserved
<37:32> FCNT RO 0x0 0x0 Number of entries in the instruction FIFO.
<31:0> AVAIL RO 0x0 0x0 Doorbell count to be read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:61> STATE RO 0x0 0x0 State.
<60:0> NADDR RO 0x0 — Bits [63:3] of the next instruction to read, valid only when STATE = 0.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> TIME R/W 0x0 0x20000 Time to wait, in core clock cycles. A value of 0x0 causes no time-outs.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:31> — RAZ — — Reserved
<30:28> PLL_MUL RO — — Value of PLL_MUL<2:0> pins at time PLL_DCOK asserts.
<27:23> — RAZ — — Reserved
<22:18> C_MUL RO — — Core PLL multiplier sampled at assertion of PLL_DCOK.
<17> DSEL_EXT R/W 1 0 Allows changes in the external pins to set the debug select value.
<16:0> DATA RO 0x0 — Value on the debug data lines.
446 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCI Bus: NPI Registers
Port Backpressure Control Register
NPI_PORT_BP_CONTROL

Enables port-level backpressure. See Table 9–6 for the address.

NPI Port Instruction Header Registers
NPI_PORT32/33_INSTR_HDR

Contains bits[62:42] of the instruction header for port 32/33. See Table 9–6 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved
<5:4> BP_ON RO 0x0 0x0 Ports 33, 32 port-level backpressure applied.
<3:0> ENB R/W 0xF 0xF Enables port-level back pressure from the IPD.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:44> — RAZ — — Reserved
<43> PBP R/W 0 — Enable packet-by-packet mode.
<42:38> — R/W 0x0 — Reserved
<37:36> RPARMODE R/W 0x0 — Raw parse mode. Used when the packet is raw and PBP = 0.
<35> — R/W 0x0 — Reserved
<34:28> RSKP_LEN R/W 0x8 — Raw skip length. Used when the packet is raw and PBP = 0.
<27:22> — R/W 0x0 — Reserved
<21> USE_IHDR R/W 0 — Use instruction header. When set to 1, the instruction header is sent as part

of the packet data, regardless of the value of bit [63] of the instruction
header. USE_IHDR must be set whenever PBP is set.

<20:16> — R/W 0x0 — Reserved
<15:14> PAR_MODE R/W 0x0 — Parse mode. Used when USE_IHDR is set, packet is not raw, and PBP is not

set.
<13> — R/W 0x0 — Reserved
<12:6> SKP_LEN R/W 0x0 — Skip length. Used when USE_IHDR is set, packet is not raw, and PBP is not

set.
<5:0> — R/W 0x0 — Reserved
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 447

 PCI Bus: NPI Registers
NPI BIST Status Register
NPI_BIST_STATUS

Provides the results from the BIST runs of NPI memories. See Table 9–6 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description1, 2

<63:20> — RAZ — — Reserved
<19> CSR_BS RO 0 0 BIST status for the CSR_FIFO
<18> DIF_BS RO 0 0 BIST status for the DIF_FIFO
<17> RDP_BS RO 0 0 BIST status for the RDP_FIFO
<16> PCNC_BS RO 0 0 BIST status for the PCN_CNT_FIFO
<15> PCN_BS RO 0 0 BIST status for the PCN_FIFO
<14> RDN_BS RO 0 0 BIST status for the RDN_FIFO
<13> PCAC_BS RO 0 0 BIST status for the PCA_CMD_FIFO
<12> PCAD_BS RO 0 0 BIST status for the PCA_DATA_FIFO
<11> RDNL_BS RO 0 0 BIST status for the RDN_LENGTH_FIFO
<10> PGF_BS RO 0 0 BIST status for the PGF_FIFO
<9> PIG_BS RO 0 0 BIST status for the PIG_FIFO
<8> POF0_BS RO 0 0 BIST status for the POF0_FIFO
<7> POF1_BS RO 0 0 BIST status for the POF1_FIFO
<6> — RAZ — — Reserved
<5> — RAZ — — Reserved
<4> POS_BS RO 0 0 BIST status for the POS_FIFO
<3> NUS_BS RO 0 0 BIST status for the NUS_FIFO
<2> DOB_BS RO 0 0 BIST status for the DOB_FIFO
<1> PDF_BS RO 0 0 BIST status for the PDF_FIFO
<0> DPI_BS RO 0 0 BIST status for the DPI_FIFO

1. Registers at address 0x1000 -> 0x17FF are PNI. Start at 0x100 into range. These are shifted by 2 to the left to make address.

2. Registers at address 0x1800 -> 0x18FF are CFG. These are shifted by 2 to the left to make address.
448 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 10

Timer
This chapter contains the following subjects:

● Overview

● Timer Features

● Timer Support

● Software Responsibilities

● Timer Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 449

 Timer: Timer Features
Overview

10.1 Timer Features

Figure 10–1 shows a conceptual illustration of the CN50XX timer.

The timer consists of 16 bucketed rings held in L2/DRAM.

● Software can program a separate ring per core.

● Each bucket corresponds to a different time slice.

● Each ring has a programmable number of buckets.

● Each ring has a programmable time interval between buckets.

At each periodic bucket time expiration, hardware processes the next bucket.

● Each timer entry within a bucket may be a work-queue entry pointer that
hardware submits

● A bucket is a chunked list, and hardware frees chunks (to a hardware pool) after
using them

● Hardware also resets the bucket data structure

The hardware traverses up to 80 million timer entries per second.

The software inserts work-queue entries into the appropriate bucket.

● Software allocates bucket chunks as needed

● Software can remove added entries from the bucket later by rewriting the entry
to NULL (before the hardware processes the bucket)

Figure 10–1 CN50XX Timer

L2/DRAM

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket
Bucket

T
IM

_M
E

M
_R

IN
G

0[B
S

IZ
E

]

32B

first chunk

num rem

current chnk

Work
Queue
Entry

Work
Queue
Entry

Work
Queue
Entry

Chunks
Allocated by SW,

freed (to HW pool)
by HW HW zeroes

num, rem

Timer HW

Timer HW submits

Periodic Timer
TIM_MEM_RING1[INTERNAL]

Ring

One ring shown, 16 available

Current Bucket
Seeded with

Tim_Mem_RING0[BASE]

TIM_MEM_RING1[CSIZE]
450 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Timer: Timer Support
10.2 Timer Support

The CN50XX support for timers is a mix of software and hardware.

Software creates bucketed timer-list entries and can later invalidate them. Each
timer-list entry is a pointer to a work-queue entry that was created by software.

See Chapter 5Chapter 5. The work-queue entry can be as small as 16 bytes.

Upon expiration, hardware traverses the timer lists created previously by software.
For all entries in the list that are still valid, hardware schedules the work. Hardware
also initializes the list for subsequent adds. Because there are 16 timer lists, software
can allocate one list for each core and avoid synchronization between cores.

See Figure 10–2. Each bucket corresponds to a timer expiration at a different time.
The next time increment is the next sequential entry in the bucket array, wrapping
around. The amount of time between buckets is also programmable.

The space that held the timer entries is dynamically allocated by the cores and freed
by hardware as it traverses the list. The list is allocated in chunks.

The rings are configured via the TIM_MEM_RING0 and TIM_MEM_RING1 CSRs.
Each ring has the following separate items:

● Enable bit (TIM_MEM_RING1[ENA])

● Time between bucket traversals (TIM_MEM_RING1[INTERVAL])

● Base pointer (i.e. pointer to the first bucket) (TIM_MEM_RING0[BASE])

● Number of buckets in the ring (minus 1) (TIM_MEM_RING0[BSIZE])

● Chunk size (i.e. number of work-queue entry pointers in each buffer chunk linked
to the base bucket data structure) (TIM_MEM_RING1[CSIZE])

● Pool to free the chunks to (see Chapter 6) (TIM_MEM_RING1[CPOOL])

TIM_MEM_RING0[RID] and TIM_MEM_RING1[RID] select the ring when
programming the above values. The following describes the data structures
recognized by the timer hardware:
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 451

 Timer: Software Responsibilities
The following is a sample add routine:

At some later point, but not while or after the hardware traverses the list, software
can invalidate a timer entry by writing it to all 0s. In that case, hardware does not
create the work-queue entry.

Note that the timer hardware zeroes the num_entries and chunk_remainder fields
while it traverses the list associated with a bucket. The timer hardware also reads
the first_chunk field, but never references the current_chunk field.

10.3 Software Responsibilities

There are two specific race conditions that must be managed by software:

1. Software must not add to a bucket/list when the hardware might be processing
the list. This is because hardware may miss the addition.

In practice this means two things:

A timer entry that expires too close to the current time cannot be added.

A timer entry that expires too far from the current time cannot be added (i.e.
you must not wrap around the buckets)

2. Software must not invalidate a timer entry when hardware might be processing
the list that contains the timer entry.

Figure 10–2 Bucket Data Structure

63 0

Read by timer hardware

Read and zeroed by timer hardware

}Not used by timer hardware

32 bytes

TIMER_BUCKET_ENTRY

First Chunk

num_entries chunk_remainder

Current Chunk

Pad
452 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Timer: Software Responsibilities
This is because hardware may have already freed the memory that contains the
timer entry. (In which case, hardware will already have scheduled it.) It is also
possible that hardware has not freed the memory, but has already traversed past
the relevant entry.

In practice this means that a timer entry that is going to expire “too soon” cannot
be invalidated. Hardware schedules the work-queue entry anyway in this case,
and software must have the appropriate data structures available to prevent it
from performing any action.

A good way to prevent any action in this case is to store the expiration time of the
timer in some data structure that is accessible from the work queue entry. If the
stored timer expiration time is later than the current time, when hardware
schedules the work queue entry to a Core, no action should be performed.

Note also that in addition to invalidation, another common timer operation is to
reschedule a timer entry further into the future. This should be handled by
invalidating the prior timer entry and creating a new one. If the expiration time of
the current timer is “too close” for a simple invalidation, software may choose to wait
and create the new entry after hardware schedules the prior one. In any case,
software must not schedule the same work queue entry simultaneously. Waiting for
hardware to schedule the prior entry will allow software to use only a single work
queue entry in this case. Without the wait, the new entry will likely need a new work
queue entry.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 453

 Timer: Timer Registers
10.4 Timer Registers

The timer registers are shown in Table 10-1.

Table 10-1Timer Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed Description

TIM_REG_FLAGS 0x0001180058000000 RSL See page 455

TIM_REG_READ_IDX 0x0001180058000008 RSL See page 455

TIM_REG_BIST_RESULT 0x0001180058000080 RSL See page 455

TIM_REG_ERROR 0x0001180058000088 RSL See page 456

TIM_REG_INT_MASK 0x0001180058000090 RSL See page 456

TIM_MEM_RING0 0x0001180058001000 RSL See page 456

TIM_MEM_RING1 0x0001180058001008 RSL See page 457

TIM_MEM_DEBUG0 0x0001180058001100 RSL See page 457

TIM_MEM_DEBUG1 0x0001180058001108 RSL See page 457

TIM_MEM_DEBUG2 0x0001180058001110 RSL See page 458
454 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Timer: Timer Registers
Timer Flags Register
TIM_REG_FLAGS

See Table 10-1 for the address.

Timer Read Index Register
TIM_REG_READ_IDX

This register provides the read index during a CSR read operation to any of the CSRs
that are physically stored as memories (the names of these CSRs begin with the
prefix TIM_MEM_). IDX[7:0] is the read index, and INC[7:0] is an increment that is
added to IDX[7:0] after any CSR read. The intended use is to initially write this CSR
such that IDX = 0 and INC = 1. Then, the entire contents of a CSR memory can be
read with consecutive CSR read commands. See Table 10-1 for the address.

Timer BIST Result Register
TIM_REG_BIST_RESULT

This register provides access to the internal BIST results. Each bit is the BIST result
of an individual memory (per bit, 0 = pass and 1 = fail). See Table 10-1 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ x 0 Must be 0x0 (MBZ).

<2> RESET RAZ 0 0 Reset one-shot pulse for free-running structures.

<1> ENA_DWB R/W 0 0 Enables non-zero don’t-write-back operations. When set, this bit enables the
use of don’t-write-backs during the buffer freeing operations

<0> ENA_TIM R/W 0 0 Enables the timer section. When set, this bit places the timer into normal
operation.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ X 0x0 MBZ.

<15:8> INC R/W 0x0 0x0 Increment to add to current index for next index.

<7:0> IDX R/W 0x0 0x0 Index to use for next memory CSR read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ X 0 MBZ.

<3:2> STA RO X 0 BIST result of the STA memories (0x0 = pass, any other value = fail)

<1> NCB RO X 0 BIST result of the IOB memories (0 = pass, 1 = fail)

<0> CTL RO X 0 BIST result of the CTL memories (0 = pass, 1 = fail)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 455

 Timer: Timer Registers
Timer Error Register
TIM_REG_ERROR

This register indicates if a ring is in error (i.e. its interval has elapsed more than once
without having been serviced). See Table 10-1 for the address.

Timer Interrupt Mask Register
TIM_REG_INT_MASK

This register provides mask bits to enable interrupts when an error is shown in
TIM_REG_ERROR.

See Table 10-1 for the address.

Timer Ring0 Register
TIM_MEM_RING0

This CSR, which provides configuration for the 16 rings, is actually a 16-entry
memory. The TIM_REG_READ_IDX register must be configured before any CSR
read operations to this address can be performed. See Table 10-1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ X 0 MBZ.

<15:0> MASK R/W1C 0 0 Bit mask indicating which rings are in error.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ X 0 MBZ.

<15:0> MASK R/W 0 0 Interrupt-enable bit mask corresponding to the error mask in
TIM_REG_ERROR.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:55> — RAZ X 0 MBZ

<54:24> BASE R/W 0 0 Pointer to bucket 0. This field is a 32-byte-aligned 36-bit pointer (bits<35:0>).
Only bits <35:5> are stored because bits <4:0> are always 0s.

<23:4> BSIZE R/W 0 0 Number of buckets − 1 (i.e. number of buckets = BSIZE + 1).

<3:0> RID R/W 0 0 Ring ID.
456 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Timer: Timer Registers
Timer Ring1 Register
TIM_MEM_RING1

This CSR, which provides configuration for the 16 rings, is actually a 16-entry
memory. The TIM_REG_READ_IDX register must be configured before any CSR
read operations to this address can be performed. See Table 10-1 for the address.

Timer Debug0 Register
TIM_MEM_DEBUG0

This CSR, which provides internal per-ring state intended for debug use only, is
actually a 16-entry memory. The TIM_REG_READ_IDX register must be configured
before any CSR read operations to this address can be performed. See Table 10-1 for
the address.

Timer Debug1 Register
TIM_MEM_DEBUG1

This CSR, which provides internal per-ring state intended for debug use only, is
actually a 16-entry memory. The TIM_REG_READ_IDX register must be configured
before any CSR read operations to this address can be performed. See Table 10-1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:43> — RAZ X 0x0 MBZ.

<42> ENA R/W 0 0 Ring timer enable.

<41:39> CPOOL R/W 0x0 0x0 Free list used to free chunks

<38:26> CSIZE R/W 0x0 0x0 Number of words per chunk. It is illegal to program CSIZE < 16.

<25:4> INTERVAL R/W 0x0 0x0 Timer interval − 1, measured in 1024 cycle ticks.

<3:0> RID R/W 0x0 0x0 Ring ID.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RO X 0x0 MBZ.

<47> ENA RO X 0 Ring timer enable.

<46> — RO X 0 MBZ.

<45:24> COUNT RO X 0x0 Current count.

<23:22> — RO X 0x0 MBZ.

<21:0> INTERVAL RO X 0x0 Timer interval − 1.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:51> BUCKET RO X 0x0 Specifies bits <12:0> of the current bucket.

<50:20> BASE RO X 0x0 Pointer bits <35:5> to bucket 0.

<19:0> BSIZE RO X 0x0 Number of buckets − 1.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 457

 Timer: Timer Registers
Timer Debug2 Register
TIM_MEM_DEBUG2

This CSR, which provides internal per-ring state intended for debug use only, is
actually a 16-entry memory. The TIM_REG_READ_IDX register must be configured
before any CSR read operations to this address can be performed. See Table 10-1 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RO X 0 MBZ.

<31:24> — RO X 0 MBZ.

<23:21> CPOOL RO X 0 Free list used to free chunks.

<20:8> CSIZE RO X 0 Number of words per chunk.

<7:7> — RO X 0 MBZ.

<6:0> BUCKET RO X 0 Specifies bits <19:13> of the current bucket.
458 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 11

Central Interrupt Unit (CIU)
This chapter contains the following subjects:

● Overview

● Central Interrupt Collection and Distribution

● Per-Core Mailbox Registers

● Per-Core Watchdog Timers

● Four General Timers

● Core Availability and Reset

● Core Debug-Mode Observability

● Core Debug-Interrupt Generation

● Core Non-Maskable Interrupt Generation

● Chip Soft-Reset Initiation

● CIU Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 459

 Central Interrupt Unit (CIU)Central Interrupt Collection and Distribution
Overview

CN50XX’s CIU implements the following functions:

● Central interrupt collection, both internal and external (CIU_INTn_SUM0/1,
CIU_INT0/1_SUM4).

● Central interrupt selection and distribution to cores, and to PCI INTA when
CN50XX is not a PCI host (CIU_INTn_EN0/1, CIU_INT0/1_EN4_0/1).

● Per-core mailbox registers (CIU_MBOX_SETn, CIU_MBOX_CLRn).

● Per-core watchdog timers (CIU_WDOGn, CIU_PP_POKEn)

● Four general timers (CIU_TIMn)

● Core availability and reset (CIU_FUSE and CIU_PP_RST)

● Core debug-mode observability (CIU_PP_DBG)

● Core debug-interrupt generation (CIU_DINT)

● Core nonmaskable interrupt generation (CIU_NMI)

● Chip soft-reset initiation (CIU_SOFT_RST, CIU_SOFT_BIST)

● Global-stop (GSTOP) bit (CIU_GSTOP). Used for multi-core debug. Refer to
Section 4.12 for more details on GSTOP usage.

11.1 Central Interrupt Collection and Distribution

Figures 11–1, 11–2, and 11–3 show CN50XX’s entire interrupt-distribution
network, some of which resides in the CIU. Figure 11–1 shows that the CIU
distributes a total of 7 interrupts – three per core and one more for PCI INTA/MSI
generation. The three interrupts for each core become Cause[IP4,IP3,IP2] local to
the core. With three separate interrupt destinations per core, different interrupts
destined for the core can be prioritized differently by the core-interrupt handlers.
460 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

Owner
高亮

Owner
高亮

Central Interrupt Unit (CIU)Central Interrupt Collection and Distribution
Figure 11–1 CN50XX Interrupt Distribution

TIMER = set any time the corresponding CIU timer expires

IPD_DRP = set any time PIP/IPD drops a packet
GMX_DRP<0> = set any time GMX0 drops a packet or creates a partial packet due to input-buffer overflow

4

B
7

WDOG_SUM (pick one bit per entry) 1

CIU_WDOG0/1[STATE] ≠ 0
CIU_WDOG0/1[MODE] ≠ 0

7×59

7×2

7×57

7×2

×7

x/y

TRACE
TRA_INT_STATUS[CIU_*]

AFrom NPI_RSL_INT_BLOCKS
(see Figure 11–3)

NPI_MSI_RCV<63:48>

NPI_MSI_RCV<47:32>

NPI_MSI_RCV<31:16>

NPI_MSI_RCV<15:0>

4PCI_MSI

MIO_UART1_IIR[IID] ≠ 1

MIO_UART0_IIR[IID] ≠ 1 2UART

CIU_MBOX_SET[entry/2]<31:16>

CIU_MBOX_SET[entry/2]<15:0>

2

MBOX

For the cores (entries 0,1)

For PCI_INTA (x = 32)
CIU_PCI_INTA[INT]

x/y

16

WORKQ
POW_WQ_INT[WQ_INT]

16

GPIO

16

16

×16 ×16

GPIO_BIT_CFGz[INT_TYPE]

1

0
16

clear

Positive-Edge
Detector

16GPIO_RX_DAT[DAT]

16

16

(from external
GPIO pins)

GPIO_INT_CLR[TYPE]
16

GPIO_BIT_CFGz[INT_EN]

×16

×2

2

2

2

Notes:

1. The variables x and y represent the selected interrupts. x
is a value between 0 and 3, or 32 (used with *_SUM0 reg-
isters) and y is 0 or 1 (used with *_SUM4 registers).

2. The variable z represents the GPIO pin number. It is a
value between 0 and 15

3. The variable n represents the number of cores. It is either
0 or 1

4. The sections of CIU_INT(x/y)_SUM0/4 that are shown in
white are latched. All other bits pass right through.

CIU_INT_SUM1
CIU_INTy_SUM4_1

CIU_INTx_SUM0
CIU_INTy_SUM4

CIU_INTx_EN1
CIU_INTy_EN4_1

7×2

PCI_INT<3> = external PCI_INTD pin
PCI_INT<2> = external PCI_INTC pin
PCI_INT<1> = external PCI_INTB pin
PCI_INT<0> = external PCI_INTA pin

The PCI_INT* pins are asserted low.
They are inverted for use here.

RML

TWSIMIO_TWS_INT[*_INT]
MIO_TWS_INT[*_EN] ×3

USBUSBC_GINTSTS
USBC_GINTMSK x29

PCM*_INT_SUM
PCM*_INT_ENA x32 PCM

MPI = set any time the corresponding CIU timer expires
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 461

 Central Interrupt Unit (CIU)Central Interrupt Collection and Distribution

As Figure 11–3 shows, there are more than 250 possible interrupt sources on
CN50XX. Most of these sources are accumulated and flow into the 59-bit
summary vector CIU_INTn_SUM0/1/4. The 59-bit summary directly contains the
remainder of the interrupt sources; those direct interrupts can be more quickly
discerned and processed. The corresponding 59 bits of interrupt enable vector in
CIU_INTn_EN0/1 allow the summarized interrupts to reach their ultimate
destination.

CN50XX configuration registers contain a different 59-bit enable
(CIU_INTn_EN*, CIU_INTn_EN4_0/1) for each of the seven interrupt
destinations, so each destination can include arbitrary and independent
combinations of the 59 sources. Any interrupt in the 59-bit summary can be
directed to any combination of the interrupt destinations.

There is a different summary vector for each interrupt destination. These
summary vectors differ only in two fields:
● CIU_INTn_SUM0[MBOX].
● CIU_INTn_SUM0[WDOG_SUM].

All other fields in CIU_INTn_SUM0/1/4 are identical for the different
destinations. CIU_INTn_SUM0[MBOX] is a summary of the mailbox that is
specific to individual cores, as described below. (CIU_INTn_SUM0/4[MBOX] is
CIU_PCI_INTA[INT] for the PCI destination.) CIU_INTn_SUM0[WDOG_SUM]
is a convenient summary of the CIU_INTn_SUM1/CIU_INTn_EN4_1 result, so a
single 64-bit access to CIU_INTn_SUM0/4 summarizes the available interrupts
for the destination.

Figure 11–2 PCI Interrupt Distribution

I_STAT

I_DIS

34

PCI_INTAPC
I_

C
FG

01

7×59 7

PCI_INT_SUM[RSL_INT]
PCI_INT_SUM2[RSL_INT]

(enabled by

×34
PCI_INT_SUM

PCI_INT_ENB

×77×59

7×57

CIU_INTx_EN0
CIU_INTy_EN4_0

CIU_INTx_EN1
CIU_INTy_EN4_1

7×59

B

7×2

CIU_INT32_EN0/1)

If CN50XX is not in
PCI host mode,
PCI_INTA is driven
with this value.

PCI_CFG60[MSIEN]

A message-signalled
interrupt (MSI) is sent
on the asserting edge if
PCI_HOST_MODE = 0

MSI

<3:2>

<1:0>

Core1

Core0

Cause[IP3] (enabled by CIU_INT3_EN0/1)
Cause[IP2] (enabled by CIU_INT2_EN0/1)

Cause[IP4] (enabled by CIU_INT1_EN4_0/1)

Cause[IP3] (enabled by CIU_INT1_EN0/1)
Cause[IP2] (enabled by CIU_INT0_EN0/1)

Cause[IP4] (enabled by CIU_INT0_EN4_0/1)
462 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Central Interrupt Unit (CIU)Central Interrupt Collection and Distribution

Note that Figure 11–1 shows a simple depiction of the interrupt distribution logic.
In the real implementation, there are delays to update interrupt destinations. The
delay from when an interrupt source is updated to when the interrupt destination
is updated may be as large as 60 cycles.

Except for CIU_INTn_SUM0/4[TIMER,IPD_DRP,GMX_DRP], CIU_INTn_SUM0/
1/4 does not actually store the status bits for the interrupt, only summarizes
them. Note that there is only one copy of the storage for CIU_INTn_SUM0/
4[TIMER,IPD_DRP,GMX_DRP]. A write of 1 to any bit in these fields in any
CIU_INTn_SUM0/4 clears the bit in all summaries.

Note that the majority of the interrupts enter via CIU_INTn_SUM0/4[RML] and
NPI_RSL_INT_BLOCKS. There are many error checks distributed throughout
CN50XX, and most of these errors set status bits that can cause interrupts via
CIU_INTn_SUM0/4[RML] assertion. Figure 11–3 shows this.

CIU_INTn_SUM0/4[WDOG,TIMER,MBOX] are discussed in more detail in the
following sections of this chapter. The remainder of the interrupts are discussed
briefly here:

● CIU_INTn_SUM0/4[IPD_DRP,GMX_DRP<0>] are set whenever PIP/IPD or
GMX0 drop a packet. As these are all the possible sources of packet drops,
software can always be notified quickly of any packet drop.

Figure 11–3 Input from NPI_RSL_INT_BLOCKS

IOB_INT_SUM
IOB_INT_ENB

×6
6IOB

ASX0_INT_REG
ASX0_INT_EN

×9
9ASX0

PIP_INT_REG
PIP_INT_EN

×9
9PIP

A
CIU_INTn_SUMm[RML] 19

POW_ECC_ERR[SBE,DBE,RPE,IOP_IE]
POW_ECC_ERR[n_IE]

×16
16POW

TIM_REG_ERROR
TIM_REG_INT_MASK

×16
16TIM

PKO_REG_ERROR
PKO_REG_INT_MASK

×2
2PKO

L2T_ERR[*ERR*]
L2T_ERR[*INTENA*]

×4
4

L2C
L2D_ERR[*ERR]
L2D_ERR[*INTENA]

×2
2

IPD_INT_SUM
IPD_INT_ENB

×10
10IPD

FPA_INT_SUM
FPA_INT_ENB

×28
28FPA

MIO_BOOT_ERR
MIO_BOOT_INT

×2
2MIO

NPI_INT_ENB
×62

62NPI

GMX0_RX(0..2)_INT_REG
GMX0_RX(0..2)_INT_EN

×3×17
3×17

GMX0
GMX0_TX_INT_REG
GMX0_TX_INT_EN

×13
×13

PCI_INT_SUM2
PCI_INT_ENB2

×30
30PCI_RSLN
PI

_I
N

T_
SU

M

(goes to Figure 11–1)

N
PI

_R
SL

_I
N

T_
B

LO
C

K
S

LMC_MEM_CFG[SEC_ERR,DED_ERR]
LMC_MEM_CFG[INTR_*_ENA]

×8
8LMC

USB USBN_INT_SUM
USBN_INT_EN

×38
38
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 463

Owner
下划线

Owner
下划线

 Central Interrupt Unit (CIU)Per-Core Mailbox Registers
● CIU_INTn_SUM0/4[TWSI] can assert on TWSI transmit arrival or
completion. Refer to Chapter 17.

● CIU_INTn_SUM0/4[PCI_MSI] provides quick access to NPI_MSI_RCV, which
can be used for PCI message-signalled interrupts. Refer to Section 9.8.

● CIU_INTn_SUM0/4[PCI_INT] provides interrupts via the external PCI
interrupt input pins PCI_INTA_L/PCI_INTB_L/PCI_INTC_L/PCI_INTD_L.
Note that PCI_INTA_L is an output, so probably should not be used here
when CN50XX is not in PCI host mode (i.e. when PCI_HOST_MODE=0).

● CIU_INTn_SUM0/4[UART] are set when the corresponding UART indicates
an interrupt. Refer to Chapter 16.

● CIU_INTn_SUM0/4[GPIO] provides either level-sensitive or edge-triggered
interrupts for GPIO_RX_DAT[DAT]. GPIO_RX_DAT[DAT] is a 16-bit vector
driven created from the GPIOs. Refer to Chapter 15.

● CIU_INTn_SUM0/4[WORKQ] provides per-group interrupts for POW. Refer to
Section 5.6.

● CIU_PCI_INTA provides a direct mechanism for cores to send interrupts to
the PCI bus.

11.2 Per-Core Mailbox Registers

Each core has a corresponding 32-bit mailbox register whose bits can be set/
cleared. This CIU_MBOX_SET0/1/CIU_MBOX_CLR0/1 register is useful for
inter-core direct interrupts, and a remote host can also direct an interrupt to a
specific core with it.

Both CIU_MBOX_SET0/1[SET] and CIU_MBOX_CLR0/1[CLR] return the same
copy of the mailbox bits for a core when they are read. Writes of 1s to
CIU_MBOX_SET0/1[SET] cause corresponding mailbox bits to be set. Writes of 1s
to CIU_MBOX_CLR0/1[CLR] cause corresponding mailbox bits to be cleared.
With this, individual bits can be set and cleared simultaneously by multiple
sources.

CIU_INTn_SUM0/4[MBOX] for a core summarizes the 32-bit mailbox register for
the core. The core corresponding to summary n is n/2. CIU_INTn_SUM0/
4[MBOX<1>] is set when any of <31:16> are set in the mailbox for the core.
CIU_INTn_SUM0/4[MBOX<0>] is set when any of <15:0> are set in the mailbox
for the core.
464 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Central Interrupt Unit (CIU)Per-Core Watchdog Timers
11.3 Per-Core Watchdog Timers

There are two watchdog timers in CN50XX, one for each of the two cores. The
watchdogs can be accessed by any core or external PCI device, though a watchdog
may generally only be used by its associated core. The CIU_WDOG0/1 registers
configures each watchdog.

When not OFF, the watchdog timers count the time from the last “core poke” for
the watchdog. A core poke indicates that the core is alive, and the watchdog
should be reset. If a core poke does not arrive soon enough, a timeout occurs and
the watchdog checks for another timeout. CIU_WDOG0/1[STATE] indicates the
number of timeouts since the last core poke, and CIU_WDOG0/1[CNT]×256 is the
cycles left before the next timeout. CIU_WDOG0/1[CNT] normally decrements
once every 256 cycles when the watchdog is enabled. CIU_WDOG0/1[LEN]×65536
is the timeout in cycles. A core poke for a watchdog is a write of any value to the
corresponding CIU_PP_POKE0/1 CSR.

Each of the two watchdog timers is in one of four modes, selected by
CIU_WDOG0/1[MODE]:

● OFF (MODE = 0x0) – No interrupt/non-maskable interrupt/soft-reset is ever
sourced by the watchdog.

● INTERRUPT ONLY (MODE = 0x1) – An interrupt asserts whenever there
has been a timeout (i.e. whenever CIU_WDOG0/1[STATE] ≠ 0).

● INTERRUPT + NMI MODE (MODE = 0x2) – An interrupt asserts whenever
there has been a timeout (i.e. whenever CIU_WDOG0/1[STATE] ≠ 0). An NMI
pulse is generated for the associated core whenever a second timeout occurs
(i.e. whenever CIU_WDOG0/1[STATE] is set to 2).

● INTERRUPT + NMI + SOFT-RESET (MODE = 0x3) – An interrupt asserts
whenever there has been a timeout (i.e. whenever CIU_WDOG0/1[STATE] ≠
0). An NMI pulse is generated for the associated core whenever a second
timeout occurs (i.e. whenever CIU_WDOG0/1[STATE] is set to 2). A chip-wide
soft-reset pulse is generated whenever a third timeout occurs (i.e. whenever
CIU_WDOG0/1[STATE] would otherwise be set to 3).

The watchdogs are integrated with CN50XX’s debug features in the following
way:

● When CIU_WDOG0/1[DSTOP] is set, the watchdog stops counting (i.e.
CIU_WDOG0/1[CNT] does not decrement) whenever the corresponding core is
in debug mode (i.e. whenever CIU_PP_DBG[PPDBG0/1] is set).

● When CIU_WDOG0/1[GSTOPEN] is set, the watchdog stops counting (i.e.
CIU_WDOG0/1[CNT] does not decrement) whenever CN50XX is in global-stop
mode (i.e. whenever CIU_GSTOP[GSTOP] is set).

Refer to Section 4.12 for more information regarding CN50XX debug.

There are three topics that deserve special mention with respect to the use of the
CN50XX watchdog timers:

● delayed requests for new work

● long tag switch waits

● delayed Fetch&Add requests

These topics are discussed in the following sections.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 465

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

 Central Interrupt Unit (CIU)Four General Timers
Delayed Requests for New Work

The POW hardware can optionally delay a request for new work. When software
selects this option, if work is not immediately available in one of the groups that
the core is in, the hardware will hold onto the request until work comes available
or the request times out. Without timeouts, a core could hang forever waiting for
work, causing a watchdog expiration. With delayed work timeouts that are small
relative to the watchdog expirations, as would be desired for this and other
reasons, the software delayed work timeout handler can issue core-poke requests.
The software may need to occasionally issue core-poke requests on timeouts when
continuously waiting for work.

Refer to Chapter 5 and the POW_NW_TIM for more details.

Long Tag Switch Waits

Depending on software configuration, it may be possible for the delay of a tag
switch wait to cause a watchdog expiration. In these situations, it may be
necessary for the software handler that is polling for the tag-switch completion to
occasionally issue core pokes. (In some cases, the preferred behavior may be to
time out in this case, though.)

Refer to Chapter 5 for more information regarding tag switches.

Delayed Fetch&Add Requests

The hardware can optionally delay a Fetch&Add request. When software selects
this option, the hardware either delays the operation until the prior tag switch
completes, or times out the request. This is very similar to the delayed new work
requests mentioned above. The solution could be the same also. But the solution
may also be different since the software may not continuously resubmit the
requests; it may instead fall into a tag switch wait.

Refer to Chapter 3 and the IOB_FAU_TIMEOUT for more details regarding FAU
requests.

11.4 Four General Timers

CIU contains four general timers configured via CIU_TIM(0..3). Each timer can
either be a one-shot timer or a periodic timer.

The three uses of the timers are:

● Disabled

Set CIU_TIMn[LEN] to zero.

● One-shot

Set CIU_TIMn[ONE_SHOT] to one.

Set CIU_TIMn[LEN] to the number of cycles.

CIU_INT*_SUM0/4[TIMERn] is set when the timer expires, after which the
timer becomes idle.
466 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Central Interrupt Unit (CIU)Core Availability and Reset
● Periodic

Set CIU_TIMn[ONE_SHOT] to zero.

Set CIU_TIMn[LEN] to the number of cycles−1 between periodic timeouts.

CIU_INT*_SUM0/4[TIMERn] is set every time the timer expires (i.e. after
exactly CIU_TIMn[LEN]+1 cycles each time).

After timer n generates a timer expiration (periodic or one-shot),
CIU_INT*_SUM0/4[TIMERn] should be cleared by software so that the next
expiration from timer n can cause a new interrupt.

11.5 Core Availability and Reset

The number of cores available on CN50XX is the number of bits set in CIU_FUSE.

CIU_PP_RST indicates the cores currently in reset on CN50XX. (When a bit is
set, the corresponding core in CN50XX is in reset.) Except for the EJTAG TAP
control register processor reset bit (ECR[PrRst]) local to each core, CIU_PP_RST
is the sole reset source for CN50XX cores. Refer to the MIPS specifications and
Chapter 4.

Note that the reset value of CIU_PP_RST depends on the external pin PCI_BOOT.

● When the external pin PCI_BOOT is asserted, both cores are held in reset
after any chip hard or soft reset (i.e. CIU_PP_RST resets to 0x3).

● When the external pin PCI_BOOT is deasserted, core 0 is not held in reset
after any chip hard or soft reset, but the other core is (i.e. CIU_PP_RST
resets to 0x2).

Cores are taken out of reset by writing a 0 to the corresponding bit in
CIU_PP_RST. This can be done either by a core or by a remote PCI host.

Cores can be put into reset, but CN50XX’s stability cannot be guaranteed if the
core is in the middle of any CMB, or I/O transaction at the time of the reset
assertion for the core.

11.6 Core Debug-Mode Observability

CIU_PP_DBG returns the current debug mode state (i.e. Debug[DM]) of the cores.
Refer to the MIPS specifications, Chapter 4, and Section 4.12.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 467

Owner
下划线

 Central Interrupt Unit (CIU)Core Debug-Interrupt Generation
11.7 Core Debug-Interrupt Generation

Writes of 1s to CIU_DINT cause the corresponding cores to enter debug mode, if
they are not already in debug mode. CIU_DINT is one of the sources for core
debug interrupts. Also included are the EJTAG TAP control register break bit
(ECR[EjtagBrk]) local to each core, and MCD interrupts from the cores. Refer to
the MIPS specifications, Chapter 4 and Section 4.12 for further documentation.

11.8 Core Non-Maskable Interrupt Generation

Writes of 1s to CIU_NMI cause NMI pulses to be sent to the corresponding cores.
Except for CIU watchdog timers, described in Section 11.3, CIU_NMI is the sole
source of core nonmaskable interrupts. Refer to the MIPS specifications and
Chapter 4 for more details regarding non-maskable interrupts to the cores.

11.9 Chip Soft-Reset Initiation

To initiate a chip-wide soft reset, core or remote host software should do the
following:

1. Write a 1 to CIU_SOFT_BIST[SOFT_BIST] to enable BIST during the soft
reset

2. Read CIU_SOFT_RST, then write a 1 to CIU_SOFT_RST[SOFT_RST] to
initiate the soft reset.

The effects of a soft reset are very similar to a chip reset initiated by the external
reset pin. CHIP_RESET_L is the external reset pin when PCI_HOST_MODE=1,
while PCI_RESET_L is the external reset pin when PCI_HOST_MODE=0.

One difference is that the Status[SR] bit in the cores are set so that boot software
can tell that the reset was initiated from an internally-generated soft reset rather
than an externally-generated reset.

WHEN PCI_HOST_MODE=1

All CN50XX CSRs and external interfaces are reset.

WHEN PCI_HOST_MODE=0

Except for the PCICONFIG, PCI, and PCI_NCB registers, all the CN50XX CSRs
are reset. All interfaces other than the PCI interface are reset.

A remote host should not access CN50XX or any other CN50XX resources
following a soft reset until a read of PCI_CTL_STATUS_2[ERST_N] returns a 1.
468 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
下划线

Central Interrupt Unit (CIU)CIU Registers
11.10 CIU Registers

The CIU registers are listed in Table 11–1.

Table 11–1 CIU Registers

Registers Address CSR Type1

1. NCB-type registers are accessed directly across the I/O bus, and RSL-type registers are access-
ed indirectly across the I/O bus.

Detailed
Description

CIU_INT0_SUM0
CIU_INT1_SUM0
CIU_INT2_SUM0
CIU_INT3_SUM0
CIU_INT32_SUM0

0x0001070000000000
0x0001070000000008
0x0001070000000010
0x0001070000000018
0x0001070000000100

NCB See page 470

CIU_INT_SUM1 0x0001070000000108 NCB See page 470
CIU_INT0_EN0
CIU_INT1_EN0
CIU_INT2_EN0
CIU_INT3_EN0
CIU_INT32_EN0

0x0001070000000200
0x0001070000000210
0x0001070000000220
0x0001070000000230
0x0001070000000400

NCB See page 471

CIU_INT0_EN1
CIU_INT1_EN1
CIU_INT2_EN1
CIU_INT3_EN1
CIU_INT32_EN1

0x0001070000000208
0x0001070000000218
0x0001070000000228
0x0001070000000238
0x0001070000000408

NCB See page 471

CIU_TIM0
...
CIU_TIM3

0x0001070000000480
...
0x0001070000000498

NCB See page 474

CIU_WDOG0
CIU_WDOG1

0x0001070000000500
0x0001070000000508

NCB See page 474

CIU_PP_POKE0
CIU_PP_POKE1

0x0001070000000580
0x0001070000000588

NCB See page 474

CIU_MBOX_SET0
CIU_MBOX_SET1

0x0001070000000600
0x0001070000000608

NCB See page 475

CIU_MBOX_CLR0
CIU_MBOX_CLR1

0x0001070000000680
0x0001070000000688

NCB See page 475

CIU_PP_RST 0x0001070000000700 NCB See page 475
CIU_PP_DBG 0x0001070000000708 NCB See page 475
CIU_GSTOP 0x0001070000000710 NCB See page 475
CIU_NMI 0x0001070000000718 NCB See page 476
CIU_DINT 0x0001070000000720 NCB See page 476
CIU_FUSE 0x0001070000000728 NCB See page 476
CIU_BIST 0x0001070000000730 NCB See page 476
CIU_SOFT_BIST 0x0001070000000738 NCB See page 476
CIU_SOFT_RST 0x0001070000000740 NCB See page 477
CIU_SOFT_PRST 0x0001070000000748 NCB See page 477
CIU_PCI_INTA 0x0001070000000750 NCB See page 477
CIU_INT0_SUM4
CIU_INT1_SUM4

0x0001070000000C00
0x0001070000000C08

NCB See page 472

CIU_INT0_EN4_0
CIU_INT1_EN4_0

0x0001070000000C80
0x0001070000000C90

NCB See page 473

CIU_INT0_EN4_1
CIU_INT1_EN4_1

0x0001070000000C88
0x0001070000000C98

NCB See page 473
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 469

Owner
高亮

Owner
高亮

 Central Interrupt Unit (CIU)CIU Registers
CIU Interrupt Summary 0 Registers
CIU_INT(0..3,32)_SUM0

This register indicates where an interrupt has occurred. The five registers are
apportioned in the following manner:

CIU_INT0_SUM0 is used for core0/IP2
CIU_INT1_SUM0 is used for core0/IP3
CIU_INT2_SUM0 is used for core1/IP2
CIU_INT3_SUM0 is used for core1/IP3
CIU_INT32_SUM0 is used for PCI/INTA

See Table 11–1 for the address.

CIU Interrupt Summary 1 Register
CIU_INT_SUM1

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:59> — RAZ — — Reserved.
<58> MPI R/W1C 0 0 MPI/SPI Interrupt
<57> PCM RO 0 0 PCM/TDM Interrupt
<56> USB RO 0 0 USB Interrupt
<55:52> TIMER R/W1C 0 0 General timer interrupts
<51> — RAZ — — Reserved.
<50> IPD_DRP R/W1C 0 0 IPD QOS packet drop interrupt
<49> — RAZ — — Reserved.
<48> GMX_DRP R/W1C 0 0 GMX packet drop interrupt
<47> — RAZ — — Reserved.
<46> RML RO 0 0 RML interrupt
<45> TWSI RO 0 0 TWSI interrupt
<44> WDOG_SUM RO 0 0 Watchdog summary

● Cores use CIU_INTn_SUM0 where n = 0–3.
– Even INTx registers report WDOG to IP2.
– Odd INTx registers report WDOG to IP3

● PCI uses the CIU_INT32_SUM0.
<43:40> PCI_MSI RO 0x0 0x0 PCI MSI

<43> is the OR of <63:48>
<42> is the OR of <47:32>
<41> is the OR of <31:16>
<40> is the OR of <15:0>

<39:36> PCI_INT RO 0x0 0x0 PCI INTA/B/C/D
<35:34> UART RO 0x0 0x0 Two UART interrupts
<33:32> MBOX RO 0x0 0x0 Two mailbox interrupts for entries 0-3.

<33> is the OR of <31:16>
<32> is the OR of <15:0>

Two PCI internal interrupts for entry 32 CIU_PCI_INTA
<31:16> GPIO RO 0x0 0x0 Sixteen GPIO interrupts
<15:0> WORKQ RO 0x0 0x0 Sixteen work-queue interrupts. One bit/group. A copy of the R/W1C bit

in the POW.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> WDOG RO 0x0 0x0 Two watchdog interrupts.
470 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Central Interrupt Unit (CIU)CIU Registers
CIU Interrupt Enable 0 Registers
CIU_INT(0..3,32)_EN0

This register provide enable bits for interrupt bits in CIU_INTn_SUM0. The five
registers are apportioned in the following manner:

CIU_INT0_EN0 is used for core0/IP2
CIU_INT1_EN0 is used for core0/IP3
CIU_INT2_EN0 is used for core1/IP2
CIU_INT3_EN0 is used for core1/IP3
CIU_INT32_EN0 is used for PCI/INTA

See Table 11–1 for the address.

CIU Interrupt Enable 1 Registers
CIU_INT(0..3,32)_EN1

This register provide interrupt-enable bits for watchdog vectors in
CIU_INTn_SUM1. The five registers are apportioned in the following manner:

CIU_INT0_EN1 is used for core0/IP2
CIU_INT1_EN1 is used for core0/IP3
CIU_INT2_EN1 is used for core1/IP2
CIU_INT3_EN1 is used for core1/IP3
CIU_INT32_EN1 is used for PCI/INTA

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:59> — RAZ — — Reserved.
<58> MPI R/W 0 0 MPI/SPI Interrupt
<57> PCM R/W 0 0 PCM/TDM Interrupt
<56> USB R/W 0 0 USB Interrupt
<55:52> TIMER R/W 0x0 0x0 General timer interrupts
<51> — RAZ — — Reserved.
<50> IPD_DRP R/W 0 0 IPD QOS packet drop
<49> — RAZ — — Reserved.
<48> GMX_DRP R/W 0 0 GMX packet drop
<47> — RAZ — — Reserved.
<46> RML R/W 0 0 RML Interrupt
<45> TWSI R/W 0 0 TWSI Interrupt
<44> — R/W 0 0 Reserved.
<43:40> PCI_MSI R/W 0x0 0x0 PCI MSI.
<39:36> PCI_INT R/W 0x0 0x0 PCI INTA/B/C/D
<35:34> UART R/W 0x0 0x0 Two UART interrupts
<33:32> MBOX R/W 0x0 0x0 Two mailbox/PCI interrupts
<31:16> GPIO R/W 0x0 0x0 Sixteen GPIO interrupts
<15:0> WORKQ R/W 0x0 0x0 Sixteen work-queue interrupts. one bit per group.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> WDOG RO 0x0 0x0 Watchdog summary interrupt-enable vectors.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 471

Owner
高亮

 Central Interrupt Unit (CIU)CIU Registers
CIU Interrupt Summary IP4 Registers
CIU_INT0/1_SUM4

Indicates where an interrupt has occurred. The registers are apportioned in the
following manner:

CIU_INT0_SUM4 is used for core0/IP4

CIU_INT1_SUM4 is used for core1/IP4

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:59> — RAZ — — Reserved.
<58> MPI R/W1C 0 0 MPI/SPI interface interrupt.
<57> PCM RO 0 0 PCM/TDM interface interrupt.
<56> USB RO — — USB interface interrupt.
<55:52> TIMER R/W1C 0 0 General timer interrupts.
<51> — RAZ — — Reserved.
<50> IPD_DRP R/W1C 0 0 IPD QOS packet drop interrupt.
<49> — RAZ — — Reserved.
<48> GMX_DRP R/W1C 0 0 GMX packet drop interrupt.
<47> — RAZ — — Reserved.
<46> RML RO 0 0 RML interrupt.
<45> TWSI RO 0 0 TWSI interrupt.
<44> WDOG_SUM RO 0 0 Watchdog summary. These registers report WDOG to IP4.
<43:40> PCI_MSI RO 0x0 0x0 PCI MSI.

<43> is the OR of <63:48>
<42> is the OR of <47:32>
<41> is the OR of <31:16>
<40> is the OR of <15:0>

<39:36> PCI_INT RO 0x0 0x0 PCI INTA/B/C/D.
<35:34> UART RO 0x0 0x0 Two UART interrupts.
<33:32> MBOX RO 0x0 0x0 Two mailbox interrupts for entries 0-31.

<33> is the OR of <31:16>
<32> is the OR of <15:0>

Two PCI internal interrupts for entry 32 CIU_PCI_INTA.
<31:16> GPIO RO 0x0 0x0 Sixteen GPIO interrupts.
<15:0> WORKQ RO 0x0 0x0 Sixteen work-queue interrupts. One bit/group. A copy of the R/W1C

bit in the POW.
472 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Central Interrupt Unit (CIU)CIU Registers
CIU Interrupt Enable IP4 Registers 0
CIU_INT0/1_EN4_0

Provide enable bits for interrupts. The registers are apportioned in the following
manner:

CIU_INT0_EN4_0 is used for core0/IP4
CIU_INT1_EN4_0 is used for core1/IP4

See Table 11–1 for the address.

CIU Interrupt Enable IP4 Registers 1
CIU_INT0/1_EN4_1

Provide enable bits for watchdog vectors. The registers are apportioned in the
following manner:

CIU_INT0_EN4_1 is used for core0/IP4
CIU_INT1_EN4_1 is used for core1/IP4

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:59> — RAZ — — Reserved.
<58> MPI R/W 0 0 MPI/SPI interface interrupt.
<57> PCM R/W 0 0 PCM/TDM interface interrupt.
<56> USB R/W 0 0 USB interface interrupt.
<55:52> TIMER R/W 0x0 0x0 General timer interrupts.
<51> — R/W 0 0 Reserved.
<50> IPD_DRP R/W 0 0 IPD QOS packet drop.
<49> — R/W 0 0 Reserved.
<48> GMX_DRP R/W 0 0 GMX packet drop.
<47> — RAZ 0 0 Reserved.
<46> RML R/W 0 0 RML Interrupt.
<45> TWSI R/W 0 0 TWSI Interrupt.
<44> — RAZ — — Reserved.
<43:40> PCI_MSI R/W 0x0 0x0 PCI MSI.
<39:36> PCI_INT R/W 0x0 0x0 PCI INTA/B/C/D.
<35:34> UART R/W 0x0 0x0 Two UART interrupts.
<33:32> MBOX R/W 0x0 0x0 Two mailbox/PCI interrupts.
<31:16> GPIO R/W 0x0 0x0 Sixteen GPIO interrupts.
<15:0> WORKQ R/W 0x0 0x0 Sixteen work-queue interrupts.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> WDOG R/W 0 0 Watchdog summary interrupt-enable vector
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 473

 Central Interrupt Unit (CIU)CIU Registers
CIU General Timer Registers
CIU_TIM(0..3)

See Table 11–1 for the address.

CIU Watchdog Registers
CIU_WDOG0/1

See Table 11–1 for the address.

CIU Cores Poke Registers
CIU_PP_POKE0/1

Write operations to these registers cause the following:
clears any pending interrupts generated by the associated watchdog
resets the CIU_WDOGn[STATE] field
sets CIU_WDOG[CNT] to be (CIU_WDOG[LEN] << 8)

Read operations to these registers return the associated CIU_WDOG register. See
Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:37> — RAZ — — Reserved.
<36> ONE_SHOT R/W 0 0 One-shot mode when LEN ≠ 0x0:

1 = timer is in one-shot mode, 0 = timer is in periodic mode.
<35:0> LEN R/W 0x0 0x0 Time-out length in core-clock cycles − 1. The timer disabled when LEN =

0x0.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:46> — RAZ — — Reserved.
<45> GSTOPEN R/W 0 0 Global-stop enable.
<44> DSTOP R/W 0 0 Debug-stop enable.
<43:20> CNT RO 0 0 Number of 256-cycle intervals until next watchdog expiration. Cleared on

write to associated CIU_PP_POKEn register.
<19:4> LEN R/W 0 0 Watchdog time-expiration length. This field represents the most-significant

bits of a 24-bit decrementer that decrements every 256 cycles. Must be set
greater than 0x0.

<3:2> STATE RO 0 0 Watchdog state. The number of watchdog time expirations since last core
poke. Cleared on write to associated CIU_PP_POKEn register.

<1:0> MODE R/W 0 0 Watchdog mode:
0 = Off
1 = Interrupt only
2 = Interrupt + NMI
3 = Interrupt + NMI + soft reset

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> — RAZ — — Reserved
474 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
高亮

Owner
高亮

Central Interrupt Unit (CIU)CIU Registers
CIU Mailbox Set Registers
CIU_MBOX_SET0/1

See Table 11–1 for the address.

CIU Mailbox Clear Registers
CIU_MBOX_CLR0/1

See Table 11–1 for the address.

CIU Cores Reset Register
CIU_PP_RST

This register holds the reset control for each core. A value of 1 holds the
corresponding core in reset, 0 releases it from reset. The reset value is 0x3 when
PCI_BOOT is asserted, or 0x2 when PCI_BOOT is clear.

See Table 11–1 for the address.

CIU Cores Debug Register
CIU_PP_DBG

See Table 11–1 for the address.

CIU Global-Stop Register
CIU_GSTOP

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> SET R/W1 0x0 0x0 Writing a 1 to a bit sets the corresponding bit in mailbox storage. Reading

this register returns the contents of mailbox storage.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> CLR R/W1C 0x0 0x0 Writing a 1 to a bit clears the corresponding bit in mailbox storage.

Reading this register returns the contents of mailbox storage.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1> RST R/W 1 0 Core reset for core 1.
<0> RST0 R/W — 0 Core reset for core 0.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> PPDBG RO 0x0 0x0 Debug[DM] value for each core whether the cores are in debug mode or not.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> GSTOP R/W 0 0 Set global-stop mode.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 475

 Central Interrupt Unit (CIU)CIU Registers
CIU NonMaskable Interrupt Register
CIU_NMI

See Table 11–1 for the address.

CIU Debug Interrupt Register
CIU_DINT

See Table 11–1 for the address.

CIU Fuse Register
CIU_FUSE

See Table 11–1 for the address.

CIU BIST Register
CIU_BIST

See Table 11–1 for the address.

CIU Soft BIST Register
CIU_SOFT_BIST

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> NMI WO 0x0 0x0 Writing a 1 to either bit sends an NMI pulse to the corresponding core

vector.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> DINT WO 0x0 0x0 Each bit set sends a DINT pulse to the corresponding core.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> FUSE RO — — Each bit set indicates a physical core is present.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved.
<3:0> BIST RO 0x0 0x0 BIST results. Hardware sets a bit for each memory that fails BIST.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> SOFT_BIST R/W 0 0 BIST on soft reset enable. When set, BIST is run when soft reset is asserted.
476 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Central Interrupt Unit (CIU)CIU Registers
CIU Cores Soft Reset Register
CIU_SOFT_RST

This register allows the software to reset the CN50XX cores. When resetting from
a remote PCI device, always read this register first (and wait for the result), then
set SOFT_RST. See Table 11–1 for the address.

CIU PCI Soft Reset Register
CIU_SOFT_PRST

See Table 11–1 for the address.

CIU PCI Interrupt Register
CIU_PCI_INTA

See Table 11–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> SOFT_RST WO 0 0 When set, resets the CN50XX core.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved.
<2> HOST64 R/W 0 0 PCI-X host-mode device capability. Must be 0.
<1> NPI R/W 0 0 When set and SOFT_PRST = 1, resets the NPI and PNI logic
<0> SOFT_PRST R/W 1 0 When set and CN50XX is configured as a host, resets the PCI bus (i.e.

asserts PCI_RST_L). Refer to Section 9.11.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> INT R/W 0x0 0x0 PCI interrupt. These bits are observed in CIU_INT32_SUM0<33:32>
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 477

Owner
下划线

 Central Interrupt Unit (CIU)CIU Registers
478 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 12

Boot Bus
This section contains the following subjects:

● Overview

● Boot-Bus Addresses

● Boot-Bus Address Matching and Regions

● Boot-Bus Reset Configuration and Booting

● Boot-Bus Region Timing

● Boot-Bus Request Queuing

● Boot-Bus Connections

● Boot-Bus Operations

● Boot-Bus Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 479

 Boot Bus:
Overview

The CN50XX boot-bus hardware attaches to nonvolatile devices, like FLASHes,
compact flashes, and ROMs, and can service the initial boot address on CN50XX.
The bus protocol is flexible, so it can interface to many other types of devices as
well. The big-endian boot bus contains:

● eight chip-selects (four are shared with GPIO signals: GPI_GPIO<11:8>)
● 32 address/data lines
● programmable 8/16-bit data width

With the 8-bit option, BOOT_AD<31:24> is the data bus

With the 16-bit option, BOOT_AD<31:24> is the most-significant byte and
BOOT_AD<23:16> is the least-significant byte of the data bus

Figure 12–1 shows the boot-bus hardware.

The boot-bus hardware can configure up to eight regions that correspond to the
eight chip-selects. Each region/chip select has different bus configuration and
timing parameters. When CN50XX self-boots (i.e. when the external pin
PCI_BOOT = 0), the boot bus must provide the initial instructions to boot the chip
on chip-select 0.

The boot-bus hardware also contains two local, 128-byte cache regions. These
cache regions must be used to service core-boot and debug-exception vector
references when there is no device attached to the boot bus that will service them.
The local cache regions can also accelerate reads to commonly accessed areas of
the boot bus.

A remote PCI host can also use the boot bus. The boot-bus hardware services all
PCI expansion-ROM references, as well as all references to the boot-bus physical
addresses via the PCI windowed addressing mechanism. (The remote PCI host
accesses the PCI_WIN_WR_ADDR, PCI_WIN_RD_ADDR, PCI_WIN_WR_DATA,
PCI_WIN_WR_MASK, and PCI_WIN_RD_DATA CSRs to use the PCI windowed-
addressing mechanism.)

Figure 12–1 Boot-Bus Hardware

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:0>

BOOT_WAIT_L

IOBI

IOBO Bus

Local

Boot-Bus Hardware

MIO

Cache
Regions

Regions

BOOT_ALE

CN50XX
480 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Owner
矩形

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Boot Bus: Boot-Bus Addresses
12.1 Boot-Bus Addresses

The boot bus consumes a 4GB portion of the CN50XX physical-address (PA) space
range from 0x1 0000 0000 0000 to 0x1 0000 FFFF FFFF.

The boot-bus physical addresses shown in Table 12–1 are particularly important,
as they are exception vectors for the cores.

Other core exceptions can also vector to boot-bus addresses in certain situations.
The other exception vectors can be avoided by configuration if desired (by clearing
the core COP0 register bit Status[BEV]), but the vector addresses in Table 12–1
cannot be avoided by core configuration.

If a system does not have any devices attached to the boot bus, the two local cache
regions in the boot-bus hardware must service the (instruction fetch) reads that
immediately follow the exceptions listed in Table 12–1. In such a system, CN50XX
cannot self-boot (i.e. the external PCI_BOOT pin must be set to 1). Each local
cache region can hold up to 32 instructions at these vector addresses. If more
instructions are needed to service these exceptions in these systems, the exception
handler must jump to L2/DRAM within these first 32 instructions.

The following boot-bus address range is also of particular interest regarding PCI
expansion ROM references.

12.2 Boot-Bus Address Matching and Regions

The boot-bus hardware only services boot-bus references by matching their PA
with programmed regions. For read operations, the hardware first checks for a
match with the local cache regions. If the read PA matches one of the two local
cache regions, the hardware services the read with the data in the cache inside
the unit. Otherwise (i.e. for any write operations or for a read operation that does
not hit in a local cache region), the boot-bus hardware checks for a match of the
PA with the bus regions. On a match, the hardware uses that region (and its
corresponding chip select and timing parameters) to complete the reference.

NOTE: CN50XX cores also convert all of their physical addresses in the range
0x0 0000 1000 0000 to 0x0 0000 1FFF FFFF to CN50XX boot-bus physical addresses in the range
0x1 0000 1000 0000 to 0x1 0000 1FFF FFFF.

Table 12–1 Exception Vectors

Vector Address (PA) Comment

0x1 0000 1FC0 0000 A core vectors to this physical address after all resets, soft resets,
or nonmaskable interrupt (NMI) exceptions.

0x1 0000 1FC0 0480 If the EJTAG TAP register field ECR[ProbEn] is not set, a core
vectors to this physical address after all debug exceptions (i.e.
whenever it enters debug mode).

Table 12–2 PCI Expansion-ROM Address Range

Address (PA) Range Comment

0x1 0000 1FC1 0000
to
0x1 0000 1FC1 FFFF

This is the 64KB physical-address range used for PCI expansion
ROM references. The PCI hardware converts expansion-ROM
reads by a remote PCI host into CN50XX boot-bus accesses in this
range.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 481

Owner
高亮

 Boot Bus: Boot-Bus Reset Configuration and Booting
Each of the two local cache regions are enabled when the corresponding
MIO_BOOT_LOC_CFGn[EN] is set. Each local cache region is 128 bytes when
enabled, and matches when PA<31:7> of the read PA equals
MIO_BOOT_LOC_CFGn[BASE].

The storage for each local-cache region is held in the boot-bus logic, and must be
filled by software before the local-cache region is enabled. Software can fill local-
cache region 0 by performing the following steps:

1. Set MIO_BOOT_LOC_ADR to 0x0 (set to 0x80 for local-cache region 1).

2. Write MIO_BOOT_LOC_DAT 16 times with eight bytes each time.

Each of the eight bus regions are enabled when the corresponding
MIO_BOOT_REG_CFGn[EN] is set. The size in bytes of each enabled bus region
is:

(MIO_BOOT_REG_CFGn[SIZE] + 1) × 216

A boot-bus read or write operation matches an enabled bus region when both of
the following conditions are met:

PA<31:16> ≥ MIO_BOOT_REG_CFGn[BASE], AND

PA<31:16> ≤ MIO_BOOT_REG_CFGn[BASE] + MIO_BOOT_REG_CFGn[SIZE]

When a boot-bus reference matches an enabled bus region, the chip-select for the
region asserts to complete the reference. The boot-bus address used to access the
external device is:

BOOT_A<27:0> = PA<31:0> − (MIO_BOOT_REG_CFGn[BASE] << 16)

Software must ensure the following conditions:

● Software must not allow more than one local-cache region to match any PA.

● Software must not allow more than one bus region to match any PA.

It is legal for a PA to match both a local cache region and a bus region, though.
When this happens, a read takes the data from the local-cache region.

12.3 Boot-Bus Reset Configuration and Booting

The reset configuration for the bus regions must be used when CN50XX self-boots
(i.e. when PCI_BOOT = 0), as the core-reset vector is used immediately out of
reset in this case. After reset, bus region 0 is set up this way:

● it is the only valid region

● it is maximum size

● it maps CN50XX PA = 0x1 0000 1FC0 0000 to boot address = 0x0 on the device
attached to chip-select 0.

● it uses an 8-bit data width, unless an external pullup resistor is connected to
BOOT_AD[14], then it uses a 16-bit data width.

● it operates in standard, nonmultiplexed mode, unless an external pullup
resistor is connected to BOOT_AD[15], then it operates in multiplexed mode.

NOTE: Depending on the configuration, it is possible that some of the 28
internal address bits will not appear on BOOT_AD<27:0>.
482 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Boot Bus: Boot-Bus Region Timing
This means that when CN50XX self-boots, the device attached to chip-select 0
must contain the boot code for the CN50XX starting at boot address = 0. When the
CN50XX self-boots, core 0 executes this code immediately following chip-reset
deassertion. The reset timing parameters for region 0 are set to conservative
values to accommodate a wide range of devices. If desired, the timing parameters
for region 0 can be changed for faster operation while booting.

The reset configuration for the bus regions typically must also be used when PCI
expansion-ROM references occur in the system, since PCI expansion-ROM
references from a remote host occur early in the PCI-bus boot sequence. The boot-
bus regions will typically not have changed from their reset values at the time
that the reads occur, so all PCI expansion-ROM reads map to the device attached
to chip select 0.

● To fully support a PCI expansion ROM via CN50XX, a device typically must be
attached to chip-select 0, and must contain the expansion-ROM data starting
at boot address = 0x10000 in the device.

● If a device is not physically attached to boot-bus chip-select 0, any PCI
expansion-ROM read operations return 0 (as do any other references to the
region), and it appears that a PCI expansion ROM is not present to remote
PCI host software.

● If a device is attached to chip-select 0 and PCI expansion-ROM read
operations to CN50XX occur, the remote PCI-host configuration software still
thinks that an expansion ROM is not present as long as read operations near
physical address 0x1 0000 1FC1 0000 (i.e. boot address = ~0x10000 in the
device) return 0s.

When a system has a memory device attached to chip-select 0, but wants it to
appear to a remote PCI host that the PCI expansion ROM is not present, the
system must set the boot addresses = ~0x10000 to 0 on the device attached to
chip-select 0.

12.4 Boot-Bus Region Timing

The mode and timing of each boot-bus region can be configured independently
(using MIO_BOOT_REG_TIMn), so the characteristics of each device on the bus
can be completely different. The different chip-selects insulate the different
devices on the bus from each other. CN50XX is the default driver of the
BOOT_DAT data bus.

Most individual devices only require a single set of modes and timing parameters.
The boot bus has an OR mode, enabled by setting MIO_BOOT_REG_CFGn[OR],
that makes CN50XX support two different modes/timings for a device, though the
device need only connect to a single BOOT_CE_n_L wire. When
MIO_BOOT_REG_CFGn[OR] is set, BOOT_CE_n_L asserts whenever either
region n or region n−1 matches.

● If region n matches, the mode and timing for region n are used.

● If region n−1 matches, the mode and timing for region n−1 are used.

In either case, BOOT_CE_n_L asserts. This can be useful for devices like the
compact flash. The compact flash has both attribute and common memories, each
with very different characteristics. MIO_BOOT_REG_CFGn[OR] is not needed if
the different memories can be accessed at different times, however (with a
MIO_BOOT_REG_TIMn reconfiguration between them).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 483

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

 Boot Bus: Boot-Bus Region Timing
Table 12–3 shows the configuration of the two mode bits that determine bus
operation.

Table 12–4 describes the time intervals used in the timing diagrams that follow.

The timing configuration parameters, with the exception of
MIO_BOOT_REG_TIMn[WAIT], specify the time interval in internal core-clock
cycles:

time_interval = (TM × config_parameter + 1) core-clock cycles
where TM = MIO_BOOT_REG_CFGn[TIM_MULT]

The wait time after the deassertion of BOOT_WAIT_L is specified in internal
core-clock cycles:

time_interval = MIO_BOOT_REG_TIMn[WAIT] core-clock cycles

Table 12–3 Bus Operation

MIO_BOOT_REG_TIMn

Comment<63>[PAGEM] <62>[WAITM]

0 0 Static-timed, page-mode disabled

0 1 Dynamic-timed (via BOOT_WAIT_L)

1 0 Static-timed, page-mode enabled

1 1 Illegal

Table 12–4 Boot-Bus Timing Parameters

Parameter Field Description

TADR MIO_BOOT_REG_TIMn[ADR] The time that the boot address is valid before BOOT_CE_n_L asserts in
nonmultiplexed mode, or the time between the deassertion of
BOOT_ALE and the assertion of BOOT_CE_n_L in multiplexed mode.

Also affects the minimum idle time between bus references in
nonmultiplexed mode.

TCE MIO_BOOT_REG_TIMn[CE] The time that BOOT_CE_n_L is asserted before BOOT_OE_L (read
operation) or BOOT_WE_L (write operation) asserts.

TOE {MIO_BOOT_REG_CFGn[OE_EXT],
MIO_BOOT_REG_TIMn[OE]}

The time that BOOT_OE_L is asserted for a read operation.

TRH MIO_BOOT_REG_TIMn[RD_HLD] The time that BOOT_CE_n_L remains asserted after BOOT_OE_L
deasserts for a read operation.

TPAUSE MIO_BOOT_REG_TIMn[PAUSE] The time that the boot address retains its value after BOOT_CE_n_L
deasserts. Also affects the minimum idle time between bus references.

TWE {MIO_BOOT_REG_CFGn[WE_EXT],
MIO_BOOT_REG_TIMn[WE]}

The time that BOOT_WE_L is asserted for a write operation.

TWH MIO_BOOT_REG_TIMn[WR_HLD] The time that BOOT_CE_n_L remains asserted after BOOT_WE_L
deasserts for a write operation.

TPAGE MIO_BOOT_REG_TIMn[PAGE] The time that the boot address must be valid before resampling
BOOT_DAT on a page-mode read operation.

TWAIT MIO_BOOT_REG_TIMn[WAIT] The time that BOOT_WAIT_L must be deasserted before BOOT_OE_L
(read operation) or BOOT_WE_L (write operation) deasserts.

TALE MIO_BOOT_REG_TIMn[ALE] The time that BOOT_ALE is asserted in multiplexed mode.
484 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
Table 12–5 describes the fixed time intervals used in the timing diagrams.

In the timing sequences in the following sections, the examples can have the
following properties:
● multiplexed (ALE) or nonmultiplexed (not ALE)
● eight-bit data width (8W) or 16-bit data width (16W)

12.4.1 Static-Timed Read Sequences

Static-timed read operations can be performed in the following modes:

eight-bit, nonmultiplexed (ALE, 8W)
eight-bit, multiplexed (ALE, 8W)
16-bit, nonmultiplexed (ALE, 16W)
16-bit, multiplexed (ALE, 16W)

Static-Timed Read: Not ALE, 8W
Figure 12–2 shows a boot-bus single-byte read transaction in eight-bit,
nonmultiplexed mode. All reads to the device are single-byte when
MIO_BOOT_REG_TIMn[PAGEM] = 0 and MIO_BOOT_REG_CFGn[WIDTH] = 0.

The boot address (BOOT_AD<23:0>) first becomes valid, then BOOT_CE_n_L
asserts, then BOOT_OE_L asserts.

CN50XX stops driving boot data (BOOT_AD<31:24>) to 0s at the same time that
BOOT_OE_L asserts. CN50XX samples the boot data as it deasserts
BOOT_OE_L. After that, BOOT_CE_n_L deasserts, then the boot address returns
to 0s. CN50XX drives the boot data to 0s after it deasserts BOOT_CE_n_L.

Table 12–5 Boot-Bus Fixed-Timing Parameters
Parameter Value Description
TDS 6 ns − (MIO_BOOT_REG_CFGn[RD_DLY]

core-clock cycles)
Data setup time with respect to the rising edge of BOOT_OE_L or
the transition of BOOT_AD<2:0> (in page mode).

TDH (MIO_BOOT_REG_CFGn[RD_DLY]
core-clock cycles) −1 ns

Data hold time with respect to the rising edge of BOOT_OE_L or
the transition of BOOT_AD<2:0> (in page mode).

TWS 6 ns Wait setup time with respect to the expiration of TOE or TWE.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 485

 Boot Bus: Boot-Bus Region Timing
Figure 12–2 Static-Timed Read Sequence (not ALE, 8W)

TADR TCE

TOE

TRH
TPAUSE

Data 00000000

Address

00000000

000000 000000BOOT_AD<23:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_ALE

TDS
TDH
486 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
Static-Timed Read: ALE, 8W

Figure 12–3 shows a boot-bus single-byte read transaction in eight-bit,
multiplexed mode. All reads to the device are single-byte when
MIO_BOOT_REG_TIMn[PAGEM] = 0 and MIO_BOOT_REG_CFGn[WIDTH] = 0.

BOOT_ALE asserts and the boot address (BOOT_AD<31:0>) becomes valid first,
then BOOT_ALE deasserts, then BOOT_CE_n_L asserts, then BOOT_OE_L
asserts.

CN50XX stops driving the upper boot address bits (BOOT_AD<31:24>) at the
same time that BOOT_OE_L asserts. CN50XX samples the boot data as it
deasserts BOOT_OE_L. After that, BOOT_CE_n_L deasserts, then the boot
address returns to 0s. CN50XX drives the boot data after it deasserts
BOOT_CE_n_L.

Figure 12–3 Static-Timed Read Sequence (ALE, 8W)

TADR TCE

TOE

TRH
TPAUSE

Data 000000

Address000000 000000

000000 Address

BOOT_AD<23:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_ALE
TALE

TDS

TDH
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 487

 Boot Bus: Boot-Bus Region Timing
Static-Timed Read: Not ALE, 16W

Figure 12–4 shows a boot-bus two-byte read transaction in 16-bit, nonmultiplexed
mode. All reads to the device are two-byte when
MIO_BOOT_REG_TIMn[PAGEM] = 0 and MIO_BOOT_REG_CFGn[WIDTH] = 1.

The boot address (BOOT_AD<15:0>) first becomes valid, then BOOT_CE_n_L
asserts, then BOOT_OE_L asserts.

CN50XX stops driving boot data (BOOT_AD<31:16>) to 0s at the same time that
BOOT_OE_L asserts. CN50XX samples the boot data as it deasserts
BOOT_OE_L. After that, BOOT_CE_n_L deasserts, then the boot address returns
to 0s. CN50XX drives the boot data to 0s after it deasserts BOOT_CE_n_L.

Figure 12–4 Static-Timed Read Sequence (not ALE, 16W)

TADR TCE

TOE

TRH
TPAUSE

Data 00000000

Address

00000000

000000 000000BOOT_AD<15:1>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:16>

BOOT_ALE

BOOT_AD<0>

TDS
TDH
488 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
Static-Timed Read: ALE, 16W

Figure 12–5 shows a boot-bus two-byte read transaction in 16-bit, multiplexed
mode. All reads to the device are two-byte when
MIO_BOOT_REG_TIMn[PAGEM] = 0 and MIO_BOOT_REG_CFGn[WIDTH] = 1.

BOOT_ALE asserts and the boot address (BOOT_AD<31:0>) becomes valid first,
then BOOT_ALE deasserts, then BOOT_CE_n_L asserts, then BOOT_OE_L
asserts.

CN50XX stops driving the upper boot address bits (BOOT_AD<31:16>) at the
same time that BOOT_OE_L asserts. CN50XX samples the boot data as it
deasserts BOOT_OE_L. After that, BOOT_CE_n_L deasserts, then the boot
address returns to 0s. CN50XX drives the boot data after it deasserts
BOOT_CE_n_L.

Figure 12–5 Static-Timed Read Sequence (ALE, 16W)

TADR TCE

TOE

TRH
TPAUSE

Data 000000

Address000000 000000

000000 Address

BOOT_AD<15:1>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:16>

BOOT_ALE
TALE

BOOT_AD<0>

TDS

TDH
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 489

 Boot Bus: Boot-Bus Region Timing
12.4.2 Static-Timed Write Sequences
Static-timed write operations can be performed in the following modes:

eight-bit, nonmultiplexed
eight-bit, multiplexed
16-bit, nonmultiplexed
16-bit, multiplexed

Static-Timed Write: Not ALE, 8W

Figure 12–6 shows a boot-bus write transaction in eight-bit, nonmultiplexed
mode. All boot-bus write transactions are single-byte when
MIO_BOOT_REG_CFGn[WIDTH] = 0. The boot address (BOOT_AD<23:0>) and
boot data (BOOT_AD<31:24>) become valid first, then BOOT_CE_n_L asserts
and BOOT_WE_L asserts. After a time delay, BOOT_WE_L deasserts,
BOOT_CE_n_L deasserts, and finally the boot address and boot data return to 0s.

Static-Timed Write: ALE, 8W

Figure 12–7 shows a boot-bus write transaction in eight-bit, multiplexed mode. All
boot-bus write transactions are single-byte when
MIO_BOOT_REG_CFGn[WIDTH] = 0.

BOOT_ALE asserts and the boot address (BOOT_AD<31:0>) becomes valid. Then
BOOT_CE_n_L asserts and boot data (BOOT_AD<31:24>) becomes valid, and
BOOT_WE_L asserts. After a time delay, BOOT_WE_L deasserts, BOOT_CE_n_L
deasserts, and finally the boot address and boot data return to 0s.

Figure 12–6 Static-Timed Write Sequence (not ALE, 8W)

TADR TCE

TWE

TWH
TPAUSE

00000000

BOOT_AD<23:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

Address

Data

000000 000000

BOOT_ALE
490 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
Figure 12–7 Static-Timed Write Sequence (ALE, 8W)

TADR TCE

TWE

TWH
TPAUSE

00000000

Address

Data

000000 0000

TALE

BOOT_AD<23:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_ALE

Address
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 491

 Boot Bus: Boot-Bus Region Timing
Static-Timed Write: Not ALE, 16W

Figure 12–8 shows a boot-bus write transaction in 16-bit, nonmultiplexed mode.
All boot-bus write transactions are two-byte when
MIO_BOOT_REG_CFGn[WIDTH] = 1. The boot address (BOOT_AD<15:0>) and
boot data (BOOT_AD<31:16>) become valid first, then BOOT_CE_n_L asserts
and BOOT_WE_L asserts. After a time delay, BOOT_WE_L deasserts,
BOOT_CE_n_L deasserts, and finally the boot address and boot data return to 0s.

Static-Timed Write: ALE, 16W

Figure 12–9 shows a boot-bus write transaction in 16-bit, multiplexed mode. All
boot-bus write transactions are two-byte when
MIO_BOOT_REG_CFGn[WIDTH] = 1.

BOOT_ALE asserts and the boot address (BOOT_AD<31:0>) becomes valid. Then
BOOT_CE_n_L asserts and boot data (BOOT_AD<31:16>) becomes valid, and
BOOT_WE_L asserts. After a time delay, BOOT_WE_L deasserts, BOOT_CE_n_L
deasserts, and finally the boot address and boot data return to 0s.

Figure 12–8 Static-Timed Write Sequence (not ALE, 16W)

TADR TCE

TWE

TWH
TPAUSE

00000000

BOOT_AD<15:1>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:16>

Address

Data

000000 000000

BOOT_AD<0>

BOOT_ALE

Figure 12–9 Static-Timed Write Sequence (ALE, 16W)

TADR TCE

TWE

TWH
TPAUSE

00000000

Address

Data

000000 0000

TALE

BOOT_AD<15:1>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:16>

BOOT_ALE

Address

BOOT_AD<0>
492 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
12.4.3 Static-Timed Page-Read Sequences
Static-timed page-read operations can be performed in the following modes:

eight-bit, nonmultiplexed
eight-bit, multiplexed
16-bit, nonmultiplexed
16-bit, multiplexed

Static-Timed Page-Read: Not ALE, 8W

Figure 12–10 shows a boot-bus page read transaction with a four-byte length in
eight-bit, nonmultiplexed mode. When MIO_BOOT_REG_TIMn[PAGEM] = 1 and
MIO_BOOT_REG_CFGn[WIDTH] = 0, 64-bit, 32-bit, and 16-bit read transactions
are page-mode read transactions. This example shows a page of four bytes. Two-
and eight-byte pages are also possible.

The transaction is the same as the single-byte transaction in Figure 12–2 up to
the point when TOE would expire. Instead, at that point, BOOT_OE_L remains
asserted and the boot address transitions through the next three sequential
addresses (bits of lesser significance in the word since the bus is big-endian).

CN50XX samples the boot data (BOOT_AD<31:24>) for the previous address as it
transitions to the next address. BOOT_OE_L deasserts as boot data is sampled
the last time, and the remainder of the transaction is identical to the single-byte
case.

Figure 12–10 Static-Timed Page-Read Sequence (Four-Byte Page) (not ALE, 8W)

TADR TCE

TOE

TRH
TPAUSE

000000000000000

BOOT_AD<1:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_AD<23:2> Page Address

Data2Data0 Data1 Data3

0 1 2 3

TPAGE TPAGE TPAGE

000000 0000

0 0

BOOT_ALE

TDS

TDH

TDS

TDH

TDS

TDH

TDS

TDH
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 493

 Boot Bus: Boot-Bus Region Timing
Static-Timed Page-Read: ALE, 8W

Figure 12–11 shows a boot-bus page read transaction with a four-byte length in
eight-bit, multiplexed mode. When MIO_BOOT_REG_TIMn[PAGEM] = 1 and
MIO_BOOT_REG_CFGn[WIDTH] = 0, 64-bit, 32-bit, and 16-bit read transactions
are page-mode read transactions. This example shows a page of four bytes. Two-
and eight-byte pages are also possible.

The transaction is the same as the single-byte transaction in Figure 12–3 up to
the point when TOE would expire. Instead, at that point, BOOT_OE_L remains
asserted and the boot address transitions through the next three sequential
addresses (bits of lesser significance in the word since the bus is big-endian).

CN50XX samples the boot data (BOOT_AD<31:24>) for the previous address as it
transitions to the next address. BOOT_OE_L deasserts as boot data is sampled
the last time, and the remainder of the transaction is identical to the single-byte
case.

Figure 12–11 Static-Timed Page-Read Sequence (Four-Byte Page) (ALE, 8W)

TADR TCE

TOE

TRH
TPAUSE

0000

Page Address

Data2Data0 Data1 Data3

0 1 2 3

TPAGE TPAGE TPAGE

000000 000

0 0

TALE

000000 Address

BOOT_AD<1:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_AD<23:2>

BOOT_ALE

TDS

TDH

TDS

TDH

TDS

TDH

TDS
494 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
Static-Timed Page-Read: Not ALE, 16W

Figure 12–12 shows a boot-bus page read transaction with an eight-byte length in
16-bit, nonmultiplexed mode. When MIO_BOOT_REG_TIMn[PAGEM] = 1 and
MIO_BOOT_REG_CFGn[WIDTH] = 1, 64-bit and 32-bit read transactions are
page-mode read transactions. This example shows a page of eight bytes. Four-byte
pages are also possible.

The transaction is the same as the two-byte transaction in Figure 12–4 up to the
point when TOE would expire. Instead, at that point, BOOT_OE_L remains
asserted and the boot address transitions through the next three sequential
addresses (bits of lesser significance in the word since the bus is big-endian).

CN50XX samples the boot data (BOOT_AD<31:16>) for the previous address as it
transitions to the next address. BOOT_OE_L deasserts as boot data is sampled
the last time, and the remainder of the transaction is identical to the two-byte
case.

Figure 12–12 Static-Timed Page-Read Sequence (Eight-Byte Page) (not ALE, 16W)

TADR TCE

TOE

TRH
TPAUSE

0000000000000000

BOOT_AD<2:1>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:16>

BOOT_AD<15:3> Page Address

Data2Data0 Data1 Data3

0 1 2 3

TPAGE TPAGE TPAGE

000000 000000

0 0

BOOT_AD<0>

BOOT_ALE

TDS

TDH

TDS

TDH

TDS

TDH

TDS

TDH
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 495

 Boot Bus: Boot-Bus Region Timing
Static-Timed Page-Read: ALE, 16W

Figure 12–12 shows a boot-bus page read transaction with an eight-byte length in
16-bit, multiplexed mode. When MIO_BOOT_REG_TIMn[PAGEM] = 1 and
MIO_BOOT_REG_CFGn[WIDTH] = 1, 64-bit and 32-bit read transactions are
page-mode read transactions. This example shows a page of eight bytes. Four-byte
pages are also possible.

The transaction is the same as the two-byte transaction in Figure 12–5 up to the
point when TOE would expire. Instead, at that point, BOOT_OE_L remains
asserted and the boot address transitions through the next three sequential
addresses (bits of lesser significance in the word since the bus is big-endian).

CN50XX samples the boot data (BOOT_AD<31:16>) for the previous address as it
transitions to the next address. BOOT_OE_L deasserts as boot data is sampled
the last time, and the remainder of the transaction is identical to the two-byte
case.

Figure 12–13 Static-Timed Page-Read Sequence (Eight-Byte Page) (ALE, 16W)

TADR TCE

TOE

TRH
TPAUSE

00000000

BOOT_AD<2:1>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:16>

BOOT_AD<15:3>

Data2Data0 Data1 Data3

1 2 3

TPAGE TPAGE TPAGE

0000 0000

0 0

BOOT_AD<0>

BOOT_ALE
TALE

Address

Page Address

0

TDS

TDH

TDS

TDH

TDS

TDH

TDS

TDH
496 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Region Timing
12.4.4 Dynamic-Timed Sequences

Dynamic-timed read and write operations can be performed in the following
modes:

eight-bit, nonmultiplexed
eight-bit, multiplexed
16-bit, nonmultiplexed
16-bit, multiplexed

The following examples are shown:
eight-bit, nonmultiplexed read operation
eight-bit, nonmultiplexed write operation

Dynamic-Timed Read Sequence (not ALE, 8W)

Figure 12–14 shows a dynamic-timed read transaction (i.e. when
MIO_BOOT_REG_TIMn[WAITM] = 1). This example is in eight-bit, non-
multiplexed mode, but multiplexed and 16-bit dynamic-timed read sequences are
also possible. This transaction is almost identical to the single-byte read
transaction shown in Figure 12–2, except for the delay in the deassertion of
BOOT_OE_L caused by the target device asserting BOOT_WAIT_L. Note that
BOOT_WAIT_L must be asserted before TOE would normally expire, otherwise
the transaction will not be extended. After TOE has expired and BOOT_WAIT_L
has been deasserted for TWAIT cycles, BOOT_OE_L deasserts and the transaction
continues as a normal single byte read. Note that if BOOT_WAIT_L is still
asserted 215 cycles after TOE would normally expire, the transaction completes as
normal (though presumably with bad read data) and
MIO_BOOT_ERR[WAIT_ERR] is set.

Figure 12–14 Dynamic-Timed Read Sequence (not ALE, 8W)

TADR TCE TRH
TPAUSE

0000000000000000

Address

TWAIT

TOE

Data

000000 000000

TDS TDH

TWS

BOOT_AD<23:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_WAIT_L
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 497

 Boot Bus: Boot-Bus Request Queuing
Dynamic-Timed Write Sequence (not ALE, 8W)

Figure 12–15 shows a dynamic-timed write transaction (i.e. when
MIO_BOOT_REG_TIMn[WAITM] = 1). This example is in eight-bit, non-
multiplexed mode, but multiplexed and 16-bit dynamic-timed write sequences are
also possible. This transaction is almost identical to the byte-write transaction
shown in Figure 12–7, except for the delay in the deassertion of BOOT_WE_L
caused by the target device asserting BOOT_WAIT_L. Note that BOOT_WAIT_L
must be asserted before TWE would normally expire, otherwise the transaction
will not be extended. After TWE has expired and BOOT_WAIT_L has been
deasserted for TWAIT cycles, BOOT_WE_L deasserts and the transaction
continues as a normal byte write. Note that if BOOT_WAIT_L is still asserted 215
cycles after TWE would normally expire, the transaction completes as normal
(though presumably the write will not complete in the target) and
MIO_BOOT_ERR[WAIT_ERR] is set.

12.5 Boot-Bus Request Queuing

The boot-bus logic has a FIFO that holds load/store operations destined for the
boot bus. When

FIFO size ≥ MIO_BOOT_THR[FIF_THR],
the boot-bus logic applies backpressure, and no more CSR references (destined
anywhere in CN50XX) can complete. Each load/store operation takes one FIFO
entry. It can take a long time for this queue to drain, depending on the timing of
the devices on the bus. Overflow of this FIFO should preferably be avoided when
fast response from CN50XX is required. Load operations cannot cause the FIFO to
overflow, since each core has at most one load outstanding, but a single core can
overflow the FIFO with IOBDMA or store operations.

MIO_BOOT_THR[FIF_CNT] contains the current FIFO size. Software can avoid
the CN50XX performance effects of overflowing this FIFO by monitoring the
current size of the FIFO after a series of IOBDMAs/store operations.

Figure 12–15 Dynamic-Timed Write Sequence (not ALE, 8W)

TADR TCE TWH
TPAUSE

00000000

Address

TWAIT

Data

TWE

000000 000000

TWS

BOOT_AD<23:0>

BOOT_CE_n_L

BOOT_OE_L

BOOT_WE_L

BOOT_AD<31:24>

BOOT_WAIT_L
498 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Connections
12.6 Boot-Bus Connections

Figure 12–16 shows a sample connection from the boot bus to a 16-bit-wide,
256MB flash memory, using BOOT_CE_0_L. Note the pullup resistors on
BOOT_AD<15, 14> to enable 16-bit and multiplexed booting.

Figure 12–17 shows a sample connection from the boot bus to an 8-bit-wide, 16MB
flash memory, nonmultiplexed, using BOOT_CE_0_L.

Figure 12–18 shows a sample connection from the boot bus to an 16-bit-wide,
compact flash memory, nonmultiplexed, using BOOT_CE_3_L.

Figure 12–16 Sample Boot-Bus Connection 1 (ALE, 16W)

CE_L
OE_L
WE_L

256MB
Flash

Memory

D<15:0>

A<26:0>
74LVTH16373

LE

D<11:0> Q<11:0>

<15>

<14>

<31:16>

<27:16>

<15:1>

Vdd

10KΩ10KΩ

BOOT_AD<31:0>

BOOT_ALE
BOOT_CE_0_L

BOOT_OE_L
BOOT_WE_L

CN50XX

Figure 12–17 Sample Boot-Bus Connection 2 (not ALE, 8W)

CE_L
OE_L
WE_L

16MB
Flash

Memory

D<7:0>

A<23:0>

<31:24>

<23:0>

BOOT_AD<31:0>

BOOT_CE_0_L
BOOT_OE_L
BOOT_WE_L

CN50XX

Figure 12–18 Sample Boot-Bus Connection 3 (not ALE, 16W)

CE1_L

OE_L
WE_L

Compact
Flash

Memory

D<15:0>

A<10:0>

<31:16>

<10:0>

BOOT_AD<31:0>

BOOT_CE_3_L

BOOT_OE_L
BOOT_WE_L

CN50XX

REG_L

WAIT_LBOOT_WAIT_L

CE2_L

<11>
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 499

 Boot Bus: Boot-Bus Operations
12.7 Boot-Bus Operations

The boot bus performs load, IOBDMA, and store operations, which are described
in the following subsections.

12.7.1 Load Operations

Load Address Field

● address - The address to be matched to local cache and bus regions.

for 64-bit load operations: address<2:0> must be 000.

for 32-bit load operations: address<1:0> must be 00.

for 16-bit load operations: address<0> must be 0.

Load Result Field

64-bit operation result

● data - data is the result of the boot-bus load, in big-endian format.

32-bit operation result

● data - data is the result of the boot-bus load operation, in big-endian format.

16-bit operation result

● data - data is the result of the boot-bus load operation, in big-endian format.

8-bit operation result

● data - data is the result of the boot-bus load operation.

48 47 43 42 40 39 32 31 0

1
Major DID

0000 0
subDID

000
Reserved

0000 0000
address

63 0

data

31 0

data

15 0

data

7 0

data
500 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Operations
12.7.2 IOBDMA Operations

IOBDMA Address Field

● scraddr - Defined in “cnMIPS™ Core” on page 147.
● len - Must be 1. Defined in “cnMIPS™ Core” on page 147.
● size - Indicates the size of the operation

00 = 8-byte operation
01 = 4-byte operation
10 = 2-byte operation
11 = 1-byte operation

● address - The address to be matched to local cache and bus regions.
for 64-bit IOBDMA operations: address<2:0> must be 000.
for 32-bit IOBDMA operations: address<1:0> must be 00.
for 16-bit IOBDMA operations: address<0> must be 0.

IOBDMA Result Field

8-byte IOBDMA operation result

● data - data is the result of the boot-bus read operations totalling 8 bytes, in
big-endian format.

4-byte IOBDMA operation result

● data - data is the result of the boot-bus read operations totalling 4 bytes, in
big-endian format, duplicated in <63:32> and <31:0>.

2-byte IOBDMA operation result

● data - data is the result of the boot-bus read operations totalling 2 bytes, in
big-endian format, duplicated in <63:48>, <47:32>, <31:16>, and
<15:0>.

1-byte IOBDMA operation result

● data - data is the result of the boot-bus read operations totalling 8 bytes, in
big-endian format, duplicated in all bytes.

63 56 55 48 47 43 42 40 39 36 35 34 33 32 31 0

scraddr
len
1

Major DID
0000 0

subDID
000

Reserved
0000

size
Reserved

00
address

63 0

data

63 32 31 0

data data

63 48 47 32 31 16 15 0

data data data data

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

data data data data data data data data
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 501

 Boot Bus: Boot-Bus Registers
12.7.3 Store Operations

Store Address Field

● address - The address to be matched to local cache and bus regions.

for 64-bit store operations: address<2:0> must be 000.

for 32-bit store operations: address<1:0> must be 00.

for 16-bit store operations: address<0> must be 0.

The boot-bus hardware writes the store data onto the boot bus in big-endian
format.

12.8 Boot-Bus Registers

The boot-bus registers are listed in Table 12–6.

48 47 43 42 40 39 32 31 0

1
Major DID

0000 0
subDID

000
Reserved

0000 0000
address

Table 12–6 Boot-Bus Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O bus.

Detailed Description

MIO_BOOT_REG_CFG0 0x0001180000000000 RSL See page 503

MIO_BOOT_REG_CFG1
...
MIO_BOOT_REG_CFG7

0x0001180000000008
...
0x0001180000000038

RSL See page 504

MIO_BOOT_REG_TIM0 0x0001180000000040 RSL See page 505

MIO_BOOT_REG_TIM1
...
MIO_BOOT_REG_TIM7

0x0001180000000048
...
0x0001180000000078

RSL See page 505

MIO_BOOT_LOC_CFG0 0x0001180000000080 RSL See page 506

MIO_BOOT_LOC_CFG1 0x0001180000000088 RSL See page 506

MIO_BOOT_LOC_ADR 0x0001180000000090 RSL See page 506

MIO_BOOT_LOC_DAT 0x0001180000000098 RSL See page 506

MIO_BOOT_ERR 0x00011800000000A0 RSL See page 507

MIO_BOOT_INT 0x00011800000000A8 RSL See page 507

MIO_BOOT_THR 0x00011800000000B0 RSL See page 507

MIO_BOOT_COMP 0x00011800000000B8 RSL See page 508

MIO_BOOT_BIST_STAT 0x00011800000000F8 RSL See page 508
502 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Registers
MIO Boot Region 0 Configuration Register
MIO_BOOT_REG_CFG0

The region 0 configuration register contains configuration parameters for boot
region 0. See Table 12–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:42> — RAZ — — Reserved.
<41:40> TIM_MULT R/W 0x0 — Region 0 timing multiplier, specifies the timing multiplier for region 0.

The timing multiplier applies to all timing parameters, except for
WAIT and RD_DLY, which simply count core-clock cycles.

00 = 4×, 01 = 1×, 10 = 2×, 11 = 8×.
<39:37> RD_DLY R/W 0x0 — Region 0 read sample delay, specifies the read sample delay in core-

clock cycles for region 0. For read operations, the data bus is normally
sampled on the same core-clock edge that drives BOOT_OE_N to the
inactive state (or the core-clock edge that toggles the lower address
bits in page mode). This parameter can delay that sampling edge by
up to 7 core-clock cycles.

NOTE: The number of core-clock cycles counted by the PAGE and RD_HLD timing
parameters must be greater than RD_DLY.

<36> SAM R/W 0 — Region 0 strobe and mode. When asserted, this field internally
combines the output-enable and write-enable strobes into a single
strobe that is then driven onto both BOOT_OE_and BOOT_WE_L.
This is useful for parts that use a single strobe along with a read/write
bit that can be driven from an address signal.

<35:34> WE_EXT R/W 0x0 — Region 0 write-enable count extension.
<33:32> OE_EXT R/W 0x0 — Region 0 output-enable count extension.
<31> EN R/W 1 1 Region 0 enable.
<30> OR R/W 0 0 Reserved (since there is no previous region).
<29> ALE1 R/W 0 — Region 0 address-latch enable.

0 = address/data bus not multiplexed
1 = address/data bus multiplexed

<28> WIDTH2 R/W 0 — Region 0 data-bus width: 0 = 8-bit, 1 = 16-bit.

<27:16> SIZE R/W 0xFFF — Region 0 size. Region size is specified in 64K blocks and in “block−1”
notation (i.e. 0 = 1 64K block, 1 = 2 64K blocks, etc.).

<15:0> BASE R/W 0x1FC0 0x1FC0 Region 0 base address. Specifies address bits [31:16] of the first 64K
block of the region.

1. The reset value is the value of BOOT_AD15 at the deassertion of reset. BOOT_AD15 has an internal pulldown resistor, so you must place
an external pullup resistor on it to enable multiplexing out of reset for region 0.

2. The reset value is the value of BOOT_AD14 at the deassertion of reset. BOOT_AD14 has an internal pulldown resistor, so you must place
an external pullup resistor on it to enable a 16-bit bus out of reset for region 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 503

 Boot Bus: Boot-Bus Registers
MIO Boot Regions 1..7 Configuration Registers
MIO_BOOT_REG_CFG(1..7)

The region n configuration register (one register for each of seven regions)
contains configuration parameters for boot region n. See Table 12–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:42> — RAZ — — Reserved.
<41:40> TIM_MULT R/W 0x0 — Region 1–7 timing multiplier, specifies the timing multiplier for region 0.

The timing multiplier applies to all timing parameters, except for WAIT
and RD_DLY, which simply count core-clock cycles.

00 = 4×, 01 = 1×, 10 = 2×, 11 = 8×.
<39:37> RD_DLY R/W 0x0 — Region 1–7 read sample delay, specifies the read sample delay in core-

clock cycles for region 0. For read operations, the data bus is normally
sampled on the same core-clock edge that drives BOOT_OE_N to the
inactive state (or the core-clock edge that toggles the lower address bits in
page mode). This parameter can delay that sampling edge by up to 7 core-
clock cycles.

NOTE: The number of core-clock cycles counted by the PAGE and RD_HLD timing
parameters must be greater than RD_DLY.

<36> SAM R/W 0 — Region 1–7 strobe and mode. When asserted, this field internally combines
the output-enable and write-enable strobes into a single strobe that is
then driven onto both BOOT_OE_and BOOT_WE_L. This is useful for
parts that use a single strobe along with a read/write bit that can be
driven from an address signal.

<35:34> WE_EXT R/W 0x0 — Region 1–7 write-enable count extension.
<33:32> OE_EXT R/W 0x0 — Region 1–7 output-enable count extension.
<31> EN R/W 0 1 Region 1–7 enable.
<30> OR R/W 0 0 Region 1–7 OR bit. Asserts the given region’s chip enable when there is an

address hit in the previous region. This is useful for CF cards because it
allows the use of 2 separate timing configurations for common memory
and attribute memory.

<29> ALE R/W 0 — Region 1–7 address-latch enable.
0 = address/data bus not multiplexed
1 = address/data bus multiplexed

<28> WIDTH R/W 0 — Region 1–7 data-bus width: 0 = 8-bit, 1 = 16-bit.
<27:16> SIZE R/W 0x0 — Region 1–7 size. Region size is specified in 64K blocks and in “block−1”

notation (i.e. 0 = 1 64K block, 1 = 2 64K blocks, etc.).
<15:0> BASE R/W 0x0 — Region 1–7 base address. Specifies address bits [31:16] of the first 64K

block of the region.
504 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Registers
MIO Boot Timing Register for Region 0
MIO_BOOT_REG_TIM0

The region 0 timing register contains page-mode, wait-mode, and timing
parameters for region 0. Note that [OE], [WE], [PAGE], and [ALE] must be non-
zero to ensure legal transitions on the corresponding boot bus outputs. The
[WAIT] field must be non-zero if [WAITM] is set. See Table 12–6 for address.

MIO Boot Timing Registers for Regions 1-7
MIO_BOOT_REG_TIM(1..7)

The region n timing register (one register for each of seven regions) contains page-
mode, wait-mode, and timing parameters for region n. Note that [OE], [WE],
[PAGE], and [ALE] must be non-zero to ensure legal transitions on the
corresponding boot bus outputs. The [WAIT] field must be non-zero if [WAITM] is
set. See Table 12–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> PAGEM R/W 0 — Region 0 page-mode enable. (See Table 12–4.)
<62> WAITM R/W 0 — Region 0 wait-mode enable. (See Table 12–4.)
<61:60> PAGES R/W 0x0 — Region 0 page size.
<59:54> ALE R/W 4 — Region 0 ALE count.
<53:48> PAGE R/W 0x3F — Region 0 page count.
<47:42> WAIT R/W 0x3F — Region 0 wait count, must be nonzero when WAITM is set to 1.
<41:36> PAUSE R/W 0x11 — Region 0 pause count.
<35:30> WR_HLD R/W 0x3F — Region 0 write hold count.
<29:24> RD_HLD R/W 0x5 — Region 0 read hold count.
<23:18> WE R/W 0x3F — Region 0 write enable count.
<17:12> OE R/W 0x3F — Region 0 output enable count.
<11:6> CE R/W 0x5 — Region 0 chip enable count.
<5:0> ADR R/W 0x8 — Region 0 address count.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> PAGEM R/W 0 — Region 1–7 page-mode enable. (See Table 12–4.)
<62> WAITM R/W 0 — Region 1–7 wait-mode enable. (See Table 12–4.)
<61:60> PAGES R/W 0x0 — Region 1–7 page size.
<59:54> ALE R/W 0x3F — Region 1–7 ALE count.
<53:48> PAGE R/W 0x3F — Region 1–7 page count
<47:42> WAIT R/W 0x3F — Region 1–7 wait count, must be nonzero when WAITM is set to 1.
<41:36> PAUSE R/W 0x3F — Region 1–7 pause count
<35:30> WR_HLD R/W 0x3F — Region 1–7 write-hold count
<29:24> RD_HLD R/W 0x3F — Region 1–7 read-hold count
<23:18> WE R/W 0x3F — Region 1–7 write-enable count
<17:12> OE R/W 0x3F — Region 1–7 output-enable count
<11:6> CE R/W 0x3F — Region 1–7 chip-enable count
<5:0> ADR R/W 0x3F — Region 1–7 address count
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 505

 Boot Bus: Boot-Bus Registers
MIO Boot Local-Region Configuration Registers
MIO_BOOT_LOC_CFG0/1

The local-region configuration register (one for each of two regions) contains local-
region enable and local-region base-address parameters. Each local region is 128
bytes organized as 16 entries × 8 bytes.

See Table 12–6 for address.

MIO Boot Local-Memory Address Register
MIO_BOOT_LOC_ADR

The local-region memory-address register specifies the address for reading or
writing the local memory. This address post-increments following an access to the
MIO boot local-memory data register.

Local-memory region 0 is addresses 0x00–0x78.

Local-memory region 1 is addresses 0x80–0xF8.

See Table 12–6 for address.

MIO Boot Local-Memory Data Register
MIO_BOOT_LOC_DAT

This is a pseudo-register that reads/writes the local memory at the address
specified by the MIO boot local-memory address register when accessed.

See Table 12–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31> EN R/W 0 — Local region 0/1 enable
<30:28> — RAZ — — Reserved
<27:3> BASE R/W 0x0 — Local region 0/1 base address, specifying address bits [31:7] of the region.
<2:0> — RAZ — — Reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:3> ADR R/W 0x0 — Local memory address
<2:0> — RAZ — — Reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> DATA R/W — — Local memory data
506 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Boot Bus: Boot-Bus Registers
MIO Boot-Error Register
MIO_BOOT_ERR

The boot-error register contains the address decode error and wait mode error
bits. See Table 12–6 for address.

MIO Boot-Interrupt Register
MIO_BOOT_INT

The boot-interrupt register contains the interrupt-enable bits for address-decode
errors and wait-mode errors. See Table 12–6 for address.

MIO Boot-Threshold Register
MIO_BOOT_THR

The boot-threshold register contains MIO boot-threshold values and should never
be written.

See Table 12–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved
<1> WAIT_ERR R/W1C 0 0 Wait mode error. This bit is set when wait mode is enabled and the

external wait signal is not deasserted after 16K ECLK (core clock)
cycles.

<0> ADR_ERR R/W1C 0 0 Address decode error. This bit is set when a boot-bus access does not hit
in any of the eight remote regions or two local regions.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved
<1> WAIT_INT R/W 0 — Wait-mode error interrupt enable.
<0> ADR_INT R/W 0 — Address-decode error interrupt enable.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:14> — RAZ — — Reserved.
<13:8> FIF_CNT RO 0x0 — FIFO count. Contains the current IOB FIFO count.
<7:6> — RAZ — — Reserved.
<5:0> FIF_THR RO 0x1A 0x1A IOB busy threshold. Should always read 0x1A (the only legal value).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 507

 Boot Bus: Boot-Bus Registers
MIO Boot Compensation Register
MIO_BOOT_COMP

See Table 12–6 for address.

MIO Boot BIST Status Register
MIO_BOOT_BIST_STAT

The boot BIST status register contains the BIST status for the MIO boot
memories: 0 = pass, 1 = fail. See Table 12–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ — — Reserved.
<9:5> PCTL R/W 0x1F — Boot bus PCTL. This controls the pull-up drive strength of the boot-bus

drivers.
0x1F = Set full strength for boot-bus drivers.
0x0F = Set 20Ω output impedance for boot-bus drivers.
0x08 = Set 50Ω output impedance for boot-bus drivers.

<4:0> NCTL R/W 0x1F — Boot bus NCTL. This controls the pull-down drive strength of the boot-
bus drivers.

0x1F = Set full strength for boot-bus drivers.
0x19 = Set 20Ω output impedance for boot-bus drivers.
0x06 = Set 50Ω output impedance for boot-bus drivers.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved.
<5> PCM_1 RO 0 0 PCM memory 1 BIST status.
<4> PCM_0 RO 0 0 PCM memory 0 BIST status.
<3> NCBO_1 RO 0 0 IOB output-FIFO 1 BIST status.
<2> NCBO_0 RO 0 0 IOB output-FIFO 0 BIST status.
<1> LOC RO 0 0 Local memory BIST status.
<0> NCBI RO 0 0 IOB input-FIFO BIST status.
508 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 13

CN50XX Packet Interface
This chapter contains the following subjects:

● Packet Interface Introduction

● RGMII Features

● Errors/Exceptions

● Link

● Statistics

● Loopback

● Initialization

● GMX Registers

● ASX Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 509

 CN50XX Packet Interface: Packet Interface Introduction
Overview

13.1 Packet Interface Introduction

The CN50XX has a packet interface that can be configured in gigabit media-
independent interface (GMII) mode, media-independent interface (MII) mode, or
reduced gigabit media-independent interface (RGMII) mode. The packet interface
supports 0–3 independent links or ports. The link configuration is chosen by the
GMX0_INF_MODE register as shown in Table 13–1.

The GMII and MII links are fully compliant with the IEEE 802.3 specification and
the RGMII links are fully compliant with both the IEEE 802.3 and HP RGMII 1.3
specifications.

Figure 13–1 shows the physical difference between the GMII, MII, and RGMII
links. Figure 13–2 shows the different operating modes.

Table 13–1 Packet Interface Configuration

GMX0_INF_MODE

Configuration[EN] [TYPE] [P0MII]

0 X X All links are disabled.

Port 0 Configure

1 X 0 Port 0 is RGMII

1 X 1 Port 0 is MII

Ports 1 and 21 Configure

1 0 X Ports 1 and 2 are configured as RGMII ports.

1 1 X Port 1: GMII/MII; Port 2: disabled. GMII or MII port is selected by
GMX_PRT1_CFG[SPEED].

1. Port 2 is in CN3010 only.

Figure 13–1 GMII, MII, and RGMII Links

rxclk
rxdv
rxerr

rxd[7:0]
crs
col

gtxclk
txen
txerr

txd[7:0]

PHY GMII
Port

rxc
rx_ctl

rxd[3:0]

txc
tx_ctl

txd[3:0]

PHY RGMII
Port

rxclk
rxdv
rxerr

rxd[7:0]
crs
col

txclk
txen
txerr

txd[7:0]

PHY MII
PortPHY PHY PHY
510 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Owner
高亮

Owner
高亮

CN50XX Packet Interface: Packet Interface Introduction

Each enabled RGMII link can operate in 10Mbs, 100Mbs, or 1000Mbs speeds and in
half- or full-duplex modes. The GMII link, if present, must be configured in 1000Mbs.
If 10/100 Mbs is required, the link operates in MII mode. The GMII/MII link can be
switched dynamically between modes when the media changes by using
GMX_TX_CLK_MSK.

The packet interface has a 3KB receive buffer and a 3KB transmit staging buffer.
The receive buffer can be partitioned among the physically allocated links based on
GMX_RX_PRTS. The transmit buffer is fixed at 1KB per link.

In the output case, PKO has much buffering to add to the 3KB transmit staging
buffer. More importantly, the CN50XX hardware buffers packet data in L2/DRAM,
and this buffering can be many times larger than the RGMII transmit staging buffer
and the PKO buffering combined.

In the input case, it is possible for PIP/IPD to exhaust all of the available L2/DRAM
buffering, leaving the RGMII 4KB input buffer as the only buffering option for input
packets. But most CN50XX applications use per-port backpressure and/or packet
drop to prevent buffer exhaustion (refer to Sections 7.6 and 7.7). The CN50XX can
backpressure (via PAUSE packets in full-duplex mode or forced collisions in half-
duplex mode) to avoid overflow of the 4KB input buffer when its usage exceeds
programmable on/off thresholds.

The following sections discuss the general operation of the CN50XX packet interface,
regardless if the link is configured as RGMII or GMII.

Figure 13–2 Packet Interface Operating Modes

Port 0: RGMII
PHY

Port 1: RGMII
PHY

Port 2: RGMII
PHY

Packet
Interface

0

Port 0: RGMII
PHY

Port 1: GMII/MII
PHY

Packet
Interface

0

Packet
Interface

0

GMX_INF_MODE[EN=1, TYPE=0, P0MII=0]: GMX_INF_MODE[EN=1, TYPE=1, P0MII=0]:
3 RGMII Ports 1 RGMII Port and 1 GMII or MII Port

GMX_INF_MODE[EN]=0:
No Ports

Port 0: MII
PHY

Port 1: RGMII
PHY

Port 2: RGMII
PHY

Packet
Interface

0

Port 0: MII
PHY

Port 1: GMII/MII
PHY

Packet
Interface

0

GMX_INF_MODE[EN=1, TYPE=0, P0MII=1]: GMX_INF_MODE[EN=1, TYPE=1, P0MII=1]:
1 MII and 2 RGMII Ports 1 MII Port and 1 GMII or MII Port
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 511

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

Owner
下划线

Owner
下划线

 CN50XX Packet Interface: RGMII Features
13.2 RGMII Features

This section discusses some notable features provided by the CN50XX
architecture outside the IEEE 802.3 and HP RGMII 1.3 specifications.

13.2.1 Flow Control

The following subsections discuss how the CN50XX receives and transmits flow
control.

13.2.1.1 Receive Flow Control

The CN50XX supports flow control for both half- and full-duplex modes of
operation for RGMII links only. GMII links must operate in full-duplex mode.

When the receive interface in full-duplex mode, the CN50XX can be configured to
receive PAUSE control packets as defined in ANNEX 31A of the 802.3
specification based on the GMX0_RXn_FRM_CTL[CTL_BCK/CTL_DRP] fields.
Common modes of operation are:

Note that the transmit defer counter is not set if FCS checking is enabled (i.e.
GMX0_RX0_FRM_CHK[FCSERR] = 1) and the pause packet failed FCS/CRC
check.

Both CTL_BCK and CTL_DRP should be set to 0s in half-duplex mode (pause
packets should not be present in half-duplex mode).

CTL_BCK = 1,
CTL_DRP = 1

CN50XX drops pause packets, inspects the packets, and
sets the transmit defer counter to the TIME parameter
in the packets. CN50XX then defers the transmission of
new packets until the timer expires.

CTL_BCK = 0,
CTL_DRP = 0

CN50XX processes pause packets like normal packets,
so software will see them. Software can optionally
implement a backpressure scheme. Software can also
set/reset the defer counter by writing to
GMX0_TXn_SOFT_PAUSE[TIME]. Like pause frames,
software must periodically write to
GMX0_TXn_SOFT_PAUSE[TIME] if the flow condition
extends beyond a TIME interval.

CTL_BCK = 0,
CTL_DRP = 1

All pause frames are dropped and completely ignored by
both hardware and software.

CTL_BCK = 1,
CTL_DRP = 0

CN50XX sends pause packets to software, and sets the
transmit-defer counter to the TIME parameter in the
packet. CN50XX then defers the transmission of new
outbound packets until the timer expires.
As software can see all pause frames, it can optionally
implement a backpressure scheme. Software can also
set/reset the defer counter by writing to
GMX0_TXn_SOFT_PAUSE[TIME]. Like pause frames,
software must periodically write to
GMX0_TXn_SOFT_PAUSE[TIME] if the flow condition
extends beyond a TIME interval.
512 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

CN50XX Packet Interface: RGMII Features
13.2.1.2 Transmit Flow Control

The CN50XX controls the flow of packets from the transmitting device under the
conditions specified in Table 13–2.

● In half-duplex mode when flow control is active for the port, CN50XX forces
collisions by sending JAM packets.

● In full-duplex mode, CN50XX can generate PAUSE packets.

Each link can configure the PAUSE packet’s SMAC (GMX0_SMACn) and
PAUSE TIME (GMX0_TXn_PAUSE_PKT_TIME).

Each link can configure how often the PAUSE packets are sent
(GMX0_TXn_PAUSE_PKT_INTERVAL) under the flow control
condition.

CN50XX also supports a programmable DMAC
(MX0_TX_PAUSE_PKT_DMAC) and TYPE
(GMX0_TX_PAUSE_PKT_TYPE) shared by all RGMII links on an interface.

Table 13–2 Flow Control for Transmitting Device

Condition Description

Receive FIFO Flow Control The receive FIFO can control the flow as it fills up. Each port has a dedicated receive FIFO
with dedicated controls. Figure 13–3 shows the relative FIFO depths for each programmable
parameter. CN50XX begins to flow control to port when the FIFO accumulates
GMX0_RX_BP_ONn data. Flow control is removed once the FIFO drops below
GMX0_RX_BP_OFFn data.

Per-Port Flow Control PIP/IPD can also communicate per-port flow control. This flow control is exhibited the same
way as receive FIFO flow control. Refer to Sections 7.6 and 7.7 for more detailed information.

Software Flow Control Software can use GMX0_TX_OVR_BP[EN/BP] to force or ignore the flow-control state as
desired. If GMX0_TX_OVR_BP[ENn] = 1 for a port, the flow-control state will be
GMX0_TX_OVR_BP[BPn]. This feature is intended for use only in system testing.

Figure 13–3 Receive FIFO Parameters

RX FIFO

GMX0_RX_BP_DROPn

GMX0_RX_BP_ONn

GMX0_RX_BP_OFFn

4196 (Single RGMII)
2048 (Dual RGMII)
1024 (3 RGMII)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 513

 CN50XX Packet Interface: RGMII Features
13.2.2 Receive Preamble

CN50XX can be configured to check or ignore PREAMBLE/SFD data that marks
the beginning of each frame based on GMX0_RXn_FRM_CTL[PRE_CHK]. This
may be useful for system configuration using multiple CN50XXs or other devices
that choose to communicate over directly over RGMII and do not require a PHY
device. If PREAMBLE data is present, it can be stripped or forwarded as part of
the packet based on GMX0_RXn_FRM_CTL[PRE_STRP].

13.2.3 Receive Packet Dropping

There are several mechanisms within CN50XX that will drop packets:

● preamble errors

● receive-FIFO packet dropping

● PAUSE packet drops

● DMAC filters

● PIP/IPD per-QOS admission control

● Receive collisions

These mechanisms are described in the following subsections.

13.2.3.1 PREAMBLE Errors

If preamble checking is enabled (GMX0_RXn_FRM_CTL[PRE_CHK] = 1) and
the packet does not send a valid PREAMBLE followed by SFD, the packet and
all subsequent data until the next RGMII idle cycle is dropped. Normally only a
single packet is dropped, but if the error occurs at the beginning of a burst, then
multiple packets are dropped.

13.2.3.2 Receive-FIFO Packet Dropping

When the receive FIFO exceeds the GMX0_RX_BP_DROPn (as shown in Figure
13–3), the packet cannot be buffered and must be dropped. If there is room in the
FIFO for a partial portion of the packet, the beginning of the packet is buffered
but is sent down the IOBI bus with the PARTIAL opcode (indicating a drop). As
described is Figure 7–9, partial packets can be recognized by software when
WORD2[RE] = 1 and WORD2[OPCODE] = 1 (partial error). All other packets
are completely dropped and are not sent on the IOBI bus.

Both partial drops and complete drops set the CIU_INTn_SUM0[GMX_DRPm]
bit in CIU and can raise an interrupt based on CIU_INTn_EN0[GMX_DRPm].

13.2.3.3 PAUSE Packet Drops

OCTEON drops any incoming pause packet, when
GMX0_RXn_FRM_CTL[CTL_DRP] = 1. See Section 13.2.1 for additional details.
514 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

CN50XX Packet Interface: RGMII Features
13.2.3.4 DMAC Filter

Each RGMII link can store up to eight full MAC addresses to match against
(GMX0_RXn_ADR_CAM_EN and GMX_RX_ADR_CAMn). CN50XX can be
configured to accept or drop packets based on this address match
(GMX0_RXn_ADR_CTL[CAM_MODE]). In addition, CN50XX can be configured
to accept or reject multicast or broadcast packets
(GMX0_RXn_ADR_CTL[MCST/BCST]).

The full algorithm is shown below:

bool dmac_addr_filter(uint8 prt, uint48 dmac) {
ASSERT(prt >= 0 && prt <= 3);
if (is_bcst(dmac)) //broadcast accept

return (GMX_RX{prt}_ADR_CTL[BCST] ? ACCEPT : REJECT);
if (is_mcst(dmac) & GMX_RX{prt}_ADR_CTL[MCST] == 1) //multicast reject

return REJECT;
if (is_mcst(dmac) & GMX_RX{prt}_ADR_CTL[MCST] == 2) //multicast accept

return ACCEPT;

cam_en = 0;
cam_hit = 0;

for (i=0; i<8; i++) {
if (GMX_RX{prt}_ADR_CAM_EN[EN<i>] == 0)

continue;
cam_en++;
uint48 unswizzled_mac_adr = 0x0;
for (j=5; j>=0; j--) {

cam_byte = GMX_RX{prt}_ADR_CAM{j}[ADR<i*8+7:i*8>];
unswizzled_mac_adr = (unswizzled_mac_adr << 8) | cam_byte;

}
if (unswizzled_mac_adr == dmac) {

cam_hit = 1;
break;

}
}

if (cam_hit)
return (GMX_RX{prt}_ADR_CTL[CAM_MODE] ? ACCEPT : REJECT);

else
return (GMX_RX{prt}_ADR_CTL[CAM_MODE] ? REJECT : ACCEPT);

}

13.2.3.5 PIP/IPD Per-QOS Admission Control

Section 7.7 discusses QOS admission. Packets that fail the admission test are
dropped.

13.2.3.6 Receive Collisions

When operating in half-duplex mode (GMX0/1_PRT(0..3)_CFG[DUPLEX] = 0),
the receiver drops any packets in which the slottime was not satisified. Note
that late collisions are not normally dropped since they satisfiy the slottime.
Late collisions can be dropped due to any of the other reasons above.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 515

Owner
下划线

Owner
下划线

 CN50XX Packet Interface: RGMII Features
13.2.4 Receive-Packet Inspection

The following subsections describe the receive packets.

13.2.4.1 Receive-Packet Formats

Figure 13–4 shows the supported receive-packet formats, which differ from
those described in Section 7.2. The packet interface supports all six of the L2
header types as defined in Figure 7–4.

The RGMII receiver inspects the packet to extract the L2 parameters that are
required for various tasks and checks. The packet parser must be able to
determine where the L2 header is in the packet to extract correct data.

13.2.4.2 Receive User-Defined Data

Normally, the L2 header will be either be at the start of the packet or after the
optional preamble/SFD bytes. In full-duplex mode only, CN50XX supports user-
defined data to come between the optional preamble/SFD and the start of the L2
header. CN50XX can support 0-64 bytes of UDD data based on
GMX0_RXn_UDD_SKP[LEN]. Note that this is a static per-port configuration
that cannot change on a per-packet basis. CN50XX can also be configured to
compute the FCS over the UDD data or just the L2 header and L2 payload based
on GMX0_RXn_UDD_SKP[FCSSEL].

Systems have two choices when skip bytes are sent over RGMII channels
(followed by an ordinary ethernet L2 header):

1. If the skip amount is constant for all packets, set
GMX0_RXn_UDD_SKP[LEN] to the total SKIP
(Skip I + PKT_INST_HDR + Skip II, refer to Section 7.2.)

2. If the amount of total skip data before the L2 HDR is variable, the L2 HDR
inspection must be disabled (see Section 13.2.4.4 for more details).

Figure 13–4 Packet Formats

GMX0_RXn_UDD_SKP[FCSSEL]
determines if Skip is included

in FCS computation

Skip

L2 HDR

L2

FCS
(GMX0_RXn_FRM_CHK[FCSERR])

Optional (in full-duplex mode)
(GMX0_RXn_UDD_SKP[LEN])

Optional

GMX0_RXn_UDD_SKP[FCSSEL]
determines if Skip is included

in FCS computation

Skip

Uninterpreted

FCS
(GMX0_RXn_FRM_CHK[FCSERR])

Optional (in full-duplex mode)
(GMX0_RXn_UDD_SKP[LEN])

Optional
516 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: RGMII Features
13.2.4.3 Receive Packets without L2 Headers

Some systems may not use the standard ethernet L2 HDR header or may
develop custom headers. Normal L2 HDR inspection can be disabled on a per-
port basis. If the L2 HDR is not present in the packet, the L2 HDR inspection
must be disabled. See Section 13.2.4.4 for more details.

13.2.4.4 Disabling L2 Header Inspection

If the L2 header is not present or is not at a fixed offset in the packet, L2 header
inspection should be disabled as follows:

– DMAC filtering – the L2 DMAC field cannot be extracted from the
packet. The DMAC filter can be put into promiscuous mode by
setting the following parameters:

GMX0_RXn_ADR_CTL[CAM_MODE] = 0

GMX0_RXn_ADR_CTL[MCST] = 0

GMX0_RXn_ADR_CTL[BCST] = 1

GMX0_RXn_ADR_CAM_EN[EN] = 0.

– Pause-packet recognition – the L2 DMAC and type fields cannot
be extracted from the packet. Pause-packet recognition can be
disabled by setting the following parameters:

GMX0_RXn_FRM_CTL[CTL_BCK] = 0

GMX0_RXn_FRM_CTL[CTL_DRP] = 0

13.2.5 Receive Link Status

The RGMII protocol allows the RGMII link status to be on the data lines during
IDLE or NOP RGMII cycles. The PHY can communicate the link status, speed,
and duplex value. The current status can be read by software through the
GMX0_RXn_INBND register and the hardware can be configured to interrupt
upon changes.CN50XX

13.2.6 Packet Transmission

The transmit FIFO is 3KB and is partitioned into logical FIFOs, one per output
port. Each logical FIFO is fixed a 1KB.

The RGMII transmit state machine begins packet transmission when the FIFO
has either an EOP or the FIFO length exceeds a programmed number of bytes
(GMX0_TXn_THRESH). The threshold value should be large enough to avoid
underflow and small enough to avoid excessive latencies. The recommended
value for this register is the reset value of the register that works across the
widest number of configurations. In half-duplex mode, if the packet suffers a
collision, it is automatically retried GMX0_TX_COL_ATTEMPT times. If the
packet still collides, CN50XX discards the packet.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 517

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

 CN50XX Packet Interface: RGMII Features
13.2.7 Transmit-Packet Options

The transmit machine can prepend/append various parts of a standard ethernet
frame, as shown in Table 13–3.

13.2.8 Collisions

CN50XX fully supports half-duplex CDMA/CS operation in 10/100/1000Mbs
modes. In the event of a detected collision, the CN50XX takes the following
steps:

● the RGMII transmit engine bursts the JAM pattern, backs off the bus, and
retransmits the packet later.

● CN50XX carrier extends to meet the higher slottime of 1000Mbs operation.

● CN50XX attempts retransmission GMX0_TX_COL_ATTEMPT[LIMIT]
times before giving up. If the retransmission limit is reached, it is considered
an excessive collision (refer to XSCOL in Table 13–5). The packet is drained
and the transmit machines resets the collision count for the next packet.

Late collisions (i.e. collisions that occur after the slottime is satisfied) are
considered an error and the packet is not retransmitted.

13.2.9 Bursts

CN50XX supports packet bursting on half-duplex links in 1000Mbs mode. The
RGMII transmit continues sending packets (if packets are available to send) up
until the burst limit (GMX0_TXn_BURST[BURST]). The IFG cycles are filled
with carrier extends.

Table 13–3 Transmit-Packet Options

Field Control Register[Field] Comment

PREAMBLE/SFD GMX0_TXn_APPEND[PREAMBLE] Prepend the standard PREAMBLE and SFD at the start of each
packet.

PAD GMX0_TXn_APPEND[PAD]/
GMX0_TXn_MIN_PKT[MIN_SIZE]

Append 0s in order to pad out a packet to the minimum packet
size.

FCS GMX0_TXn_APPEND[FCS] Compute and append the standard FCS at the end of the packet.
518 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: Errors/Exceptions
13.3 Errors/Exceptions

CN50XX implements several error and exception checks on the RGMII
interfaces. The following subsections describe the exception checkers and how
the exception is communicated to software.

13.3.1 Receive Error/Exception Checks

Exceptions can be enabled by setting the appropriate bit in
GMX0_RXn_FRM_CHK. If the bit is set, the exception is logged in
GMX0_RXn_INT_REG and can optionally raise an interrupt based on the
corresponding bits in GMX0_RXn_INT_EN. In addition, packets sent into
CN50XX arrive with a receive error (WQE WORD2[RE] = 1) and the opcode is
set the exception.

ASX0_INT_REG contains internal checks that should never assert in normal
operation. Exceptions in ASX0_INT_REG can optionally raise an interrupt
based on the corresponding bits in ASX0_INT_EN.

The exceptions, their causes, and how they are handled are shown in Table 13–4.

Table 13–4 Receive Errors/Exceptions

Exception Cause Notification

CAREXT A packet was received with one or more
carrier extend errors.

GMX0_RXn_FRM_CHK[CAREXT] enables the check. If enabled,
GMX0_RXn_INT_REG[CAREXT] is set to 1 and WQE
WORD2[OPCODE] is set to 0x9.

JABBER A packet was received with
length > GMX0_RXn_JABBER bytes.

The packet is unconditionally truncated at GMX0_RXn_JABBER
bytes. GMX0_RXn_FRM_CHK[JABBER] enables the check. If
enabled, GMX0_RXn_INT_REG[JABBER] is set to 1 and WQE
WORD2[OPCODE] is set to 0x2.

FCSERR A packet was received that failed the
FCS/CRC check.

GMX0_RXn_FRM_CHK[FCSERR] enables the check. If enabled,
GMX0_RXn_INT_REG[FCSERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0x3, 0x5, 0x6, or 0x7 depending on the
length and alignment checks.

ALNERR A packet was received that fails the FCS
check (if enabled) and was not an integer
number of bytes. Only applies to 10/
100Mbs mode. If the FCS check is
disabled, all packets that are not an
integer number of bytes are considered
ALNERRs.

GMX0_RXn_FRM_CHK[ALNERR] enables the alignment check
and GMX0_RXn_FRM_CHK[FCSERR] enables the FCS check. If
enabled, GMX0_RXn_INT_REG[ALNERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0x5.

RCVERR A packet was received with one more
cycles of data-reception error indicated
on the RGMII bus.

GMX0_RXn_FRM_CHK[RCVERR] enables the check. If enabled,
GMX0_RXn_INT_REG[RCVERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0xB.

SKPERR A packet was received in which the
length < GMX0_RXn_UDD_SKP[LEN]
bytes. This means that there was not
enough packet data in order to get
passed the Skip field and into the L2
HDR.

GMX0_RXn_FRM_CHK[SKPERR] enables the check. If enabled,
GMX0_RXn_INT_REG[SKPERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0xC.

NIBERR A packet received had a stutter error
(data not repeated on both RGMII clock
edges. 10/100Mbs only).

GMX0_RXn_FRM_CHK[NIBERR] enables the check. If enabled,
GMX0_RXn_INT_REG[NIBERR] is set to 1 and WQE
WORD2[OPCODE] is set to 0xD.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 519

Owner
下划线

Owner
下划线

Owner
高亮

 CN50XX Packet Interface: Errors/Exceptions
OVRERR Indicates that RGMII/GMII data arrived
too quickly. This can only occur when the
RGMII RXC or the GMII RXCLK and the
CN50XX core-clock frequencies are
mismatched.

core-clock rate ≥ 2 × RXC.

This should never happen during normal
operation.

This check is always on and sets GMX0_RXn_INT_REG[OVRERR]
to 1.

PCTERR A packet with a bad preamble was
received.

GMX0_RXn_FRM_CTL[PRE_CHK/PRE_FREE] enables the
preamble checker. If enabled, GMX0_RXn_INT_REG[PCTERR] is
set to 1 and the packet is dropped.

RSVERR CN50XX detected a reserved opcode on
the RGMII interface.

This check is always on and sets GMX0_RXn_INT_REG[RSVERR]
to 1.

FALERR CN50XX detected a false carrier on the
RGMII interface.

This check is always on and sets GMX0_RXn_INT_REG[FALERR]
to 1.

COLDET In half-duplex mode, CN50XX detected a
collision. This can and will occur under
normal operation in half-duplex mode.

This check is always on and sets GMX0_RXn_INT_REG[COLDET]
to 1.

IFGERR CN50XX detected an interframe gap
violation. This exception does not
necessarily indicate a system failure.

This check is always on and sets GMX0_RXn_INT_REG[IFGERR]
to 1.

OVRFLW Receive FIFO overflow occurred. This check is always on sets ASX0_INT_EN[OVRFLWn] to 1.

Table 13–4 Receive Errors/Exceptions (Continued)

Exception Cause Notification
520 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: Errors/Exceptions
13.3.2 Transmit Error/Exception Checks

Transmit exceptions are logged in two registers.
GMX0_TXn_INT_REG
ASX0_INT_REG

GMX0_TXn_INT_REG contains the most common exceptions and can optionally
raise an interrupt based on the corresponding bits in GMX0_TXn_INT_EN.

ASX0_INT_REG contains internal checks that should never assert in normal
operation. Exceptions in ASX0_INT_REG can optionally raise an interrupt
based on the corresponding bits in ASX0_INT_EN.

The exceptions, their causes, and how they are handled are shown in Table 13–5.

Table 13–5 Transmit Errors/Exceptions

Exception Cause Notification

PKO_NXA The RGMII transmitter received a request to send
data out a port not enabled by
GMX0_TX_PRTS[PRTS].

CN50XX asserts GMX0_TXn_INT_REG[PKO_NXAn]
and logs the offending port in GMX0_NXA_ADR.

UNDFLW In the unlikely event that PKO cannot keep the
RGMII TX FIFO full, the RGMII packet transfer will
underflow. This should be detected by the receiving
device as an FCS error. Internally, the packet is
drained and lost.

CN50XX asserts GMX0_TXn_INT_REG[UNDFLWn].

XSCOL An excessive collision occurs in half-duplex mode if
CN50XX detects a collision during each of
GMX0_TXn_COL_ATTEMPT[LIMIT] attempts to
send a packet.

CN50XX asserts GMX0_TXn_INT_REG[XSCOLn] and
the packet is drained and lost.

XSDEF An excessive deferral occurs in half-duplex mode if
CN50XX detects that a packet cannot send on the
transmit interface for maxDeferTime (as defined by
IEEE 802.3-2002 specification) time.

CN50XX asserts GMX0_TXn_INT_REG[XSDEFn].

OUT_COL
NCB_OVR
OUT_OVR
LOSTSTAT
STATOVR
INB_NXA

The transmitter has several internal error checks.
These checks never assert in a correctly configured
system. Any assertion indicates an internal problem
has occurred.

CN50XX asserts a bit in GMX0_BAD_REG.

TXPSH Internal overflow check on the transmit FIFO. This
cannot occur normal operation.

CN50XX asserts ASX0_INT_REG[TXPSHn].

TXPOP Internal underflow check on the transmit FIFO. This
cannot occur normal operation.

CN50XX asserts ASX0_INT_REG[TXPOPn].
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 521

Owner
下划线

Owner
下划线

 CN50XX Packet Interface: Link
13.3.3 Transmit Error Propagation

If PKO detects an error when reading packet data, the error is passed to the
RMGII transmitter. If GMX0_TX_CORRUPT[CORRUPTn] is set, CN50XX
corrupts the FCS of the packet in order to notify the receiving device that the
packet is corrupted.

Software can detect that PKO detected an error through the
PKO_REG_ERROR[PARITY] bit.

13.4 Link

Software must be able to detect the link status and mode and set the GMX
configuration registers accordingly.

13.4.1 Link Status

Software can detect the link status and mode of operation by either reading the
appropriate registers in the PHY using the SMI interface (see Chapter 18). If the
link is operating in RGMII mode and PHY supports optional inband status, then
software can use the GMX0_RXn_INBND[STATUS,SPEED,DUPLEX] fields.
Note, inband status is not available when the link is operating in GMII mode
and the GMX0_RXn_INBND should not be used.

13.4.2 Link Status Changes

Software can detect a change in the link status by several methods.

● Software can poll the appropriate registers in the PHY looking for a status
change.

● If the PHY supports link-status-change interrupts, the board can route the
PHY interrupt to CN50XX.

● If the link is in RGMII mode and the PHY supports the optional RGMII in-
band link status, the current link status is reported through the
GMX0/1_RXn_INBND[STATUS,SPEED,DUPLEX] registers. If this feature
is supported by the PHY, software can do either of the following:

poll GMX0/1_RXn_INT_REG[PHY_DUPX/PHY_SPD/PHY_LINK]

set GMX0/1_RXn_INT_EN[PHY_DUPX/PHY_SPD/PHY_LINK] and
wait for the interrupt.

When a link-status change is detected, software can only update the GMX
configuration CSRs as follows:

● Software detects a change to the RGMII/GMII/MII operating parameters
(duplex, speed, link status).

● Software clears GMX_PRT_CFG[EN].

● Software should read back GMX_PRT_CFG in order to flush the write
operation. This causes GMX to finish working on any in-flight packet in both
the RX and TX directions.
522 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
下划线

CN50XX Packet Interface: Statistics
● Software should then wait a max_packet_time before changing
parameters, where max_packet_time can be defined as:

● Software can reprogram any appropriate CSRs (including all fields in
GMX_PRT_CFG except the [EN] field).

● Software reenables the port by setting GMX_PRT_CFG[EN]

13.4.3 Configuration Based on Mode

GMX has several configuration registers that should be set depending on the
link status. The following table lists the recommended settings for each mode.

13.5 Statistics

CN50XX supports a rich statistics gathering, described in Table 13–7, in order to
support RX RMON and TX RMON. Refer to the CSR descriptions in Section 13.8
for a complete list of statistics.

max_packet_time (µs) =
max_packet_size (bytes) × 8

port_speed (Mbps)

Table 13–6 Recommended Configuration Settings

CSR/Field

RGMII GMII MII

1000 100 10 1000 100 10

GMX0_PRTn_CFG[SPEED] 1 0 0 1 0 0

GMX0_PRTn_CFG[SLOTTIME] 1 0 0 1 0 0

GMX0_TXn_CLK[CLK_CNT] 1 5 50 1 1 1

GMX0_TXn_SLOT[SLOT] 512 64 64 512 64 64

GMX0_TXn_BURST (half-duplex only) 8192 0 0 8192 0 0

Table 13–7 CN50XX Statistics Gathering

CSR Field Statistic

RX
GMX0_RXn_STATS_PKTS[CNT] 32-bit count of all good packets

GMX0_RXn_STATS_OCTS[CNT] 48-bit count of all bytes from good packets

GMX0_RXn_STATS_PKTS_CTL[CNT] 32-bit count of all control/PAUSE packets

GMX0_RXn_STATS_OCTS_CTL[CNT] 48-bit count of all bytes from control/PAUSE packets

GMX0_RXn_STATS_PKTS_DMAC[CNT] 32-bit count of all DMAC filtered packets

GMX0_RXn_STATS_OCTS_DMAC[CNT 48-bit count of all bytes from DMAC filtered packets

GMX0_RXn_STATS_PKTS_DRP[CNT] 32-bit count of all packets dropped due to RX FIFO full

GMX0_RXn_STATS_OCTS_DRP[CNT] 48-bit count of all bytes from packets dropped due to RX FIFO full

GMX0_RXn_STATS_PKTS_BAD[CNT] 32-bit count of all bad packets

TX
GMX0_TXn_STAT0[XSCOL] 32-bit count of packets dropped due to excessive collisions

GMX0_TXn_STAT0[XSDEF] 32-bit count of packets dropped due to excessive deferral

GMX0_TXn_STAT1[MCOL] 32-bit count of packets sent that experienced multiple collisions before
successful transmission

GMX0_TXn_STAT1[SCOL] 32-bit count of packets sent that experienced a single collision before
successful transmission
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 523

 CN50XX Packet Interface: Loopback
13.6 Loopback

CN50XX supports both internal and external loopback paths to aid in system
development and bringup.

● When ASX0_PRT_LOOP[EXP_LOOPn] is set to 1, the receive datapath is
fed back into the transmit FIFO as shown in Figure 13–5. This allows
CN50XX to reflect all received packets without involving the core.

● When ASX0_PRT_LOOP[INT_LOOPn] is set to 1, the transmit FIFO output
is fed back into the receive FIFO as shown if Figure 13–5. This allows the
RGMII interface to send packets into the CN50XX core.

GMX0_TXn_STAT2[OCTS] 48-bit count of all bytes sent

GMX0_TXn_STAT3[PKTS] 32-bit count of all packets sent

GMX0_TXn_STAT4[HIST0] 32-bit count of packets sent with an octet count < 64

GMX0_TXn_STAT4[HIST1] 32-bit count of packets sent with an octet count == 64

GMX0_TXn_STAT5[HIST2] 32-bit count of packets sent with an octet count of 65-127

GMX0_TXn_STAT5[HIST3] 32-bit count of packets sent with an octet count of 128-255

GMX0_TXn_STAT6[HIST4] 32-bit count of packets sent with an octet count of 256-511

GMX0_TXn_STAT6[HIST5] 32-bit count of packets sent with an octet count of 512-1023

GMX0_TXn_STAT7[HIST6] 32-bit count of packets sent with an octet count of 1024-1518

GMX0_TXn_STAT7[HIST7] 32-bit count of packets sent with an octet count of > 1518

GMX0_TXn_STAT8[BCST] 32-bit count of packets sent to a multicast DMAC

GMX0_TXn_STAT8[MCST] 32-bit count of packets sent to the broadcast DMAC

GMX0_TXn_STAT9[CTL] 32-bit count of control/PAUSE packets sent

GMX0_TXn_STAT9[UNDFLW] 32-bit count of packets sent that experienced a transmit underflow and were
truncated

Table 13–7 CN50XX Statistics Gathering

CSR Field Statistic

RX

Figure 13–5 RGMII Loopback

RX FIFO

TX FIFO

RGMII RX Interface

RGMII TX Interface

Internal Loopback Enable
ASX_PRT_LOOP[INT_LOOP]

Normal TX Datapath

External Loopback Enable
ASX_PRT_LOOP[EXT_LOOP]

Normal RX Datapath
524 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
高亮

Owner
下划线

Owner
下划线

CN50XX Packet Interface: Initialization
13.7 Initialization

Perform the following steps in order to initialize the RGMII interface.

1. Configure the CN50XX core.
The RGMII packet interface buffers packet data in main memory. Therefore,
the FPA, IPD, PIP, PKO, and DDR controller (LMC) units must all be
correctly configured to be able to store and send packet data.

2. Configure ASX registers.
ASX registers will not normally to set. The power-on values were chosen to
be compatible with most systems.

3. Configure GMX registers.
GMX personality should be setup here, including the total number of ports
used on each interface.

4. Determine the Link status.
Link status can be determined by a number of methods, described in Section
13.4.

5. Configure the RGMII link based on link status.
Section 13.4.3 provides guidelines for configuring the CSRs based on the link
status.

6. Enable ASX.
Set ASX0_RX_PRT_EN[PRT_EN] / ASX0_TX_PRT_EN[PRT_EN] for each
port to be used.

7. Enable GMX.
Set GMX0_PRTn_CFG[EN] for each port to be used.

Initialization is now complete. At this point, packets can be received on the
receive channel and packets can be sent on the transmit channel.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 525

 CN50XX Packet Interface: GMX Registers
13.8 GMX Registers

The GMX registers are listed in Table 13–8.

Table 13–8 GMX Registers

Register Address
CSR

Type1
Detailed
Description

GMX0_RX0_INT_REG 0x0001180008000000 RSL See page 530.

GMX0_RX0_INT_EN 0x0001180008000008 RSL See page 531.

GMX0_PRT0_CFG 0x0001180008000010 RSL See page 531.

GMX0_RX0_FRM_CTL 0x0001180008000018 RSL See page 532.

GMX0_RX0_FRM_CHK 0x0001180008000020 RSL See page 534.

GMX0_RX0_JABBER 0x0001180008000038 RSL See page 534

GMX0_RX0_DECISION 0x0001180008000040 RSL See page 535

GMX0_RX0_UDD_SKP 0x0001180008000048 RSL See page 536

GMX0_RX0_STATS_CTL 0x0001180008000050 RSL See page 536

GMX0_RX0_IFG 0x0001180008000058 RSL See page 537

GMX0_RX0_RX_INBND 0x0001180008000060 RSL See page 537

GMX0_RX0_PAUSE_DROP_TIME 0x0001180008000068 RSL See page 537

GMX0_RX0_STATS_PKTS 0x0001180008000080 RSL See page 538

GMX0_RX0_STATS_OCTS 0x0001180008000088 RSL See page 538

GMX0_RX0_STATS_PKTS_CTL 0x0001180008000090 RSL See page 538

GMX0_RX0_STATS_OCTS_CTL 0x0001180008000098 RSL See page 539

GMX0_RX0_STATS_PKTS_DMAC 0x00011800080000A0 RSL See page 539

GMX0_RX0_STATS_OCTS_DMAC 0x00011800080000A8 RSL See page 539

GMX0_RX0_STATS_PKTS_DRP 0x00011800080000B0 RSL See page 540

GMX0_RX0_STATS_OCTS_DRP 0x00011800080000B8 RSL See page 540

GMX0_RX0_STATS_PKTS_BAD 0x00011800080000C0 RSL See page 540

GMX0_RX0_ADR_CTL 0x0001180008000100 RSL See page 541

GMX0_RX0_ADR_CAM_EN 0x0001180008000108 RSL See page 541

GMX0_RX0_ADR_CAM0
...
GMX0_RX0_ADR_CAM5

0x0001180008000180
...
0x00011800080001A8

RSL See page 542

GMX0_TX0_CLK 0x0001180008000208 RSL See page 542

GMX0_TX0_THRESH 0x0001180008000210 RSL See page 542

GMX0_TX0_APPEND 0x0001180008000218 RSL See page 543

GMX0_TX0_SLOT 0x0001180008000220 RSL See page 543

GMX0_TX0_BURST 0x0001180008000228 RSL See page 543

GMX0_SMAC0 0x0001180008000230 RSL See page 543

GMX0_TX0_PAUSE_PKT_TIME 0x0001180008000238 RSL See page 544

GMX0_TX0_MIN_PKT 0x0001180008000240 RSL See page 544

GMX0_TX0_PAUSE_PKT_INTERVAL 0x0001180008000248 RSL See page 545

GMX0_TX0_SOFT_PAUSE 0x0001180008000250 RSL See page 545

GMX0_TX0_PAUSE_TOGO 0x0001180008000258 RSL See page 546

GMX0_TX0_PAUSE_ZERO 0x0001180008000260 RSL See page 546

GMX0_TX0_STATS_CTL 0x0001180008000268 RSL See page 546
526 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

CN50XX Packet Interface: GMX Registers
GMX0_TX0_CTL 0x0001180008000270 RSL See page 546

GMX0_TX0_STAT0
...
GMX0_TX0_STAT9

0x0001180008000280
...
0x00011800080002C8

RSL See page 547

GMX0_BIST 0x0001180008000400 RSL See page 550

GMX0_RX_PRTS 0x0001180008000410 RSL See page 550

GMX0_RX_BP_DROP0
GMX0_RX_BP_DROP1
GMX0_RX_BP_DROP2

0x0001180008000420
0x0001180008000428
0x0001180008000430

RSL See page 550

GMX0_RX_BP_ON0
GMX0_RX_BP_ON1
GMX0_RX_BP_ON2

0x0001180008000440
0x0001180008000448
0x0001180008000450

RSL See page 551

GMX0_RX_BP_OFF0
GMX0_RX_BP_OFF1
GMX0_RX_BP_OFF2

0x0001180008000460
0x0001180008000468
0x0001180008000470

RSL See page 552

GMX0_TX_PRTS 0x0001180008000480 RSL See page 552

GMX0_TX_IFG 0x0001180008000488 RSL See page 552

GMX0_TX_JAM 0x0001180008000490 RSL See page 552

GMX0_TX_COL_ATTEMPT 0x0001180008000498 RSL See page 553

GMX0_TX_PAUSE_PKT_DMAC 0x00011800080004A0 RSL See page 553

GMX0_TX_PAUSE_PKT_TYPE 0x00011800080004A8 RSL See page 553

GMX0_TX_OVR_BP 0x00011800080004C8 RSL See page 553

GMX0_TX_BP 0x00011800080004D0 RSL See page 554

GMX0_TX_CORRUPT 0x00011800080004D8 RSL See page 554

GMX0_RX_PRT_INFO 0x00011800080004E8 RSL See page 555

GMX0_TX_LFSR 0x00011800080004F8 RSL See page 555

GMX0_TX_INT_REG 0x0001180008000500 RSL See page 555

GMX0_TX_INT_EN 0x0001180008000508 RSL See page 555

GMX0_NXA_ADR 0x0001180008000510 RSL See page 556

GMX0_BAD_REG 0x0001180008000518 RSL See page 556

GMX0_STAT_BP 0x0001180008000520 RSL See page 556

GMX0_TX_CLK_MSK0
GMX0_TX_CLK_MSK1

0x0001180008000780
0x0001180008000788

RSL See page 557

GMX0_RX_TX_STATUS 0x00011800080007E8 RSL See page 557

GMX0_INF_MODE 0x00011800080007F8 RSL See page 557

GMX0_RX1_INT_REG 0x0001180008000800 RSL See page 530.

GMX0_RX1_INT_EN 0x0001180008000808 RSL See page 531.

GMX0_PRT1_CFG 0x0001180008000810 RSL See page 531.

GMX0_RX1_FRM_CTL 0x0001180008000818 RSL See page 532.

GMX0_RX1_FRM_CHK 0x0001180008000820 RSL See page 534.

GMX0_RX1_JABBER 0x0001180008000838 RSL See page 534

GMX0_RX1_DECISION 0x0001180008000840 RSL See page 535

GMX0_RX1_UDD_SKP 0x0001180008000848 RSL See page 536

GMX0_RX1_STATS_CTL 0x0001180008000850 RSL See page 536

Table 13–8 GMX Registers (Continued)

Register Address

CSR

Type1
Detailed
Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 527

Owner
高亮

 CN50XX Packet Interface: GMX Registers
GMX0_RX1_IFG 0x0001180008000858 RSL See page 537

GMX0_RX1_RX_INBND 0x0001180008000860 RSL See page 537

GMX0_RX1_PAUSE_DROP_TIME 0x0001180008000868 RSL See page 537

GMX0_RX1_STATS_PKTS 0x0001180008000880 RSL See page 538

GMX0_RX1_STATS_OCTS 0x0001180008000888 RSL See page 538

GMX0_RX1_STATS_PKTS_CTL 0x0001180008000890 RSL See page 538

GMX0_RX1_STATS_OCTS_CTL 0x0001180008000898 RSL See page 539

GMX0_RX1_STATS_PKTS_DMAC 0x00011800080008A0 RSL See page 539

GMX0_RX1_STATS_OCTS_DMAC 0x00011800080008A8 RSL See page 539

GMX0_RX1_STATS_PKTS_DRP 0x00011800080008B0 RSL See page 540

GMX0_RX1_STATS_OCTS_DRP 0x00011800080008B8 RSL See page 540

GMX0_RX1_STATS_PKTS_BAD 0x00011800080008C0 RSL See page 540

GMX0_RX1_ADR_CTL 0x0001180008000900 RSL See page 541

GMX0_RX1_ADR_CAM_EN 0x0001180008000908 RSL See page 541

GMX0_RX1_ADR_CAM0
...
GMX0_RX1_ADR_CAM5

0x0001180008000980
...
0x00011800080009A8

RSL See page 542

GMX0_TX1_CLK 0x0001180008000A08 RSL See page 542

GMX0_TX1_THRESH 0x0001180008000A10 RSL See page 542

GMX0_TX1_APPEND 0x0001180008000A18 RSL See page 543

GMX0_TX1_SLOT 0x0001180008000A20 RSL See page 543

GMX0_TX1_BURST 0x0001180008000A28 RSL See page 543

GMX0_SMAC1 0x0001180008000A30 RSL See page 543

GMX0_TX1_PAUSE_PKT_TIME 0x0001180008000A38 RSL See page 544

GMX0_TX1_MIN_PKT 0x0001180008000A40 RSL See page 544

GMX0_TX1_PAUSE_PKT_INTERVAL 0x0001180008000A48 RSL See page 545

GMX0_TX1_SOFT_PAUSE 0x0001180008000A50 RSL See page 545

GMX0_TX1_PAUSE_TOGO 0x0001180008000A58 RSL See page 546

GMX0_TX1_PAUSE_ZERO 0x0001180008000A60 RSL See page 546

GMX0_TX1_STATS_CTL 0x0001180008000A68 RSL See page 546

GMX0_TX1_CTL 0x0001180008000A70 RSL See page 546

GMX0_TX1_STAT0
...
GMX0_TX1_STAT9

0x0001180008000A80
...
0x0001180008000AC8

RSL See page 547

GMX0_RX2_INT_REG 0x0001180008001000 RSL See page 530.

GMX0_RX2_INT_EN 0x0001180008001008 RSL See page 531.

GMX0_PRT2_CFG 0x0001180008001010 RSL See page 531.

GMX0_RX2_FRM_CTL 0x0001180008001018 RSL See page 532.

GMX0_RX2_FRM_CHK 0x0001180008001020 RSL See page 534.

GMX0_RX2_JABBER 0x0001180008001038 RSL See page 534

GMX0_RX2_DECISION 0x0001180008001040 RSL See page 535

GMX0_RX2_UDD_SKP 0x0001180008001048 RSL See page 536

GMX0_RX2_STATS_CTL 0x0001180008001050 RSL See page 536

Table 13–8 GMX Registers (Continued)

Register Address

CSR

Type1
Detailed
Description
528 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

CN50XX Packet Interface: GMX Registers

GMX0_RX2_IFG 0x0001180008001058 RSL See page 537

GMX0_RX2_RX_INBND 0x0001180008001060 RSL See page 537

GMX0_RX2_PAUSE_DROP_TIME 0x0001180008001068 RSL See page 537

GMX0_RX2_STATS_PKTS 0x0001180008001080 RSL See page 538

GMX0_RX2_STATS_OCTS 0x0001180008001088 RSL See page 538

GMX0_RX2_STATS_PKTS_CTL 0x0001180008001090 RSL See page 538

GMX0_RX2_STATS_OCTS_CTL 0x0001180008001098 RSL See page 539

GMX0_RX2_STATS_PKTS_DMAC 0x00011800080010A0 RSL See page 539

GMX0_RX2_STATS_OCTS_DMAC 0x00011800080010A8 RSL See page 539

GMX0_RX2_STATS_PKTS_DRP 0x00011800080010B0 RSL See page 540

GMX0_RX2_STATS_OCTS_DRP 0x00011800080010B8 RSL See page 540

GMX0_RX2_STATS_PKTS_BAD 0x00011800080010C0 RSL See page 540

GMX0_RX2_ADR_CTL 0x0001180008001100 RSL See page 541

GMX0_RX2_ADR_CAM_EN 0x0001180008001108 RSL See page 541

GMX0_RX2_ADR_CAM0
...
GMX0_RX2_ADR_CAM5

0x0001180008001180
...
0x00011800080011A8

RSL See page 542

GMX0_TX2_CLK 0x0001180008001208 RSL See page 542

GMX0_TX2_THRESH 0x0001180008001210 RSL See page 542

GMX0_TX2_APPEND 0x0001180008001218 RSL See page 543

GMX0_TX2_SLOT 0x0001180008001220 RSL See page 543

GMX0_TX2_BURST 0x0001180008001228 RSL See page 543

GMX0_SMAC2 0x0001180008001230 RSL See page 543

GMX0_TX2_PAUSE_PKT_TIME 0x0001180008001238 RSL See page 544

GMX0_TX2_MIN_PKT 0x0001180008001240 RSL See page 544

GMX0_TX2_PAUSE_PKT_INTERVAL 0x0001180008001248 RSL See page 545

GMX0_TX2_SOFT_PAUSE 0x0001180008001250 RSL See page 545

GMX0_TX2_PAUSE_TOGO 0x0001180008001258 RSL See page 546

GMX0_TX2_PAUSE_ZERO 0x0001180008001260 RSL See page 546

GMX0_TX2_STATS_CTL 0x0001180008001268 RSL See page 546

GMX0_TX2_CTL 0x0001180008001270 RSL See page 546

GMX0_TX2_STAT0
...
GMX0_TX2_STAT9

0x0001180008001280
...
0x00011800080012C8

RSL See page 547

1. RSL-type registers are accessed indirectly across the I/O bus.

Table 13–8 GMX Registers (Continued)

Register Address

CSR

Type1
Detailed
Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 529

 CN50XX Packet Interface: GMX Registers
GMX Interrupt Registers
GMX0_RX(0..2)_INT_REG

This register allows interrupts to be sent to the control processor. If an error is
noted in this register, and the corresponding bit in GMX0_RX(0..2)_INT_EN is
set, an exception is raised. See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved
<19> PAUSE_DRP R/W1C 0 0 Pause packet was dropped due to full GMX RX FIFO.
<18> PHY_DUPX R/W1C 0 0 Change in the RMGII inbound LinkDuplex
<17> PHY_SPD R/W1C 0 0 Change in the RMGII inbound LinkSpeed
<16> PHY_LINK R/W1C 0 0 Change in the RMGII inbound LinkStatus
<15> IFGERR R/W1C 0 0 Interframe gap violation
<14> COLDET R/W1C 0 0 Collision detection. Collisions can only occur in half-duplex mode. The

receiver determines if a collision occurred when the current frame being
received does not satisfy the slottime.

<13> FALERR R/W1C 0 0 False-carrier error, or carrier-extend error after slottime is satisfied.
<12> RSVERR R/W1C 0 0 RGMII reserved opcode error.
<11> PCTERR R/W1C 0 0 Bad preamble / protocol error. Checks that the frame transitions from

PREAMBLE ⇒ SFD ⇒ DATA. Does not check the number of
PREAMBLE cycles.

<10> OVRERR1 R/W1C 0 0 Internal data aggregation overflow error. This interrupt should never
assert.

<9> NIBERR1 R/W1C 0 0 Nibble error (hi_nibble ≠ lo_nibble). This error is illegal at 1000Mbs
speeds (GMX0_PRT(0..2)_CFG[SPEED] = 0) and never asserts.

<8> SKPERR1 R/W1C 0 0 Skipper error.

<7> RCVERR1 R/W1C 0 0 Data-reception error. Frame was received with RMGII data-reception
error

<6> LENERR1 R/W1C 0 0 Length error: frame was received with a length error. Length errors
occur when the received packet does not match the length field.
LENERR is only checked for packets between 64 and 1500 bytes.

For untagged frames, the length must be an exact match.

For tagged frames the length or length+4 must match.
<5> ALNERR1 R/W1C 0 0 Alignment error: frame was received with an alignment error. Indicates

that the packet received was not an integer number of bytes.

If FCS checking is enabled, ALNERR only asserts if the FCS is bad.

If FCS checking is disabled, ALNERR asserts in all non-integer frame
cases

<4> FCSERR1 R/W1C 0 0 FCS/CRC error. Frame was received with FCS/CRC error

<3> JABBER1 R/W1C 0 0 System-length error: frame was received with length > sys_length.

A JABBER error indicates that a packet was received that is longer
than the maximum allowed packet as defined by the system. GMX
truncates the packet at the JABBER count. Failure to do so could lead
to system instability.

<2> MAXERR1 R/W1C 0 0 Maximum-length error: frame was received with length > max_length.

For untagged frames, the total frame
DA+SA+TL+DATA+PAD+FCS > GMX0_RX(0..2)_FRM_MAX.

For tagged frames,
DA+SA+VLAN+TL+DATA+PAD+FCS > GMX0_RX(0..2)_FRM_MAX + 4.
530 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

CN50XX Packet Interface: GMX Registers
GMX Interrupt-Enable Registers
GMX0_RX(0..2)_INT_EN

This register provides the interrupt-enable bits for the corresponding error in
GMX0_RX(0..2)_INT_REG. See Table 13–8 for the address.

GMX Port Configuration Registers
GMX0_PRT(0..2)_CFG

This register controls the configuration of the port. See Table 13–8 for the
address.

<1> CAREXT1 R/W1C 0 0 RGMII carrier-extend error.

<0> MINERR1 R/W1C 0 0 Minimum-length error. Frame was received with length < min_length.
Total frame,
DA+SA+TL+DATA+PAD+FCS < GMX0_RX(0..2)_FRM_MIN.

1. Exception conditions <10:0> can also set the rcv/opcode in the received packet's work-queue entry. GMX0_RX(0..2)_FRM_CHK pro-
vides a bit mask for configuring which conditions set the error.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved.
<19> PAUSE_DRP R/W 0 0 Pause packet was dropped due to full GMX RX FIFO.
<18> PHY_DUPX R/W 0 0 Change in the RMGII inbound LinkDuplex.
<17> PHY_SPD R/W 0 0 Change in the RMGII inbound LinkSpeed.
<16> PHY_LINK R/W 0 0 Change in the RMGII inbound LinkStatus.
<15> IFGERR R/W 0 0 Interframe-gap violation.
<14> COLDET R/W 0 0 Collision detection.
<13> FALERR R/W 0 0 False-carrier error, or carrier-extend error after slottime is satisfied.
<12> RSVERR R/W 0 0 RGMII reserved opcodes.
<11> PCTERR R/W 0 0 Bad preamble / protocol.
<10> OVRERR R/W 0 0 Internal data aggregation overflow error.
<9> NIBERR R/W 0 0 Nibble error (hi_nibble ≠ lo_nibble).
<8> SKPERR R/W 0 0 Skipper error.
<7> RCVERR R/W 0 0 Frame was received with RMGII data reception error.
<6> LENERR R/W 0 0 Frame was received with length error.
<5> ALNERR R/W 0 0 Frame was received with an alignment error.
<4> FCSERR R/W 0 0 Frame was received with FCS/CRC error.
<3> JABBER R/W 0 0 Frame was received with length > sys_length.
<2> MAXERR R/W 0 0 Frame was received with length > max_length.
<1> CAREXT R/W 0 0 RGMII carrier extend error.
<0> MINERR R/W 0 0 Frame was received with length < min_length.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3> SLOTTIME R/W 1 — Slot time for half-duplex operation

0 = 512 bitimes (10/100 Mbs operation)
1 = 4096 bitimes (1000 Mbs operation)

<2> DUPLEX R/W 1 — Duplex mode: 0 = half-duplex (collisions/extensions/bursts), 1 = full-duplex
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 531

 CN50XX Packet Interface: GMX Registers
Frame Control Registers
GMX0_RX(0..2)_FRM_CTL

This register controls the handling of the frames. See Table 13–8 for the address.

<1> SPEED R/W 1 — Link speed
0 = 10/100 Mbs operation

in RGMII mode: GMX0_TX(0..2)_CLK[CLK_CNT] > 1
in MII mode: GMX0_TX(0..2)_CLK[CLK_CNT] = 1

1 = 1000 Mbs operation
<0> EN R/W 0 — Link enable. When EN is clear, packets are not received or transmitted

(including PAUSE and JAM packets). If EN is cleared while a packet is
currently being received or transmitted, the packet is allowed to complete
before the bus is idled. On the RX side, subsequent packets in a burst are
ignored.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:11> — RAZ — — Reserved
<10> NULL_DIS R/W 0 0 Null tick disable. When set to 1, do not modify the MOD bits on NULL ticks

that are due to partial packets.
<9> PRE_ALIGN R/W 1 1 Preamble parser align. When set to 1, the preamble parser aligns the the

SFD byte regardless of the number of previous preamble nibbles. In this
mode, PREAMBLE can be consumed by the hardware so when
PRE_ALIGN is set, PRE_FREE, PRE_STRP must be set for correct
operation. PRE_CHK must be set to enable this and all PREAMBLE
features.

<8:7> — RAZ — — Reserved
<6> PRE_FREE R/W 1 1 Allows for less strict preamble checking. 0–254 cycles of PREAMBLE

followed by SFD.
<5> CTL_SMAC R/W 0 0 Control pause frames can match station SMAC.
<4> CTL_MCST R/W 1 1 Control pause frames can match globally assign multicast address.
<3> CTL_BCK R/W 1 1 Forward pause information to TX block.
<2> CTL_DRP R/W 1 1 Drop control-pause frames.
532 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
Notes:

● CTL_BCK/CTL_DRP

These bits control how the hardware handles incoming PAUSE packets. The
most common modes of operation:

CTL_BCK = 1, CTL_DRP = 1: hardware handles everything

CTL_BCK = 0, CTL_DRP = 0: software sees all pause frames

CTL_BCK = 0, CTL_DRP = 1: all pause frames are completely ignored

These control bits should be set to CTL_BCK = 0,CTL_DRP = 0 in half-
duplex mode. Since PAUSE packets only apply to fulldup operation, any
PAUSE packet would constitute an exception which should be handled by
the processing cores. PAUSE packets should not be forwarded.

<1> PRE_STRP R/W 1 1 Strip off the preamble (when present).

0 = PREAMBLE + SFD is sent to core as part of frame
1 = PREAMBLE + SFD is dropped

When PRE_STRP = 1 (indicating that the PREAMBLE will be sent),
PRE_STRP determines if the PREAMBLE + SFD bytes are thrown away or
sent to the core as part of the packet.

In either mode, the PREAMBLE + SFD bytes are not counted toward the
packet size when checking against the MIN and MAX bounds.
Furthermore, the bytes are skipped when locating the start of the L2
header for DMAC and Control frame recognition

<0> PRE_CHK R/W 1 1 Check the preamble for correctness. This port is configured to send
PREAMBLE + SFD to begin every frame. GMX checks that the
PREAMBLE is sent correctly.

When PRE_CHK = 1, the RGMII state expects a typical frame consisting of
INTER_FRAME ⇒ PREAMBLE(×7) ⇒ SFD(×1) ⇒ DAT.
The state machine watches for this exact sequence in order to recognize a
valid frame and push frame data into the CN50XX. There must be exactly
seven PREAMBLE cycles followed by the single SFD cycle for the frame to
be accepted.

When a problem does occur within the PREAMBLE sequence, the frame is
marked as bad and not sent into the core. The
GMX0_RX(0..2)_INT_REG[PCTERR] interrupt is also raised.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 533

 CN50XX Packet Interface: GMX Registers
Frame Check Registers
GMX0_RX(0..2)_FRM_CHK

This register indicates which frame errors will set the ERR bit of the frame. See
Table 13–8 for the address.

GMX Maximum Packet-Size Registers
GMX0_RX(0..2)_JABBER

This register specifies the maximum size for packets, beyond which the GMX
truncates. See Table 13–8 for the address.

Notes:
The packet that is sent to the packet-input logic will have an additional eight
bytes if GMX0_RX(0..2)_FRM_CTL[PRE_CHK] = 1 and
GMX0_RX(0..2)_FRM_CTL[PRE_STRP] = 0. The maximum packet that will be
sent is defined as:

max_sized_packet =
GMX0_RXn_JABBER[CNT]+

((GMX0_RXn_FRM_CTL[PRE_CHK] & GMX0_RXn_FRM_CTL[PRE_STRP]) × 8)

CNT must be ≥ GMX0_RX(0..2)_FRM_MAX[LEN]. Smaller values cause packets
that are within the LEN length to be rejected because they exceed the CNT
limit.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ — — Reserved.
<9> NIBERR R/W 1 1 Nibble error (i.e. hi_nibble ≠ lo_nibble).
<8> SKPERR R/W 1 1 Skipper error.
<7> RCVERR R/W 1 1 Frame was received with RMGII data-reception error.
<6> — RAZ — — Reserved.
<5> ALNERR R/W 1 1 Frame was received with an alignment error.
<4> FCSERR R/W 1 1 Frame was received with FCS/CRC error.
<3> JABBER R/W 1 1 Frame was received with length > sys_length.
<2> — RAZ — — Reserved.
<1> CAREXT R/W 1 1 RGMII carrier extend error.
<0> — RAZ — — Reserved.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> CNT R/W 0x2800 0x2800 Byte count for jabber check. Failing packets set the JABBER interrupt and

are optionally sent with opcode = JABBER. GMX truncates the packet to
CNT bytes.

● CNT must be 8-byte aligned such that CNT[2:0] = 000.
● CNT ≥ GMX0_RX(0..2)_FRM_MAX[LEN].
534 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
GMX Packet Decision Registers
GMX0_RX(0..2)_DECISION

This register specifies the byte count used to determine when to accept or to
filter a packet. As each byte in a packet is received by GMX, the L2 byte count
(i.e. the number of bytes from the beginning of the L2 header (DMAC)) is
compared against CNT. In normal operation, the L2 header begins after the
PREAMBLE + SFD (GMX0_RX(0..2)_FRM_CTL[PRE_CHK] = 1) and any
optional UDD skip data (GMX0_RX(0..2)_UDD_SKP[LEN]). See Table 13–8 for
the address.

Notes:
When GMX0_RX(0..2)_FRM_CTL[PRE_CHK] = 0, PREAMBLE + SFD are
prepended to the packet and require UDD skip length to account for them.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> CNT R/W 0x18 0x18 The byte count used to decide when to accept or filter a packet. See to Table

13-9.

Table 13-9GMX Decisions

Port Mode

L2 Size1

≤GMX_RX_DECISION bytes (default =
0x18) >GMX_RX_DECISION bytes (default = 0x18)

RGMII/Full Duplex Accept packet
No filtering is applied

Apply filters
Accept packet based on DMAC and PAUSE packet filters

RGMII/Half Duplex Drop packet
Packet is unconditionally dropped

Apply filters
Accept packet based on DMAC

1. where L2_size = MAX(0, total_packet_size − GMX0_RX(0..2)_UDD_SKP[LEN] − ((GMX0_RX(0..2)_FRM_CTL[PRE_CHK] = 1) × 8)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 535

 CN50XX Packet Interface: GMX Registers
GMX User-Defined Data Skip Registers
GMX0_RX(0..2)_UDD_SKP

This register specifies the amount of user-defined data (UDD) added before the
start of the L2C data. See Table 13–8 for the address.

Notes:

Assume that the PREAMBLE/SFD is always at the start of the frame, even
before UDD bytes. In most cases, there will be no preamble in these cases, since
it will be RGMII-to-RGMII communication without a PHY involved.

In all cases, the UDD bytes are sent through the packet interface as part of the
packet. The UDD bytes are never stripped from the actual packet.

If LEN ≠ 0 (i.e. there is some UDD), then length checking should be disabled (i.e.
GMX0_RX(0..2)_FRM_CHK[LENERR] should be cleared and
GMX0_RX(0..2)_INT_REG[LENERR] set to 0.

Address filtering and control-packet filtering can be performed as needed.

GMX RX Statistics Control Registers
GMX0_RX(0..2)_STATS_CTL

This register controls the receive statistics registers. See Table 13–8 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:9> — RAZ — — Reserved
<8> FCSSEL R/W 0x0 0 Include the skip bytes in the FCS calculation

0 = all skip bytes are included in FCS
1 = the skip bytes are not included in FCS

The skip bytes are part of the packet and are sent through the I/O bus packet
interface and are handled by PKI. The system can determine if the UDD
bytes are included in the FCS check by using the FCSSEL field, if the FCS
check is enabled.

<7> — RAZ — — Reserved
<6:0> LEN R/W 0x0 0 Amount of user-defined data before the start of the L2C data, in bytes.

0 means L2C comes first; maximum value is 64.

LEN must be 0x0 in half-duplex operation unless
GMX0_RX(0..2)_FRM_CTL[PRE_CHK] = 0.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved
<0> RD_CLR R/W 0 0 Clear on read. When this bit is set, any receive statistics registers are cleared

when read.
536 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
GMX Minimum Interframe-Gap Cycles Registers
GMX0_RX(0..2)_IFG

This register specifies the minimum number of interframe-gap (IFG) cycles
between packets. See Table 13–8 for the address.

InBand Link Status Registers
GMX0_RX(0..2)_RX_INBND

The fields in this register are only valid if the attached PHY is operating in
RGMII mode and supports the optional in-band status (see Section 3.4.1 of the
RGMII specification, version 1.3 for more information). See Table 13–8 for the
address.

GMX Pause Drop Time Registers
GMX0_RX(0..2)_PAUSE_DROP_TIME

This register specifies the TIME field in a PAUSE packet that was dropped due
to the GMX RX FIFO full condition. See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3:0> IFG R/W 0xC 0xC Minimum number IFG cycles between packets. Used to determine IFGERR

level.
1000Mbs: IFG = 0.096µs or 12 clock cycles
100Mbs: IFG = 0.96µs or 24 clock cycles
10Mbs: IFG = 9.6µs or 24 clock cycles

To simplify the programming model, IFG is doubled internally when
GMX_PRT_CFG[SPEED] = 0.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3> DUPLEX RO 0 — RGMII inbound LinkDuplex: 0 = half-duplex, 1 = full-duplex
<2:1> SPEED RO 0x0 — RGMII inbound LinkSpeed

00 = 2.5MHz
01 = 25MHz
10 = 125MHz
11 = Reserved

<0> STATUS RO 0 — RGMII inbound LinkStatus: 0 = down, 1 = up

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> STATUS R/W1C 0x0 — The time extracted from the dropped PAUSE packet.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 537

 CN50XX Packet Interface: GMX Registers
GMX RX Good Packets Registers
GMX0_RX(0..2)_STATS_PKTS

This register provides a count of good received packets. The following are
examples of “not good” packets:

● packets recognized as PAUSE packets
● packets dropped due to the DMAC filter
● packets dropped due to FIFO full status
● packets that have opcodes ≠ 0 (FCS, Length, etc.).

See Table 13–8 for the address.

GMX RX Good Packets Octet Registers
GMX0_RX(0..2)_STATS_OCTS

See Table 13–8 for the address.

GMX RX Pause Packets Registers
GMX0_RX(0..2)_STATS_PKTS_CTL

This register provides a count of all packets received that were recognized as
flow-control or PAUSE packets. Note that PAUSE packets with any kind of error
are also counted in GMX0_RX(0..2)_STATS_PKTS_BAD.

● Pause packets can be optionally dropped or forwarded based on
GMX0_RX(0..2)_FRM_CTL[CTL_DRP]. This count increments regardless of
whether the packet is dropped.

● Pause packets are never counted in GMX0_RX(0..2)_STATS_PKTS.
● Packets dropped due to the DMAC filter are counted in

GMX0_RX(0..2)_STATS_PKTS_DMAC and not here.

See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> CNT RC/W 0x0 — Count of received good packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved.
<47:0> CNT RC/W 0x0 — Octet count of received good packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> CNT RC/W 0x0 — Count of received flow-control or PAUSE packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.
538 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
GMX RX Pause Packets Octet Registers
GMX0_RX(0..2)_STATS_OCTS_CTL

See Table 13–8 for the address.

GMX RX DMAC Packets Registers
GMX0_RX(0..2)_STATS_PKTS_DMAC

This register provides a count of all packets received that were dropped by the
DMAC filter. Packets that match the DMAC are dropped and counted here
regardless of whether they were bad packets. These packets are never counted
in GMX0_RX(0..2)_STATS_PKTS. Note that some packets that were not able to
satisfy the DECISION_CNT may not actually be dropped by CN50XX, but they
are counted here as if they were dropped. See Table 13–8 for the address.

GMX RX DMAC Packets Octet Registers
GMX0_RX(0..2)_STATS_OCTS_DMAC

See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved.
<47:0> CNT RC/W 0x0 — Octet count of received flow-control or PAUSE packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> CNT RC/W 0x0 — Count of filtered DMAC packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved.
<47:0> CNT RC/W 0x0 — Octet count of filtered DMAC packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 539

 CN50XX Packet Interface: GMX Registers
GMX RX Overflow Packets Registers
GMX0_RX(0..2)_STATS_PKTS_DRP

This register provides a count of all packets received that were dropped due to a
full receive FIFO. It counts all packets dropped by the FIFO, both good and bad
packets received. It does not count packets dropped by the DMAC or PAUSE-
packet filters.

See Table 13–8 for the address.

GMX RX Overflow Packets Octet Registers
GMX0_RX(0..2)_STATS_OCTS_DRP

See Table 13–8 for the address.

GMX RX Bad Packets Registers
GMX0_RX(0..2)_STATS_PKTS_BAD

This register provides a count of all packets received with some error that were
not dropped either due to the DMAC filter or lack of room in the receive FIFO.
See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved.
<31:0> CNT RC/W 0x0 — Count of dropped packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved.
<47:0> CNT RC/W 0x0 — Octet count of dropped packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> CNT RC/W 0x0 — Count of received packets with opcode ≠ 0

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_RX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.
540 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

CN50XX Packet Interface: GMX Registers
Address-Filtering Control Registers
GMX0_RX(0..2)_ADR_CTL

See Table 13–8 for the address.

Algorithm:

Here is some pseudo-code that represents the address-filter behavior.

 bool dmac_addr_filter(uint8 prt, uint48 dmac) {
 ASSERT(prt >= 0 && prt <= 3);
 if (is_bcst(dmac)) // broadcast accept
 return (GMX_RX{prt}_ADR_CTL[BCST] ? ACCEPT : REJECT);
 if (is_mcst(dmac) & GMX_RX{prt}_ADR_CTL[MCST] == 1) // multicast reject
 return REJECT;
 if (is_mcst(dmac) & GMX_RX{prt}_ADR_CTL[MCST] == 2) // multicast accept
 return ACCEPT;

 cam_hit = 0;

 for (i=0; i<8; i++) {
 if (GMX_RX{prt}_ADR_CAM_EN[EN<i>] == 0)
 continue;
 uint48 unswizzled_mac_adr = 0x0;
 for (j=5; j>=0; j--) {
 unswizzled_mac_adr = (unswizzled_mac_adr << 8) |

GMX_RX{prt}_ADR_CAM{j}[ADR<i*8+7:i*8>];
 }
 if (unswizzled_mac_adr == dmac) {
 cam_hit = 1;
 break;
 }
 }

 if (cam_hit)
 return (GMX_RX{prt}_ADR_CTL[CAM_MODE] ? ACCEPT : REJECT);
 else
 return (GMX_RX{prt}_ADR_CTL[CAM_MODE] ? REJECT : ACCEPT);
 }

Address-Filtering Control Enable Registers
GMX0_RX(0..2)_ADR_CAM_EN

See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3> CAM_MODE R/W 0x0 — Allow or deny DMAC address filter

0 = reject the packet on DMAC address match
1 = accept the packet on DMAC address match

<2:1> MCST R/W 0x0 — Multicast Mode
0 = Use the address-filter CAM
1 = Force reject all multicast packets
2 = Force accept all multicast packets
3 = Reserved

<0> BCST R/W 0x1 — Accept all broadcast packets

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7:0> EN R/W 0x0 — CAM-entry enable bits.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 541

Owner
高亮

Owner
高亮

 CN50XX Packet Interface: GMX Registers
Address-Filtering CAM Control Registers
GMX0_RX(0..2)_ADR_CAM(0..5)

See Table 13–8 for the address.

GMX TX Clock Generation Registers
GMX0_TX(0..2)_CLK

This register provides the ability to regulate the TXC frequency. See Table 13–8
for the address.

Example: given a 125MHz PLL and 250MHz internal RGMII clock:

When CLK_CNT = 0x1 = 1 → 8ns × 1 = 8ns = 125.0 MHz TXC clock
When CLK_CNT = 0x5 = 5 → 8ns × 5 = 40ns = 25.0 MHz TXC clock
When CLK_CNT = 0x32 = 50 → 8ns × 50 = 400ns = 2.5 MHz TXC clock

TX Threshold Registers
GMX0_TX(0..2)_THRESH

See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:0> ADR R/W 0x0 — The DMAC address to match on.
Each entry contributes eight bits to one of eight matchers. Write transactions
to this register do not change the CSR when
GMX0_PRT(0..2)_CFG[EN] is enabled. The CAM matches against unicast or
multicast DMAC addresses.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved.
<5:0> CLK_CNT R/W 0x1 0x1 Clock control. Controls the RGMII TXC frequency.

TXC (period) = GMI_REF_CLK (period) × CLK_CNT

NOTE: Do not set CLK_CNT = 0, as it does not generate a clock.
If GMX_PRTn_CFG[SPEED] = 0, CLK_CNT must be > 1.

NOTE: In MII mode, CLK_CNT = 1.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:7> — RAZ — — Reserved
<6:0> CNT R/W 0x20 0x20 Number of 16-byte ticks to accumulate in the TX FIFO before sending on the

RGMII interface. This field should be large enough to prevent underflow on
the RGMII interface and must never be set to less than 0x4. This register
cannot exceed the TX FIFO depth of 0x40 words.
542 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

CN50XX Packet Interface: GMX Registers
TX Append Control Registers
GMX0_TX(0..2)_APPEND

See Table 13–8 for the address.

TX Slottime Counter Registers
GMX0_TX(0..2)_SLOT

See Table 13–8 for the address.

TX Burst-Counter Registers
GMX0_TX(0..2)_BURST

See Table 13–8 for the address.

RGMII SMAC Registers
GMX0_SMAC(0..2)

See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:4> — RAZ — — Reserved
<3> FORCE_FCS R/W 1 1 Append the ethernet FCS on each pause packet when FCS = 0. PAD must

also be set to 0.
<2> FCS R/W 1 1 Append the ethernet FCS on each packet.
<1> PAD R/W 1 1 Append PAD bytes such that a minimum-sized packet is transmitted.
<0> PREAMBLE R/W 1 1 Append the ethernet preamble on each transfer.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ — — Reserved
<9:0> SLOT R/W 0x200 0x200 Slottime (refer to 802.3 to set correctly)

10/100Mbs: set SLOT to 0x40
1000Mbs: set SLOT to 0x200

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> BURST R/W 0x2000 0x2000 Burst (refer to 802.3 to set correctly)

10/100Mbs: set BURST to 0x0
1000Mbs: set BURST to 0x2000

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved.
<47:0> SMAC R/W 0x0 — The SMAC field is used for generating and accepting Control Pause packets.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 543

 CN50XX Packet Interface: GMX Registers
TX Pause Packet Pause-Time Registers
GMX0_TX(0..2)_PAUSE_PKT_TIME

See Table 13–8 for the address.

Notes:

Choosing proper values of GMX0_TX(0..2)_PAUSE_PKT_TIME[TIME] and
GMX0_TX(0..2)_PAUSE_PKT_INTERVAL[INTERVAL] can be challenging.
Cavium Networks suggests that TIME be much greater than INTERVAL and
GMX0_TX(0..2)_PAUSE_ZERO[SEND] be set to 1. This allows a periodic refresh
of the PAUSE count and then when the backpressure condition is lifted, a
PAUSE packet with TIME = 0 is sent indicating that CN50XX is ready for
additional data.

If the system chooses to not set GMX0_TX(0..2)_PAUSE_ZERO[SEND], then
Cavium Networks suggests that TIME and INTERVAL are programmed such
that they satisfy the following rule:

INTERVAL ≤ TIME − (largest_pkt_size + IFG + pause_pkt_size)

where:

largest_pkt_size = the largest packet that the system can send (normally 1518
bytes)

IFG = the interframe gap
pause_pkt_size = the size of the PAUSE packet (normally 64 bytes).

RGMII TX Minimum-Size-Packet Registers
GMX0_TX(0..2)_MIN_PKT

This register specifies the minimum size a packet should be. See Table 13–8 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> TIME R/W 0x60 — Provides the pause_time field placed is outbound PAUSE packets, in 512 bit-

times.
Normally, TIME > GMX0_TX(0..2)_PAUSE_PKT_INTERVAL[INTERVAL].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:0> MIN_SIZE R/W 0x3B 0x3B Minimum frame size in bytes before the FCS is applied.

Padding is only appended when GMX0_TX(0..2)_APPEND[PAD] for the
corresponding RGMII port is set.
544 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
TX Pause-Packet Transmission-Interval Registers
GMX0_TX(0..2)_PAUSE_PKT_INTERVAL

This register specifies how often PAUSE packets are sent. See Table 13–8 for the
address.

Notes:

Choosing proper values of GMX0_TX(0..2)_PAUSE_PKT_TIME[TIME] and
GMX0_TX(0..2)_PAUSE_PKT_INTERVAL[INTERVAL] can be challenging.
Cavium Networks suggests that TIME be much greater than INTERVAL and
GMX0_TX(0..2)_PAUSE_ZERO[SEND] be set to 1. This allows a periodic refresh
of the PAUSE count and then when the backpressure condition is lifted, a
PAUSE packet with TIME = 0 is sent indicating that CN50XX is ready for
additional data.

If the system chooses to not set GMX0_TX(0..2)_PAUSE_ZERO[SEND], then
Cavium Networks suggests that TIME and INTERVAL are programmed such
that they satisfy the following rule:

INTERVAL ≤ TIME − (largest_pkt_size + IFG + pause_pkt_size)

where:

largest_pkt_size = the largest packet that the system can send (normally 1518
bytes)

IFG = the interframe gap
pause_pkt_size = the size of the PAUSE packet (normally 64 bytes).

TX Software-Pause Registers
GMX0_TX(0..2)_SOFT_PAUSE

This register specifies the pause time. See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> INTERVAL R/W 0xFF — Arbitrate for a PAUSE packet every (INTERVAL × 512) bit-times.

Normally, 0 < INTERVAL < GMX0_TX(0..2)_PAUSE_PKT_TIME[TIME].

INTERVAL = 0 only send a single PAUSE packet for each backpressure
event.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> TIME R/W 0x0 — Back off the TX bus for (TIME × 512) bit-times
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 545

 CN50XX Packet Interface: GMX Registers
TX Time-to-Backpressure Registers
GMX0_TX(0..2)_PAUSE_TOGO

This register is the pause-deferral counter. See Table 13–8 for the address.

TX Pause-Zero-Enable Registers
GMX0_TX(0..2)_PAUSE_ZERO

See Table 13–8 for the address.

GMX TX Statistics Control Registers
GMX0_TX(0..2)_STATS_CTL

This register controls the transmit statistics registers. See Table 13–8 for the
address.

GMX Transmit Control Registers
GMX0_TX(0..2)_CTL

This register enables error checking in the STX. See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved.
<15:0> TIME RO — — Amount of time remaining to backpressure.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved
<0> SEND R/W 1 1 Send pause-zero enable.When this bit is set, and the backpressure condition

is clear, it allows sending a pause packet with pause_time of 0 to enable the
channel.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved
<0> RD_CLR R/W 0 0 Clear on read. When this bit is set, any transmit statistics registers are

cleared when read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved
<1> XSDEF_EN R/W 1 1 Enables the excessive-deferral check for statistics and interrupts.
<0> XSCOL_EN R/W 1 1 Enables the excessive-collision check for statistics and interrupts.
546 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
Transmit Statistics Registers 0
GMX0_TX(0..2)_STAT0

This register maintains statistics on excessive deferrals and excessive collisions.
See Table 13–8 for the address.

Transmit Statistics Registers 1
GMX0_TX(0..2)_STAT1

This register maintains statistics on single collisions and multiple collisions. See
Table 13–8 for the address.

Transmit Statistics Registers 2
GMX0_TX(0..2)_STAT2

This register maintains statistics on the number of octets sent on the interface.
See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> XSDEF RC/W 0x0 — Number of packets dropped (never successfully sent) due to excessive
deferrals.

<31:0> XSCOL RC/W 0x0 — Number of packets dropped (never successfully sent) due to excessive
collision. Defined by GMX0_TX_COL_ATTEMPT[LIMIT].

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> SCOL RC/W 0x0 — Number of packets sent with a single collision.
<31:0> MSCOL RC/W 0x0 — Number of packets sent with multiple collisions but less than

GMX0_TX_COL_ATTEMPT[LIMIT].

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:0> OCTS RC/W 0x0 — Number of total octets sent on the interface. Does not count octets from

frames that were truncated due to collisions in half-duplex mode.

NOTE: ● Octet counts are the sum of all data transmitted on the wire, including packet data, pad bytes, FCS bytes,
PAUSE bytes, and JAM bytes. The octet counts do not include the preamble byte or extend cycles.

● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 547

 CN50XX Packet Interface: GMX Registers
Transmit Statistics Registers 3
GMX0_TX(0..2)_STAT3

Used for GMX_TX_STATS_PKTS.

This register maintains statistics on the number of frames sent on the interface.
See Table 13–8 for the address.

Transmit Statistics Registers 4
GMX0_TX(0..2)_STAT4

This register maintains statistics on the number of packets sent on the interface
with octet counts of 64 and less than 64. See Table 13–8 for the address.

Transmit Statistics Registers 5
GMX0_TX(0..2)_STAT5

This register maintains statistics on the number of packets sent on the interface
with octet counts between 65 and 127 and between 128 and 255. See Table 13–8
for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> — RAZ — — Reserved
<31:0> PKTS RC/W 0x0 — Number of total frames sent on the interface. Does not count frames that

were truncated due to collisions in half-duplex mode.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> HIST1 RC/W 0x0 — Number of packets sent with an octet count of 64.
<31:0> HIST0 RC/W 0x0 — Number of packets sent with an octet count < 64.

NOTE: ● Packet length is the sum of all data transmitted on the wire for the given packet, including packet data,
pad bytes, FCS bytes, PAUSE bytes, and JAM bytes. The octet counts do not include the preamble byte or
extend cycles.

● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> HIST3 RC/W 0x0 — Number of packets sent with an octet count of 128 – 255.
<31:0> HIST2 RC/W 0x0 — Number of packets sent with an octet count of 65 – 127.

NOTE: ● Packet length is the sum of all data transmitted on the wire for the given packet, including packet data,
pad bytes, FCS bytes, PAUSE bytes, and JAM bytes. The octet counts do not include the preamble byte or
extend cycles.

● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.
548 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
Transmit Statistics Registers 6
GMX0_TX(0..2)_STAT6

This register maintains statistics on the number of packets sent on the interface
with octet counts between 256 and 511 and between 512 and 1023. See Table
13–8 for the address.

Transmit Statistics Registers 7
GMX0_TX(0..2)_STAT7

This register maintains statistics on the number of packets sent on the interface
with octet counts between 1024 and 1518 and greater than 1518. See Table 13–8
for the address.

Transmit Statistics Registers 8
GMX0_TX(0..2)_STAT8

This register maintains statistics on the number of packets sent to broadcast
DMAC and to multicast DMAC. See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> HIST5 RC/W 0x0 — Number of packets sent with an octet count of 512 – 1023.
<31:0> HIST4 RC/W 0x0 — Number of packets sent with an octet count of 256 – 511.

NOTE: ● Packet length is the sum of all data transmitted on the wire for the given packet, including packet data,
pad bytes, FCS bytes, PAUSE bytes, and JAM bytes. The octet counts do not include the preamble byte or
extend cycles.

● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> HIST7 RC/W 0x0 — Number of packets sent with an octet count of > 1518.
<31:0> HIST6 RC/W 0x0 — Number of packets sent with an octet count of 1024 – 1518.

NOTE: ● Packet length is the sum of all data transmitted on the wire for the given packet, including packet data,
pad bytes, FCS bytes, PAUSE bytes, and JAM bytes. The octet counts do not include the preamble byte or
extend cycles.

● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> MCST RC/W 0x0 — Number of packets sent to multicast DMAC. Does not include BCST packets.
<31:0> BCST RC/W 0x0 — Number of packets sent to broadcast DMAC. Does not include MCST packets.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.
● Note that the GMX determines if the packet is MCST or BCST from the DMAC of the packet. GMX

assumes that the DMAC lies in the first six bytes of the packet as per the 802.3 frame definition. If the
system requires additional data before the L2 header, then the MCST and BCST counters may not reflect
reality and should be ignored by software.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 549

 CN50XX Packet Interface: GMX Registers
Transmit Statistics Registers 9
GMX0_TX(0..2)_STAT9

This register maintains statistics on the number of underflow packets and
control packets. See Table 13–8 for the address.

GMX BIST Results Register
GMX0_BIST

See Table 13–8 for the address.

RX Ports Register
GMX_RX_PRTS

This register specifies the number of ports, which indicates the number of FIFOs
that make up the RX buffer. It always powers on to three ports. See Table 13–8
for the address.

RX FIFO Packet-Drop Registers
GMX0_RX_BP_DROP(0..2)

This register provides the mark for an RX FIFO beyond which packets are
dropped and not buffered. The actual watermark is dynamic in RGMII mode
with respect to the GMX_RX_PRTS register. GMX_RX_PRTS controls the depth

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:32> UNDFLW RC/W 0x0 — Number of underflow packets.
<31:0> CTL RC/W 0x0 — Number of Control packets (PAUSE flow control) generated by GMX. It

does not include control packets forwarded or generated by the cores.

NOTE: ● Cleared by either a write (of any value) or a read when GMX0_TX(0..2)_STATS_CTL[RD_CLR] is set.
● Counters will wrap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved
<11:0> STATUS RO 0x0 0 BIST results. 0 = pass, 1 = fail

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> PRTS R/W 0x3 0x3 In RGMII mode, the RX buffer can be carved into several logical buffers

depending on the number or implemented ports.
0 or 1 port = 512ticks / 4096bytes
2 ports = 256ticks / 2048bytes
3 ports = 128ticks / 1024bytes
4–8 ports = N/A
550 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
of the port’s FIFO, so as ports are added or removed, the drop point may change.
The relationship of the values in GMX0_RX_BP_DROP(0..2),
GMX0_RX_BP_ON(0..2), and GMX0_RX_BP_OFF(0..2) is shown Figure 13–6.

See Table 13–8 for the address.

RX Backpressure On Registers
GMX0_RX_BP_ON(0..2)

This register provides the high-water mark for port/interface backpressure, the
FIFO-full level at which backpressure is asserted. In RGMII mode, backpressure
is given per port. See Table 13–8 for the address.

Figure 13–6 RX FIFO Values

RX FIFO

GMX0_RX_BP_DROPn[MARK]

GMX0_RX_BP_ONn[MARK]

GMX0_RX_BP_OFFn[MARK]

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved
<5:0> MARK R/W — — Number of eight-byte ticks to reserve in the RX FIFO. When the FIFO

exceeds this count, packets are dropped and not buffered. MARK should
typically be programmed to the number of ports + 1. Failure to program
correctly can lead to system instability.
● Reset for RGMII mode = 0x2

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:9> — RAZ — — Reserved.
<8:0> MARK R/W — — High-water mark (in eight-byte ticks) for asserting backpressure.

MARK must satisfy:

BP_OFF[MARK] ≤ BP_ON[MARK] < (FIFO_SIZE − BP_DROP[MARK])

The default value is half the FIFO, which for RGMII mode = 0x40 (512
bytes).
A value of 0x0 immediately asserts backpressure.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 551

 CN50XX Packet Interface: GMX Registers
RX Backpressure Off Registers
GMX0_RX_BP_OFF(0..2)

This register provides the low-water mark for port/interface backpressure, the
FIFO-full level at which backpressure can be deasserted. See Table 13–8 for the
address.

TX Ports Register
GMX0_TX_PRTS

This register specifies the number of ports allowed on the interface, which is one
higher than highest-numbered port (e.g. if port 3 is the highest port number, this
register specifies 4). See Table 13–8 for the address.

TX Interframe Gap Register
GMX0_TX_IFG

See Table 13–8 for the address.

TX JAM Pattern Register
GMX0_TX_JAM

This register provides the pattern used in JAM bytes. See Table 13–8 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved.
<5:0> MARK R/W 0x10 0x10 Low-water mark (in eight-byte ticks) to deassert backpressure.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved.
<4:0> PRTS R/W 0x3 — Number of ports allowed on the interface.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7:4> IFG2 R/W 0x4 — 1/3 of the interframe gap timing.
<3:0> IFG1 R/W 0x8 — 2/3 of the interframe gap timing.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7:0> JAM R/W 0xEE — JAM pattern.
552 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
TX Collision Attempts Before Dropping Frame Register
GMX0_TX_COL_ATTEMPT

This register provides the number of collision attempts allowed before dropping
the frame. See Table 13–8 for the address.

TX Pause-Packet DMAC-Field Register
GMX0_TX_PAUSE_PKT_DMAC

This register provides the DMAC value that is placed in outbound PAUSE
packets. See Table 13–8 for the address.

TX Pause Packet Type Field Register
GMX0_TX_PAUSE_PKT_TYPE

This register provides the Type field that is placed in outbound PAUSE packets.
See Table 13–8 for the address.

TX Override Backpressure Register
GMX0_TX_OVR_BP

This register provides the ability to assert per-port backpressure, as well as the
ability to override the assertion of backpressure for RGMII ports. See Table 13–8
for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> LIMIT R/W 0x10 0x10 Number of collision attempts allowed.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:48> — RAZ — — Reserved
<47:0> DMAC R/W 0x0180C2000001 0x0180C2000001 The DMAC field, which is placed is outbound PAUSE

packets.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> TYPE R/W 0x8808 0x8808 The Type field placed is outbound pause packets.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved.
<11> — R/W 0 0 Spare.
<10:8> EN R/W 0x0 0x0 Per-port backpressure enable/override (<8> for port 0, ..., <10> for port 2).

Bits in this field must be set to allow backpressure to be asserted for the
corresponding port. Ports that don’t have the corresponding bit set are not
able to assert backpressure.

<7> — R/W 0 0 Spare.
<6:4> BP R/W 0x0 0x0 Per-port backpressure status to use: (<4> for port 0, ..., <6> for port 2)

0 = port is available
1 = port should be backpressured
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 553

 CN50XX Packet Interface: GMX Registers
TX Backpressure Status Register
GMX0_TX_BP

This register shows the status of backpressure for RGMII ports. See Table 13–8
for the address.

TX Corrupt Packets Register
GMX0_TX_CORRUPT

This register enables the STX to corrupt a packet under certain conditions.
Packets sent from PKO with the ERR wire asserted are corrupted by the
transmitter if CORRUPT[port#] is set.

In RGMII mode, corruption means that GMX sends a bad FCS value. If
GMX0_TX(0..2)_APPEND[FCS] is clear then no FCS is sent and the GMX
cannot corrupt it. The corrupt FCS value is 0xEEEEEEEE. See Table 13–8 for
the address.

RX Port State Information Register
GMX0_RX_PRT_INFO

This register shows the contents of the linear feedback shift register (LFSR),
which is used to implement truncated binary exponential backoff. See Table 13–
8 for the address.

<3> — R/W 0 0 Spare.
<2:0> IGN_FULL R/W 0x0 0x0 Ignore the RX FIFO full when computing backpressure (<0> for port 0, ...,

<2> for port 2).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> BP RO 0x0 0x0 Per-port backpressure status: (<0> for port 0, ..., <2> for port 2)

0 = port is available, 1 = port should be backpressured

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> CORRUPT R/W 0x7 0x7 Per-port error propagation.

0 = Never corrupt packets
1 = Corrupt packets with ERR

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:19> — RAZ — — Reserved
<18:16> DROP R/W 0x0 0x0 Per-port indication that data was dropped.
<15:3> — RAZ — — Reserved
<2:0> COMMIT R/W 0x0 0x0 Per-port indication that SOP was accepted.
554 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
TX LFSR Register
GMX0_TX_LFSR

This register shows the contents of the linear feedback shift register (LFSR),
which is used to implement truncated binary exponential backoff. See Table 13–
8 for the address.

TX Interrupt Register
GMX0_TX_INT_REG

This register allows per-port interrupts to be sent to the control processor. If an
error is noted in this register, and the corresponding bit in GMX0_TX_INT_EN
is set, an exception is raised. See Table 13–8 for the address.

TX Interrupt-Enable Register
GMX0_TX_INT_EN

This register provides the interrupt-enable bits for the corresponding error in
GMX0_TX_INT_REG. See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved
<15:0> LFSR R/W 0xFFFF — Contains the current state of the LFSR, which is used to feed random

numbers to compute truncated binary exponential backoff.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved
<19> — R/W1C 0 0 Spare bit.
<18:16> LATE_COL R/W1C 0x0 0x0 TX late collision
<15> — R/W1C 0 0 Spare bit.
<14:12> XSDEF R/W1C 0x0 0x0 TX excessive deferrals (RGMII/half-duplex mode only)
<11> — R/W1C 0 0 Spare bit.
<10:8> XSCOL R/W1C 0x0 0x0 TX excessive collisions (RGMII/half-duplex mode only)
<7:5> — R/W1C 0x0 0x0 Spare bits.
<4:2> UNDFLW R/W1C 0x0 0x0 TX underflow (RGMII mode only)
<1> — R/W1C 0 0 Spare bit.
<0> PKO_NXA R/W1C 0 0 Port address out-of-range from PKO interface.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved
<19> — R/W 0 0 Spare bit.
<18:16> LATE_COL R/W 0x0 0x0 TX late collision
<15> — R/W 0 0 Spare bit.
<14:12> XSDEF R/W 0x0 0x0 TX excessive deferrals (RGMII/half-duplex mode only)
<11> — R/W 0 0 Spare bit.
<10:8> XSCOL R/W 0x0 0x0 TX excessive collisions (RGMII/half-duplex mode only)
<7:5> — R/W 0x0 0x0 Spare bits.
<4:2> UNDFLW R/W 0x0 0 TX Underflow (RGMII mode only)
<1> — R/W 0x0 0x0 Spare bits.
<0> PKO_NXA R/W 0x0 0 Port address out-of-range from PKO interface
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 555

 CN50XX Packet Interface: GMX Registers
Address-out-of-Range Error Register
GMX0_NXA_ADR

This register shows the logged address that caused an address-out-of-range
error. See Table 13–8 for the address.

GMX Miscellaneous Error Register
GMX_BAD_REG

This register contains a variety of error conditions that were not covered in
other error registers. See Table 13–8 for the address.

GMX Backpressure Statistics Register
GMX_STAT_BP

This register indicates the number of cycles that the TX/Stats block has held up
operation. See Table 13–8 for the address.

Mode Change Mask Registers
GMX0_TX_CLK_MSK0/1

Register 0 is used for port 0, and register 1 is used for ports 1 and 2 . See Table
13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved
<5:0> PRT RO 0x0 — Logged address for address-out-of-range exceptions. The logged address is

from the first exception that caused the problem. The I/O bus has a higher
priority than PKO.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:31> — RAZ — — Reserved.
<30:27> INB_NXA R/W1C 0x0 0x0 Inbound port > GMX0_RX_PRTS
<26> STATOVR R/W1C 0 0 TX statistics overflow.
<25> — R/W1C 0 0 Spare bit.
<24:22> LOSTSTAT R/W1C 0x0 0x0 TX statistics data was over-written (per RGM port).

TX statistics registers are corrupted.
<21:18> — RAZ 0x0 0x0 Reserved. Safe to write, read as 0x0.
<17:5> — R/W1C 0x0 0x0 Spare bits.
<4:2> OUT_OVR R/W1C 0x0 0x0 Outbound data FIFO overflow (per port).
<1:0> — R/W1C 0x0 0x0 Spare bits.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:17> — RAZ — — Reserved.
<16> BP RO 0 0 Outbound I/O bus FIFO overflow.
<15:0> CNT R/W1C 0x0 0x0 Outbound collision occurred between PKO and the I/O bus.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> MSK R/W 0 — Set this bit to 1 when switching clocks.
556 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: GMX Registers
GMX RX/TX Status Register
GMX0_RX_TX_STATUS

This register provides the status since the last read operation. See Table 13–8
for the address.

Interface Mode Register
GMX0_INF_MODE

See Table 13–8 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:7> — RAZ — — Reserved.
<6:4> TX RC 0x0 0x0 Transmit data since last read operation.
<3> — RAZ — — Reserved.
<2:0> RX RC 0x0 0x0 Receive data since last read operation.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved.
<2> P0MII R/W — — Port 0 configuration: 0 = RGMII port, 1 = MII port.
<1> EN R/W — — Interface enable. This field must be set to enable the packet interface. It

should be enabled before any other requests to GMX, including enabling port
backpressure with IPD_CTL_STATUS[PBP_EN].

<0> TYPE R/W — — Ports 1 and 2 configuration:
0 = both ports are RGMII ports
1 = port 1 is either GMII or MII port, port 2 is disabled (GMII or MII

port is selected by GMX_PRT1_CFG[SPEED]: 0 = MII, 1 = GMII.).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 557

 CN50XX Packet Interface: ASX Registers
13.9 ASX Registers

The ASX registers are listed in Table 13-10.

RGMII RX Port Enable Register
ASX0_RX_PRT_EN

See Table 13-10 for the address.

Table 13-10ASX Registers

Register Address

CSR

Type1

1. RSL-type registers are accessed indirectly across the I/O bus.

Detailed
Description

ASX0_RX_PRT_EN 0x00011800B0000000 RSL See page 558

ASX0_TX_PRT_EN 0x00011800B0000008 RSL See page 559

ASX0_INT_REG 0x00011800B0000010 RSL See page 559

ASX0_INT_EN 0x00011800B0000018 RSL See page 559

ASX0_RX_CLK_SET0

...

ASX0_RX_CLK_SET2

0x00011800B0000020

...

0x00011800B0000030

RSL See page 560

ASX0_PRT_LOOP 0x00011800B0000040 RSL See page 561

ASX0_TX_CLK_SET0

...

ASX0_TX_CLK_SET2

0x00011800B0000048

...

0x00011800B0000058

RSL See page 562

ASX0_TX_COMP_BYP 0x00011800B0000068 RSL See page 562

ASX0_TX_HI_WATER000

...

ASX0_TX_HI_WATER002

0x00011800B0000080

...

0x00011800B0000090

RSL See page 562

ASX0_GMII_RX_CLK_SET 0x00011800B0000180 RSL See page 563

ASX0_GMII_RX_DAT_SET 0x00011800B0000188 RSL See page 563

ASX0_MII_RX_DAT_SET 0x00011800B0000190 RSL See page 563

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> PRT_EN R/W 0x0 0x1 Port enable. Must be set for CN50XX to receive RMGII traffic. When this bit

clear for a given port, all the RGMII cycles appear as interframe cycles.
558 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: ASX Registers
RGMII TX Port Enable Register
ASX0_TX_PRT_EN

See Table 13-10 for the address.

RGMII Interrupt Register
ASX0_INT_REG

See Table 13-10 for the address.

RGMII Interrupt-Enable Register
ASX0_INT_EN

See Table 13-10 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved
<2:0> PRT_EN R/W 0x0 0x1 Port enable. Must be set for CN50XX to receive RMGII traffic. When this bit

clear for a given port, all the RGMII cycles appear as interframe cycles.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:11> — RAZ — — Reserved.
<10:8> TXPSH R/W1C 0x0 0x0 TX FIFO overflow on RMGII port.
<7> — RAZ — — Reserved.
<6:4> TXPOP R/W1C 0x0 0x0 TX FIFO underflow on RMGII port.
<3> — RAZ — — Reserved.
<2:0> OVRFLW R/W1C 0x0 0x0 RX FIFO overflow on RMGII port.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:11> — RAZ — — Reserved
<10:8> TXPSH R/W 0x0 0x1 TX FIFO overflow on RMGII port
<7> — RAZ — — Reserved
<6:4> TXPOP R/W 0x0 0x1 TX FIFO underflow on RMGII port
<3> — RAZ — — Reserved
<2:0> OVRFLW R/W 0x0 0x1 RX FIFO overflow on RMGII port
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 559

 CN50XX Packet Interface: ASX Registers
RGMII RX Clock-Delay Registers
ASX0_RX_CLK_SET(0..2)

See Table 13-10 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> SETTING R/W 0x18 0x0 Delay setting to place on the open-loop RXC (RGMII receive clock) delay line,

which can delay the received clock. This field can be used if the board and/or
transmitting device has not otherwise delayed the clock.

A value of 0x0 disables the delay line. The delay line should be disabled
unless the transmitter or board does not delay the clock.

NOTE: Note that this delay line provides only a coarse control over the delay.
Generally, it can only reliably provide a delay in the range 1.25 – 2.5
ns, which may not be adequate for some system applications.

The open loop delay line selects from among a series of tap positions.
Each incremental tap position adds a delay of 50 ps to 135 ps per tap,
depending on the chip, its temperature, and the voltage. To achieve
from 1.25 – 2.5 ns of delay on the received clock, a fixed value of 0x18
may work.

For more precision, Cavium recommends the following settings based
on the chip voltage:

VDD SETTING VDD SETTING
1.0 0x12 1.2 0x17
1.05 0x13 1.25 0x18
1.1 0x15 1.3 0x19
1.15 0x16
560 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: ASX Registers
RGMII Internal Loopback-Enable Register
ASX0_PRT_LOOP

TX FIFO output goes into RX FIFO.

See Table 13-10 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:7> — RAZ — — Reserved
<6:4> EXT_LOOP R/W 0x0 0x0 External-loopback enable (per-port)

0 = No loopback (TX FIFO is filled by RMGII)
1 = RX FIFO drives the TX FIFO

● GMX_PRT_CFG[DUPLEX] must be 1 (full-duplex mode)
● GMX_PRT_CFG[SPEED] must be 1 (GigE speed)
● core clock > 250MHZ
● RXC must not deviate from the ±50ppm
● if TXC>RXC, idle cycle may drop over time

<3> — RAZ — — Reserved
<2:0> PRT_LOOP R/W 0x0 0x0 Internal-loopback enable (per-port)

0 = No loopback (RX FIFO is filled by RMGII)
1 = TX FIFO drives the RX FIFO

● GMX_PRT_CFG[DUPLEX] must be 1 (full-duplex mode)
● GMX_PRT_CFG[SPEED] must be 1 (GigE speed)
● GMX_TX_CLK[CLK_CNT] must be 1

NOTE: In internal loop-back mode, the RGMII link status is not used (since
there is no real PHY). Software cannot use the inband status.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 561

 CN50XX Packet Interface: ASX Registers
RGMII TX Clock-Delay Registers
ASX0_TX_CLK_SET(0..2)

See Table 13-10 for the address.

RGMII Compensation Clock-Delay Register
ASX0_TX_COMP_BYP

See Table 13-10 for the address.

RGMII TX FIFO High Watermark Registers
ASX0_TX_HI_WATER(0..2)

See Table 13-10 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> SETTING R/W 0x18 0x0 Delay setting to place on the open-loop TXC (RGMII transmit clock) delay

line, which can delay the transmitted clock. This field can be used if the board
and/or transmitting device has not otherwise delayed the clock.

A value of 0x0 disables the delay line. The delay line should be disabled
unless the transmitter or board does not delay the clock.

NOTE: Note that this delay line provides only a coarse control over the delay.
Generally, it can only reliably provide a delay in the range 1.25 – 2.5
ns, which may not be adequate for some system applications.

The open loop delay line selects from among a series of tap positions.
Each incremental tap position adds a delay of 50 ps to 135 ps per tap,
depending on the chip, its temperature, and the voltage. To achieve
from 1.25 – 2.5 ns of delay on the received clock, a fixed value of 0x18
may work.

For more precision, Cavium recommends the following settings based
on the chip voltage:

VDD SETTING VDD SETTING
1.0 0x12 1.2 0x17
1.05 0x13 1.25 0x18
1.1 0x15 1.3 0x19
1.15 0x16

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:17> — RAZ — — Reserved.
<16> BYPASS R/W 0 0 Compensation bypass.
<15:13> — RAZ — — Reserved.
<12:8> PCTL R/W 0x10 — PCTL compensation value.
<7:5> — RAZ — — Reserved.
<4:0> NCTL R/W 0x10 — NCTL compensation value.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved.
<2:0> MARK R/W 0x0 0x0 TX FIFO high watermark to stall GMX. Value of 0x0 maps to 0x8.
562 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: ASX Registers
RGMII Clock Delay Register
ASX0_GMII_RX_CLK_SET

See Table 13-10 for the address.

RGMII Receive Data Delay Register
ASX0_GMII_RX_DAT_SET

See Table 13-10 for the address.

RGMII Receive Data Delay Register
ASX0_MII_RX_DAT_SET

See Table 13-10 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> SETTING R/W 0x0 0x0 Setting to place on the RXCLK (GMII receive clock) delay line. The intrinsic

delay can range from 50ps to 80ps per tap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> SETTING R/W 0x0 0x0 Setting to place on the RXD (GMII receive data) delay line. The intrinsic

delay can range from 50ps to 80ps per tap.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved
<4:0> SETTING R/W 0x0 0x0 Setting to place on the RXD (MII receive data) delay line. The intrinsic delay

can range from 50ps to 80ps per tap.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 563

 CN50XX Packet Interface: ASX Registers
564 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: ASX Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 565

 CN50XX Packet Interface: ASX Registers
566 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CN50XX Packet Interface: ASX Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 567

 CN50XX Packet Interface: ASX Registers
568 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 14

PCM/TDM Interface
This chapter contains the following subjects:

● Overview

● Signal Usage

● Clocking

● TDM Engines

● Initialization Sequence

● PCM/TDM Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 569

 PCM/TDM Interface:
Overview
The PCM/TDM unit is a highly flexible implementation capable of connecting to
many variations on the TDM serial interface.

The key features are:

● Two-bit clock (BCLK)/FSYNC pairs.

Each is capable of being generated or received

Supports all frequencies from 256KHz to 32.768 MHz

32 to 512 (256KHz to 32.768MHz) channels are supported (assuming
standard 8-KHz FSYNC signal)

FSYNC polarity, location, length, and sample points are highly configurable

Support for 1, 2, or 4 clocks per bit

Support for T1 frame bit

Extra and missed FSYNC detection

● Four data highways

Each can be associated with either of the two BCLK/FSYNC pairs

Transmit/receive on any combination of channels

Support for LSB-first or MSB-first data transmission/reception

Highly configurable sample points and drive times

Transmit and receive DMA engines per highway (for a total of 8)

– Transmit engine

♦ 16-byte FIFO to buffer output data

♦ Programmable fetch threshold between 0 and 15 bytes

♦ Programmable fetch size between 1 and 16 bytes

♦ Configurable transmit-memory region size

♦ Interrupts based on number of frames read and memory-region wrap

– Receive engine

♦ Received data written to main memory with no processor intervention

♦ Configurable receive-memory region size

♦ Interrupts based on number of frames written and memory-region
wrap
570 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: Signal Usage
A high-level block diagram is shown in Figure 14–1.

14.1 Signal Usage
All PCM/TDM signals are dual-function signals. When they are not being used for
PCM/TDM purposes, they can function as GPIO pins (see Chapter 15 for more
details). Table 14–1 describes the PCM/TDM signals and the CSR bits that switch
them from standard GPIO pins to their PCM/TDM functionality. In addition,
GPIO_XBIT_CFG(16..19)[TX_OE] or GPIO_BIT_CFG(12..15)[TX_OE] must be 0 for
any of these pins when using the PCM/TDM functionality associated with the given
pin.

As Table 14–1 shows, most of the pins can be independently used in PCM/TDM mode
and GPIO mode. For the remainder of this chapter, the pins will be referred to by
their PCM/TDM names.

Figure 14–1 PCM/TDM Block Diagram

PCM/TDM Interface

I/O
BusARB

CLK
Gen 0

CLK
Gen 1

clk0_oe

clk1_oe

clk0

clk1

2

2

clk0

clk1

data0

data1

data2

data3

2

2

PCM_BCLK0
PCM_FSYNC0

PCM_DATA0

PCM_BCLK1
PCM_FSYNC1

PCM_DATA1

PCM_DATA2

PCM_DATA3

TDM
Engine 1

TDM
Engine 2

TDM
Engine 3

TDM
Engine 0

oe

oe

oe

oe

Table 14–1 Signal Functionality

Signal Name Enable Description

GPIO_19/PCM_BCLK0 PCM_CLK0_GEN[N] ≠ 0x0 Bit clock for clock pair 0

GPIO_18/PCM_FSYNC0 PCM_CLK0_GEN[N] ≠ 0x0 FSYNC for clock pair 0

GPIO_17/PCM_DATA1 PCM1_TDM_CFG[ENABLE] = 1 Data highway for TDM engine 1

GPIO_16/PCM_DATA0 PCM0_TDM_CFG[ENABLE] = 1 Data highway for TDM engine 0

GPIO_15/PCM_BCLK1 PCM_CLK1_GEN[N] ≠ 0x0 Bit clock for clock pair 1

GPIO_14/PCM_FSYNC1 PCM_CLK1_GEN[N] ≠ 0x0 FSYNC for clock pair 1

GPIO_13/PCM_DATA3 PCM3_TDM_CFG[ENABLE] = 1 Data highway for TDM engine 3

GPIO_12/PCM_DATA2 PCM2_TDM_CFG[ENABLE] = 1 Data highway for TDM engine 2
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 571

 PCM/TDM Interface: Clocking
14.2 Clocking

The PCM/TDM unit has completely independent BCLK/FSYNC pairs. The
PCM_CLK0/1_CFG and PCM_CLK0/1_GEN registers control the characteristics of
each clock pair, as shown in Table 14–2.

14.2.1 BCLK Generation

The BCLK clock-generator frequency is controlled by the following relation:

where:
f(BCLK) is the frequency of BCLK
f(ECLK) is the frequency of ECLK (core clock)

● To stop the BCLK clock generator, PCM_CLKn_GEN[N] must be written to 0.
This also disables the driving of the PCM_BCLKn and PCM_FSYNCn pins.

● Any value other than 0 turns the PCM_BCLKn and PCM_FSYNCn pins into
outputs and prevents their use as a GPIO pin. Supported BCLK frequencies
range from 256 KHz to 32.768 MHz.

An example of a BCLK frequency is shown in Table 14–3.

Table 14–2 BCLK/FSYNC Generation

CSR Field Description

PCM_CLKn_GEN[N] Controls the frequency of the bit clock generated. Must be 0 for reception.

PCM_CLKn_GEN[NUMSAMP] Specifies the number of BCLK samples required to detect a change in BCLK. A value of 0
effectively removes filtering.

PCM_CLKn_CFG[BCLKPOL] If set to 1, this field inverts the PCM_BCLKn pin on both transmissions and receptions.

PCM_CLKn_CFG[BITLEN] Specifies the number of BCLK cycles per bit time.

PCM_CLKn_CFG[NUMSLOTS] Specifies the number of 8-bit timeslots per frame (maximum: 512 – EXTRABIT).

PCM_CLKn_CFG[EXTRABIT] Indicates whether an extra frame bit is present.

PCM_CLKn_CFG[FSYNCLOC] Specifies the number of BCLK edges before the first bit of the frame at which FSYNC
asserts.

PCM_CLKn_CFG[FSYNCLEN] Specifies the number of BCLK edges for which FSYNC remains asserted.

PCM_CLKn_CFG[FSYNCPOL] Indicates whether FSYNC should assert low or high.

PCM_CLKn_CFG[FSYNCSAMP] Specifies the number of core clock cycles after BCLK edge to sample PCM_FSYNCn.

Table 14–3 Sample BCLK Frequency

Desired BCLK Frequency ECLK Frequency PCM_CLKn_GEN[N]

8.192 MHz 350 MHz 0x05FDEAB9

500 MHz 0x225C17D0

f(BCLK) =
f(ECLK) × PCM_CLKn_GEN[N]

232
572 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: Clocking
14.2.2 FSYNC Generation

The FSYNC generator is enabled whenever the corresponding BCLK generator is
enabled. The exact shape of the FSYNC waveform is determined by the fields
PCM_CLKn_CFG[BITLEN, NUMSLOTS, EXTRABIT, FSYNCLOC, FSYNCLEN,
FSYNCPOL].

The FSYNC frequency will be whatever is required to satisfy settings for these fields.
If a standard 8-KHz FSYNC frequency is desired, [BITLEN, NUMSLOTS,
EXTRABIT]must have the correct values for the chosen BCLK frequency.

14.2.3 BCLK Reception

BCLK is received by the TDM/PCM module via sampling the PCM_BCLKn pin into
the ECLK (core clock) domain. This is true whether CN50XX is generating BCLK or
not. The PCM_CLKn_GEN[NUMSAMP] setting is used to filter noise on a BCLK
input with a slow transition time. If the CN50XX is generating BCLK, it can be set to
0.

Based on these settings, an internal BCLK is generated with one-rise edge per bit
time. This internal BCLK is used for FSYNC reception and all data sampling and
driving in the TDM engines.

14.2.4 FSYNC Reception

The PCM_FSYNC0/1 pin is sampled to detect an assertion. The sample point is
defined as a number of ECLK (core clock) cycles (specified by
PCM_CLKn_CFG[FSYNCSAMP]) after a BCLK falling or rising edge. If
PCM_CLKn_CFG[FSYNCLOC] is odd a falling edge is used; if it is even a rising edge
is used.

Once an assertion has been detected, it is moved by the number of BCLK edges
specified by PCM_CLKn_CFG[FSYNCLOC] and the start of the frame (bit 0 of bit
time 0) is aligned to this point. If this does not match the expected position of FSYNC
assertion, an FSYNC_EXTRA error is logged in the PCM_INT_SUM register
associated with any TDM engines using the BCLK/FSYNC pair. In addition, the
TDM engine stops transmitting and receiving. An optional interrupt may be sent as
well.

A second check on FSYNC reception looks at when the internal counters think an
FSYNC assertion should have happened. If no FSYNC assertion is seen, an
FSYNC_MISSING error is logged in the PCM_INT_SUM register associated with
any TDM engines using the BCLK/FSYNC pair. In addition, the TDM engine stops
transmitting and receiving. An optional interrupt may be sent as well.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 573

 PCM/TDM Interface: Clocking
14.2.5 Examples BCLK/FSYNC Waveforms

14.2.5.1 FSYNC Sampling

Examples of FSYNC sampling are shown in Figure 14–2.

Figure 14–2 FSYNC Sampling

8 7 6 5 4 3 2 1 0

Sample Point

PCM_CLK0/1_CFG[FSYNCSAMP]

PCM_BCLK0/1

Core Clock

FSYNC Sampling with [FSYNCLOC] = odd and [FSYNCSAMP] = 0x8

8 7 6 5 4 3 2 1 0

Sample Point

PCM_CLK0/1_CFG[FSYNCSAMP]

PCM_BCLK0/1

Core Clock

PCM_FSYNC0/1

FSYNC Sampling with [FSYNCLOC] = even and [FSYNCSAMP] = 0x8
574 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: TDM Engines
14.2.5.2 Internal BCLK

An example of BCLK waveforms are shown in Figure 14–3.

14.3 TDM Engines
The CN50XX has four TDM engines, each attached to its own PCM_DATAn pin.
Configuration for the engine is controlled via the PCMn_TDM_CFG and
PCMn_DMA_CFG registers. A TDM engine cannot operate without its corresponding
DMA engines. The TDM-engine block diagram is shown in Figure 14–4.

Figure 14–3 BCLK Waveforms

Bit time Bit time Bit time Bit time Bit time Bit time

Bit time Bit time Bit time

Bit time Bit time

Bit time Bit time Bit time Bit time Bit time Bit time

Bit time Bit time Bit time

Bit time Bit time

PCM_BLCKn

Internal Signals

[BITLEN] = 0x1
[BCLKPOL] = 0

[BITLEN] = 0x2
[BCLKPOL] = 0

[BITLEN] = 0x0
[BCLKPOL] = 1

[BITLEN] = 0x1
[BCLKPOL] = 1

[BITLEN] = 0x2
[BCLKPOL] = 1

[BITLEN] = 0x0
[BCLKPOL] = 0

Figure 14–4 TDM-Engine Block Diagram

I/O
Bus

TDM
Engine

clock0

PCM_DATAn

clock1

RX
DMA

Engine

TDM
XMT/
RCV

TX
DMA

Engine

8

8

ARB
ctl
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 575

 PCM/TDM Interface: TDM Engines
14.3.1 TDM Engine Configuration

Each TDM engine can use either of the two BCLK/FSYNC pairs. The
PCMn_TDM_CFG[USECLK1] field selects which one is used. Note that the TDM
engine must be disabled before changing the [USECLK1] setting.

The total number of slots in a frame is inherited from the chosen BCLK/FSYNC pair
(PCM_CLK0/1_CFG[NUMSLOTS]). The number of transmit and receive slots are
specified in each TDM engine via the
PCMn_TDM_CFG[RXSLOTS, TXSLOTS] settings.

Note that each TDM engine can transmit or receive on any of the timeslots
independently. The exact timeslots that are transmitted/received is specified by the
PCMn_TXMSK(0..7) and PCMn_RXMSK(0..7) registers. The sum of all 1s in the
PCMn_TXMSK(0..7) registers must equal PCMn_TDM_CFG[TXSLOTS]. Likewise,
the sum of all 1s in the PCMn_RXMSK(0..7) registers must equal
PCMn_TDM_CFG[RXSLOTS].

The PCMn_TDM_CFG[LSBFIRST] bit, when set to 1, tells the TDM engine to send
the least-significant bit of the data byte first instead of the most-significant bit,
otherwise the most-significant bit is sent first.

PCMn_TDM_CFG[SAMPPT] controls the sample point for receiving data from the
PCM_DATAn pin. It specifies the number of ECLK (core clock) cycles from the start
of a bit time to sample the pin.

When the TDM engine reaches the end of a transmission timeslot and is not going to
be transmitting in the next timeslot, PCMn_TDM_CFG[DRVTIM] specifies the
number of ECLK (core clock) cycles from the start of that final bit time that the
CN50XX’s driver should turn off. This allows the CN50XX to release the
PCM_DATAn wire so another device can start driving the next timeslot without
contention.

The PCMn_TDM_CFG[ENABLE] bit switches the PCM_DATAn pin from a GPIO to
the TDM functionality.
576 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: TDM Engines
Examples of data sampling and data driving are shown in Figure 14–5.

14.3.2 DMA Engines

There are two DMA engines in each TDM engine: one to receive data and write it to
main memory and one to read data from main memory for transmission. Both DMA
engines use a common memory layout for the memory regions written to and read
from.

14.3.2.1 Transmit/Receive Memory Regions

The format of the memory regions used for transmitting and receiving data is
optimized to best use the CN50XX L2 cache. To prevent large portions of the L2 cache
from being swept with each frame, eight frames worth of data for a single channel are
stored per 64-bit word in memory. A group of 64-bit words comprising all timeslots in
a frame contains all data to be transmitted or received for eight complete frames, and
is termed a superframe.

Figure 14–5 Data Sampling/Data Driving

7 6 5 4 3 2 1 0

Internal BCLK0/1

Core Clock

PCM_DATAn

Data Sampling with PCMn_TDM_CFG[SAMPPT] = 0x7

PCMn_TDM_CFG[SAMPPT]

Sample Point

Sample Point

Bit 7 TSn+1 Bit 6 TSn+1 Bit 5 TSn+1 Bit 4 TSn+1Bit 3 TSn Bit 2 TSn Bit 1 TSn Bit 0 TSn

12 1110 F E D C B16 151413 A 9 8 7 6 B A 9 8 7 6

Internal BCLK0/1

Core Clock

PCM_DATAn

Data Driving with PCMn_TDM_CFG[DRVTIM] = 0x16

PCMn_TDM_CFG[SAMPPT]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 577

 PCM/TDM Interface: TDM Engines
The PCMn_TXSTART register points to the start of the memory-transmit region,
and PCMn_TXCNT specifies the number of superframes in the memory-transmit
region.

For example, a four-superframe memory region to support transmission of three
timeslots (timeslots 5, 9, and 12) would be laid out in memory as shown in Table 14–
4, with the following parameters set:

PCMn_TXCNT = 0x4
PCMn_DMA_CFG[TXSLOTS] = 3
PCMn_TXMSK0<5, 9, 12> = 1

PCMn_TXSTART must point to an eight-byte-aligned physical address. The memory-
region size can be very large if required: PCMn_TXCNT can range up to 65535, with
a maximum of 512 slots per frame; the maximum memory region could be nearly
32MB, holding data for 524,280 frames.

When the BCLK/FSYNC pair specifies that an extra frame bit is in the frame (i.e.
PCM_CLKn_CFG[EXTRABIT] is set to 1), the value for that bit is stored as the first
channel of a frame. The bit resides in either the MSB or the LSB of the data byte,
depending on the setting of PCMn_TDM_CFG[LSBFIRST] and whether it is a
transmission or reception. The bit placement is shown in Table 14–5.

The memory receive region is handled in the same manner using the
PCMn_RXSTART and PCMn_RXCNT CSRs.

Table 14–4 Superframe Memory-Region Example

Address Slot

Data

[63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

PCMn_TXSTART + 0 TS5 TS5/Fr0 TS5/Fr1 TS5/Fr2 TS5/Fr3 TS5/Fr4 TS5/Fr5 TS5/Fr6 TS5/Fr7

PCMn_TXSTART + 8 TS9 TS9/Fr0 TS9/Fr1 TS9/Fr2 TS9/Fr3 TS9/Fr4 TS9/Fr5 TS9/Fr6 TS9/Fr7

PCMn_TXSTART + 16 TS12 TS12/Fr0 TS12/Fr1 TS12/Fr2 TS12/Fr3 TS12/Fr4 TS12/Fr5 TS12/Fr6 TS12/Fr7

PCMn_TXSTART + 24 TS5 TS5/Fr8 TS5/Fr9 TS5/Fr10 TS5/Fr11 TS5/Fr12 TS5/Fr13 TS5/Fr14 TS5/Fr15

PCMn_TXSTART + 32 TS9 TS9/Fr8 TS9/Fr9 TS9/Fr10 TS9/Fr11 TS9/Fr12 TS9/Fr13 TS9/Fr14 TS9/Fr15

PCMn_TXSTART + 40 TS12 TS12/Fr8 TS12/Fr9 TS12/Fr10 TS12/Fr11 TS12/Fr12 TS12/Fr13 TS12/Fr14 TS12/Fr15

PCMn_TXSTART + 48 TS5 TS5/Fr16 TS5/Fr17 TS5/Fr18 TS5/Fr19 TS5/Fr20 TS5/Fr21 TS5/Fr22 TS5/Fr23

PCMn_TXSTART + 56 TS9 TS9/Fr16 TS9/Fr17 TS9/Fr18 TS9/Fr19 TS9/Fr20 TS9/Fr21 TS9/Fr22 TS9/Fr23

PCMn_TXSTART + 64 TS12 TS12/Fr16 TS12/Fr17 TS12/Fr18 TS12/Fr19 TS12/Fr20 TS12/Fr21 TS12/Fr22 TS12/Fr23

PCMn_TXSTART + 72 TS5 TS5/Fr24 TS5/Fr25 TS5/Fr26 TS5/Fr27 TS5/Fr28 TS5/Fr29 TS5/Fr30 TS5/Fr31

PCMn_TXSTART + 80 TS9 TS9/Fr24 TS9/Fr25 TS9/Fr26 TS9/Fr27 TS9/Fr28 TS9/Fr29 TS9/Fr30 TS9/Fr31

PCMn_TXSTART + 88 TS12 TS12/Fr24 TS12/Fr25 TS12/Fr26 TS12/Fr27 TS12/Fr28 TS12/Fr29 TS12/Fr30 TS12/Fr31

Table 14–5 LSB/MSB Bit Placement

PCMn_TDM_CFG[LSBFIRST]

= 0 = 1

Transmission MSB LSB

Reception LSB MSB
578 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: TDM Engines
14.3.2.2 Transmit DMA Engine

The transmit DMA engine is configured via the PCMn_DMA_CFG,
PCMn_TXSTART, and PCMn_TXCNT registers.

● The PCMn_TXSTART, PCMn_TXCNT registers and
PCMn_DMA_CFG[TXSLOTS] field describe the transmit-memory region (see
Section 14.3.2.1 for complete details).

The PCMn_DMA_CFG[TXSLOTS] field tells the DMA engine the number of
timeslots that are actually transmitted during each frame. This can range from
all to none of the total number of slots in a frame. This number also is the
number of 64-bit words in a superframe.

● The DMA engine’s data requests are controlled via the
PCMn_DMA_CFG[THRESH] and PCMn_DMA_CFG[FETCHSIZ] fields.

The transmit DMA engine has a 16-byte FIFO to hold data waiting to be sent.
When the number of bytes remaining in the FIFO is less than or equal to
PCMn_DMA_CFG[THRESH], the DMA engine requests up to
PCMn_DMA_CFG[FETCHSIZ] + 1 (the real fetch size) 64-bit words and extracts
the bytes associated with the needed frame. Because of this behavior it is
required that:

(threshold setting) + (the real fetch size) ≤ 16
Otherwise the 16-byte FIFO will overflow.

The transmit DMA engine does not fetch across a frame boundary. In the case where
there are fewer bytes remaining in the frame than the real fetch size, the DMA
engine instead fetches all the remaining bytes in the frame and reevaluates the FIFO
status upon receiving those bytes. Each transmit DMA engine can have only one
request to main memory at a time.

There are two interrupts available to let the core know that the transmit memory
region needs attention.

● The first is the TXRD interrupt, which signals an interrupt after
PCMn_DMA_CFG[TXRD] full frames (see Table 14–4) have been read by the
transmit DMA engine.

● The second option is the TXWRAP interrupt. This interrupt signals to the core
when the transmit DMA engine has finished reading the last superframe of the
transmit-memory region (i.e. it is about to start reading the first superframe
again – it has wrapped to the beginning of the transmit-memory region).

One or both of these interrupts can be disabled if desired. If both are disabled the
core will need to poll the PCMn_INT_SUM register to determine when the transmit
memory region needs attention.

In addition, a TXEMPTY interrupt occurs if the transmit FIFO is empty when the
TDM engine needs another byte to transmit. Note that this is an error. Operation is
undefined after a TXEMPTY condition is encountered.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 579

 PCM/TDM Interface: TDM Engines
14.3.2.3 Receive DMA Engine

The receive DMA engine is configured via the PCMn_DMA_CFG, PCMn_RXSTART,
and PCMn_RXCNT registers.

● The PCMn_RXSTART, PCMn_RXCNT registers and
PCMn_DMA_CFG[RXSLOTS] field describe the transmit-memory region (see
Section 14.3.2.1 for complete details).

The PCMn_DMA_CFG[RXSLOTS] field tells the DMA engine the number of
timeslots that are actually received during each frame. This can range from all to
none of the total number of slots in a frame. This number also is the number of
64-bit words in a superframe.

When a data byte is received by the TDM engine, it is immediately sent to the receive
DMA engine, which writes each byte to main memory as soon as is practical. No
write merging is done.

There are two interrupts available to let the CPU know that the receive memory
region needs attention.

● The first option is the RXST interrupt, which signals an interrupt after
PCMn_DMA_CFG[RXST] full frames have been written by the receive DMA
engine.

● The second option is the RXWRAP interrupt. This interrupt signals to the core
when the receive DMA engine has finished writing the last superframe of the
receive-memory region (i.e. it is about to start writing the first superframe again
– it has wrapped to the beginning of the receive-memory region).

These interrupts are not signaled until confirmation of the write to main memory has
been received. No other interlock is required to assure the core that it will be able to
see the data.

One or both of these interrupts can be disabled if desired. If both are disabled the
CPU needs to poll the PCMn_INT_SUM register to determine when the receive-
memory region needs attention.

In addition, an RXOVF interrupt occurs if the previous data byte has not been sent to
main memory when the TDM engine provides another byte to send. This is an error
condition indicating receive data has been lost.
580 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: Initialization Sequence
14.4 Initialization Sequence

Perform the following steps in order to initialize the PCM/TDM interface. To
determine the best values, refer to Sections 14.2 and 14.3.

1. Initialize the clock generation/reception by writing the appropriate values to
PCM_CLKn_CFG and PCM_CLKn_GEN registers.

2. Setup transmission and reception parameters for each TDM engine with the
following steps:

write the appropriate value to PCMn_DMA_CFG.

disable the FSYNCEXTRA and FSYNCMISSED interrupts by writing
PCMn_INT_ENA[FSYNCEXTRA, FSYNCMISSED] = 0.

configure memory regions by writing the appropriate values to:
PCMn_TXSTART[ADDR]
PCMn_TXCNT[CNT]
PCMn_TXMSK(0..7)[MASK]
PCMn_RXSTART[ADDR]
PCMn_RXCNT[CNT]
PCMn_RXMSK(0..7)[MASK]

write PCMn_TDM_CFG[ENABLE] = 0.

3. Wait for clock reception to stabilize (i.e. read PCM_CLKn_CFG until
[FSYNCGOOD] = 1).

4. Clear the FSYNCEXTRA and FSYNCMISSED interrupts by writing
PCMn_INT_SUM[FSYNCEXTRA, FSYNCMISSED] = 1.

5. Enable the desired interrupts by writing 1 to the appropriate fields in
PCMn_INT_ENA.

6. Write PCMn_TDM_CFG[ENABLE] = 1 to begin transmission and reception of
PCM data.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 581

 PCM/TDM Interface: PCM/TDM Registers
14.5 PCM/TDM Registers

The PCM/TDM registers are listed in Table 14–6.

Table 14–6 PCM/TDM Registers

Register Address CSR Type1 Detailed Description
PCM_CLK0_CFG 0x0001070000010000 NCB See page 584.
PCM_CLK0_GEN 0x0001070000010008 NCB See page 585.
PCM0_TDM_CFG 0x0001070000010010 NCB See page 585.
PCM0_DMA_CFG 0x0001070000010018 NCB See page 586.
PCM0_INT_ENA 0x0001070000010020 NCB See page 586.
PCM0_INT_SUM 0x0001070000010028 NCB See page 587.
PCM0_TDM_DBG 0x0001070000010030 NCB See page 587.
PCM_CLK0_DBG 0x0001070000010038 NCB See page 587.
PCM0_TXSTART 0x0001070000010040 NCB See page 587
PCM0_TXCNT 0x0001070000010048 NCB See page 587
PCM0_TXADDR 0x0001070000010050 NCB See page 588
PCM0_RXSTART 0x0001070000010058 NCB See page 588
PCM0_RXCNT 0x0001070000010060 NCB See page 588
PCM0_RXADDR 0x0001070000010068 NCB See page 588
PCM0_TXMSK0

...

PCM0_TXMSK7

0x0001070000010080

...

0x00010700000100B8

NCB See page 588

PCM0_RXMSK0

...

PCM0_RXMSK7

0x00010700000100C0

...

0x00010700000100F8

NCB See page 590

PCM_CLK1_CFG 0x0001070000014000 NCB See page 584.
PCM_CLK1_GEN 0x0001070000014008 NCB See page 585.
PCM1_TDM_CFG 0x0001070000014010 NCB See page 585.
PCM1_DMA_CFG 0x0001070000014018 NCB See page 586.
PCM1_INT_ENA 0x0001070000014020 NCB See page 586.
PCM1_INT_SUM 0x0001070000014028 NCB See page 587.
PCM1_TDM_DBG 0x0001070000014030 NCB See page 587.
PCM_CLK1_DBG 0x0001070000014038 NCB See page 587.
PCM1_TXSTART 0x0001070000014040 NCB See page 587
PCM1_TXCNT 0x0001070000014048 NCB See page 587
PCM1_TXADDR 0x0001070000014050 NCB See page 588
PCM1_RXSTART 0x0001070000014058 NCB See page 588
PCM1_RXCNT 0x0001070000014060 NCB See page 588
PCM1_RXADDR 0x0001070000014068 NCB See page 588
PCM1_TXMSK0

...

PCM1_TXMSK7

0x0001070000014080

...

0x00010700000140B8

NCB See page 588

PCM1_RXMSK0

...

PCM1_RXMSK7

0x00010700000140C0

...

0x00010700000140F8

NCB See page 590

PCM2_TDM_CFG 0x0001070000018010 NCB See page 585.
PCM2_DMA_CFG 0x0001070000018018 NCB See page 586.
PCM2_INT_ENA 0x0001070000018020 NCB See page 586.
PCM2_INT_SUM 0x0001070000018028 NCB See page 587.
582 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: PCM/TDM Registers
PCM2_TDM_DBG 0x0001070000018030 NCB See page 587.
PCM2_TXSTART 0x0001070000018040 NCB See page 587
PCM2_TXCNT 0x0001070000018048 NCB See page 587
PCM2_TXADDR 0x0001070000018050 NCB See page 588
PCM2_RXSTART 0x0001070000018058 NCB See page 588
PCM2_RXCNT 0x0001070000018060 NCB See page 588
PCM2_RXADDR 0x0001070000018068 NCB See page 588
PCM2_TXMSK0

...

PCM2_TXMSK7

0x0001070000018080

...

0x00010700000180B8

NCB See page 588

PCM2_RXMSK0

...

PCM2_RXMSK7

0x00010700000180C0

...

0x00010700000180F8

NCB See page 590

PCM3_TDM_CFG 0x000107000001C010 NCB See page 585.
PCM3_DMA_CFG 0x000107000001C018 NCB See page 586.
PCM3_INT_ENA 0x000107000001C020 NCB See page 586.
PCM3_INT_SUM 0x000107000001C028 NCB See page 587.
PCM3_TDM_DBG 0x000107000001C030 NCB See page 587.
PCM3_TXSTART 0x000107000001C040 NCB See page 587
PCM3_TXCNT 0x000107000001C048 NCB See page 587
PCM3_TXADDR 0x000107000001C050 NCB See page 588
PCM3_RXSTART 0x000107000001C058 NCB See page 588
PCM3_RXCNT 0x000107000001C060 NCB See page 588
PCM3_RXADDR 0x000107000001C068 NCB See page 588
PCM3_TXMSK0

...

PCM3_TXMSK7

0x000107000001C080

...

0x000107000001C0B8

NCB See page 588

PCM3_RXMSK0

...

PCM3_RXMSK7

0x000107000001C0C0

...

0x000107000001C0F8

NCB See page 590

1. NCB-type registers are accessed directly across the I/O Bus.

Table 14–6 PCM/TDM Registers (Continued)

Register Address CSR Type1 Detailed Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 583

 PCM/TDM Interface: PCM/TDM Registers
PCM Clock Configuration Registers
PCM_CLK0/1_CFG

See Table 14–6 for address.

PCM Clock Registers

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63> FSYNCGOOD RO 0 1 FSYNC status. When set, the last frame had a correctly positioned FSYNC
pulse. When clear, either no FSYNC pulse or an extra FSYNC pulse was
seen on most recent frame.

NOTE: This is intended for startup. The FSYNCEXTRA and
FSYNCMISSING interrupts are intended for detecting loss of
SYNC during normal operation.

<62:48> — RAZ — — Reserved.
<47:32> FSYNCSAMP R/W 0x0 — Number of ECLK (core clock) cycles from the appropriate internal BCLK

edge to sample FSYNC.

NOTE: Used initially to synchronize to the start of a frame, later used to
check for FSYNC errors.

<31:26> — RAZ — — Reserved.
<25:21> FSYNCLEN R/W 0x0 0x2 Number of ½ BCLK cycles FSYNC is asserted for.

NOTE: Only used when PCM_CLK0/1_GEN[N] ≠ 0
<20:16> FSYNCLOC R/W 0x0 0x0 FSYNC location, in ½ BCLK cycles before timeslot 0, bit 0.

NOTE: Also used to detect framing errors and therefore must have a
correct value even if PCM_CLK0/1_GEN[N] = 0

<15:6> NUMSLOTS R/W 0x0 — Number of eight-bit slots in a frame.

NOTE: This, along with EXTRABIT and f(BCLK) determines FSYNC
frequency when PCM_CLK0/1_GEN[N] ≠ 0

NOTE: Also used to detect framing errors and therefore must have a
correct value even if PCM_CLK0/1_GEN[N]=0

<5> EXTRABIT R/W 0 0 Extra frame bit. When set, add one extra bit time for frame bit. When
clear, no frame bit.

NOTE: If PCM_CLK0/1_GEN[N] ≠ 0, FSYNC is delayed one extra bit time.

NOTE: Also used to detect framing errors and therefore must have a
correct value even if PCM_CLK0/1_GEN[N] = 0

NOTE: The extra bit comes from the LSB/MSB of the first byte of the
frame in the transmit memory region.

<4:3> BITLEN R/W 0x0 0x0 Number of BCLK cycles in a bit time.

0 : 1 BCLK cycle
1 : 2 BCLK cycles
2 : 4 BCLK cycles
3 : undefined

<2> BCLKPOL R/W 0 0 BCLK polarity. When set, BCLK falling edge is start of bit time. When
clear, BCLK rising edge is start of bit time.

NOTE: Also used to detect framing errors and therefore must have a
correct value even if PCM_CLK0/1_GEN[N]=0

<1> FSYNCPOL R/W 0 0 FSYNC polarity. When set, FSYNC idles high, asserts low. When clear,
FSYNC idles low, asserts high.

NOTE: Also used to detect framing errors and therefore must have a
correct value even if PCM_CLK0/1_GEN[N] = 0.

<0> ENA R/W 0 0 Enable. When set, clock-receiving logic is looking for SYNC. When clear,
clock-receiving logic is doing nothing,
584 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: PCM/TDM Registers
PCM_CLK0/1_GEN

See Table 14–6 for address.

PCM TDM Configuration Registers
PCM(0..3)_TDM_CFG

See Table 14–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63:48> DELTASAMP R/W 0x0 0x0 Signed number of ECLK (core clock) cycles to move sampled BCLK edge.

NOTE: The complete number of ECLK cycles to move is:
NUMSAMP + 2 + 1 + DELTASAMP

NUMSAMP: to compensate for sampling delay
+ 2: to compensate for dual-rank synchronizer
+ 1: for uncertainty
+ DELTASAMP: for debugging

<47:32> NUMSAMP R/W 0x0 — Number of ECLK (core clock) samples to detect BCLK change when
receiving clock.

<31:0> N R/W 0x0 — Determines BCLK frequency [f(BCLK)] when generating clock.

NOTE: Writing N = 0 stops the clock generator, and causes BCLK and
FSYNC to be received.

f(BCLK) = f(ECLK) × N
232 N =

f(BCLK)
f(ECLK)

× 232

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:48> DRVTIM R/W 0x0 — Drive time. The number of ECLK (core clock) cycles from start of bit time to
stop driving last bit of timeslot (if not driving next timeslot).

<47:32> SAMPPT R/W 0x0 — Sample time. The number of ECLK (core clock) cycles from start of bit time to
sample data bit.

<31:3> — RAZ — — Reserved.
<2> LSBFIRST R/W 0 0 LSB first. When this bit is set to 1, shift/receive LSB first. When it is clear,

shift/receive MSB first.
<1> USECLK1 R/W 0 0 Use CLK1. When this bit is set to 1, this TDM engine is based on BCLK/

FSYNC1. When it is clear, this TDM engine is based on BCLK/FSYNC0.
<0> ENABLE R/W 0 0 TDM engine enable. When this bit is set to 1, TDM engine is enabled,

otherwise the pins are GPIO pins.

NOTE: When TDM is disabled by detection of an FSYNC error, all
transmission and reception is halted. In addition, PCMn_TX/RXADDR
are updated to point to the position at which the error was detected.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 585

 PCM/TDM Interface: PCM/TDM Registers
PCM DMA Configuration Registers
PCM(0..3)_DMA_CFG

See Table 14–6 for address.

PCM Interrupt-Enable Registers
PCM(0..3)_INT_ENA

See Table 14–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63> RDPEND RO 0 0 Read pending. When set, L2C read responses are outstanding. When clear, no
L2C read responses pending.

NOTE: When restarting after stopping a running TDM engine, software must
wait for RDPEND to read 0 before writing
PCMn_TDM_CFG[ENABLE] to a 1.

<62:54> — RAZ — — Reserved.
<53:44> RXSLOTS R/W 0x0 — Number of eight-bit slots to receive per frame (i.e. number of slots in a receive

superframe).
<43:42> — RAZ — — Reserved.
<41:32> TXSLOTS R/W 0x0 — Number of eight-bit slots to transmit per frame (i.e. number of slots in a

transmit superframe).
<31:30> — RAZ — — Reserved.
<29:20> RXST R/W 0x0 0x1 Number of frame writes for interrupt.
<19> — RAZ — — Reserved.
<18> USELDT R/W 0 0 Use LDT command. When set, use LDT command to read from L2C. When

clear, use LDI command to read from L2C.
<17:8> TXRD R/W 0x0 0x1 Number of frame reads for interrupt.
<7:4> FETCHSIZ R/W 0x0 0x7 FETCHSIZ+1 timeslots are read when threshold is reached.
<3:0> THRESH R/W 0x0 0x8 Threshold. If number of bytes remaining in the DMA FIFO is ≤ THRESH,

initiate a fetch of timeslot data from the transmit memory region.

NOTE: There are only 16 bytes of buffer for each engine so the settings for
FETCHSIZ and THRESH must be such that the buffer is not overrun:
THRESH + min(FETCHSIZ + 1,TXSLOTS) must be ≤ 16.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63:8> — RAZ — — Reserved.
<7> RXOVF R/W 0 1 RX overflow. Enable interrupt if RX byte overflows.
<6> TXEMPTY R/W 0 1 TX empty. Enable interrupt on TX byte empty.
<5> TXRD R/W 0 1 TX read. Enable DMA engine frame-read interrupts.
<4> TXWRAP R/W 0 1 TX wrap. Enable TX region-wrap interrupts.
<3> RXST R/W 0 1 RX store. Enable DMA engine frame-store interrupts.
<2> RXWRAP R/W 0 1 RX wrap. Enable RX region-wrap interrupts.
<1> FSYNCEXTRA R/W 0 1 Enable FSYNC extra interrupts.

NOTE: FSYNCEXTRA errors are defined as an FSYNC found in the
wrong spot of a frame given the programming of
PCM_CLK0/1_CFG[NUMSLOTS] and
PCM_CLK0/1_CFG[EXTRABIT].

<0> FSYNCMISSED R/W 0 1 Enable FSYNC missed interrupts.

NOTE: FSYNCMISSED errors are defined as an FSYNC missing from
the correct spot in a frame given the programming of
PCM_CLK0/1_CFG[NUMSLOTS] and
PCM_CLK0/1_CFG[EXTRABIT].
586 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: PCM/TDM Registers
PCM Interrupt Registers
PCM(0..3)_INT_SUM

See Table 14–6 for address.

PCM TDM Debug Registers
PCM(0..3)_TDM_DBG

See Table 14–6 for address.

PCM Clock Debug Registers
PCM0/1_CLK_DBG

See Table 14–6 for address.

PCM Transmit-Memory Start Registers
PCM(0..3)_TXSTART

See Table 14–6 for address.

PCM Transmit Count Registers
PCM(0..3)_TXCNT

See Table 14–6 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63:8> — RAZ — — Reserved.
<7> RXOVF R/W1C 0 0 RX byte overflowed.
<6> TXEMPTY R/W1C 0 0 TX byte was empty when sampled.
<5> TXRD R/W1C 0 0 DMA engine frame-read interrupt occurred.
<4> TXWRAP R/W1C 0 0 TX region wrap-interrupt occurred.
<3> RXST R/W1C 0 0 DMA engine frame-store interrupt occurred.
<2> RXWRAP R/W1C 0 0 RX region-wrap interrupt occurred.
<1> FSYNCEXTRA R/W1C 0 0 FSYNC extra interrupt occurred.
<0> FSYNCMISSED R/W1C 0 0 FSYNC missed interrupt occurred.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> DEBUGINFO RO — — Miscellaneous debug information.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> DEBUGINFO RO — — Miscellaneous debug information.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:36> — RAZ — — Reserved
<35:3> ADDR R/W — — Starting physical address for the transmit memory region.
<2:0> — RAZ — — Reserved

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:16> — RAZ — — Reserved
<15:0> CNT R/W — — Number of superframes in transmit memory region.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 587

 PCM/TDM Interface: PCM/TDM Registers
PCM Transmit Address Registers
PCM(0..3)_TXADDR

See Table 14–6 for address.

PCM Receive-Memory Start Registers
PCM(0..3)_RXSTART

See Table 14–6 for address.

PCM Receive Count Registers
PCM(0..3)_RXCNT

See Table 14–6 for address.

PCM Receive Address Registers
PCM(0..3)_RXADDR

See Table 14–6 for address.

PCM Transmit Mask 0 Registers
PCM(0..3)_TXMSK0

See Table 14–6 for address.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:36> — RAZ — — Reserved
<35:3> ADDR R/W — — Physical address of the next read from the transmit memory region.
<2:0> FRAM R/W — — Frame offset.

NOTE: This is used to extract the correct byte from each 64-bit word read from
the transmit memory region.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:36> — RAZ — — Reserved.
<35:3> ADDR R/W — — Starting physical address for the receive memory region.
<2:0> — RAZ — — Reserved.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:16> — RAZ — — Reserved.
<15:0> CNT R/W — — Number of superframes in receive memory region.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:36> — RAZ — — Reserved.
<35:0> ADDR R/W — — Physical address of the next write operation to the receive memory region.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 63 to 0 (1 = transmit, 0 = don’t transmit)
588 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: PCM/TDM Registers
PCM Transmit Mask 1 Registers
PCM(0..3)_TXMSK1

See Table 14–6 for address.

PCM Transmit Mask 2 Registers
PCM(0..3)_TXMSK2

See Table 14–6 for address.

PCM Transmit Mask 3 Registers
PCM(0..3)_TXMSK3

See Table 14–6 for address.

PCM Transmit Mask 4 Registers
PCM(0..3)_TXMSK4

See Table 14–6 for address.

PCM Transmit Mask 5 Registers
PCM(0..3)_TXMSK5

See Table 14–6 for address.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 127 to 64 (1 = transmit, 0 = don’t transmit)

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 191 to 128 (1 = transmit, 0 = don’t transmit)

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 255 to 192 (1 = transmit, 0 = don’t transmit).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 319 to 256 (1 = transmit, 0 = don’t transmit)

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 383 to 320 (1 = transmit, 0 = don’t transmit)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 589

 PCM/TDM Interface: PCM/TDM Registers
PCM Transmit Mask 6 Registers
PCM(0..3)_TXMSK6

See Table 14–6 for address.

PCM Transmit Mask 7 Registers
PCM(0..3)_TXMSK7

See Table 14–6 for address.

PCM Receive Mask 0 Registers
PCM(0..3)_RXMSK0

See Table 14–6 for address.

PCM Receive Mask 1 Registers
PCM(0..3)_RXMSK1

See Table 14–6 for address.

PCM Receive Mask 2 Registers
PCM(0..3)_RXMSK2

See Table 14–6 for address.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 447 to 384 (1 = transmit, 0 = don’t transmit)

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Transmit mask bits for slots 511 to 448 (1 = transmit, 0 = don’t transmit)

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 63 to 0 (1 = receive, 0 = don’t receive).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 127 to 64 (1 = receive, 0 = don’t receive).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 191 to 128 (1 = receive, 0 = don’t receive).
590 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

PCM/TDM Interface: PCM/TDM Registers
PCM Receive Mask 3 Registers
PCM(0..3)_RXMSK3

See Table 14–6 for address.

PCM Receive Mask 4 Registers
PCM(0..3)_RXMSK4

See Table 14–6 for address.

PCM Receive Mask 5 Registers
PCM(0..3)_RXMSK5

See Table 14–6 for address.

PCM Receive Mask 6 Registers
PCM(0..3)_RXMSK6

See Table 14–6 for address.

PCM Receive Mask 7 Registers
PCM(0..3)_RXMSK7

See Table 14–6 for address.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 255 to 192 (1 = receive, 0 = don’t receive).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 319 to 256 (1 = receive, 0 = don’t receive).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 383 to 320 (1 = receive, 0 = don’t receive).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 447 to 384 (1 = transmit, 0 = don’t transmit).

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
 Value Field Description

<63:0> MASK R/W — — Receive mask bits for slots 511 to 448 (1 = transmit, 0 = don’t transmit).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 591

 PCM/TDM Interface: PCM/TDM Registers
592 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 15

GPIO Unit
This section contains the following subjects:

● Overview

● GPIO Operations

● Glitch Filters

● GPIO Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 593

 GPIO Unit:
Overview

The GPIO interface is a collection of general-purpose pins that can be configured for
various tasks. There are a total of 24 GPIO signals, and most can be appropriated for
use by other functions, making them unavailable as GPIO pins.

The GPIO interface can operate in either of two modes: GPIO mode (normal
operation, in which GPIO_DBG_ENA[DBG_ENA] = 0x0) or debug mode (in which
GPIO_DBG_ENA[DBG_ENA] = 0x1FFFFF).

● Debug mode: When required, the GPIO interface can be placed into debug mode,
in which the debug port can be driven onto GPIO bits <20:0>.

● GPIO mode: When debug mode is not asserted, only the low-order eight bits (bits
<7:0>) function strictly as GPIO signals. The other 16 bits can be overridden to be
used by other functions. The dual-function bits are shown in Table 15–1.

When in normal operation (or GPIO mode), all GPIO signals that have not been
overridden by other functions can be configured as needed as:

a data-input signal

a data-output signal

In addition, signals <15:0> only can be configured as one of the following:

a level-sensitive interrupt signal

an edge-triggered interrupt signal

GPIO_BIT_CFGn and GPIO_XBIT_CFGn control the pin mode of each GPIO signal,
including a glitch-filter.

Table 15–1 GPIO Dual-Function Signals

GPIO Signals Function Override Enable

<23:20> MPI/SPI Write 1s to appropriate bits in MPI_CFG (refer to MPI/
SPI Registers).

<19:12> PCM/TDM Write 1s to appropriate bits in PCMn_TDM_CFG and
PCM_CLKn_CFG (refer to PCM/TDM Registers).

<11:8> Boot Bus1

1. If you use GPIO bits <11:8> as (low-active) boot-bus chip-enable signals, external
pullup resistors must be placed on the signals.

Write 1s to bits <11:8> in GPIO_BOOT_ENA.
594 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

GPIO Unit: GPIO Operations
15.1 GPIO Operations

Figure 15–1 shows the GPIO cell.

15.1.1 Reading the GPIO Bus

To read the GPIO signals, software simply reads the GPIO_RX_DAT register, which
contains the state of the GPIO signals. Signals that have been overridden by other
functions are undefined in this register.

15.1.2 Writing the GPIO Bus

To write the GPIO signals, software first picks which bits will be outputs by setting
the appropriate GPIO_BIT_CFGn[TX_OE] bits to turn on the output drivers for the
desired pins. Then software can change the data by using the GPIO_TX_SET and
GPIO_TX_CLR registers. Both these registers use a bit mask to change data.

15.1.3 GPIO Interrupts

Finally, GPIO sends interrupt information to the CIU based on the
GPIO_BIT_CFGn[INT_EN] and GPIO_BIT_CFGn[INT_TYPE]. If the pin is in edge-
triggered mode, then software must clear the edge detector by writing to the
GPIO_INT_CLR register.

15.2 Glitch Filters

For each GPIO bit, data comes in through the appropriate pin and is synchronized
into the core-clock domain. It then enters the glitch filter.

The global counter counts every core-clock cycle. The glitch filter taps into the global
counter to control the sample rate. The bit select chooses one of the 16 bits to watch
for a positive edge and to sample the pin.

Figure 15–1 GPIO Cell

GPIO_BIT_CFGn[FIL_SEL, FIL_CNT]

GPIO_BIT_CFGn[RX_XOR]

GPIO_BIT_CFGn[TX_OE]

GPIO_TX_CLR<n>

GPIO_TX_SET<n>

Pin
Programmable

Filter

set

clear

GPIO_RX_DAT<n>

Figure 11–1
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 595

Owner
下划线

 GPIO Unit: Glitch Filters
For example:

A value of 0 would select counter<0> and would sample every 4 ns.
A value of 4 would select counter<4> which would make a sample every 64ns.
Once a sample is made, if the sampled value ≠ current state, the local counter
increments until the local counter = CSR count value.

If sampled value = current state, then the counter resets.

If the CSR count value = 0, then the filter is essentially disabled and just adds a
pipe stage.

To get the two data points of 60ns and 1ms, the programming would be as follows
(assuming a core-clock rate of 500 MHz):

60ns: bit_select = 0, count = 15

15 × 4ns per sample = 60 ns

1ms: bit_select = 15, count = 8

8 × [2(15+1) × 2]ns per sample = 1.048576 ms

or bit_select = 14, count = 15

15 × [2(14+1) × 2]ns per sample = 0.983040 ms
596 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

GPIO Unit: GPIO Registers
15.3 GPIO Registers

The GPIO registers are listed in Table 15–2

Table 15–2 GPIO Registers

Register Address
CSR

Type1

1. NCB-type registers are accessed directly across the I/O Bus.

Detailed
Description

GPIO_BIT_CFG0
...
GPIO_BIT_CFG15

0x0001070000000800
...
0x0001070000000878

NCB See page 598

GPIO_RX_DAT 0x0001070000000880 NCB See page 598
GPIO_TX_SET 0x0001070000000888 NCB See page 598
GPIO_TX_CLR 0x0001070000000890 NCB See page 598
GPIO_INT_CLR 0x0001070000000898 NCB See page 599
GPIO_DBG_ENA 0x00010700000008A0 NCB See page 599
GPIO_BOOT_ENA 0x00010700000008A8 NCB See page 599
GPIO_XBIT_CFG16
...
GPIO_XBIT_CFG23

0x0001070000000900
...
0x0001070000000938

NCB See page 599
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 597

 GPIO Unit: GPIO Registers
GPIO Bit Configuration Registers
GPIO_BIT_CFG(0..15)

See Table 15–2 for address.

GPIO Receive Data Register
GPIO_RX_DAT

See Table 15–2 for address.

GPIO Transmit Set Register
GPIO_TX_SET

See Table 15–2 for address.

GPIO Transmit Clear Register
GPIO_TX_CLR

See Table 15–2 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved.
<11:8> FIL_SEL R/W 0x0 0x0 Filter select. Global counter bit-select (controls sample rate).
<7:4> FIL_CNT R/W 0x0 0x0 Filter count. Specifies the number of consecutive samples to change state.
<3> INT_TYPE R/W 0 0 Interrupt type: 0 = level-sensitive (default), 1 = rising-edge triggered.
<2> INT_EN R/W 0 0 Interrupt enable. Bit mask to indicate which bits to raise interrupt
<1> RX_XOR R/W 0 0 Receive inversion. When set to 1, inverts the received GPIO signal.
<0> TX_OE R/W 0 0 Transmit output enable. When set to 1, the GPIO pin is driven as an

output pin.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:24> — RAZ — — Reserved.
<23:0> DAT RO 0x0 0x0 GPIO Read Data

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:24> — RAZ — — Reserved.
<23:0> SET WO 0x0 0x0 Bit mask to indicate which bits to drive to 1.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:24> — RAZ — — Reserved.
<23:0> CLR WO 0x0 0x0 Bit mask to indicate which bits to drive to 0.
598 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

GPIO Unit: GPIO Registers
GPIO Interrupt Clear Register
GPIO_INT_CLR

See Table 15–2 for address.

GPIO Debug Enable Register
GPIO_DBG_ENA

See Table 15–2 for address.

GPIO Boot Bus Enable Register
GPIO_BOOT_ENA

See Table 15–2 for address.

GPIO Extended Bit Configuration Registers
GPIO_XBIT_CFG(16..23)

See Table 15–2 for address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:16> — RAZ — — Reserved.
<15:0> TYPE WO 0x0 0x0 Clear the interrupt rising-edge detector

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:21> — RAZ — — Reserved.
<20:0> DBG_ENA RO 0x0 0x0 Enable the debug port to be driven onto the GPIO bus.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved.
<11:8> BOOT_ENA RO 0x0 — Drive boot-bus chip enable signals [7:4] onto GPIO bus bits <11:8>.
<7:0> — RAZ — — Reserved.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved.
<11:8> FIL_SEL R/W 0x0 0x0 Global counter bit-select (controls sample rate)
<7:4> FIL_CNT R/W 0x0 0x0 Number of consecutive samples to change state
<3:2> — RAZ — — Reserved.
<1> RX_XOR R/W 0 0 Invert the GPIO pin
<0> TX_OE R/W 0 0 Drive the GPIO pin as an output pin
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 599

 GPIO Unit: GPIO Registers
600 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 16

UART Interface
This chapter contains the following subjects:

● Overview

● UART (RS232) Serial Protocol

● UART Interrupts

● UART AutoFlow Control

● UART Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 601

 UART Interface:
Overview

CN50XX’s two UART interfaces are four-pin serial interfaces. The UARTs are
typically used for serial communication with a peripheral, modem (data carrier
equipment, DCE), or data set. Either a cnMIPS core or a remote PCI host can use the
UARTs. However, for the remainder of this chapter, we assume it is only the cores,
though.

The CN50XX cores transfer bytes to and receives characters from the UART core via
64-bit CSR accesses. The UART core transfers and receives the characters serially.
Either polling or interrupts can be used to transfer the bytes.

The UARTs have the following characteristics:

● modeled after the industry-standard 16550

programmable data bits per character, optional odd/even parity generation/
checking, and number of stop bits

line break generation and detection

● programmable baud rate = core-clock speed / (divisor × 16)

up to 10 Mbaud

● 64-byte transmit and receive FIFOs

● 16750-compatible auto flow control

● interrupts

several prioritized interrupt types

separate enables for each type

programmable transmit holding register empty interrupt

● shadow registers to read/write important fields individually

● software programmable reset

● testing/diagnostic capabilities

loopback for RTS/CTS testing

FIFO status and testing

transmit halt mode
602 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

Owner
下划线

Owner
高亮

UART Interface: UART (RS232) Serial Protocol
16.1 UART (RS232) Serial Protocol

Because the serial communication is asynchronous, additional bits (start and stop)
are added to the serial data to indicate the beginning and end. Using these bits
allows two devices to be synchronized. This structure of serial data accompanied by
start and stop bits is referred to as a character, as shown in Figure 16–1.

An additional parity bit may be added to the serial character. This bit appears after
the last data bit and before the stop bit or bits in the character structure for simple
error checking on the received data.

The line control register (MIO_UART_n_LCR) is used to control the serial-character
characteristics. The individual bits of the data word are sent after the start bit,
starting with the least-significant bit (LSB). These are followed by the optional parity
bit, followed by the stop bits, which can be 1, 1.5 or 2.

All the bits in the transmission (with exception to the half stop bit when 1.5 stop bits
are used) are transmitted for exactly the same time duration, which is referred to as
a bit period or bit time. One bit time equals 16 baud clocks. To ensure stability on the
line, the receiver samples the serial input data at approximately the mid point of the
bit time once the start bit has been detected. As the exact number of baud clocks that
each bit was transmitted for is known, calculating the mid point for sampling is not
difficult, i.e. every 16 baud clocks after the mid point sample of the start bit. Figure
16–2 shows the sampling points of the first couple of bits in a serial character.

The baud clock is a programmable number of core clock cycles selected by the divisor
latch register (MIO_UARTn_DLH and MIO_UARTn_DLL). With a divisor of one, the
baud clock equals the CN50XX core clock, and the baud rate is 1/16 the core clock.

Figure 16–1 Serial Data Format

Bit Time

Start Data Bits 5 – 8 Parity Stop 1, 1.5, 2

One Character

Serial Data

Figure 16–2 Receiver Serial Data Sample Points

Start Data Bit 0 (LSB)Serial Data In Data Bit 1

8 16 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 603

Owner
下划线

Owner
高亮

Owner
高亮

Owner
高亮

Owner
下划线

Owner
下划线

Owner
下划线

 UART Interface: UART Interrupts
16.2 UART Interrupts

For the following section, refer to Figure 11-2 in the CIU chapter. The UART
interrupt asserts whenever one of the several prioritized interrupt types are enabled
and active. That is, it asserts whenever MIO_UARTn_IIR[IID] ≠ 1.

The following interrupt types can be enabled with the MIO_UARTn_IER register:

● receiver error
● receiver data available
● character timeout (in FIFO mode only)
● transmitter holding register empty or at or below threshold (in programmable

THRE interrupt mode)
● modem status changed
● busy detect indication

These interrupt types are covered in more detail in the MIO_UART0/1 _IIR
description.

16.3 UART AutoFlow Control

CN50XX implements a 16750-compatible autoRTS and autoCTS serial-data flow-
control mode. It is important to note that autoRTS and autoCTS modes can only be
enabled when the FIFOs are enabled (i.e. when MIO_UARTn_FCR[EN] is set).

16.3.1 UART AutoRTS

AutoRTS is active when:

● MIO_UARTn_MCR[RTS] and MIO_UARTn_MCR[AFCE] are both set

● The FIFOs are enabled (i.e. MIO_UARTn_FCR[EN] is set)

When autoRTS is enabled (active), UARTn_RTS_L is forced inactive (high) when the
receiver FIFO level reaches the threshold set by MIO_UARTn_FCR[RXTRIG]. When
UARTn_RTS_L is connected to the cts_l input of another UART device, the other
UART stops sending serial data until the receiver FIFO has available space (until it
is completely empty).

The selectable receiver FIFO threshold values are: 1, ¼, ½, and “2 less than full”.
Since one additional character may be transmitted to CN50XX after rts_n has
become inactive (due to data already having entered the transmitter block in the
other UART), setting the threshold to “2 less than full” allows maximum use of the
FIFO with a safety zone of one character.

Once the cores drain the receiver FIFO completely empty (by reading
MIO_UARTn_RBR), UARTn_RTS_L again becomes active (low), signalling the other
UART to continue sending data. Figure 16–3 shows a timing diagram of autoRTS
operation.
604 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
矩形

Owner
下划线

UART Interface: UART AutoFlow Control

When autoRTS is disabled, UARTn_RTS_L is controlled solely by
MIO_UARTn_MCR[RTS].

16.3.2 UART AutoCTS

AutoCTS is active when:

● MIO_UARTn_MCR[AFCE] is set to 1;
● The FIFOs are enabled (i.e. MIO_UARTn_FCR[EN] is set).

When autoCTS is enabled (active), CN50XX stops transmitting whenever the
UARTn_CTS_L is inactive (high). This prevents overflowing the FIFO of the
receiving UART. If UARTn_CTS_L is not made inactive before the middle of the last
stop bit, CN50XX transmits another character before stopping. While CN50XX is not
transmitting, the transmitter FIFO can still be written, and even overflowed.

When autoCTS is enabled, the cores can poll any of the following before each write to
avoid transmitter FIFO overflow:

● The cores can poll MIO_UARTn_UART[TFNF] to check if the transmit FIFO is
full.

● The cores can poll MIO_UARTn_TFL[RFL] for the current transmit FIFO level.
● The cores can poll MIO_UARTn_LSR[THRE] when programmable THRE

Interrupt mode is enabled. MIO_UARTn_LSR[THRE] indicates the transmit
FIFO full status in that case. See Section 16.3.3 for more details on
programmable THRE interrupt mode.

When UARTn_CTS_L becomes active (low) again after being inactive (high),
transmission resumes. Figure BBB is a timing diagram showing autoCTS operation.

When autoCTS is disabled, the transmitter is unaffected by UARTn_CTS_L.

Figure 16–3 AutoRTS Timing

Character T stopstart start Character T + 1 stop

1 2 3 T T+1

UARTn_RTS_L

UARTn_SIN

RX FIFO READ

T = Receiver FIFO Threshold Value
Character T+1 is received because UARTn_RTS_L was not detected before
the next character entered the sending UART’s transmitter.

Figure 16–4 AutoCTS Timing

Data Bits stopstart start Data Bits stop

UARTn_CTS_L

UARTn_SOUT start Data Bits stop
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 605

 UART Interface: UART AutoFlow Control
16.3.3 UART Programmable THRE Interrupt

System performance can be improved with the UART’s programmable THRE
Interrupt mode. Programmable THRE Interrupt mode is enabled when:

● MIO_UART_IER[PTIME] is set.
● The FIFOs are enabled (i.e. MIO_UARTn_FCR[EN] is set).

When programmable THRE interrupt mode is enabled, a THRE interrupt is active
when the FIFO size is below the threshold selected by MIO_UARTn_FCR[TXTRIG].
The available empty thresholds are:

empty
2
¼
½.

When programmable THRE interrupt mode is enabled, the
MIO_UARTn_LSR[THRE] bit also switches its function. Instead of asserting when
the transmitter FIFO is empty, it asserts when the FIFO is full, which allows
software to fill the FIFO each transmit sequence by polling
MIO_UARTn_LSR[THRE] before writing another character. Proper threshold value
selection may both maintain constant character transmission and minimize
interruptions.

When programmable THRE interrupt mode is not enabled, THRE interrupts occur
when the transmit FIFO is empty, and MIO_UARTn_LSR[THRE] asserts on an
empty transmit FIFO.
606 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

UART Interface: UART Registers
16.4 UART Registers

The UART registers are listed in Table 16–1.

Table 16–1 UART Registers

Register Address CSR Type1 Detailed Description

MIO_UART0_RBR 0x0001180000000800 RSL See page 608

MIO_UART0_IER 0x0001180000000808 RSL See page 609

MIO_UART0_IIR 0x0001180000000810 RSL See page 610

MIO_UART0_LCR 0x0001180000000818 RSL See page 611

MIO_UART0_MCR 0x0001180000000820 RSL See page 612

MIO_UART0_LSR 0x0001180000000828 RSL See page 614

MIO_UART0_MSR 0x0001180000000830 RSL See page 615

MIO_UART0_SCR 0x0001180000000838 RSL See page 615

MIO_UART0_THR 0x0001180000000840 RSL See page 616

MIO_UART0_FCR 0x0001180000000850 RSL See page 617

MIO_UART0_DLL 0x0001180000000880 RSL See page 618

MIO_UART0_DLH 0x0001180000000888 RSL See page 618

MIO_UART0_FAR 0x0001180000000920 RSL See page 619

MIO_UART0_TFR 0x0001180000000928 RSL See page 619

MIO_UART0_RFW 0x0001180000000930 RSL See page 619

MIO_UART0_USR 0x0001180000000938 RSL See page 620

MIO_UART0_TFL 0x0001180000000A00 RSL See page 620

MIO_UART0_RFL 0x0001180000000A08 RSL See page 620

MIO_UART0_SRR 0x0001180000000A10 RSL See page 621

MIO_UART0_SRTS 0x0001180000000A18 RSL See page 621

MIO_UART0_SBCR 0x0001180000000A20 RSL See page 621

MIO_UART0_SFE 0x0001180000000A30 RSL See page 621

MIO_UART0_SRT 0x0001180000000A38 RSL See page 622

MIO_UART0_STT 0x0001180000000B00 RSL See page 622

MIO_UART0_HTX 0x0001180000000B08 RSL See page 622

MIO_UART1_RBR 0x0001180000000C00 RSL See page 608

MIO_UART1_IER 0x0001180000000C08 RSL See page 609

MIO_UART1_IIR 0x0001180000000C10 RSL See page 610

MIO_UART1_LCR 0x0001180000000C18 RSL See page 611

MIO_UART1_MCR 0x0001180000000C20 RSL See page 612

MIO_UART1_LSR 0x0001180000000C28 RSL See page 614

MIO_UART1_MSR 0x0001180000000C30 RSL See page 615

MIO_UART1_SCR 0x0001180000000C38 RSL See page 615

MIO_UART1_THR 0x0001180000000C40 RSL See page 616

MIO_UART1_FCR 0x0001180000000C50 RSL See page 617

MIO_UART1_DLL 0x0001180000000C80 RSL See page 618

MIO_UART1_DLH 0x0001180000000C88 RSL See page 618

MIO_UART1_FAR 0x0001180000000D20 RSL See page 619

MIO_UART1_TFR 0x0001180000000D28 RSL See page 619
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 607

 UART Interface: UART Registers
MIO UART0/1 Receive Buffer Register
MIO_UART0/1 _RBR

The receive buffer register is a read-only register that contains the data byte received
on the serial input port (SIN). The data in this register is valid only if the
MIO_UARTn_LSR[DR] bit is set (See the “MIO UART0/1 Line Status Register” on
page 614). See Table 16–1 for the address.

● When the FIFOs are programmed ON, this register accesses the head of the
receive FIFO.

● When the FIFOs are programmed OFF, the data in the RBR must be read before
the next data arrives, otherwise it is overwritten, resulting in an overrun error.

● If the receive FIFO is full (64 characters) and this register is not read before the
next data character arrives, then the data already in the FIFO is preserved, but
any incoming data is lost. An overrun error also occurs.

MIO_UART1_RFW 0x0001180000000D30 RSL See page 619

MIO_UART1_USR 0x0001180000000D38 RSL See page 620

MIO_UART1_TFL 0x0001180000000E00 RSL See page 620

MIO_UART1_RFL 0x0001180000000E08 RSL See page 620

MIO_UART1_SRR 0x0001180000000E10 RSL See page 621

MIO_UART1_SCTS 0x0001180000000E18 RSL See page 621

MIO_UART1_SBCR 0x0001180000000E20 RSL See page 621

MIO_UART1_SFE 0x0001180000000E30 RSL See page 621

MIO_UART1_SRT 0x0001180000000E38 RSL See page 622

MIO_UART1_STT 0x0001180000000F00 RSL See page 622

MIO_UART1_HTX 0x0001180000000F08 RSL See page 622

1. RSL-type registers are accessed indirectly across the I/O Bus.

Table 16–1 UART Registers (Continued)

Register Address CSR Type1 Detailed Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:0> RBR RO 0x0 — Receive buffer register. Contains the data byte received on the serial input

port

NOTE: MIO_UARTn_LCR[DLAB] must be clear to access this register.

The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_RBR, MIO_UARTn_THR, and
MIO_UARTn_DLL registers are one register with different uses at
different times.
608 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

UART Interface: UART Registers
MIO UART0/1 Interrupt-Enable Register
MIO_UART0/1 _IER

The interrupt-enable register is a read/write register that contains four bits that
enable the generation of interrupts:
● enable received data available interrupt (ERBFI)

● enable transmitter holding register empty interrupt (ETBEI)

● enable receiver line status interrupt (ELSI)

● enable modem status interrupt (EDSSI).

The IER also contains the enable bit for the programmable transmit holding register
empty (THRE) interrupt mode (PTIME). See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7> PTIME R/W 0 — Programmable THRE interrupt mode enable
<6:4> — R/W 0x0 — Reserved
<3> EDSSI R/W 0 — Enable modem status interrupt
<2> ELSI R/W 0 — Enable receiver line status interrupt
<1> ETBEI R/W 0 — Enable transmitter holding register empty interrupt
<0> ERBFI R/W 0 — Enable received data available interrupt

NOTE: MIO_UARTn_LCR[DLAB] must be clear to access this register.

The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_IER and MIO_UARTn_DLH
registers are one register with different uses at different times.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 609

 UART Interface: UART Registers
MIO UART0/1 Interrupt Identity Register
MIO_UART0/1 _IIR

The interrupt identity register is a read-only register that identifies the source of an
interrupt. See Table 16–1 for the address.

Bit Pos
Field
Name

Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:6> FEN RO 0x0 — FIFO-enabled.

00 = FIFOs disabled, 01 = reserved, 10 = reserved, 11 = FIFOs enabled
<5:4> — RAZ 0x0 — Reserved
<3:0> IID RO 0x1 — Interrupt ID. Identifies the highest priority pending interrupt. The interrupt-

source decoding, interrupt priority, and interrupt-reset control are shown in the
following table:

IID
Priority
Level

Interrupt
Type Interrupt Source Interrupt reset by:

0001 — None None —

0110 highest Receiver
line status

Overrun, parity, or
framing errors, or break
interrupt

Reading the line-status
register.

0100 second Received
data

available

Receiver data available
(FIFOs disabled) or RX
FIFO trigger level reached
(FIFOs enabled)

Reading the receiver buffer
register (FIFOs disabled) or
the FIFO drops below the
trigger level (FIFOs
enabled)

1100 second Character
Timeout

Indication

No characters in or out of
the RX FIFO during the
last four character times
and there is at least one
character in it during this
time.

Reading the receiver buffer
register.

0010 third Transmitter
holding
register
empty

Transmitter holding
register empty
(programmable THRE
mode disabled) or TX
FIFO at or below
threshold (programmable
THRE mode enabled)

Reading the interrupt
identity register (if it is the
source of the interrupt) or
writing into
MIO_UARTn_THR (FIFOs
or THRE mode disabled) or
TX FIFO above threshold
(FIFOs or THRE mode
enabled)

0000 fourth Modem
status

changed

Clear to send (CTS),1 data
set ready (DSR), ring
indicator (RI), or data
carrier detect (DCD)
changed.

Reading the modem status
register.

0111 fifth Busy detect
indication

Software has tried to write
the line control register
while the busy bit of the
UART status register was
set.

Reading the UART status
register.

1. A change in CTS causes an interrupt only when autoflow-control mode is disabled.

NOTE: The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_FCR and MIO_UARTn_IIR
registers are one register with different uses at different times.
610 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

UART Interface: UART Registers
MIO UART0/1 Line Control Register
MIO_UART0/1 _LCR

The line control register controls the format of the data that is transmitted and
received by the UART. It is always readable, but it is writeable only when the UART
is not busy (i.e. when MIO_UARTn_USR[BUSY] = 0. See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description1

<63:8> — RAZ — — Reserved
<7> DLAB R/W 0 — Divisor latch address bit. Setting this bit enables reading and writing of the

divisor latch register (MIO_UARTn_DLL and MIO_UARTn_DLH) to set the
baud rate of the UART. This bit must be cleared after initial baud-rate setup
in order to access other registers.

<6> BREAK R/W 0 — Break control bit. Setting this bit when not in loopback mode (i.e.
MIO_UARTn_MCR[LOOP] = 0) sends a break signal by holding the
UARTn_SOUT line low. When in loopback mode, the break condition is
internally looped back to the receiver.

<5> — R/W 0 — Reserved.
<4> EPS R/W 0 — Even parity select bit. Selects between even and odd parity.

1 = an even number of ones is transmitted or checked
0 = an odd number of ones is transmitted or checked

<3> PEN R/W 0 — Parity enable bit. Enables and disables parity generation and detection in
transmitted and received serial character respectively.

<2> STOP R/W 0 — Stop control bit. Controls the number of stop bits transmitted.
0 = one stop bit is transmitted in the serial data.
1 = two stop bits are generated and transmitted in the serial data out,

UNLESS CLS = 00, then one and a half stop bits are generated.

Note that, regardless of the number of stop bits selected, the receiver only
checks the first stop bit.

<1:0> CLS R/W 0x0 — Character length select field. Selects the number of data bits per character
that are transmitted and received.

00 = 5 bits (bits 0-4 sent)
01 = 6 bits (bits 0-5 sent)
10 = 7 bits (bits 0-6 sent)
11 = 8 bits (all bits sent)

1. The LCR is writable only when the UART is not busy (i.e. when MIO_UARTn_USR[BUSY] = 0). The LCR is always readable.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 611

Owner
高亮

 UART Interface: UART Registers
MIO UART0/1 Modem-Control Register
MIO_UART0/1 _MCR

The lower four bits of the modem-control register directly manipulate the outputs of
the UART. The DTR, RTS, OUT1, and OUT2 bits are inverted and then drive the
corresponding UART outputs: dtr_n, rts_n (UARTn_RTS_L), out1_n, and out2_n.

See Table 16–1 for the address.

AutoRTS becomes active when the following occurs:

1. MIO_UARTn_MCR[RTS] is set.
2. FIFOs are enabled by setting MIO_UARTn_FCR[EN].
3. MIO_UARTn_MCR[AFCE] is set (must be set after MIO_UARTn_FCR[EN])

When autoRTS is active, the rts_n output is forced inactive high when the receiver
FIFO level reaches the threshold set by MIO_UARTn_FCR[RXTRIG]. When rts_n is
connected to the cts_n input of another UART device, the other UART stops sending
serial data until the receiver FIFO has available space.

The selectable receiver FIFO threshold values are:

1
¼
½
2-less-than-full.

Since one additional character may be transmitted to the UART after rts_n has
become inactive (due to data already having entered the transmitter block in the
other UART), setting the threshold to 2-less-than-full allows maximum use of the
FIFO with a safety zone of one character.

NOTE: The dtr_n, out1_n, and out2_n outputs are not present on the pins of
CN50XX, but the DTR, OUT1, and OUT2 bits still function in
loopback mode.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:6> — R/W 0x0 — Reserved
<5> AFCE R/W 0 — Autoflow-control enable (AFCE) bit. When FIFOs are enabled and this bit is

set, 16750-compatible autoRTS and autoCTS serial data flow control
features are enabled.

<4> LOOP R/W 0 — Loopback bit. When set, data on the UARTn_SOUT line is held high, while
serial data output is looped back to the UARTn_SIN line, internally. In this
mode all the interrupts are fully functional. This feature is used for
diagnostic purposes.

Also, in loopback mode, the modem-control inputs (dsr_n, cts_n, ri_n, dcd_n)
are disconnected and the four modem-control outputs (dtr_n, rts_n, out1_n,
out1_n) are looped back to the inputs, internally

<3> OUT2 R/W 0 — OUT2 output bit. This bit is inverted and drives the out2_n signal
<2> OUT1 R/W 0 — OUT1 output bit. This bit is inverted and drives the out1_n signal
<1> RTS R/W 0 — RTS output bit. This bit is inverted and drives the rts_n signal.1

<0> DTR R/W 0 — DTR output bit. This bit is inverted and drives the dtr_n signal.

1. When autoRTS is enabled, the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger
(rts_n is inactive high when above the threshold). The rts_n output is deasserted whenever RTS = 0.
612 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

UART Interface: UART Registers
Once the receiver FIFO becomes completely empty by reading the
MIO_UARTn_RBR, rts_n again becomes active low, signalling the other UART to
continue sending data.

It is important to note that, even if everything else is set to enabled and the correct
MIO_UARTn_MCR bits are set: if the FIFOs are disabled through
MIO_UARTn_FCR[EN], autoflow control is also disabled. When autoRTS is disabled
or inactive, rts_n is controlled solely by MIO_UARTn_MCR[RTS].

AutoCTS becomes active when the following occurs:

1. FIFOs are enabled by setting MIO_UARTn_FCR[EN].
2. MIO_UARTn_MCR[AFCE] is set (must be set after MIO_UARTn_FCR[EN])
When active, the UART transmitter is disabled whenever the cts_n input becomes
inactive high. This prevents overflowing the FIFO of the receiving UART.

Note that if the cts_n input is not inactivated before the middle of the last stop bit,
another character is transmitted before the transmitter is disabled. While the
transmitter is disabled, the transmitter FIFO can still be written to, and even
overflowed. Therefore, when using this mode, either the true FIFO depth (64
characters) must be known to software, or the programmable THRE interrupt mode
must be enabled to access the FIFO-full status through the MIO_UARTn_LSR. When
using the FIFO-full status, software can poll this before each write to the transmitter
FIFO.

When the cts_n input becomes active low again, transmission resumes. It is
important to note that, even if everything else is set to enabled, autoflow control is
also disabled if the FIFOs are disabled through MIO_UARTn_FCR[EN]. When
autoCTS is disabled or inactive, the transmitter is unaffected by cts_n.

NOTE: FIFO-full status is also available in the MIO_UARTn_USR register,
or the actual level of the FIFO may be read through the
MIO_UARTn_TFL register.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 613

 UART Interface: UART Registers
MIO UART0/1 Line Status Register
MIO_UART0/1 _LSR

The line status register contains status of the receiver and transmitter data
transfers. This status can be read by the user at anytime.

See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7> FERR RC 0 — Error in receiver FIFO bit. This bit is active only when FIFOs are enabled.

It is set when there is at least one parity error, framing error, or break
indication in the FIFO. This bit is cleared when MIO_UARTn_LSR is read
and the character with the error is at the top of the receiver FIFO and there
are no subsequent errors in the FIFO.

<6> TEMT RO 1 — Transmitter empty bit. In FIFO mode, this bit is set whenever
MIO_UARTn_TSR and the FIFO are both empty. In nonFIFO mode, this bit
is set whenever MIO_UARTn_THR and MIO_UARTn_TSR are both empty.
This bit is typically used to make sure it is safe to change control registers.
Changing control registers while the transmitter is busy can result in
corrupt data being transmitted.

<5> THRE RO 1 — Transmitter holding register empty bit. When programmable THRE
interrupt mode is disabled, this bit indicates that the UART can accept a
new character for transmission. This bit is set whenever data is transferred
from MIO_UARTn_THR to the transmitter shift register and no new data
has been written to MIO_UARTn_THR. This also causes a THRE interrupt
to occur, if the THRE interrupt is enabled.

When FIFOs and programmable THRE Interrupt mode are enabled, this
bit’s functionality is switched to indicate the transmitter FIFO is full, and
no longer controls THRE Interrupts, which are then controlled by the
MIO_UARTn_FCR[TXTRIG] threshold setting.

<4> BI RC 0 — Break interrupt bit.
<3> FE1 RC 0 — Framing error bit. This bit is set whenever there is a framing error in the

receiver. A framing error occurs when the receiver does not detect a valid
STOP bit in the received data. In FIFO mode, since the framing error is
associated with a character received, it is revealed when the character with
the framing error is at the top of the FIFO

<2> PE1 RC 0 — Parity error bit. This bit is set whenever there is a parity error in the
receiver if the parity-enable bit (MIO_UARTn_LCR[PEN]) is set. In FIFO
mode, since the parity error is associated with a character received, it is
revealed when the character with the parity error arrives at the top of the
FIFO.

<1> OE1 RC 0 — Overrun error bit. When set, this bit indicates an overrun error has occurred
because a new data character was received before the previous data was
read. In nonFIFO mode, this bit is set when a new character arrives in the
receiver before the previous character was read from MIO_UARTn_RBR.
When this happens, the data in MIO_UARTn_RBR is overwritten. In FIFO
mode, an overrun error occurs when the FIFO is full and a new character
arrives at the receiver. The data in the FIFO is retained and the data in the
receive shift register is lost.

<0> DR RO 0 — Data ready bit. When set, this bit indicates the receiver contains at least one
character in the MIO_UARTn_RBR or the receiver FIFO. This bit is cleared
when the MIO_UARTn_RBR is read in nonFIFO mode, or when the receiver
FIFO is empty in FIFO mode.

1. The OE, PE, and FE bits are reset when a read of the MIO_UARTn_LSR is performed.
614 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

Owner
下划线

Owner
下划线

UART Interface: UART Registers
MIO UART0/1 Modem Status Register
MIO_UART0/1 _MSR

The modem status register contains the current status of the modem-control input
lines and if they changed. See Table 16–1 for the address.

MIO UART0/1 Scratchpad Register
MIO_UART0/1 _SCR

The scratchpad register is an 8-bit read/write register for programmers to use as a
temporary storage space. See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

63:8> — RAZ — — Reserved.
<7> DCD RO 0 — DCD input bit. This bit is the complement of the modem-control line dcd_n.

In loopback mode, this bit is the same as MIO_UARTn_MCR[OUT2].
<6> RI RO 0 — RI input bit. This bit is the complement of the modem-control line ri_n. In

loopback mode, this bit is the same as MIO_UARTn_MCR[OUT1].
<5> DSR RO 0 — DSR input bit. This bit is the complement of the modem-control line dsr_n.

In loopback mode, this bit is the same as MIO_UARTn_MCR[DTR].
<4> CTS RO — — CTS input bit. This bit is the complement of the modem-control line cts_n.

In loopback mode, this bit is the same as MIO_UARTn_MCR[RTS].
<3> DDCD RC 0 — DCD change bit. Records whether the dcd_n line has changed since the last

time the user read the MIO_UARTn_MSR. In loopback mode, reflects
changes in MIO_UARTn_MCR[OUT2].

<2> TERI RC 0 — RI change bit. Indicates ri_n has changed from an active-low, to an inactive-
high state since the last time the user read the MIO_UARTn_MSR. In
loopback mode, reflects state changes from high to low in
MIO_UARTn_MCR[OUT1].

<1> DDSR RC 0 — DSR change bit. Records whether the dsr_n line has changed since the last
time the user read the MIO_UARTn_MSR. In loopback mode, reflects
changes in MIO_UARTn_MCR[DTR].

<0> DCTS RC 0 — CTS change bit. Records whether the cts_n line has changed since the last
time the user read the MIO_UARTn_MSR. In loopback mode, reflects
changes in MIO_UARTn_MCR[RTS].

NOTE: The dsr_n, ri_n, and dcd_n inputs are internally tied to power and not
present on the pins of CN50XX. Thus the DSR, RI, and DCD bits are 0
when not in loopback mode.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ NS NS Reserved
<7:0> SCR R/W NS NS Scratchpad Register
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 615

 UART Interface: UART Registers
MIO UART0/1 Transmit Holding Register
MIO_UART0/1 _THR

The transmit holding register is a write-only register that contains data to be
transmitted on the serial output port (UARTn_SOUT). Data can be written to
MIO_UARTn_THR any time that MIO_UARTn_LSR[THRE] = 1. See Table 16–1 for
the address.

● If FIFOs are not enabled and MIO_UARTn_LSR[THRE] = 1, writing a single
character to MIO_UARTn_THR clears MIO_UARTn_LSR[THRE]. Any additional
writes to MIO_UARTn_THR before MIO_UARTn_LSR[THRE] is set again causes
MIO_UARTn_THR data to be overwritten.

● If FIFOs are enabled and MIO_UARTn_LSR[THRE] = 1, and programmable
THRE mode is disabled (i.e. MIO_UARTn_IER[PTIME] = 0), 64 characters of
data may be written to MIO_UARTn_THR before the FIFO is full. Any attempt to
write data when the FIFO is full results in the write data being lost.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — WO — — Reserved
<7:0> THR WO 0x0 — Transmit holding register.

NOTE: MIO_UARTn_LCR[DLAB] must be clear to access this register.

The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_THR, MIO_UARTn_RBR, and
MIO_UARTn_DLL registers are one register with different uses at
different times.
616 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

UART Interface: UART Registers
MIO UART0/1 FIFO Control Register
MIO_UART0/1_FCR

The FIFO control register is a write-only register that controls the read- and write-
data FIFO operation. When FIFOs and programmable-THRE-interrupt mode are
enabled, this register also controls the THRE interrupt-empty threshold level. See
Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — WO — — Reserved.
<7:6> RXTRIG WO 0x0 — RX trigger.If FIFOs are enabled (i.e. EN = 1), this field is active and set the

trigger level in the receiver FIFO for the enable received-data-available
interrupt (ERBFI). In autoflow-control mode, the trigger is used to
determine when the rts_n signal will be deasserted. The trigger values are:

00 = 1 character in FIFO
01 = FIFO ¼ full
10 = FIFO ½ full
11 = FIFO is two characters less than full

<5:4> TXTRIG WO 0x0 — TX trigger. If the FIFOs and programmable-THRE-interrupt mode are
enabled, the values in this field control the empty threshold level at which
THRE interrupts are generated when the mode is active.

00 = empty FIFO
01 = 2 characters in FIFO
10 = FIFO ¼ full
11 = FIFO ½ full

<3> — WO 0 — Reserved.
<2> TXFR WO 0 — TX FIFO reset. Writing a 1 to this bit resets and flushes data in the

transmit FIFO. This bit is self-clearing, so it is not necessary to clear this
bit.

<1> RXFR WO 0 — RX FIFO reset. Writing a 1 to this bit resets and flushes data in the receive
FIFO. This bit is self-clearing, so it is not necessary to clear this bit.

<0> EN WO 0 — FIFO enable. Writing a 1 to this bit enables the transmit and receive
FIFOs. Whenever the value of this bit is changed both the TX and RX
FIFOs are reset.

NOTE: The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_FCR and MIO_UARTn_IIR
registers are one register with different uses at different times.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 617

 UART Interface: UART Registers
MIO UART0/1 Divisor Latch Low Register
MIO_UART0/1_DLL

The 8-bit divisor latch high register in conjunction with the 8-bit divisor latch low
(MIO_UARTn_DLL) register form a 16-bit, read/write, Divisor Latch register that
contains the baud rate divisor for the UART. It is accessed by first setting
MIO_UARTn_LCR[DLAB] (bit 7) (refer to “MIO UART0/1 Line Control Register” on
page 611). The output baud rate is equal to the ECLK frequency divided by sixteen
times the value of the baud rate divisor, as follows:

baud rate = ECLK / (16 × divisor).

Note that once both divisor latch registers are set, at least 2 × divisor × 16 ECLK
cycles should be allowed to pass before transmitting or receiving data.

See Table 16–1 for the address.

MIO UART0/1 Divisor Latch High Register
MIO_UART0/1_DLH

The 8-bit divisor latch high register in conjunction with the 8-bit divisor latch low
(MIO_UARTn_DLL) register form a 16-bit, read/write, Divisor Latch register that
contains the baud rate divisor for the UART. It is accessed by first setting
MIO_UARTn_LCR[DLAB] (bit 7) (refer to “MIO UART0/1 Line Control Register” on
page 611). The output baud rate is equal to the ECLK frequency divided by sixteen
times the value of the baud rate divisor, as follows:

baud rate = ECLK / (16 × divisor).

Note that once both divisor latch registers are set, at least 2 × divisor × 16 ECLK
cycles should be allowed to pass before transmitting or receiving data.

See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:0> DLL R/W 0x0 — Divisor latch low register

NOTE: The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_DLL, MIO_UARTn_RBR, and
MIO_UARTn_THR registers are one register with different uses at
different times.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved
<7:0> DLH R/W 0x0 — Divisor latch high register

NOTE: The address in Table 16–1 is an alias to simplify these CSR
descriptions. The MIO_UARTn_IER and MIO_UARTn_DLH
registers are one register with different uses at different times.
618 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
下划线

UART Interface: UART Registers
MIO UART0/1 FIFO Access Register
MIO_UART0/1_FAR

The FIFO access register is used to enable a FIFO-access mode for testing, so that
the receive FIFO can be written by software and the transmit FIFO can be read by
software when the FIFOs are enabled. When FIFOs are not enabled it allows the
MIO_UARTn_RBR to be written by software and the MIO_UARTn_THR to be read
by software. Note, that when the FIFO-access mode is enabled/disabled, the control
portion of the receive FIFO and transmit FIFO is reset and the FIFOs are treated as
empty. See Table 16–1 for the address.

MIO UART0/1 Transmit FIFO Read Register
MIO_UART0/1_TFR

The transmit FIFO read register is only valid when FIFO-access mode is enabled (i.e.
MIO_UARTn_FAR[FAR] = 1). See Table 16–1 for the address.

MIO UART0/1 Receive FIFO Write Register
MIO_UART0/1_RFW

The receive FIFO write register is only valid when FIFO-access mode is enabled (i.e.
MIO_UARTn_FAR[FAR] = 1). See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> FAR R/W 0 — FIFO-access mode enable.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.
<7:0> TFR RO 0x0 — Transmit FIFO data.

When FIFOs are enabled, this field gives the data at the top of the
transmit FIFO. Each consecutive read pops the transmit FIFO and gives
the next data value that is currently at the top of the FIFO.

When FIFOs are not enabled, this field gives the data in
MIO_UARTn_THR.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:10> — RAZ — — Reserved.
<9> RFFE WO 0 — Receive FIFO framing error.
<8> RFPE WO 0 — Receive FIFO parity error.
<7:0> RFWD WO 0x0 — Receive FIFO write data.

When FIFOs are enabled, this field provides write data to the receive
FIFO. Each consecutive write pushes the new data to the next write
location in the receive FIFO.

When FIFOs are not enabled, this field provides write data to the
MIO_UARTn_RBR.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 619

 UART Interface: UART Registers
MIO UART0/1 UART Status Register
MIO_UART0/1_USR

The receive FIFO write register is only valid when FIFO-access mode is enabled (i.e.
MIO_UARTn_FAR[FAR] = 1). See Table 16–1 for the address.

MIO UART0/1 Transmit FIFO Level Register
MIO_UART0/1_TFL

The transmit FIFO level register indicates the number of data entries in the
transmit FIFO. See Table 16–1 for the address.

MIO UART0/1 Receive FIFO Level Register
MIO_UART0/1_RFL

The receive FIFO level register indicates the number of data entries in the receive
FIFO. See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:5> — RAZ — — Reserved.
<4> RFF RO 0 — RX FIFO full.
<3> RFNE RO 0 — RX FIFO not empty.
<2> TFE RO 1 — TX FIFO empty.
<1> TFNF RO 1 — TX FIFO not full.
<0> BUSY RO 0x0 — Busy. When set,this bit indicates that a serial transfer is in progress; when

clear, it indicates that the UART is idle or inactive.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:7> — RAZ — — Reserved.
<6:0> TFL RO 0x0 — Transmit FIFO level. Indicates the number of data entries in the transmit

FIFO

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:7> — RAZ — — Reserved.
<6:0> RFL RO 0x0 — Receive FIFO level. Indicates the number of data entries in the receive

FIFO
620 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

UART Interface: UART Registers
MIO UART0/1 Software Reset Register
MIO_UART0/1_SRR

The software reset register is a write-only register that resets the UART and/or the
receive FIFO and/or the transmit FIFO. See Table 16–1 for the address.

MIO UART0/1 Shadow Request to Send Register
MIO_UART0/1_SRTS

The shadow request to send register is a shadow register for the
MIO_UARTn_MCR[RTS] bit that can be used to remove the burden of having to
perform a read-modify-write on MIO_UARTn_MCR. See Table 16–1 for the address.

MIO UART0/1 Shadow Break Control Register
MIO_UART0/1_SBCR

The shadow break control register is a shadow register for the
MIO_UARTn_LCR[BREAK] bit that can be used to remove the burden of having to
perform a read-modify-write on MIO_UARTn_LCR. See Table 16–1 for the address.

MIO UART0/1 Shadow FIFO Enable Register
MIO_UART0/1_SFE

The shadow FIFO enable register is a shadow register for MIO_UARTn_FCR[EN]
that can be used to remove the burden of having to store the previously written value
to MIO_UARTn_FCR in memory and having to mask this value so that only the
FIFO enable bit gets updated. See Table 16–1 for the address.

MIO UART0/1 Shadow RX Trigger Register

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:3> — RAZ — — Reserved.
<2> STFR WO 0 — Shadow copy of the TX FIFO reset bit (MIO_UARTn_FCR[TXFR]). This

bit can be used to remove the burden on software having to store
previously written FCR values (which are pretty static) just to reset the
transmit FIFO

<1> SRFR WO 0 — Shadow copy of the RX FIFO reset bit (MIO_UARTn_FCR[RXFR]). This
can be used to remove the burden on software having to store previously
written FCR values (which are pretty static) just to reset the receive FIFO.

<0> USR WO 0 — UART soft reset. Setting this bit resets the UART.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> SRTS R/W 0 — Shadow request to send.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> SBCR R/W 0 — Shadow break control.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> SFE R/W 0 — Shadow FIFO enable.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 621

 UART Interface: UART Registers
MIO_UART0/1_SRT

The shadow RX trigger register is a shadow register for the RX trigger bits
(MIO_UARTn_FCR[RXTRIG]) that can be used to remove the burden of having to
store the previously written value to MIO_UARTn_FCR in memory and having to
mask this value so that only the RX trigger bits get updated. See Table 16–1 for the
address.

MIO UART0/1 Shadow TX Trigger Register
MIO_UART0/1_STT

The shadow TX trigger register is a shadow register for the TX trigger bits
(MIO_UARTn_FCR[TXTRIG]) that can be used to remove the burden of having to
store the previously written value to MIO_UARTn_FCR in memory and having to
mask this value so that only the TX trigger bits get updated. See Table 16–1 for the
address.

MIO UART0/1 Halt TX Register
MIO_UART0/1_HTX

The halt TX register is used to halt transmissions for testing, so that the transmit
FIFO can be filled by software when FIFOs are enabled. If FIFOs are not enabled,
setting the HTX register will have no effect. See Table 16–1 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> SRT R/W 0x0 — Shadow RX trigger.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved.
<1:0> STT R/W 0x0 — Shadow TX trigger.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.
<0> HTX R/W 0 — Halt TX.
622 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 17

TWSI Interface
This chapter contains the following subjects:

● Overview

● High-Level Controller as a Master

● High-Level Controller as a Slave

● Direct TWSI Core Usage

● TWSI Control Registers

● TWSI Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 623

 TWSI Interface:
Overview

The CN50XX two-wire serial interface (TWSI) supports a standard suite of features,
including the following:

● Standard two-wire SCL/SDA protocols.
● Standard mode (100 Kbps) and fast mode (400 Kbps) support.
● 7-bit and 10-bit addressing.
● Master and slave support.

TWSI masters initiate operations on the TWSI interface
TWSI slaves only respond to operations initiated by TWSI masters

● Multi-master support.
● Clock stretching.
● Flexible bus reset support. (Software can drive arbitrary patterns on SCL/SDA to

create any required reset sequence.)

Figure 17–1 shows the architecture of CN50XX’s TWSI logic. It consists of a TWSI
core that implements some low-level details of the protocol, together with a high-level
controller (HLC) to implement various multibyte sequences. TWSI transactions may
be generated by either directing the HLC or directing the low-level details of the
TWSI core. It is possible for either cores or a remote PCI host to communicate with a
TWSI device, though we assume only the cores for the remainder of this section. The
TWSI HLC is enabled when TWSI_CTL[CE] is set (see Section 17.4.4).

Figure 17–2 displays the steps of the sequences supported by the TWSI HLC. The
initial address identifies the device that will be the TWSI slave. CN50XX supports
both 7-bit and 10-bit initial addresses. The address extension carries an optional
internal address for the identified slave, and also completes the initial address for a
read with a 10-bit address. CN50XX optionally supports an internal address of 8 or
16 bits. Finally, the read bytes or write bytes complete the sequence. CN50XX
supports between zero- and eight-byte read/write sequences.

Figure 17–1 TWSI Architecture

TWSI
Core

TWSI
High-
Level

Controller

Commands,
Data

Interrupts,
State,

Changes,
Data

Bypass

Bypass

TWS_SCL

TWS_SDA

CN50XX

Figure 17–2 Supported TWS HLC Transaction Steps

Address ExtensionInitial Address
Read Bytes

Write Bytes
624 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
高亮

TWSI Interface: High-Level Controller as a Master
CN50XX can communicate with another TWSI device as either master or slave. The
steps in Figure 17–2 apply in both cases, though the details of each differ.

17.1 High-Level Controller as a Master

The CN50XX cores become master of HLC TWSI sequences by writing the
MIO_TWS_SW_TWSI register. The HLC is in master mode when
MIO_TWS_SW_TWSI[SLONLY] = 0 and both the TWSI_CTL[CE, AAK] bits are set
to 1 (see Section 17.4.4).

● If the sequence is a write, the MIO_TWS_SW_TWSI[D] field (and
MIO_TWS_SW_TWSI_EXT[D] if the write sequence is more than four bytes)
contains the write data.

● If the sequence is a read, the MIO_TWS_SW_TWSI[D] field (and
MIO_TWS_SW_TWSI_EXT[D] if the read sequence is more than four bytes)
contains the read result after the HLC completes the transaction.

The cores either poll MIO_TWS_SW_TWSI or use interrupts to determine when the
sequence is complete. CN50XX clears the MIO_TWS_SW_TWSI[V] bit and sets the
MIO_TWS_INT[ST_INT] bit when the HLC completes the transaction.

If the mastered high-level sequence has an error, the MIO_TWS_SW_TWSI[R] bit is
set to 0 and MIO_TWS_SW_TWSI[D<7:0>] contains an error code. In the case of an
error, the TWSI high-level state controller aborts the operation on the TWSI bus and
resets its internal state.

Refer to the “TWSI Status Register” on page 643. The error code is an unexpected
TWSI core state found by the HLC.

● An example of an error would be a NACK where an ACK was expected by the
HLC (0x20, 0x30, 0x48, 0xD8).

● Another example is where the HLC loses arbitration (0x38, 0x68, 0xB0, 0x78).

● A final error example is if the master-mode operation attempts to initiate
while the TWSI HLC is servicing a TWSI operation as a slave (0x80, 0x88,
0xA0, 0xA8, 0xB8, 0xC0, 0xC8).

Figures 17–4 through 17–10 show some of the CN50XX-TWSI sequences (as defined
in Figure 17–2). Figure 17–3 provides a legend for the symbols used in these
examples.

Figure 17–3 Legend for Diagrams

Legend

S = Start
Sr = Repeated Start

R/WC = Clear if write, combined read, or 10-bit address read;
Set if non-combined 7-bit address read

= Driven by Master

= Driven by Slave

A = Acknowledge
A = Negative Acknowledge
P = Stop
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 625

 TWSI Interface: High-Level Controller as a Master
Figure 17–4 shows the possible initial-address steps for sequences mastered by the
HLC. MIO_TWS_SW_TWSI[OP<1>] selects whether a 7-bit or 10-bit address is used,
and MIO_TWS_SW_TWSI[A] contains the address of the remote slave.

All possible address-extension steps for sequences mastered by the HLC are shown in
Figure 17–5.

Figure 17–4 HLC as Master, Initial-Address Step

7-bit address ([OP<1>] = 0)

10-bit Address ([OP<1>] = 1)

MIO_TWS_SW_TWSI[A<7:0>]

AS MIO_TWS_SW_TWSI[A<6:0>] R/WC
1 7 1 1

AMIO_TWS_SW_TWSI[A<9:8>] 0
2 1 1

S
1

11110 A
5 8 1

MIO_TWS_SW_TWSI Write Operations, with [SLONLY] = 0, [OP<2>] = 0

Figure 17–5 HLC as Master, Address-Extension Step

10-bit Non-Combined Read ([OP<1:0>] = 2, [R] = 1)

Write with IA ([OP<0>] = 1, [R] = 0)

MIO_TWS_SW_TWSI[IA<4:0>]
3 1

A
5

7-bit Non-Combined read ([OP<1:0>] = 00, [R] = 1)
Write without IA ([OP<0>] = 0, [R] = 0) None

MIO_TWS_SW_TWSI[A<9:8>] 1
2 1 1

Sr
1

11110 A
5

MIO_TWS_SW_TWSI[EOP_IA<2:0>]

MIO_TWS_SW_TWSI[IA<4:0>] AMIO_TWS_SW_TWSI[EOP_IA<2:0>]MIO_TWS_SW_TWSI_EXT[IA<7:0>] A
8 1 5 3 1

MIO_TWS_SW_TWSI[IA<4:0>] MIO_TWS_SW_TWSI[EOP_IA<2:0>] A Sr MIO_TWS_SW_TWSI[A<6:0>] 1 A
1 1 15 3 7 1

MIO_TWS_SW_TWSI[IA<4:0>] MIO_TWS_SW_TWSI[EOP_IA<2:0>] A Sr MIO_TWS_SW_TWSI[A<9:8>] 1 A
1 1 15 3 2 1

11110
5

Combined Read ([OP<0>] = 1, [R] = 1, [EIA] = 0)

MIO_TWS_SW_TWSI[IA<4:0>]MIO_TWS_SW_TWSI_EXT[IA<7:0>] A MIO_TWS_SW_TWSI[EOP_IA<2:0>] A Sr MIO_TWS_SW_TWSI[A<6:0>] 1 A
3 1 11 58 7 1 1

MIO_TWS_SW_TWSI[IA<4:0>]MIO_TWS_SW_TWSI_EXT[IA<7:0>] A MIO_TWS_SW_TWSI[EOP_IA<2:0>] A Sr MIO_TWS_SW_TWSI[A<9:8>] 1
3 1 11 58 2 1 1

1110 A
5

Combined Read with Extended IA ([OP<0>] = 1, [R] = 1, [EIA] = 1)

MIO_TWS_SW_TWSI Write Operations, with [SLONLY] = 0, [OP<2>] = 0

[EIA] = 0

Extended IA ([EIA] = 1)

7-bit ([OP<1>] = 1)

10-bit ([OP<1>] = 0)

7-bit ([OP<1>] = 1)

10-bit ([OP<1>] = 0)
626 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: High-Level Controller as a Slave
MIO_TWS_SW_TWSI[IA,EOP_IA] and MIO_TWS_SW_TWSI_EXT[IA] contain the
internal address to be used by the external slave. The address extension component
is empty for 7-bit address non-combined reads and for writes without internal
addresses.

Figure 17–6 shows all possible read-bytes steps for sequences mastered by the HLC,
while Figure 17–7 shows all possible write-bytes steps for sequences mastered by the
HLC. CN50XX can master any size from one to eight bytes.

17.2 High-Level Controller as a Slave

The CN50XX cores can act as a slave to communicate with another TWSI device via
the MIO_TWS_SW_TWSI and MIO_TWS_TWSI_SW registers and the TWSI HLC.
The HLC is in slave mode when MIO_TWS_SW_TWSI[SLONLY] is set to 1 and both
TWSI_CTL[CE,AAK] are set to 1.

● To transfer up to four bytes from a core to the TWSI device, with the HLC acting
as a slave:

The core writes the bytes into MIO_TWS_SW_TWSI, setting the
MIO_TWS_SW_TWSI[V] bit.

The remote TWSI device reads MIO_TWS_SW_TWSI, retrieving the data
and its corresponding vbyte. Vbyte<7> is set if MIO_TWS_SW_TWSI[V] is
set, and the read clears MIO_TWS_SW_TWSI[V].

The core may either poll MIO_TWS_SW_TWSI[V] or wait for an interrupt
(MIO_TWS_INT[ST_INT]) to determine when the data has been received,
and when more data can be written into MIO_TWS_SW_TWSI.

● To transfer up to four bytes from a TWSI device to a core, with the HLC acting as
a slave:

The remote TWSI device writes MIO_TWS_TWSI_SW, setting
MIO_TWS_TWSI_SW[V].

The core either receives an interrupt (via MIO_TWS_INT[TS_INT]) or polls
MIO_TWS_TWSI_SW[V] to determine when the bytes are present.

The core reads MIO_TWS_TWSI_SW, clearing MIO_TWS_TWSI_SW[V].

The remote TWSI device polls MIO_TWS_TWSI_SW to determine when it
can write it again. Vbyte<7> is clear when MIO_TWS_TWSI_SW[V] is
clear.

Figure 17–8 shows the possible initial-address steps (as shown in Figure 17–2)
supported for sequences with the HLC as a slave. The TWSI core TWSI slave address
register and TWSI slave extended address register contain the initial address that
CN50XX will respond to.

Figure 17–9 shows the possible address-extension steps supported for sequences with
the HLC as a slave. Table 17–1 provides the format of CN50XX’s slave internal-
address (SIA) register. SIA selects between the MIO_TWS_SW_TWSI and
MIO_TWS_TWSI_SW registers. The external TWSI device must use the SIA
register.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 627

 TWSI Interface: High-Level Controller as a Slave
Figure 17–6 HLC as Master, Read-Bytes Step

PMIO_TWS_SW_TWSI[D<7:0>] A

PMIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

8 1 1

8 1 1 18

MIO_TWS_SW_TWSI[D<7:0>] PMIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A
8 1 1 88

A
1 1

MIO_TWS_SW_TWSI[D<15:8>] PMIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A
8 1 1 88

A
1 8

A MIO_TWS_SW_TWSI[D<7:0>]
1 1

MIO_TWS_SW_TWSI[D<15:8>] PMIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A

8 1 1 88

A

1 8

A MIO_TWS_SW_TWSI[D<7:0>]

1 1

MIO_TWS_SW_TWSI_EXT A

8 1

[D<7:0>]

MIO_TWS_SW_TWSI[D<15:8>] PMIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A

8 1 1 88

A

1 8

A MIO_TWS_SW_TWSI[D<7:0>]

1 1

MIO_TWS_SW_TWSI_EXT A

8 1

[D<15:8>]
MIO_TWS_SW_TWSI_EXT A

8 1

[D<7:0>]

MIO_TWS_SW_TWSI_EXT A

8 1

[D<23:16>]
MIO_TWS_SW_TWSI_EXT A

8 1

[D<15:8>]
MIO_TWS_SW_TWSI_EXT A

8 1

[D<7:0>]

MIO_TWS_SW_TWSI_EXT A

8 1

[D<31:24>]
MIO_TWS_SW_TWSI_EXT A

8 1

[D<23:16>]
MIO_TWS_SW_TWSI_EXT A

8 1

[D<15:8>]
MIO_TWS_SW_TWSI_EXT A

8 1

[D<7:0>]

MIO_TWS_SW_TWSI[D<15:8>] PMIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A

8 1 1 88

A

1 8

A MIO_TWS_SW_TWSI[D<7:0>]

1 1

MIO_TWS_SW_TWSI[D<15:8>] PMIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A

8 1 1 88

A

1 8

A MIO_TWS_SW_TWSI[D<7:0>]

1 1

MIO_TWS_SW_TWSI[D<7:0>] updated

One-Byte Read, ([SOVR] = 0, [OP<3>] = 0) or ([SOVR] = 1, [SIZE] = 0)

Two-Byte Read, ([SOVR] = 1, [SIZE] = 1)

MIO_TWS_SW_TWSI[D<15:0>] updated

MIO_TWS_SW_TWSI[D<23:0>] updated

Three-Byte Read ([SOVR] = 1, [SIZE] = 2)

Four-Byte Read ([SOVR] = 0, [OP<3>] = 1) or ([SOVR] = 1, [SIZE] = 3)

MIO_TWS_SW_TWSI[D] updated

Five-Byte Read ([SOVR] = 1, [SIZE] = 4)

MIO_TWS_SW_TWSI[D], MIO_TWS_SW_TWSI_EXT[D<7:0>] updated

Six-Byte Read ([SOVR] = 1, [SIZE] = 5)

Seven-Byte Read ([SOVR] = 1, [SIZE] = 6)

MIO_TWS_SW_TWSI[D],
MIO_TWS_SW_TWSI_EXT[D<23:0>] updated

Eight-Byte Read ([SOVR] = 1, [SIZE] = 7)

MIO_TWS_SW_TWSI[D],
MIO_TWS_SW_TWSI_EXT[D] updated

MIO_TWS_SW_TWSI Read Operations, with [SLONLY] = 0, [OP<2>] = 0, [R] = 1

MIO_TWS_SW_TWSI[D], MIO_TWS_SW_TWSI_EXT[D<15:0>] updated
628 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: High-Level Controller as a Slave
Figure 17–7 HLC as Master, Write-Bytes Step

8 1 1 18

P
8 1 1 88 1 1

MIO_TWS_SW_TWSI Write Operations, with [SLONLY] = 0, [OP<2>] = 0, [R] = 0)

One-Byte Write ([SOVR] = 0, [OP<3>] = 0) or ([SOVR] = 1, [SIZE] = 0)

Two-Byte Write ([SOVR] = 1, [SIZE] = 1)

Three-Byte Write ([SOVR] = 1, [SIZE] = 2)

Four-Byte Write ([SOVR] = 0, [OP<3>] = 1) or ([SOVR] = 1, [SIZE] = 3)

Five-Byte Write ([SOVR] = 1, [SIZE] = 4)

Six-Byte Write ([SOVR] = 1, [SIZE] = 5)

Seven-Byte Write ([SOVR] = 1, [SIZE] = 6)

Eight-Byte Write ([SOVR] = 1, [SIZE] = 7)

PMIO_TWS_SW_TWSI[D<7:0>] A
8 1 1

PMIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

MIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

P
8 1 1 88 1 1

MIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

P

8 1 1 88 1 1

MIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

8

8 1

1

8 1
MIO_TWS_SW_TWSI_EXT A[D<7:0>]

P

8 1 1 88 1 1

MIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

8 1

8 1
MIO_TWS_SW_TWSI_EXTA [D<7:0>]

MIO_TWS_SW_TWSI_EXT
[D<15:8>] A

8 1

P

8 1 1 88 1 1

MIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

8 1

8 1
MIO_TWS_SW_TWSI_EXTA [D<7:0>]

MIO_TWS_SW_TWSI_EXT
[D<15:8>] A

8 1
MIO_TWS_SW_TWSI_EXT A[D<23:16>]

8 1

P

8 1 1 88 1 1

MIO_TWS_SW_TWSI[D<31:24>] A MIO_TWS_SW_TWSI[D<23:16>] A MIO_TWS_SW_TWSI[D<15:8>] A MIO_TWS_SW_TWSI[D<7:0>] A

8 1

8 1
MIO_TWS_SW_TWSI_EXTA [D<7:0>]

MIO_TWS_SW_TWSI_EXT
[D<15:8>] A

8 1
MIO_TWS_SW_TWSI_EXT A[D<23:16>]

8 1
MIO_TWS_SW_TWSI_EXT A

8 1

[D<31:24>]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 629

 TWSI Interface: High-Level Controller as a Slave

Figure 17–8 HLC as Slave, Initial-Address Step

Figure 17–9 HLC as Slave, Address-Extension Step

AS TWSI_SLAVE_ADD<7:1> R/WC

7-bit address

10-bit Address

TWSI_SLAVE_EXTADD<7:0>

1 7 1 1

ATWSI_SLAVE_ADD<2:1> 0
2 1 1

S
1

11110 A
5 8 1

10-bit Non-Combined Read Operation that uses the Prior SIA

SIA-only Write Operation

7-bit Non-Combined Read Operation that uses the Prior SIA None

TWSI_SLAVE_ADD<2:1> 1
2 1 1

Sr
1

11110 A
5

Combined Read Operation with SIA Included

SIA is updated

Write Operation with SIA Included

SIA<7:0>
1

A
8

SIA<7:0>
1

A
8 1

Sr TWSI_SLAVE_ADD<7:1>
2

1
1 1

A

SIA<7:0>
1

A
8 1

Sr 11110
5

TWSI_SLAVE_ADD<2:1>
2

1
1 1

A

7-Bit

10-Bit

SIA is updated

SIA is updated

Table 17–1 Slave Internal-Address Register

Bit Pos Field Name Description

<7:4> — Reserved

<3> SIZE Size of the data access: 0 = 8-bit access, 1 = 32-bit access. Must be
0 for an MIO_TWS_TWSI_SW read operation.

<2:1> — Reserved

<0> REG Identifies the register to be accessed:

0 = MIO_TWS_SW_TWSI register (read-only)

1 = MIO_TWS_TWSI_SW register (read/write)
630 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: High-Level Controller as a Slave
Figure 17–10 shows the possible read and write bytes components supported for
sequences with the HLC as a slave. SIA<3> (and the stop condition in the case of a
write) allows the external TWSI device to vary the amount of data transferred in the
subsequent read or write when N2 acts as a slave. For reads, it can be one or four
bytes, plus one more byte for the Vbyte. For writes, it can be 0, 1, or four bytes. Note
that the 8-bit write to MIO_TWS_TWSI_SW is equivalent to a 4-byte write with 0s
for the first 3 bytes.

Vbyte provides a validity indication on a read. Table 17–2 describes the Vbyte.

Figure 17–10 HLC as Slave, Read/Write-Bytes Step

SIA-only Write Operation

MIO_TWS_SW_TWSI[V] is cleared when MIO_TWS_SW_TWSI is read

One-Byte Read Operation, (SIA<3> = 0), (MIO_TWS_SW_TWSI[SIA<0>] = 0), or (MIO_TWS_TWSI_SW[SIA<0>] = 1)

if MIO_TWS_SW_TWSI[SLONLY] = 1
MIO_TWS_SW_TWSI[D<7:0>] or

MIO_TWS_TWSI_SW[D<7:0>]
Vbyte<7:0> A A P

8 1 18 1

Four-Byte Read, (SIA<3> = 1) or (MIO_TWS_SW_TWSI[SIA<0>] = 0)

MIO_TWS_SW_TWSI[D<31:24>]Vbyte<7:0> A

88 1

A P

1 1

A

1

MIO_TWS_SW_TWSI[D<23:16>] MIO_TWS_SW_TWSI[D<7:0>]A

1

MIO_TWS_SW_TWSI[D<15:8>] A

1

MIO_TWS_SW_TWSI[V] is cleared when MIO_TWS_SW_TWSI is read if MIO_TWS_SW_TWSI[SLONLY] = 1

P

1

One-Byte Write Operation, (SIA<3> = 0) or (MIO_TWS_TWSI_SW[SIA<0>] = 1) with SIA included

MIO_TWS_TWSI_SW[D<7:0>] A P

8 8 8

1 18

Four-Byte Write Operation, (SIA<3> = 1) or (MIO_TWS_TWSI_SW[SIA<0>] = 1) with SIA included

MIO_TWS_TWSI_SW[D<31:24>] A P

1 18

MIO_TWS_TWSI_SW[D<7:0>] is updated and MIO_TWS_TWSI_SW[V] is set

A

1

MIO_TWS_TWSI_SW[D<7:0>]MIO_TWS_TWSI_SW[D<23:16>] A

1

MIO_TWS_TWSI_SW[D<15:8>] A

18 8 8

MIO_TWS_TWSI_SW[D<31:0>] is updated and MIO_TWS_TWSI_SW[V] is set

Table 17–2 Validity Indication for Slave Reads

Bit
Pos

Field
Name Description

<7> V If MIO_TWS_SW_TWSI is read, V is:

MIO_TWS_SW_TWSI[V] AND MIO_TWS_SW_TWSI[SLONLY].

If MIO_TWS_TWSI_SW is read, V is:

 MIO_TWS_TWSI_SW[V<1>] AND MIO_TWS_TWSI_SW[V<0>]

<6:0> — Unused, read as 0x0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 631

 TWSI Interface: Direct TWSI Core Usage
17.3 Direct TWSI Core Usage

The CN50XX cores can communicate directly with the TWSI core via CSR accesses
through MIO_TWS_SW_TWSI (refer to Section 17.4). Direct TWSI-core accesses
should be avoided when the TWSI HLC is enabled (i.e. when TWSI_CTL[CE] is set to
1). TWSI_CTL[CE] is assumed to be clear (thus disabling the HLC) for the rest of
Section 17.3. This provides lower-level access to TWSI functions that can be used to
create a wider variety of transaction sequences. (Refer to the TWSI Status Register
description for more possible status conditions.)

The TWSI interface can be used when TWSI_CTL[ENAB] = 1 in the following modes:

● master transmit mode

● master receive mode

● slave transmit mode

● slave receive mode

Each of these modes is described in the following subsections.

17.3.1 Master Transmit Mode

In master transmit mode, the TWSI core transmits a number of bytes to a slave
receiver.

A master-mode transaction starts when the software sets TWSI_CTL[STA] to 1. The
TWSI core then tests the TWSI bus and transmits a START condition when the bus
is free. When the START condition has been transmitted, TWSI_CTL[IFLG] is set to
1, and the status code in TWSI_STAT is 0x08 (START condition transmitted). Then
TWSI_DATA must be loaded with either a 7-bit slave address or the first part of a 10-
bit slave address, with the LSB cleared to 0 (i.e. with a write bit) to specify transmit
mode. TWSI_CTL[IFLG] should then be cleared to 0 to prompt the transfer to
continue.

After the 7-bit slave address (or the first part of a 10-bit address) plus the write bit
have been transmitted, TWSI_CTL[IFLG] is set again. There are a number of status
codes that might show up in the TWSI_STAT register. They are listed in Table 17–3.

Table 17–3 TWSI_STAT Status Codes (after 7-Bit Address or First Part of 10-Bit Address)

Status
Code TWSI Core State Core Response Next TWSI Core Action

0x18 Addr1 + W2 transmitted,
ACK received

For a 7-bit address:

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG], or

Transmit data byte,
receive ACK

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG], or

Transmit repeated START

Set TWSI_CTL[STP],
clear TWSI_CTL[IFLG], or

Transmit STOP

Set TWSI_CTL[STA] and TWSI_CTL[STP],
clear TWSI_CTL[IFLG]

Transmit STOP then START

For a 10-bit address:

Write extended-address byte to TWSI_DATA,
clear TWSI_CTL[IFLG]

Transmit extended-address byte.

0x20 Addr1 + W2 transmitted,
ACK received

Same as for 0x18. Same as for 0x18.
632 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: Direct TWSI Core Usage
If 10-bit addressing is used, then once the first part of a 10-bit address plus the write
bit have been transmitted successfully, the status code is 0x18 or 0x20.

After this interrupt has been serviced, and the second part of the address
transmitted, the TWSI_STAT register contains one of the codes shown in Table 17–4.

0x38 Arbitration lost Clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG]

Return to idle

Transmit START when bus is
free

0x68 Arbitration lost,

SLA3 + W2 received,
ACK transmitted

Clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 0 or

Clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 1

Receive data byte,
transmit ACK

Receive data byte,
transmit ACK

0x78 Arbitration lost,
general call addr received,
ACK transmitted

Same as for 0x68. Same as for 0x68.

0xB0 Arbitration lost,

SLA3 + R4 received,
ACK transmitted

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 0 or

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 1

Transmit last byte,
receive ACK

Transmit data byte,
receive ACK

1. Addr represents the contents of TWSI_DATA, either the 7-bit address or the first part of the 10-bit address.
2. W represents the write bit (i.e. LSB of the byte = 0).
3. SLA represents the slave address (first part), in the TWSI_SLAVE_ADD register.
4. R represents the read bit (i.e. LSB of the byte = 1).

Table 17–3 TWSI_STAT Status Codes (after 7-Bit Address or First Part of 10-Bit Address) (Continued)

Status
Code TWSI Core State Core Response Next TWSI Core Action

Table 17–4 TWSI_STAT Status Codes (after Second Part of 10-Bit Address)

Status
Code TWSI Core State Core Response Next TWSI Core Action

0x38 Arbitration lost Clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG]

Return to idle

Transmit START when bus is
free

0x68 Arbitration lost,
SLAX1 + W2 received,
ACK transmitted

Clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 0 or

Clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 1

Receive data byte,
transmit ACK

Receive data byte,
transmit ACK

0xB0 Arbitration lost,

SLAX1 + R3 received,
ACK transmitted

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 0 or

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 1

Transmit last byte,
receive ACK

Transmit data byte,
receive ACK
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 633

 TWSI Interface: Direct TWSI Core Usage
If a repeated START condition has been transmitted, the status code is 0x10 instead
of 0x08.
After each data byte has been transmitted, TWSI_CTL[IFLG] is set to 1 and one of
the three listed in Table 17–5 is loaded into TWSI_STAT.

When all bytes have been transmitted, TWSI_CTL[STP] should be set to 1. The
TWSI core then does the following:

1. Transmits a STOP condition.
2. Clears TWSI_CTL[STP] to 0.
3. Returns to the idle state.

0xD0 Addr4 + W2 transmitted,
ACK received

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STP],
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA] and TWSI_CTL[STP],
clear TWSI_CTL[IFLG]

Transmit data byte,
receive ACK

Transmit repeated START

Transmit STOP

Transmit STOP then START

0xD8 Addr4 + W2 transmitted,
ACK received

Same as for 0xD0. Same as for 0xD0.

1. SLAX represents the slave address (second part), in the TWSI_SLAVE_ADD_EXT register.

2. W represents the write bit (i.e. LSB of the byte = 0).
3. R represents the read bit (i.e. LSB of the byte = 1).
4. Addr represents the contents of TWSI_DATA, the second part of the 10-bit address.

Table 17–4 TWSI_STAT Status Codes (after Second Part of 10-Bit Address) (Continued)

Status
Code TWSI Core State Core Response Next TWSI Core Action

Table 17–5 TWSI_STAT Status Codes (after Repeated START Transmission)

Status
Code TWSI Core State Core Response Next TWSI Core Action

0x28 Data byte transmitted,
ACK received

Write the byte to TWSI_DATA,
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STP],
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA] and TWSI_CTL[STP],
clear TWSI_CTL[IFLG]

Transmit data byte,
receive ACK

Transmit repeated
START

Transmit STOP

Transmit STOP then
START

0x30 Data byte transmitted,
ACK received

Same as for 0x28. Same as for 0x28.

0x38 Arbitration lost Clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG]

Return to idle

Transmit START when
bus is free
634 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: Direct TWSI Core Usage
17.3.2 Master Receive Mode

In master receive mode, the TWSI core receives a number of bytes from a slave
transmitter.

Refer to Section 17.3.1 and note that this is nearly identical. After the START
condition has been transmitted, TWSI_CTL[IFLG] is set to 1 and a status code of
0x08 (START condition transmitted) is loaded into TWSI_STAT. Load the
TWSI_DATA register with the 7-bit slave address (or the first part of the 10-bit slave
address), with the LSB set to 1 to signify a read operation (if 7-bit). Then clear
TWSI_CTL[IFLG] to 0 to prompt the transfer to continue.

When the 7-bit slave address (or the first part of the 10-bit slave address) and the
read bit have been transmitted, TWSI_CTL[IFLG] is set again to 1. A number of
status codes may possibly be in TWSI_STAT. They are shown in Table 17–6.

If 10-bit addressing is being used, the slave is first addressed using the full 10-bit
address plus the write bit. The master then issues a restart followed by the first part
of the 10-bit address again except with the read bit, after which the status code is
0x40 or 0x48. It is the responsibility of the slave to remember that it had been
selected prior to the restart.

If a repeated START condition is transmitted, the status code is 0x10 rather than
0x08.

Table 17–6 TWSI_STAT Status Codes (Master Receive Mode)

Status
Code TWSI Core State Core Response Next TWSI Core Action

0x40 Addr1 + R2 transmitted,
ACK received

For a 7-bit/10-bit address:

Clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 0 or

Clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 1

Receive data byte,
transmit ACK

Receive data byte,
transmit ACK

0x48 Addr1 + R2 transmitted,
ACK received

For a 7-bit/10-bit address:

Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STP],
clear TWSI_CTL[IFLG], or

Set TWSI_CTL[STA] and TWSI_CTL[STP],
clear TWSI_CTL[IFLG]

Transmit repeated START

Transmit STOP

Transmit STOP then START

0x38 Same as for Master Transmit. Same as for Master Transmit. Same as for Master Transmit.

0x68 Same as for Master Transmit. Same as for Master Transmit. Same as for Master Transmit.

0x78 Same as for Master Transmit. Same as for Master Transmit. Same as for Master Transmit.

0xB0 Same as for Master Transmit. Same as for Master Transmit. Same as for Master Transmit.

1. Addr represents the contents of TWSI_DATA, either the 7-bit address or the first part of the 10-bit address.
2. R represents the read bit (i.e. LSB of the byte = 1).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 635

 TWSI Interface: Direct TWSI Core Usage
After each data byte has been received, TWSI_CTL[IFLG] is set to 1 and one of the
three codes listed in Table 17–7 is in TWSI_STAT.

When all bytes have been received (an ACK should have been transmitted), then set
TWSI_CTL[STP]. The TWSI core then does the following:

1. Transmits a STOP condition.
2. Clears TWSI_CTL[STP] to 0.
3. Returns to the idle state.

17.3.3 Slave Transmit Mode

In slave transmit mode, the TWSI core transmits a number of bytes to a master
receiver. TWSI_CTL[AAK] must be set to 1 to enable the core to initially respond as a
slave.

The TWSI core enters slave transmit mode when it receives its own slave address
and a read bit after a START condition. The TWSI core then transmits an
acknowledge (ACK) bit and sets TWSI_CTL[IFLG] to 1. The TWSI_STAT register is
set to 0xA8.

Slave transmit mode can also be entered directly from a master mode if arbitration is
lost in master mode during the transmission of an address and the TWSI core’s slave
address and read bit are received.

In this situation, TWSI_STAT is set to 0xB0.

Table 17–7 TWSI_STAT Status Codes (Master Receive – Data Received)

Status
Code TWSI Core State Core Response Next TWSI Core Action

0x50 Data byte received,
ACK transmitted

Read TWSI_DATA,
clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 0 or

Read TWSI_DATA,
clear TWSI_CTL[IFLG],
TWSI_CTL[AAK] = 1

Receive data byte,
transmit ACK

Receive data byte,
transmit ACK

0x58 Data byte received,
ACK transmitted

Read TWSI_DATA,
Set TWSI_CTL[STA],
clear TWSI_CTL[IFLG], or

Read TWSI_DATA,
Set TWSI_CTL[STP],
clear TWSI_CTL[IFLG], or

Read TWSI_DATA,
Set TWSI_CTL[STA] and TWSI_CTL[STP],
clear TWSI_CTL[IFLG]

Transmit repeated START

Transmit STOP

Transmit STOP then START

0x38 Arbitration lost in ACK bit Same as for Master Transmit. Same as for Master Transmit.

NOTE: When the TWSI core has an extended slave address (indicated by
11110 in TWSI_SLAVE_ADD[A<7:3>]), it transmits ACK after the
first address byte is received after a restart. An interrupt is then
generated, TWSI_CTL[IFLG] is set, and TWSI_STAT is set to 0xA8.
No second address byte is sent by the master – it is up to the slave to
remember that it had been selected prior to the restart.
636 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: Direct TWSI Core Usage
The data byte to be transmitted should then be loaded into TWSI_DATA and
TWSI_CTL[IFLG] cleared to 0. When the TWSI core has transmitted the byte and
received ACK, it sets TWSI_CTL[IFLG] to 1 and sets TWSI_STAT to 0xB8. Once the
last byte to be transmitted has been loaded into TWSI_DATA, both
TWSI_CTL[IFLG, AAK] should be cleared to 0. After the last byte has been
transmitted, TWSI_CTL[IFLG] is set to 1 and TWSI_STAT is set to 0xC8.

The TWSI core then returns to the idle state and TWSI_CTL[AAK] must be set to 1
before slave mode can be entered again.

If no ACK is received after transmitting a byte, the TWSI core sets TWSI_CTL[IFLG]
to 1 and TWSI_STAT to 0xC0, then returns to the idle state.

If the STOP condition is detected after an ACK, the TWSI core returns to idle.

17.3.4 Slave Receive Mode

In slave receive mode, the TWSI core receives a number of bytes from a master
transmitter. TWSI_CTL[AAK] must be set to 1 to enable the TWSI core to respond
initially as a slave.

The TWSI core enters slave receive mode when it receives its own slave address and
a write bit after a START condition. The TWSI core then transmits ACK and sets
TWSI_CTL[IFLG] to 1 and TWSI_STAT to 0x60.

It also enters slave receive mode when it receives the general call address 0x00 if
TWSI_SLAVE_ADD[GCE] is set to 1. The status code in TWSI_STAT is then set to
0x70.

Slave transmit mode can also be entered directly from a master mode if arbitration is
lost in master mode during the transmission of an address and either the TWSI core’s
slave address and write bit are received, or the general call address is received when
TWSI_SLAVE_ADD[GCE] = 1.

In this situation, TWSI_STAT is set to either 0x68 (slave address) or 0x78 (general
call address). TWSI_CTL[IFLG] must be cleared to 0 to allow the data transfer to
continue.

If TWSI_CTL[AAK] is set to 1, then after each byte is received, an ACK is
transmitted, TWSI_CTL[IFLG] is set to 1, and TWSI_STAT is set to 0x80 (slave
address) or 0x90 (general call address). The received-data byte can be read from
TWSI_DATA, then TWSI_CTL[IFLG] must be cleared to 0 to allow the transfer to
continue.

When the STOP condition or a repeated START condition is detected after ACK,
TWSI_CTL[IFLG] is set to 1 and TWSI_STAT is set to 0xA0.

NOTE: When the TWSI core has an extended slave address (indicated by
11110 in TWSI_SLAVE_ADD[A<7:3>]), it transmits ACK after the
first address byte is received after a restart. No interrupt is
generated, TWSI_CTL[IFLG] is not set, and TWSI_STAT is not
changed.

Only after the second address byte is received does the TWSI core
generate an interrupt, set TWSI_CTL[IFLG] to 1, and set the
appropriate status code (either 0x60 or 0x70).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 637

 TWSI Interface: Direct TWSI Core Usage
If TWSI_CTL[AAK] = 0 during a transfer, the TWSI core transmits an ACK after the
next byte is received, sets TWSI_CTL[IFLG] to 1, and sets TWSI_STAT to either
0x88 (slave address) or 0x98 (general call address). When TWSI_CTL[IFLG] is
cleared to 0, the TWSI core returns to the idle state.

17.3.5 TWSI Core Flow Diagrams

Figure 17–11 shows the master-mode flow, and Figure 17–12 shows the slave-mode
flow.

Figure 17–11 Master-Mode Flow Diagram

Master Mode

Idle

Send START

STA

Ext Addr

Restart

Rx Tx

Arb Lost

ACK/ACK

ACK
ACK/ACK, STPACK, STPACK, STA

Arb Lost, Own Addr Rcvd To
Slave
Mode

ACK/ACK, STA

STA = TWSI_CTL[STA]
STP = TWSI_CTL[STP]

NOTE:

Send
TWSI_SLAVE_ADD

Receive ACK

Receive Data

Send ACK/ACK

ARB Lost

Send Data

Receive ACK/ACK

Send STOP
638 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: Direct TWSI Core Usage

Figure 17–12 Slave-Mode Flow Diagram

Slave Mode

Idle

START

Ext Addr

Restart Received

Rx
ACK ACK

Arb Lost, Own Addr Rcvd

ACK/ACK

AAK = TWSI_CTL[AAK]
NOTE:

Send Data

Own Addr Rcvd or
Gen Call Addr Rcvd

Receive
TWSI_SLAVE_ADD

Received

Send Data

Stop Receive

AAK=0AAK=1

ACK
AAK=0

Receive ACK/ACK

Receive ACK/ACK

Send ACK/ACK

Receive Data

From Master Mode

RxTx

Send ACK

Send ACK
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 639

 TWSI Interface: TWSI Control Registers
17.4 TWSI Control Registers

This section describes the internal registers of the TWSI core. These registers can be
read/written by write operations to MIO_TWS_SW_TWSI with [OP<2>] = 1 and
[SLONLY] = 0.

The registers described are:

● TWSI slave address register (TWSI_SLAVE_ADD)

● TWSI slave extended-address register (TWSI_SLAVE_EXTADD)

● TWSI data register (TWSI_DATA)

● TWSI control register (TWSI_CTL)

● TWSI status register (TWSI_STAT)

● TWSI master clock register (TWSI_CLK)

● TWSI clock control register (TWSI_CLKCTL)

● TWSI software reset register (TWSI_RST)

17.4.1 TWSI Slave Address Register

The TWSI_SLAVE_ADD register is described in Table 17–8.

For 7-bit addressing:

Slave address is the 7-bit address of CN50XX when in slave mode. When CN50XX
receives this address after a START condition, it sets TWSI_CTL[IFLG] (i.e. the
TWSI core-interrupt bit) and the TWSI core enters slave mode, assuming
TWSI_CTL[ENAB] is set to 1.

If GCE = 1, CN50XX also recognizes the general call address (0x00).

CN50XX resets to 7-bit addressing with an address of 0x77.

For 10-bit addressing:

When the received address has bits <7:3> = 11110, CN50XX recognizes this as the
first part of a 10-bit address, and if the next two bits match
TWSI_SLAVE_ADD<2:1> (i.e. slave address <9:8>), it sends an ACK. After the next
byte of the address has been received, and if the address matches
TWSI_SLAVE_EXTADD, CN50XX sets TWSI_CTL[IFLG] and the TWSI core enters
slave mode. (TWSI_SLAVE_ADD<7:3> must be programmed as specified in order for
CN50XX to respond as a slave to a 10-bit address.)

Table 17–8 TWSI_SLAVE_ADD Bit Description

Bit Pos
Value with
7-bit Addressing

Value with
10-bit Addressing

Reset
Value

<7> Slave address bit <6> 1 1

<6> Slave address bit <5> 1 1

<5> Slave address bit <4> 1 1

<4> Slave address bit <3> 1 0

<3> Slave address bit <2> 0 1

<2> Slave address bit <1> Slave address bit <9> 1

<1> Slave address bit <0> Slave address bit <8> 1

<0> GCE general call address enable GCE general call address enable 0
640 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: TWSI Control Registers
17.4.2 TWSI Slave Extended-Address Register

The TWSI_SLAVE_EXTADD register is described in Table 17–9.

17.4.3 TWSI Data Register

TWSI_DATA should not be accessed when the TWSI HLC is enabled (i.e. when
TWSI_CTL[CE] = 1).

This register contains the data byte/slave address to be transmitted, or the data byte
that has just been received.

In transmit mode, the byte is sent MSB first

In receive mode, the first bit received is placed in the MSB of the register.

After each byte is transmitted, TWSI_DATA contains the byte that was actually
present on the bus, so in the event of lost arbitration, it will contain the received byte.

17.4.4 TWSI Control Register

The TWSI_CTL register is described in Table 17–10.

Table 17–9 TWSI_SLAVE_EXTADD Bit Description

Bit Pos
Value with
7-bit Addressing

Value with
10-bit Addressing

Reset
Value

<7> — Slave address bit <7> 0

<6> — Slave address bit <6> 0

<5> — Slave address bit <5> 0

<4> — Slave address bit <4> 0

<3> — Slave address bit <3> 0

<2> — Slave address bit <2> 0

<1> — Slave address bit <1> 0

<0> — Slave address bit <0> 0

Table 17–10 TWSI_CTL Bit Description

Bit Pos
Field
Name

Reset
Value Description

<7> CE 1 High-level controller enable.

When this bit is set to 1, the HLC interface is enabled and
drives the sequence of the TWSI bus commands to transfer or
receive data.

When this bit is cleared to 0, the HLC interface is disabled. The
software can still use the TWSI interface by issuing individual
commands using TWSI control, status and data registers

<6> ENAB 1 Bus enable. Must be set to 1 to use the TWSI interface (either
via the HLC interface or via direct core usage).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 641

 TWSI Interface: TWSI Control Registers
<5> STA 0 Master-mode start. This bit should be clear when the HLC is
enabled (i.e. when TWSI_CTL[CE] is set to 1).

When this bit is set to 1, the TWSI core enters master mode
and transmits a START condition on the bus when the bus is
free.

If set to 1 when the controller is already in master mode
and one or more bytes have been transmitted, then a
repeated START condition is sent.

If this bit is set to 1 when the TWSI core is being
accessed by an external device in slave mode, the core
completes the data transfer in slave mode then enters
master mode when the bus has been released.

If both STA and STP bits are set, the TWSI core first transmits
the STOP condition (if in master mode) then transmits the
START condition.

This bit is cleared automatically after a START condition has
been sent. Writing a 0 to this bit has no effect.

<4> STP 0 Master-mode stop. This bit should be clear when the HLC is
enabled (i.e. when TWSI_CTL[CE] is set).

If this bit is set to 1 when the TWSI core is in master
mode, a STOP condition is transmitted on the TWSI
bus.

If this bit is set to 1 when the TWSI core is in slave
mode, the HLC behaves as if a STOP condition has been
received, but no STOP condition is transmitted on the
TWSI bus.

If both STA and STP bits are set, the TWSI core first transmits
the STOP condition (if in master mode) then transmits the
START condition.

This bit is cleared automatically. Writing a 0 to this bit has no
effect.

<3> IFLG 0 Interrupt flag. This bit should be ignored when the HLC is
enabled (i.e. when TWSI_CTL[CE] is set).

This bit is automatically set to 1 when any of 28 (out of the
possible 29) TWSI core states is entered. The only state that
does not set this bit is state 0xF8 (see Section 17.4.5).

When the TWSI core sets this bit, the low period of the TWSI
bus clock line (SCL) is stretched and the data transfer is
suspended. When 0 is written to this bit, the bit is cleared and
the TWSI clock line is released.

Table 17–10 TWSI_CTL Bit Description (Continued)

Bit Pos
Field
Name

Reset
Value Description
642 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: TWSI Control Registers
17.4.5 TWSI Status Register

TWSI_STAT is a read-only register containing a state code.

● When this register contains the state 0xF8, no relevant status information is
available and no interrupt bit is set.

● All the other 28 states correspond to a non-idle state of the TWSI.

When any of these non-idle states is entered, the corresponding state appears in this
register and TWSI_CTL[IFLG] is set to 1. When TWSI_CTL[IFLG] is cleared to 0,
the state returns to 0xF8.

If an illegal condition occurs on the TWSI bus, the bus-error state is entered (status
code 0x00). To recover from this state, TWSI_CTL[STP] must be set to 1 and
TWSI_CTL[IFLG] cleared to 0. The TWSI controller then returns to the idle state,
and no STOP condition is transmitted on the TWSI bus.

<2> AAK 1 Assert acknowledge. This bit should be set when the HLC is
enabled (i.e. when TWSI_CTL[CE] is set).

When this bit is set to 1, an ACK is sent during the
acknowledge clock pulse on the TWSI bus if any of the
following occurs:

the whole of a matching 7-bit slave address or the first
or the second byte of a matching 10-bit slave address
has been received,

the general call address has been received and it was
enabled,

a data byte has been received in master or slave mode.

When this bit is cleared to 0, a “not acknowledge” (ACK) is sent
when a data byte is received in master or slave mode.

If this bit is cleared to 0 in slave transmitter mode, the
byte in TWSI_DATA is assumed to be the last byte.
After this byte has been transmitted, the TWSI core
enters the idle state 0xC8.

The TWSI core does not respond as a slave unless this bit is set.

<1:0> — 00 Reserved.

Table 17–10 TWSI_CTL Bit Description (Continued)

Bit Pos
Field
Name

Reset
Value Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 643

 TWSI Interface: TWSI Control Registers
The TWSI core state codes are listed in Table 17–11.

The TWSI core prevents the software/hardware from causing a TWSI bus error in
most of the cases (e.g. it does not let the firmware send a STOP condition
immediately after a START condition, as it is illegal). However, the TWSI core does
allow the firmware to cause a bus error by sending a STOP condition after the first
byte of a 10-bit address. The controller can recover from the error state as described
above.

Table 17–11 TWSI Core-State Codes

Code TWSI Core State

0x00 Bus error

0x08 START condition transmitted

0x10 Repeated START condition transmitted

0x18 Address + write bit transmitted, ACK received

0x20 Address + write bit transmitted, ACK received

0x28 Data byte transmitted in master mode, ACK received

0x30 Data byte transmitted in master mode, ACK received

0x38 Arbitration lost in address or data byte

0x40 Address + read bit transmitted, ACK received

0x48 Address + read bit transmitted, ACK received

0x50 Data byte received in master mode, ACK transmitted

0x58 Data byte received in master mode, ACK transmitted

0x60 Slave address + write bit received, ACK transmitted

0x68 Arbitration lost in address as master, slave address + write bit received, ACK
transmitted

0x70 General call address received, ACK transmitted

0x78 Arbitration lost in address as master, general call address received, ACK
transmitted

0x80 Data byte received after slave address received, ACK transmitted

0x88 Data byte received after slave address received, ACK transmitted

0x90 Data byte received after general call address received, ACK transmitted

0x98 Data byte received after general call address received, ACK transmitted

0xA0 STOP or repeated START condition received in slave mode

0xA8 Slave address + read bit received, ACK transmitted

0xB0 Arbitration lost in address as master, slave address + read bit received, ACK
transmitted

0xB8 Data byte transmitted in slave mode, ACK received

0xC0 Data byte transmitted in slave mode, ACK received

0xC8 Last byte transmitted in slave mode, ACK received

0xD0 Second address byte + write bit transmitted, ACK received

0xD8 Second address byte + write bit transmitted, ACK received

0xF8 No relevant status information
644 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: TWSI Control Registers
17.4.6 TWSI Master Clock Register

The 8-bit value in TWSI_CLK controls the frequency ratio between CN50XX’s core
clock and the TWSI controller’s clock (TCLK). The TWSI_CLK register is described in
Table 17–12.

The period of TCLK is defined as: 2 × (THP+1) times the core clock, so the frequency
of TCLK is defined as:

TWSI_CLK must never be set to any of the values 0 – 4.

The reset value with 600-MHz core-clock cycle generates a 12-MHz TCLK cycle.

17.4.7 TWSI Clock Control Register

TWSI_CLKCTL is a write-only register. The bits <6:0> control the frequency at
which the TWSI bus is sampled and the frequency of the TWSI clock line when the
TWSI controller is in master mode. TWSI_CLKCTL is described in Table 17–13.

The TWSI clock frequency (TCLK) is first divided by a factor of 2 N , where N is the
value defined by <2:0>. The output of this clock divider is FSAMP, which is then
divided by a further factor of (M+1)×10, where M is the value defined by bits <6:3>.
The output of this clock divider is FOSCL.

The TWSI bus is sampled by the controller at the frequency defined by FSAMP (N is
<2:0> of TWSI_CLKCTL):

FSAMP = TCLK / 2N

The TWSI OSCL output frequency, in master mode, is (N is <2:0> and M is <6:3> of
TWSI_CLKCTL):

The use of two separately programmable dividers allows the master mode output
frequency to be set independently of the frequency at which the TWSI bus is
sampled. This is particularly useful in multimaster systems because the frequency at
which the TWSI bus is sampled must be at least 10 times the frequency of the fastest
master on the bus to ensure that START and STOP conditions are always detected.
By using two programmable clock divider stages, a high sampling frequency can be
ensured while allowing the master mode output to be set to a lower frequency.

Table 17–12 TWSI_CLK Bit Description

Bits
Field
Name

Reset
Value Description

<7:0> THP 0x18 TCLK half period.

TCLK frequency =
core frequency
2 × (THP + 1)

Table 17–13 TWSI_CLKCTL Bit Description

Bits
Field
Name

Reset
Value Description

<7> — — Reserved. Read as 0.

<6:3> M 0x2 M divider

<2:0> N 0x0 N divider

FOSCL =
FSAMP

(M+1)×10
TCLK

2N × (M + 1) × 10
=

CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 645

 TWSI Interface: TWSI Registers
For a core-clock frequency of 600 MHz, immediately after reset CN50XX samples at
the rate of 12 MHz (FSAMP), and CN50XX drives at the frequency of 400 KHz
(FOSCL).

17.4.8 TWSI Software Reset Register

A software reset may be applied to the TWSI bus interface by writing any value to
TWSI_RST. A software reset sets the TWSI core back to idle (TWSI_STAT = 0xF8)
and sets TWSI_CTL[STA, STP, IFLG] to 0s.

17.5 TWSI Registers

The TWSI registers are listed in Table 17–14.

NOTE: After this register is written, the TWSI controller is not available for
any communication with the TWSI bus for three TCLK cycles (for
the default value of the TWSI_CLK, it derives to 315 core-clock
cycles).

Table 17–14 TWSI Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed Description

MIO_TWS_SW_TWSI 0x0001180000001000 RSL See page 647

MIO_TWS_TWSI_SW 0x0001180000001008 RSL See page 648

MIO_TWS_INT 0x0001180000001010 RSL See page 649

MIO_TWS_SW_TWSI_EXT 0x0001180000001018 RSL See page 650
646 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: TWSI Registers
Software to TWSI Register
MIO_TWS_SW_TWSI

This register allows software to:

Initiate master-mode operations with a write operation, and read the result
with a read operation.
Load four bytes for later retrieval (slave mode) with a write operation and
check validity with a read operation.
Launch a configuration read/write operation with a write operation and read
the result with a read operation.

This register should be read or written by software, and read by the TWSI device.
The TWSI device can use either two-byte or five-byte reads to reference this register.

The TWSI device considers this register valid when [V] = 1 and [SLONLY] = 1. See
Table 17–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> V RC/W 0 — Valid bit:
set on a write operation (should always be written with a 1)
cleared when a TWSI master-mode operation completes
cleared when a TWSI configuration register access completes
cleared when the TWSI device reads the register if SLONLY = 1

<62> SLONLY R/W — — Slave-only mode.

When this bit is set, no operations are initiated with a write operation.
Only the D field is updated in this case

When this bit is clear, a write operation initiates either a master-mode
operation or a TWSI configuration register access.

<61> EIA R/W 0 — Extended internal address. Sends an additional internal address byte (the
MSB of IA is from MIO_TWS_SW_TWSI_EXT[IA]).

<60:57> OP WO — — Opcode field. When the register is written with SLONLY = 0, this field
initiates one of the following read or write operations:

0000 = 7-bit byte master-mode operation
0001 = 7-bit byte combined-read master-mode operation,

7-bit byte write-with-IA master-mode operation
0010 = 10-bit byte master-mode operation
0011 = 10-bit byte combined-read master-mode operation,

10-bit byte write-with-IA master-mode operation
0100 = TWSI master-clock register, TWSI_CLK in 17.4.6
0110 = See EOP_IA field
1000 = 7-bit 4-byte master-mode operation
1001 = 7-bit 4-byte combined-read master-mode operation,

7-bit 4-byte write-with-IA master-mode operation
1010 = 10-bit 4-byte master-mode operation
1011 = 10-bit 4-byte combined-read master-mode operation

10-bit 4-byte write-with-IA master-mode operation
<56> R R/W — — Read bit or result. If this bit is set on a write operation when SLONLY = 0,

the operation is a read operation (if clear, it is a write operation).

On a read operation, this bit returns the result indication for the most
recent master=mode operation, 1 = success, 0 = failure.

<55> SOVR R/W 0 — Size override. If this bit is set, use the SIZE field to determine the master-
mode operation size rather than what OP specifies. For operations greater
than four bytes, the additional data is contained in
MIO_TWS_SW_TWSI_EXT[D].

<54:52> SIZE R/W 0x0 — Size. Specifies the size in bytes of the master-mode operation if SOVR = 1.
Specified in −1 notation (i.e. 0 = 1 byte, 1 = 2 bytes, ... 7 = 8 bytes)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 647

 TWSI Interface: TWSI Registers
TWSI to Software Register
MIO_TWS_TWSI_SW

This register allows the TWSI device to transfer data to software and later check that
software has received the information.

This register should be read or written by the TWSI device, and read by software.
The TWSI device can use one-byte or four-byte payload write operations, and two-
byte payload read operations. The TWSI device considers this register valid when V =
0x3. See Table 17–14 for the address.

<51:50> SCR R/W 0x0 — Scratch. Unused, but retain state.
<49:40> A R/W 0x0 — Address field. The address of the remote device for a master-mode

operation. A<9:7> are only used for 10-bit addressing.
<39:35> IA R/W — — Internal address. Used when launching a combined master-mode

operation.
<34:32> EOP_IA WO — — Extra opcode, used when OP<3:0> = 0110 and SLONLY = 0.

000 = TWSI slave address register (TWSI_SLAVE_ADD)
001 = TWSI data register (TWSI_DATA)
010 = TWSI control register (TWSI_CTL)
011 = (when R = 0) TWSI clock control register (TWSI_CLKCTL)
011 = (when R = 1) TWSI status register (TWSI_STAT)
100 = TWSI extended slave register (TWSI_SLAVE_ADD_EXT)
111 = TWSI soft reset register (TWSI_RST)

Also provides the lower 3 bits of internal address when launching a
combined master-mode operation.

<31:0> D R/W 0x0 — Data field.

Used on a write operation when:
Initiating a master-mode write operation (SLONLY = 0)
Writing a TWSI configuration register (SLONLY = 0)
A slave-mode write operation (SLONLY = 1)

The read value is updated by:
A write operation to this register
Master-mode completion (contains error code)
TWSI configuration-register read (contains result)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:62> V RC/W 0x0 — Valid bits. These bits are not directly writable. They are set to 11 on any
write operation by the TWSI device. They are cleared to 00 on any read
operation by software.

<61:32> — RAZ — — Reserved.
<31:0> D R/W — — Data field. Updated on a write operation by the TWSI device.
648 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

TWSI Interface: TWSI Registers
TWSI Interrupt Register
MIO_TWS_INT

This register contains the TWSI interrupt-enable mask and the interrupt-source bits.
It also contains a read-only copy of the TWSI bus (SCL and SDA) as well as control
bits to override the current state of the TWSI bus (SCL_OVR and SDA_OVR). Setting
an override bit to 1 results in the open-drain driver being activated, thus driving the
corresponding signal low.

See Table 17–14 for the address.

NOTE: The interrupt-source bit for the TWSI core interrupt (CORE_INT) is
read-only; the appropriate sequence must be written to the TWSI
core to clear this interrupt.

The other interrupt-source bits are write-1-to-clear. TS_INT is set on
the update of the MIO_TWS_SW_TWSI register (i.e. when it is
written by a TWSI device). ST_INT is set whenever the valid bit of
the MIO_TWS_SW_TWSI is cleared (see above for reasons).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:12> — RAZ — — Reserved
<11> SCL RO — — SCL signal.
<10> SDA RO — — SDA signal.
<9> SCL_OVR R/W 0 — SCL override.
<8> SDA_OVR R/W 0 — SDA override.
<7> — RAZ — — Reserved
<6> CORE_EN R/W 0 — TWSI core interrupt-enable. Cleared to 0 when the HLC is enabled.
<5> TS_EN R/W 0 — MIO_TWS_TWSI_SW register-update interrupt-enable. Cleared to 0

when the HLC is disabled.
<4> ST_EN R/W 0 — MIO_TWS_SW_TWSI register-update interrupt-enable. Cleared to 0

when the HLC is disabled.
<3> — RAZ — — Reserved
<2> CORE_INT RO 0 — TWSI core interrupt. Ignored when the HLC is enabled.
<1> TS_INT R/W1C 0 — MIO_TWS_TWSI_SW register-update interrupt. Ignored when the HLC

is disabled.
<0> ST_INT R/W1C 0 — MIO_TWS_SW_TWSI register-update interrupt. Ignored when the HLC

is disabled.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 649

 TWSI Interface: TWSI Registers
Software to TWSI Extension Register
MIO_TWS_SW_TWSI_EXT

This register contains an additional byte of internal address and four additional
bytes of data to be used with TWSI master-mode operations.

The IA field is sent as the first byte of internal address when performing master-
mode combined-read/write-with-IA operations and MIO_TWS_SW_TWSI[EIA] is set.
The D field extends the data field of MIO_TWS_SW_TWSI for a total of 8 bytes
(SOVR must be set to perform operations greater than 4 bytes).

See Table 17–14 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ 0x0 — Reserved.
<39:32> IA R/W 0x0 — Extended internal address. Sent as the first byte of internal address when

performing master-mode combined-read/write-with-IA operations and
MIO_TWS_SW_TWSI[EIA] is set.

<31:0> D R/W 0x0 — Extended data. Extends the data field of MIO_TWS_SW_TWSI for a total
of eight bytes (MIO_TWS_SW_TWSI[SOVR] must be set to 1 to perform
operations greater than four bytes).
650 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 18

System Management Interface (SMI)
This chapter contains the following subjects:

● Overview

● SMI/MDIO Interface

● SMI Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 651

 System Management Interface (SMI): SMI/MDIO Interface
Overview
The SMI is a two-wire, programmable-frequency, serial interface connecting CN50XX
to its accompanying ethernet PHYs. It conforms to the IEEE802.3-2005 standard
(refer to IEEE Std 802.3-2005, Sections 22.2.4, 22.3.4 and Section 45 cover SMI/
MDIO).

The two signal names are:

● MDI_MDC (management data clock – an output clock signal)

● MDI_MDIO (management data input/output – a bidirectional signal exchanging
control and status information between the SMI and the PHY.)

18.1 SMI/MDIO Interface

The SMI_EN[EN] bit must be set to 1 to enable any SMI/MDIO transactions and/or
to enable any MDI_MDC clock transitions. During the idle time before and after
transactions, CN50XX tri-states the MDI_MDIO data wire, and optionally
transitions the MDI_MDC clock wire (if SMI_CLK[CLK_IDLE] = 0).

If SMI_CLK[MODE]=1 (i.e. Clause 45 enabled), the Start of Frame field takes on the
value 00 and the opcode field can take on any of the four possible values:
00 (address), 01 (write), 11 (read), or 10 post-read-increment address); if
SMI0/1_CLK[MODE]=0 (i.e. Clause 22 enabled), the Start of Frame field takes on
the value 01 and the opcode field is either 01 (write) or 10 (read).

Figure 18–1 shows an SMI/MDIO transaction mastered by CN50XX.

Software initiates a transaction by writing the SMI_CMD register, specifying the
following:

● in Clause 22 mode (SMI_CLK[MODE] = 0), read or write operation
(SMI_CMD[PHY_OP]); in Clause 45 mode (SMI_CLK[MODE] = 1), address,
write, read, or post-read-increment-address operation

● PHY address (SMI_CMD[PHY_ADR])
● register address (SMI_CMD[REG_ADR]).

CN50XX optionally drives the 32-bit preamble (SMI_CLK[PREAMBLE]), then start
of frame, operation code, PHY address, register address.

This is followed by the turnaround phase, and only the 16 data cycles remain.

Figure 18–1 SMI/MDIO Transaction as Master

MDI_MDC

MDI_MDIO 111...111 00 or 01 00, 01, AAAAA RRRRR Z 0 Data Idleor 1

Optional Preamble
(SMI_CLK0/1[PREAMBLE])

(32 bits) Start of
Frame

Opcode
(SMI0/1_CMD

[PHY_OP])
PHY Address

(SMI_CMD[PHY_ADR])
Register Address

(SMI_CMD[REG_ADR])
Turn-

around

Data (16 bits)
SMI_RD_DAT[DAT] or
SMI_WR_DAT[DAT]

MDI_MDC clocks
optional during idle

(SMI_CLK[CLK_IDLE])

Z

CN50XX drives

PHY drives on read; CN50XX drives on write

Z on read; CN50XX drives on write

10, or 11
652 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
高亮

Owner
高亮

System Management Interface (SMI): SMI/MDIO Interface
On a read or a post-read-increment address operation
(e.g. SMI_CMD[PHY_OP] = 11 or 10 in Clause 45 mode), the PHY drives (and
CN50XX samples) the response for the remaining 16 data cycles.

According to the 802.3 specification, on read operations, the STA (CN50XX)
transitions MDI_MDC and the PHY drives MDI_MDIO with some delay
relative to that edge. This is Edge1 (refer to Figure 18–2).

The STA then samples MDI_MDIO on the next rising edge of MDI_MDC.
This is Edge2 (refer to Figure 18–2).

CN50XX can sample the read data relative to Edge2.

On a write or address operation (e.g. SMI_CMD[PHY_OP] = 1 or 00 in Clause
45 mode), CN50XX drives the write data for the remaining 16 cycles.

After software submits a read or a post-read-increment address operation via a write
to SMI_CMD (e.g. with SMI_CMD[PHY_OP] = 11 or 10 in Clause 45 mode), it should
poll SMI_RD_DAT for the result. SMI_RD_DAT[VAL] is set and
SMI_RD_DAT[DAT] contains the 16-bits of read data when the transaction is
complete. CN50XX clears SMI_RD_DAT[VAL] to 0 on a read operation, and
SMI_RD_DAT[DAT] contains valid data only when SMI_RD_DAT[VAL] is set to 1.
CN50XX asserts SMI_RD_DAT[PENDING] while the transaction is pending.

Software must write the 16-bits of write data to SMI_WR_DAT[DAT] before it
initiates a write or address operation via a write to SMI_CMD (e.g. with
SMI_CMD[PHY_OP] = 01 or 00 in Clause 45 mode). Software should then poll
SMI_WR_DAT[VAL] to tell when the transaction is complete. CN50XX clears
SMI_WR_DAT[VAL] to 0 once software has seen it set to 1. CN50XX asserts
SMI_WR_DAT[PENDING] while the transaction is pending.

Figures 18–2 and 18–3 indicate timing characteristics of the interface.

Figure 18–2 SMI/MDIO Interface Read Timing Characteristics

SMI_CLK[PHASE] core-clock cycles SMI_CLK[PHASE] core-clock cycles
Edge1

1ns4ns
Setup Hold

CN50XX Samples
Read Data Here

Edge2

TSAMPLE

MDI_MDC

MDI_MDIO
(sourced by PHY)

= SMI_CLK[SAMPLE_HI] × 16 + SMI_CLK[SAMPLE] core-clock cyclesTSAMPLE
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 653

 System Management Interface (SMI): SMI Registers
The MDI_MDC frequency is defined as follows:

CN50XX always drives write data one core-clock cycle before the falling edge of
MDI_MDC, and the sample point for read data is programmable relative to the rising
edge of MDI_MDC, based on SMI_CLK[SAMPLE_HI,SAMPLE].

18.2 SMI Registers

The SMI registers are shown in Table 18–1.

Figure 18–3 SMI/MDIO Interface Write Timing Characteristics

SMI_CLK[PHASE] core-clock cycles

MDI_MDC

MDI_MDIO
(sourced by

CN50XX) 1 ns max

SMI_CLK[PHASE] core-clock cycles

1 core-clock cycle

Old Data New Data

Write Data Here
CN50XX Drives

MDI_MDC frequency =
(core frequency)

(SMI_CLK[PHASE] × 2)

Table 18–1 SMI Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed Description

SMI0_CMD 0x0001180000001800 RSL See page 655

SMI0_WR_DAT 0x0001180000001808 RSL See page 655

SMI0_RD_DAT 0x0001180000001810 RSL See page 655

SMI0_CLK 0x0001180000001818 RSL See page 656

SMI0_EN 0x0001180000001820 RSL See page 656
654 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

System Management Interface (SMI): SMI Registers
SMI Command Control Register
SMI_CMD

This register forces a read or write command to the PHY. Write operations to this
register create SMI transactions. Software will poll (depending on the transaction
type).

See Table 18–1 for the register address.

SMI Write Data Register
SMI_WR_DAT

This register provides the data for a write operation. See Table 18–1 for the register
address.

SMI Read Data Register
SMI_RD_DAT

This register contains the data in a read operation. See Table 18–1 for the register
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.

<17:16> PHY_OP R/W 0 — PHY opcode, depending on SMI_CLK[MODE] setting.
● If SMI_CLK[MODE] = 0 (≤1Gbs / Clause 22),

0 = write operation, encoded in the frame as 01
1 = read operation, encoded in the frame as 10.

● If SMI_CLK[MODE] = 1 (>1Gbs / Clause 45),
00=address, 01=write, 11=read, 10=post-read-increment-address.

<15:13> — RAZ — — Reserved.

<12:8> PHY_ADR R/W 0x0 — PHY address.

<7:5> — RAZ — — Reserved.

<4:0> REG_ADR R/W 0x0 — PHY register offset.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved.

<17> PENDING RO 0 — Write transaction pending. Indicates that an SMI write transaction is in
flight.

<16> VAL RO 0 — Write data valid. Asserts when the write transaction completes. A read to this
register clears VAL.

<15:0> DAT R/W 0x0 — Write data.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:18> — RAZ — — Reserved.

<17> PENDING RO 0 — Read transaction pending. Indicates that an SMI read transaction is in
flight.

<16> VAL RO 0 — Read data valid. Asserts when the read transaction completes. A read to this
register clears VAL.

<15:0> DAT RO 0x0 — Read data.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 655

Owner
下划线

Owner
下划线

Owner
高亮

Owner
高亮

 System Management Interface (SMI): SMI Registers
SMI Clock Control Register
SMI_CLK

This register determines the SMI timing characteristics. See Table 18–1 for the
register address.

SMI Enable Register
SMI_EN

Enables the SMI interface. See Table 18–1 for the register address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:25> — RAZ — — Reserved.

<24> MODE R/W 0 0 IEEE operating mode; 0 = Clause 22 compliant, 1 = Clause 45
compliant.

<23:21> — RAZ — — Reserved.

<20:16> SAMPLE_HI R/W 0x0 0x0 Sample (extended bits). Specifies in core clock cycles when to sample
read data.

<15:14> — RAZ — — Reserved.

<13> CLK_IDLE R/W 0 0 MDI_MDC toggle. When set, this bit causes MDI_MDC not to toggle
on idle cycles.

<12> PREAMBLE R/W 1 1 Preamble. When this bit is set, the 32-bit preamble is sent first on SMI
transactions. This field must be set to 1 when MODE = 1 in order for
the receiving PHY to correctly frame the transaction.

<11:8> SAMPLE R/W 0x2 0x2 Sample read data. Specifies the number of core clock cycles after the
rising edge of MDI_MDC to wait before sampling read data.

(SAMPLE_HI,SAMPLE) > 1
(SAMPLE_HI,SAMPLE) + 3 ≤ 2 × PHASE

<7:0> PHASE R/W 0x64 0x64 MDC clock phase. Specifies the number of core clock cycles that make
up an MDI_MDC phase.

PHASE > 2

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:1> — RAZ — — Reserved.

<0> EN R/W 0 1 SMI/MDIO interface enable:
1 = enable interface
0 = disable interface: no transactions, no MDI_MDC transitions
656 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Chapter 19

Random-Number Generator (RNG),
Random-Number Memory (RNM)
This chapter contains the following subjects:

● Overview

● RNG/RNM Operations

● RNM Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 657

 Random-Number Generator (RNG), Random-Number Memory (RNM):
Overview

The CN50XX random-number generator/random-number memory (RNG/RNM) unit
performs the following functions:

● generates random bits
● buffers random bits
● returns random bits to cores.

Figure 19–1 shows a block diagram of the random-number generator. The entropy is
provided by the jitter of 125 of 128 free-running oscillators XORed into a 128-bit
LFSR. The LFSR accumulates the entropy over 81 cycles, after which it is fed into a
SHA-1 engine. The SHA-1 engine uses the following 16 32-bit words in order as
input:

1. LFSR[31:0]

2. LFSR[63:32]

3. LFSR[95:64]

4. LFSR[127:96]
(Note that the four LFSR words are all sampled on one cycle.)

5. digest a from the previous SHA-1 iteration

6. digest b from the previous SHA-1 iteration

7. digest c from the previous SHA-1 iteration

8. digest d from the previous SHA-1 iteration

9. digest e from the previous SHA-1 iteration

10. 0x80000000

11. 0x00000000

12. 0x00000000

13. 0x00000000

14. 0x00000000

15. 0x00000000

16. 0x00000120

The SHA-1 engine runs once every 81 cycles.
658 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Random-Number Generator (RNG), Random-Number Memory (RNM):

The SHA-1 engine uses the 512-bit input with its 160-bit initialization vector to run
its algorithm. After completing the SHA-1 operation, the hardware sends the first 64
bits of the digest to the RNM FIFO. The hardware produces new 64-bit random
number every 81 cycles.

The RNM FIFO can also be sourced from the raw entropy of the 128 oscillators. The
entropy is divided into 16 groups of eight bits (0-7, 8-15, 16-23, ..., 112-119, 120-127)
that are fed into a multiplexer, whose output (selected by
RNM_CTL_STATUS[ENT_SEL]) is fed into a shift register, which produces the 64-
bit input to the RNM FIFO every eight cycles.

The input to the RNM FIFO is determined by RNM_CTL_STATUS[EXP_ENT].

Figure 19–1 RNG Diagram

Ring Oscillators

Synchronizers

012125126127

128b

32b

64b

RNM_CTL_STATUS[ENT_EN]

32b
32b
32b
32b

a
b
c
d
e

lsb
msb

SHA-1
Init

Values

RNM_CTL_STATUS[EXP_ENT]

64b

64b to RNM FIFO

8b

64b every eight cycles

160b

SHA-1 Engine

Init Vector
512b Input

Shift

RNM_CTL_STATUS
[ENT_SEL]

71523127 119 111

120

...

112

...

104 16 8 0

...

Entropy

128b LFSR
ƒ(x) = x128+x126+x101+x99+1

Raw
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 659

 Random-Number Generator (RNG), Random-Number Memory (RNM): RNG/RNM Operations
The RNG/RNM unit feeds the random numbers from the unit depicted in Figure 19–
1 into a 512-byte FIFO eight bytes at a time. Load operations from the cores extract
random bytes from the FIFO to drain it. Whenever the FIFO drains this way, RNG/
RNM refills using the random numbers constantly generated by the hardware.

For chip-test purposes, the entropy source can be disabled from being fed into the
LFSR mixing function, to ensure predictability of the random-number generator
output. The entropy source is normally enabled by setting the
RNM_CTL_STATUS[ENT_EN] bit. On power-up, this bit is clear, which ensures the
entropy source is disabled.

When RNM_CTL_STATUS[RNG_EN] = 1, the random-number generator is enabled.

When RNM_CTL_STATUS[RNG_EN] = 0,

● no random numbers can be delivered to any cores
● the FIFO is cleared
● the LFSR mixing function is forced to its reset value (00…1).

If RNM_CTL_STATUS[ENT_EN] = 0, a predictable 512 bytes of numbers fill the
FIFO after RNM_CTL_STATUS[RNG_EN] transitions from 0 to 1. Consequently,
core operations can receive a predictable sequence of random numbers after enabling
RNG/RNM when the entropy source is disabled.

19.1 RNG/RNM Operations

19.1.1 RNG/RNM Load Operation

Load Address Field

Load Result Field

64-bit operation result

● data - eight random bytes.

NOTE: Any load operation loads eight bytes of random numbers regardless of
the type of load issued.

48 47 43 42 40 39 0

1
Major DID

0100 0
subDID

000
Reserved

0

63 0

data
660 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Random-Number Generator (RNG), Random-Number Memory (RNM): RNG/RNM Operations
32-bit operation result

● data - four random bytes.

16-bit operation result

● data - two random bytes.

8-bit operation result

● data - random byte.

19.1.2 IOBDMA Operations

IOBDMA Address Field

● scraddr - Defined in “cnMIPS™ Cores” on page 143.

● len - Can be any value (1 to 255 8-byte words). Defined in “cnMIPS™ Cores” on
page 143.

IOBDMA Result Field

● data - [8 × len] random bytes.

31 0

data

15 0

data

7 0

data

63 56 55 48 47 43 42 40 39 0

scraddr len
Major DID

0100 0
subDID

000
Reserved

0

63 0

data
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 661

 Random-Number Generator (RNG), Random-Number Memory (RNM): RNM Registers
19.2 RNM Registers

The RNM registers are shown in Table 19–1.

RNM BIST Status Register
RNM_BIST_STATUS

This register is the RNM memory BIST status register, indicating status of built-in
self-tests. See Table 19–1 for address.

RNM Control and Status Register
RNM_CTL_STATUS

This register is the RNM interrupt-enable register. See Table 19–1 for address.

Table 19–1 RNM Registers

Register Address CSR Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed
Description

RNM_CTL_STATUS 0x0001180040000000 RSL See page 662

RNM_BIST_STATUS 0x0001180040000008 RSL See page 662

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:2> — RAZ — — Reserved
<1> RRC RO 0 0 Status of the RRC memory block BIST: 1 = failed BIST, 0 = passed BIST
<0> MEM RO 0 0 Status of MEM block BIST: 1 = failed BIST, 0 = passed BIST

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:9> — RAZ — — Reserved
<8:5> ENT_SEL R/W 0 0 Select input to RNM FIFO.

0x0 = 0–7 0x8 = 64–71
0x1 = 8–15 0x9 = 72–79
0x2 = 16–23 0xA = 80–87
0x3 = 24–31 0xB = 88–95
0x4 = 32–39 0xC = 96–103
0x5 = 40–47 0xD = 104–111
0x6 = 48–55 0xE = 112–119
0x7 = 56–63 0xF = 120–127

<4> EXP_ENT R/W 0 0 Exported entropy enable for random-number generator.
<3> RNG_RST R/W 0 0 Reset RNG as core reset.
<2> RNM_RST R/W 0 0 Reset the RNM as core reset except for register logic.
<1> RNG_EN R/W 0 0 Enables the output of the RNG.
<0> ENT_EN R/W 0 0 Entropy enable for random number generator.
662 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 20

MPI/SPI Unit
This chapter contains the following subjects:

● Pin Usage

● MPI/SPI Configuration

● MPI/SPI Usage

● Examples

● MPI/SPI Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 663

 MPI/SPI Unit: Pin Usage
Overview

The multiprocessor peripheral interface (MPI)/serial peripheral interface (SPI) is a
highly flexible implementation capable of connecting to many variations on the SPI.
The key features are the following:

● Clock generation to 16 MHz
● Ability to tristate transmit data wire for MPI-style single-wire transmit/receive
● MSB- or LSB-first transmission/reception
● Interrupt- or polling-based transactions
● Continuous clocking mode
● Flexible timing between commands
● Optional integrated chip-select

An overview of the interface is shown in Figure 20–1.

20.1 Pin Usage

All the MPI/SPI pins, when not enabled for MPI/SPI use, function as GPIO pins.
Refer to Chapter 15 for more details. Table 20–1 describes the MPI/SPI pins and the
CSR fields that switch them from standard GPIO pins to their MPI/SPI functionality.
In addition, GPIO_CFGn[TX_OE] must be 0 for any of these pins when using the
MPI/SPI functionality associated with the given pin.

For the remainder of the chapter the MPI/SPI signals will be referred to by the MPI/
SPI part of their names.

Figure 20–1 MPI/SPI Overview

I/O
Bus

MPI DAT0-8 MPI_RX

MPI_TX

MPI_CS

MPI_CLK
MPI Engine

Control

MPI/SPI Engine

8

8

Table 20–1 MPI/SPI Signals

Pin Name Description Enable

GPIO_23/MPI_CLK Serial interface clock (SCLK) MPI_CFG[ENABLE] = 1

GPIO_22/MPI_CS Chip select MPI_CFG[CSENA] = 1

GPIO_21/MPI_TX Transmit data wire MPI_CFG[ENABLE] = 1

GPIO_20/MPI_RX Receive data wire Always received
664 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
下划线

Owner
下划线

Owner
矩形

MPI/SPI Unit: MPI/SPI Configuration
20.2 MPI/SPI Configuration

20.2.1 Clock Generation

The MPI/SPI unit operates in master mode at all times. As such, it is responsible for
generating SCLK for the MPI/SPI interface, which is accomplished through a simple
clock divider.

MPI_CFG[CLKDIV] determines the MPI_CLK frequency using the following
relation:

In addition to the clock frequency, the MPI/SPI interface has two types of clocking
strategies.

● When MPI_CFG[CLK_CONT] = 0, the MPI_CLK is stopped between MPI/SPI
transactions. In this mode, MPI_CS is not required to deassert between
transactions.

● When MPI_CFG[CLK_CONT] = 1, MPI_CLK runs continuously. In this mode,
deassertion of MPI_CS is the only notification to the slave device that a
transaction has completed.

MPI_CFG[IDLELO] specifies the value at which MPI_CLK idles when the clock is
stopped.

20.2.2 Chip Select

Three fields in MPI_CFG control the handling of the MPI_CS signal: [CSENA],
[CSLATE], and [CSHI]

● [CSENA] determines whether the MPI/SPI engine drives MPI_CS during MPI/
SPI transactions.

If [CSENA] = 0, the MPI/SPI engine never drives MPI_CS.

If [CSENA] = 1, then MPI_CS is asserted at the start of every MPI
transaction based on the settings of MPI_CFG[CSHI,CSLATE] and
deasserted (or not) based on the value written to MPI_TX[LEAVECS].

● [CSHI] determines whether MPI_CS is treated as a low-asserted chip select
([CSHI] = 0) or a high-asserted chip select ([CSHI] = 1).

● [CSLATE] is provided to handle different device setup requirements for chip
select.

If [CSLATE] = 0, the MPI/SPI engine asserts chip select one-half SCLK cycle
before MPI_TX is driven.

If [CSLATE] = 1, chip select asserts coincident with MPI_TX driving.

A timing diagram displaying the relationship between MPI_CS and
MPI_CFG[CSLATE] is shown in Figure 20–2.

FSCLK =
FECLK

2 × MPI_CFG[CLKDIV]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 665

Owner
下划线

Owner
下划线

Owner
下划线

Owner
高亮

 MPI/SPI Unit: MPI/SPI Configuration

20.2.3 SPI/MPI Style

Typically, SPI uses separate TX and RX wires, while MPI uses a single wire for both
TX and RX. MPI_CFG[WIREOR] tells the MPI/SPI engine which style to use.

● If MPI_CFG[WIREOR] = 0 (SPI style), data is sampled from MPI_RX and driven
onto MPI_TX. In this case, MPI_TX is always driven when the MPI/SPI engine is
enabled.

● If MPI_CFG[WIREOR] = 1 (MPI style), data is driven on MPI_TX but MPI_TX is
tristated when the MPI/SPI engine expects the slave to drive data and data is
sampled from MPI_TX. In this case the MPI_RX pin is not used at all.

In addition, the MPI_CFG[TRITX] setting determines the following

0 = the MPI/SPI engine drives MPI_TX during idle cycles (i.e. cycles in which
the slave is not expected to drive)

1 = the MPI/SPI engine tristates MPI_TX

20.2.4 Polling/Interrupt-Based Reception

MPI_CFG[INT_ENA] provides a mechanism to interrupt the processor upon
completion of an MPI/SPI transaction.

1 = the MPI/SPI engine interrupts at the completion of an MPI/SPI transaction.

0 = software must poll MPI_STS[BUSY] to determine when the MPI/SPI
transaction is complete.

20.2.5 Other Fields in MPI_CFG

MPI_CFG[IDLECLKS] specifies the number of idle SCLK cycles to be inserted
between MPI/SPI transactions.

When cleared to 0, it allows two transactions to follow as closely to each other
as the protocol allows (i.e. it does not insert any idle cycles).

When set to a non-zero value (1, 2, or 3), that many idle SCLK cycles are
inserted between MPI/SPI transactions.

MPI_CFG[LSBFIRST] determines whether the LSB or MSB of a byte is sent first.

MPI_CFG[ENABLE] enables the MPI/SPI engine. When this field is cleared to 0, the
engine is disabled and the pins are GPIO pins.

Figure 20–2 MPI_CS and MPI_CFG[CSLATE]

MPI_CLK

MPI_CS

MPI_TX

[CSLATE] = 0

[CSLATE] = 1

7 6 0

Parameters: MPI_CFG[CLK_CNT=0, IDLELO=0, CSENA=1, CSHI=0, LSBFIRST=0]

MPI_TX[TOTNUM=1, TXNUM=1, LEAVECS=0]
666 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Owner
高亮

Owner
下划线

MPI/SPI Unit: MPI/SPI Usage
20.3 MPI/SPI Usage

Sending an MPI/SPI transaction requires the following steps:

1. Configure the interface via MPI_CFG.

2. Write transmission bytes to MPI_DAT0-8.

3. Write MPI_TX with transaction information.

4. Wait for interrupt/poll MPI_STS.

5. Read MPI_DAT0-8 to get received data

20.3.1 MPI_DAT(0..8) Registers

The MPI_DATn registers hold the bytes to transmit and are written with the
received bytes for any transaction performed by the MPI/SPI engine.

The value in MPI_DAT0 is the first byte transmitted, as well as the first register
written with received data.

20.3.2 Using the MPI_TX Register

The MPI_TX register is written with transaction information to tell the MPI/SPI
engine to start a transaction.

MPI_TX[TOTNUM] specifies the number of bytes in the transaction (transmit plus
receive), while MPI_TX[TXNUM] specifies the number of bytes to transmit.
MPI_TX[TOTNUM] should not exceed nine and typically is greater than one.

An MPI/SPI transaction intended to write a register in a slave device would
typically have [TOTNUM] = [TXNUM].

An MPI/SPI transaction intended to read a register in a slave device would
typically have [TOTNUM] > [TXNUM].

There are some devices that can support multibyte read/write operations larger than
MPI_DAT0-8 can handle. For those devices, setting the MPI_TX[LEAVECS] bit tells
the MPI/SPI engine to leave MPI_CS asserted after completing the transaction. This
allows a subsequent MPI_TX write operation to continue the transaction from the
slave device’s perspective. This method only works in noncontinuous clocking mode
(i.e. MPI_CFG[CLK_CONT] = 0).

20.3.3 Using the MPI_STS Register

Software may read the MPI_STS register to determine the status of the MPI/SPI
engine.

● MPI_STS[BUSY] reads 1 if the MPI/SPI engine is currently processing a
transaction.

● MPI_STS[RXNUM] reflects the number of bytes received during the transaction.
If [BUSY] = 1, [RXNUM] reflects the number of bytes received so far.

Note that the MPI/SPI engine receives bytes the entire time it is shifting. Because of
this MPI_STS[RXNUM] always equals MPI_TX[TOTNUM] at the end of a
transaction.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 667

Owner
高亮

Owner
下划线

Owner
下划线

Owner
高亮

Owner
矩形

Owner
下划线

 MPI/SPI Unit: Examples
20.4 Examples

The following four examples show the steps involved in reading and writing the MPI/
SPI unit.

20.4.1 Example 1: Reading a Single Byte From Device Address 0x04

Assumptions: device expects first byte transmitted to be a command byte. Bit[7] of
the command byte determines whether the transaction is a read (0) or write (1).

1. Write 0x04 to MPI_DAT0

a. [7] = 0 indicates read (device specific)
b. [6:0] = 0x04 indicates address 0x04

2. Write MPI_TX with [TOTNUM] = 0x2, [TXNUM] = 0x1, [LEAVECS] = 0

Meaning: shift for a total of two bytes, transmitting during the first byte only,
deassert MPI_CS after the last data bit is received.

3. Read MPI_STS until [BUSY] = 0 (or wait for an interrupt)

4. Read MPI_DAT1 to get the data byte sent from the slave device.

20.4.2 Example 2: Writing a Single Byte to Register 0x04

Assumptions: device expects first byte transmitted to be a command byte. Bit[7] of
the command byte determines whether the transaction is a read (0) or write (1).

1. Write 0x84 to MPI_DAT0
a. [7] = 1 indicates write.
b. [6:0] = 0x04 indicates address 0x04.

2. Write a byte to MPI_DAT1. This is the value to write to address 0x04.

3. Write MPI_TX with [TOTNUM] = 0x2, [TXNUM] = 0x2, [LEAVECS] = 0.

Meaning: shift for a total of two bytes, transmitting during both bytes, deassert
MPI_CS after the last data bit.

4. Read MPI_STS until [BUSY] = 0 (or wait for an interrupt).

NOTE: MPI_DAT0 contains junk because it was latched while shifting the
read command into the device. The second byte shifted from the device
is the response to the read command.
668 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

MPI/SPI Unit: Examples
20.4.3 Example 3: Writing Ten Bytes to Registers 0x09–0x00

This is a mode used by some devices that allows reading/writing from register N
down to register 0 with one MPI command.

The first data byte is for register N, the second is for register N-1, etc. In this case, an
MPI_CS deassertion aborts the transaction, so special care is taken here to not
deassert MPI_CS during the transfer. Note that a maximum of eight bytes can be
written at once because there are only nine MPI_DATn registers, and one must be
used for the command to start the transaction. So this operation must be split into
two transactions.

Assumptions: device expects first byte transmitted to be a command byte. Bit[7] of
the command byte determines whether the transaction is a read (0) or write (1).

1. Write 0x89 to MPI_DAT0
a. [7] = 1 indicates write.
b. [6:0] = 0x09 indicates address 0x09.

2. Write eight bytes to MPI_DAT1–8. These are the bytes to write to addresses
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, and 0x02.

3. Write MPI_TX with [TOTNUM] = 0x9, [TXNUM] = 0x9, [LEAVECS] = 1.

Meaning: shift for a total of nine bytes, transmitting during all bytes, do not
deassert MPI_CS after the completion of the nine bytes.

4. Read MPI_STS until [BUSY] = 0 (or wait for an interrupt).

5. Write two bytes to MPI_DAT0–1. These are the bytes to write to addresses 0x01
and 0x00.

6. Write MPI_TX with [TOTNUM] = 0x2, [TXNUM] = 0x2, [LEAVECS] = 0.

Meaning: shift for a total of two bytes, transmitting during both bytes, deassert
MPI_CS after the last data bit.

7. Read MPI_STS until [BUSY] = 0 (or wait for an interrupt).

NOTE: This can not work in continuous clocking mode. SCLK must idle
between the two transactions or the data will be shifted out before the
second transaction is ready to receive it. In continuous clocking mode a
maximum of eight bytes may be read or written with one MPI/MPI
command.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 669

 MPI/SPI Unit: MPI/SPI Registers
20.4.4 Example 4: Reading 17 Bytes From Registers 0x11–0x00

This is the reading equivalent of example 3.

Assumptions: device expects first byte transmitted to be a command byte. Bit[7] of
the command byte determines whether the transaction is a read (0) or write (1).

1. Write 0x11 to MPI_DAT0
a. [7] = 0 indicates read.
b. [6:0] = 0x11 indicates address 0x11 (17).

2. Write MPI_TX with [TOTNUM] = 0x9, [TXNUM] = 0x1, [LEAVECS] = 1.

Meaning: shift for a total of nine bytes, transmitting only during the first byte, do
not deassert MPI_CS after completion of the nine bytes.

3. Read MPI_STS until [BUSY] = 0 (or wait for an interrupt).

4. Read MPI_DAT1–8 to get the first eight data bytes.

5. Write MPI_TX with [TOTNUM] = 0x9, [TXNUM] = 0x0, [LEAVECS] = 0.

Meaning: shift for a total of nine bytes, never transmitting, deassert MPI_CS
after completion of the transaction.

6. Read MPI_STS until [BUSY] = 0 (or wait for an interrupt).

7. Read MPI_DAT0–8 to get the next nine bytes. Because this transaction was
simply receiving data from the end of a previously started command, all nine
data bytes are valid.

20.5 MPI/SPI Registers

The MPI/SPI registers are listed in Table 20–2.

NOTE: This can not work in continuous clocking mode. SCLK must idle
between the two transactions or the data will be shifted out before the
second transaction is ready to receive it. In continuous clocking mode a
maximum of eight bytes may be read or written with one MPI/MPI
command.

NOTE: MPI_DAT0 contains junk because it was latched while shifting the
read command into the device. The second byte shifted from the device
is the response to the read command.

Table 20–2 MPI/SPI Registers

Register Address CSR Type1 Detailed Description

MPI_CFG 0x0001070000001000 NCB See page 672

MPI_STS 0x0001070000001008 NCB See page 673

MPI_TX 0x0001070000001010 NCB See page 673

MPI_DAT0

...

MPI_DAT8

0x0001070000001080

...

0x00010700000010C0

NCB See page 673
670 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

MPI/SPI Unit: MPI/SPI Registers
1. NCB-type registers are accessed directly across the I/O Bus.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 671

 MPI/SPI Unit: MPI/SPI Registers
MPI Configuration Register
MPI_CFG

This register provides configuration for the MPI interface. See Table 20–2 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:29> — RAZ — — Reserved.

<28:16> CLKDIV R/W 0x0 0x0 Clock divisor.
FSCLK = FECLK / (2 × CLKDIV)

CLKDIV = FECLK / (2 × FSCLK)

<15:12> — RAZ — — Reserved.

<11> CSLATE R/W 0 0 MPI_CS late. Used only when CSENA = 1
1 = MPI_CS asserts coincident with the transaction.
0 = MPI_CS asserts ½ SCLK cycle before the transaction.

<10> TRITX R/W 0 0 Tristate TX. Used only when WIREOR = 1
1 = MPI_TX pin is tristated when not transmitting.
0 = MPI_TX pin is driven when slave is not expected to be driving.

<9:8> IDLECLKS R/W 0x0 0x0 Idle clocks. When set, guarantees idle SCLK cycles between commands.

<7> CSHI R/W 0 0 MPI_CS high: 1 = MPI_CS is asserted high, 0 = MPI_CS is asserted low.

<6> CSENA R/W 0 1 MPI_CS enable:
1 = MPI_CS is driven per MPI_TX instruction
0 = MPI_CS is a GPIO pin, not used by MPI_TX

<5> INT_ENA R/W 0 0 MPI interrupt enable:
1 = MPI engine interrupts at the end of the transaction
0 = polling is required

<4> LSBFIRST R/W 0 0 Shift LSB first: 1 = shift LSB first, 0 = shift MSB first.

<3> WIREOR R/W 0 0 Wire OR TX and RX.
1 = MPI_TX handles both transmit and receive and is tristated when

not transmitting (MPI mode); MPI_RX pin is not used by the MPI
engine.

0 = MPI_TX and MPI_RX are separate wires (SPI mode); MPI_TX pin is
always driven.

<2> CLK_CONT R/W 0 0 Clock control.
1 = clock never idles, requires MPI_CS deassertion/assertion between

commands.
0 = clock idles to value given by IDLELO after completion of MPI

transaction.

<1> IDLELO R/W 0 0 Clock idle low.

1 = MPI_CLK idles low, first transition is low-to-high.
0 = MPI_CLK idles high, first transition is high-to-low.

<0> ENABLE R/W 0 0 MPI enable. 1 = MPI signals are driven, 0 = all MPI pins are GPIO signals.
672 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

MPI/SPI Unit: MPI/SPI Registers
MPI STS Register
MPI_STS

See Table 20–2 for the address.

MPI Transmit Register
MPI_TX

See Table 20–2 for the address.

MPI Data Registers
MPI_DAT(0..8)

See Table 20–2 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:13> — RAZ — — Reserved.

<12:8> RXNUM RO 0x0 0x0 Number of bytes written for the transaction.

<7:1> — RAZ — — Reserved.

<0> BUSY RO 0 0 Busy.
1 = MPI engine is processing a transaction.
0 = no MPI transaction in progress.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:17> — WO — — Reserved.

<16> LEAVECS WO — 0x0 Leave MPI_CS asserted.
1 = leave MPI_CS asserted after the transaction is completed.
0 = deassert MPI_CS asserted after the transaction is completed.

<15:13> — WO — — Reserved.

<12:8> TXNUM WO — 0x1 Number of bytes to transmit.

<7:5> — WO — — Reserved.

<4:0> TOTNUM WO — 0x2 Total number of bytes to shift (transmit and receive).

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:8> — RAZ — — Reserved.

<7:0> DATA R/W — — Data to transmit/receive.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 673

Owner
高亮

Owner
高亮

Owner
高亮

Owner
高亮

 MPI/SPI Unit: MPI/SPI Registers
674 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 21

USB Unit (USB)
This chapter contains the following subjects:

● Overview

● Architecture

● Initialization

● Modes of Operation

● Interrupt Handler

● Host-Mode Programming Model

● Device Programming Model

● Miscellaneous Topics

● USB Registers
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 675

 USB Unit (USB): Architecture
Overview

The USB interface is a dual-role device (DRD) controller that supports both host and
device functions and is fully compliant with the USB 2.0 specification. The USB
controller (USBC) supports the following features:

● USB 2.0 compliant.

● Host and device modes (depending on whether it is attached to an A or B
connector respectively).

● Operates in high-speed (HS, 480Mbs), full-speed (FS, 12-Mbs), and low-speed
(LS, 1.5-Mbs) modes (LS is not supported when the USB core is operating as a
device).

● Supports up to eight host channels.

● Supports up to four bidirectional endpoints, including control endpoint 0.

● Supports periodic transfers in host and device mode.

● Supports slave mode.

● Supports dynamic FIFO sizing for application-specific configurations.

● Supports a generic root hub.

● Includes automatic ping capabilities.

● Supports big- and little-endian modes.

This implementation does not currently support the On-The-Go Supplement to the
USB 2.0 specification or the Enhanced Host Controller Interface Specification (EHCI
1.0).

21.1 Architecture

This section describes the general USB controller (USBC) architecture and its major
components, including its host architecture, its device architecture, its address map,
and protocol and transaction handling.

21.1.1 Host Architecture

This section describes the USB controller when it is operating in host mode.

The host uses one transmit FIFO for all nonperiodic OUT transactions and one
transmit FIFO for all periodic OUT transactions. These transmit FIFOs are used as
transmit buffers to hold the data (payload of the transmit packet) to be transmitted
over USB. The host pipes the USB transactions through request queues (one for
periodic and one for nonperiodic). Each entry in the request queue holds the IN or
OUT channel number along with other information to perform a transaction on the
USB. The order in which the requests are written into the queue determines the
sequence of transactions on the USB. The host processes the periodic request queue
first, followed by the nonperiodic request queue, at the beginning of each microframe.

The host uses one receive FIFO for all periodic and nonperiodic transactions. The
FIFO is used as a receive buffer to hold the received data (payload of the received
packet) from the USB until it is transferred to the system memory. The status of each
packet received also goes into the FIFO. The status entry holds the IN channel
number along with other information, such as received byte count and validity
status.
676 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Architecture
Figure 21–1 shows the bus interface architecture of the USBC in host mode.

21.1.2 Device Architecture

The USB device uses a single transmit FIFO to store data for all nonperiodic
endpoints, and one transmit FIFO per periodic endpoint to store data to be
transmitted in the next microframe. The data is fetched by the DMA engine or is
written by the application into the transmit FIFOs and is transmitted on the USB
when the IN token is received. The request queue contains the number of the
endpoint for which the data is written into the data FIFO.

To improve performance, the application can use the learning queue to help predict
the order in which the USB host will access the nonperiodic endpoints and writes the
data into the nonperiodic FIFO accordingly. Since each periodic IN endpoint has its
own FIFO, no order prediction is needed for periodic IN transfers.

The USB device uses a single receive FIFO to receive the data and status for all OUT
endpoints. The status of the packet includes the size of the received OUT data
packet, data PID, and validity of the received data. The data in the receive FIFO is
read by the application when the data is received.

Figure 21–1 Bus Interface Block Diagram (Host Mode)

Periodic

Nonperiodic

Host
Device
RX FIFO

ch. number,
fr, last

ch. number,
fr, last

ch. number,
fr, last

Request
Queue

data

data

data

TX FIFO

ch. number,
token info

ch. number,
token info

ch. number,
token info

Request
Queue

data

data

data

TX FIFO

AHB
Bus

Interface

Master

Slave

data status

data status

data status

CSRs and Interrupts

Token
Request

Unit

MAC Interface

32 bits data, then status:
ch num,

32 bits data,
byte enables

packet delimiter

U

byte count,
data PID,

packet delimiter

S
B
N

USBC

I/O
B
u
s

CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 677

 USB Unit (USB): Architecture
Figure 21–2 shows the bus interface architecture of the USBC in device mode.

21.1.3 Address Map

To make the software transparent to the hardware implementation, one region is
mapped to each host channel or device endpoint. The controller has the following
elements:

● One common RxFIFO, used in host and device modes.

● One common nonperiodic TxFIFO, used in host and device modes

● One common periodic TxFIFO, used in host mode

● One periodic TxFIFO for each periodic IN endpoint in device mode

Figure 21–2 Bus Interface Block Diagram (Device Mode)

Device

Nonperiodic

Host
Device
RX FIFO

ch. number,
token info

ch. number,
token info

ch. number,
token info

Request
Queue

data

data

data

TX FIFO

AHB
Bus

Interface

Master

Slave

data status

data status

data status

CSRs and Interrupts

Token
Request

Unit
MAC Interface

32 bits data, then status:
ch num,

32 bits data,
byte enables

packet delimiter

byte count,
data PID,

packet delimiter

Periodic

data pkt

data pkt

data pkt

TX FIFOndata pkt

data pkt

data pkt

TX FIFO2
data pkt

data pkt

data pkt

TX FIFO1

Sequence
Learning
Queue

EP3

EP8

EP1
EP number
for each
IN token

U
S
B
N

USBC

I/O
B
u
s

678 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Architecture
Within the controller, the following occur:

● Read accesses to any one of the 4 KB regions are mapped to the RxFIFO.
● Write operations to any nonperiodic IN endpoint or OUT channel are mapped to

the nonperiodic TxFIFO.
● In host mode, write operations to any periodic OUT channel are mapped to the

common periodic TxFIFO.
● In device mode, write accesses to a periodic IN endpoint are mapped to the

corresponding endpoints periodic TxFIFO (Bits <30:27> of a device endpoint
control register map an endpoint to a specific device periodic FIFO).

In device mode, an IN interrupt endpoint can either be mapped to the common non-
periodic TxFIFO or assigned to a separate periodic TxFIFO. When the device
endpoint-n control register’s TxFIFO Number field is 0, the endpoint is mapped
either to the common nonperiodic TxFIFO or to the FIFO number selected by these
fields.

Hardware maintains the periodic and nonperiodic Tx queues for internal operation.
For debugging, software can read the top of the queue information. Because these
queues’ read domain is in the PHY domain, no debug pop access is provided to these
queues’ saving area; access is provided only to the top of the queue.

In device mode, because each periodic IN endpoint has a separate buffer allocated to
it that holds only one packet at a time, there is no device-mode periodic queue.

Figure 21–3 shows the host-mode FIFO address mapping.

Figure 21–3 FIFO Mapping (Host Mode)

Periodic
TxFIFO Control

(Optional)

MAC Pop

Any periodic
channel DFIFO

push access

Nonperiodic
TxFIFO Control

MAC Pop

Any nonperiodic
channel DFIFO

push access
from AHB

RxFIFO Control

MAC Push

Any channel
DFIFO pop access

from AHB

Debug DFIFO
write/read access

from AHB

Arbitration Single Data
FIFO SPRAM

A1 = 0
(Rx starting

fixed to 0)
address

Rx Packets

Periodic Tx Packets

Nonperiodic
Tx Packets

USBC_HPTXFSIZ[31:16]

USBC_HPTXFSIZ[15:0]

USBC_NPTXFSIZ[31:16]

USBC_NPTXFSIZ[15:0]

USBC_RXFSIZ[31:16]

from AHB
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 679

 USB Unit (USB): Architecture
Figure 21–4 shows the device-mode FIFO address mapping.

21.1.4 USB Protocol and Transaction Handling

The media-access controller (MAC) module handles USB transactions, and the host
or device protocols.

21.1.4.1 USB Transaction Handling

Host Mode

The MAC receives a token request to start a USB transaction. After receiving a token
request, the MAC builds and sends the requested token packet.

For OUT or SETUP transactions, the MAC reads data from the TxFIFO, builds and
sends a data packet, waits for a handshake packet (if any) from the device, then
updates the transaction status.

For an IN or PING transaction, the MAC waits for a data or handshake packet from
the device. If it receives a handshake packet, the MAC updates the status. If it
receives a data packet with the correct PID, the MAC writes the data into the
RxFIFO, checks the data’s integrity, sends a handshake packet, if required, to the
device, then updates the status.

Figure 21–4 FIFO Mapping (Device Mode)

Periodic 1
TxFIFO Control

(Optional)

MAC Pop

Periodic 1 IN
endpoint 1 DFIFO

push access
from AHB

Nonperiodic
TxFIFO Control

MAC Pop

Any nonperiodic
IN endpoint DFIFO

push access
from AHB

RxFIFO Control

MAC Push

Any out endpoint
DFIFO POP access

from AHB

Debug DFIFO
write/read access

from AHB

Arbitration Single Data
FIFO SPRAM

A1 = 0
(Rx starting

fixed to 0)
address

Rx Packets

Periodic 1 Tx Packets

Nonperiodic
Tx Packets

Periodic n
TxFIFO Control

(Optional)

MAC Pop

Periodic n IN
endpoint n DFIFO

push access
from AHB

Periodic n Tx Packets USBC_DPTXFSIZ_n[31:16]

USBC_DPTXFSIZ_n[15:0]

USBC_DPTXFSIZ_2[15:0]

USBC_DPTXFSIZ_1[31:16]

USBC_DPTXFSIZ_1[15:0]

USBC_NPTXFSIZ[31:16]

USBC_NPTXFSIZ[15:0]

USBC_RXFSIZ[31:16]
680 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Initialization
Device Mode

The MAC decodes and checks the integrity of token packets as it receives them from
the host. If the received token is a valid OUT or SETUP token, the MAC waits and
checks the PID of the following data packet, then writes the data to the RxFIFO if it
is available. After the packet is completed, the MAC checks the data integrity, sends
the appropriate handshake if required to the host, and writes the transaction status
to the receiving status queue.

If the OUT token is received and the RxFIFO is not available, the MAC sends the
host a NAK handshake. If the received token is a valid PING token, the MAC sends
the appropriate handshake, based on the FIFO status and CSR control information.

If an IN token is received and the data is available in the FIFO, the MAC reads the
data, builds the data packet and sends it, waits for a handshake packet, if any, from
the host, then updates the transaction status. If an IN token is received and the data
is not available in the FIFO, the MAC sends the host a NAK handshake.

21.1.4.2 Protocol Handling

In host mode, the MAC detects the device connect and disconnect, handles the USB
reset and speed enumeration process, initiates USB suspend and resume, detects
remote wakeup, generates SOF packets, and handles high-speed test modes.

In device mode, the MAC handles the USB reset sequence and speed enumeration
process to determine the USB operating speed. The MAC detects USB suspend and
resume signaling from the host, initiates remote wakeup, handles soft connect and
disconnect, decodes and tracks SOF packets, and handles high-speed test modes.

21.1.5 Endian Swapping

When data is moved from/to the USB from/to the CN50XX, it can be swapped
according to the application’s needs. Note that the data swapping mentioned here
does not affect read/write operations to the registers in the USB, but does affect
access to the memory of the USB.

For all cases, assume the internal byte order of data is: A-B-C-D-E-F-G-H, where A is
located at address 0 and H is located at address 7.

When in PASS_THRU MODE, the order of the data will not be modified
before sending/receiving to/from the USB.

When in 64b_BYTE_SWAP MODE, the order of the data is modified to: H-G-
F-E-D-C-B-A before sending/receiving to/from the USB.

21.2 Initialization

This section explains the initialization of the USB core after power-on. The
initialization is broken down into three steps: power-on-reset, core initialization, and
host initialization.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 681

 USB Unit (USB): Initialization
21.2.1 Power On Reset and PHY Initialization

This section describes the steps for USB power on reset and PHY initialization. Clock
and reset requirements are shown in Figure 21–5.

The following definitions are used in Figure 21–5:

● t_por: PHY power-on reset time

● t_phy_clk_start: PHY reset removal to clock start (typically in microseconds)

● t_rst: DWC_otg PHY clock domain reset and AHB HCLK domain reset over lap
time (a minimum of 12 cycles of the slowest clock is recommended.)

● t_prst_2_hreset: prst_n removal to hreset_n remove (a minimum of six cycles
of the slowest clock is recommended.)

● t_ahb: hreset_n removal to AHB access start (1 clock)

Overlap between PHY and AHB domain reset time (t_rst) is required so that
interface signals between the two domains are correctly reset.

Setting the t_prst_2_hreset delay or setting t_ahb to 6 clock cycles is recommended to
ensure that the PHY domain is ready immediately after reset.

The reset procedure is as follows:

1. Wait for DCOK to assert – all voltages have reached a stable state. There should
be no action required for this, as all voltages should be stable before software can
bring up the USB via the following steps.

2. Configure the reference clock, PHY, and HCLK:

a. Write USBN_CLK_CTL[POR] = 1 and
USBN_CLK_CTL[HRST,PRST,HCLK_RST] = 0

b. Select the USB reference clock/crystal parameters by writing appropriate
values to USBN_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]. Refer to Sec-
tions 21.7.4 and 21.7.5.

c. Select the HCLK via writing USBN_CLK_CTL[DIVIDE, DIVIDE2] and set-
ting
USBN_CLK_CTL[ENABLE] = 1.

d. Write USBN_CLK_CTL[HCLK_RST] = 1.

Figure 21–5 Clock and Reset Requirements

USBN_CLK_CTL[POR]

UTMI_CLK

HCLK

SW Access

USBN_CLK_CTL[PRST]

USBN_CLK_CTL[HRST]

t_por t_phy_clk_start t_rst t_prst_2_hreset t_ahb

AccessIdle
682 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Initialization
e. Wait 64 core-clock cycles for HCLK to stabilize.

3. Program the power-on reset field in the USBN clock-control register:
USBN_CLK_CTL[POR] = 0

4. Wait 1 ms for PHY clock to start.

5. Program the Reset input from automatic test equipment field in the USBP con-
trol and status register: USBN_USBP_CTL_STATUS[ATE_RESET] = 1

6. Wait 10 cycles.

7. Clear ATE_RESET field in the USBN clock-control register:
USBN_USBP_CTL_STATUS[ATE_RESET] = 0

8. Program the PHY reset field in the USBN clock-control register:
USBN_CLK_CTL[PRST] = 1

9. Program the USBP control and status register to select host or device mode.

USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for device

10. Wait 1 µs.

11. Program the hreset_n field in the USBN clock-control register:
USBN_CLK_CTL[HRST] = 1

12. Proceed to USB core initialization.

21.2.2 USB Core Initialization

Perform the following steps to initialize the USB core:

1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3,
USBC_GHWCFG4 to determine USB core configuration parameters.

2. Program the following fields in the global AHB configuration register
(USBC_GAHBCFG)

Slave mode, USBC_GAHBCFG[DMAEn]: 0 = slave mode

Burst length, USBC_GAHBCFG[HBSTLEN] = 0

Nonperiodic TxFIFO empty level, USBC_GAHBCFG[NPTXFEMPLVL]

Periodic TxFIFO empty level, USBC_GAHBCFG[PTXFEMPLVL]

Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1

3. Program the following fields in USBC_GUSBCFG register.

HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0

ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0

USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5

PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0

4. The software must unmask the following bits in the USBC_GINTMSK register.

OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1

Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1

5. The software can read the USBC_GINTSTS[CURMOD] bit to determine whether
the controller is operating in host or device mode. The software the follows
either the host-initialization or device-initialization sequence.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 683

 USB Unit (USB): Initialization
21.2.3 Host Initialization

Host initialization consists of:

● power-on-reset (see Section 21.2.1)
● USB core initialization (see Section 21.2.2)
● host port initialization (this section)
● host channel initialization (see Section 21.5.1).

To initialize the USB core as host, the application must perform the following steps.

1. Program the host-port interrupt-mask field to unmask,
USBC_GINTMSK[PRTINT] = 1

2. Program the USBC_HCFG register to select full-speed host or high-speed host.

3. Program the port power bit to drive VBUS on the USB,
USBC_HPRT[PRTPWR] = 1

4. Wait for the USBC_HPRT0[PRTCONNDET] interrupt, indicating that a device
is connect to the port.

5. Program the port reset bit to start the reset process.,
USBC_HPRT[PRTRST] = 1

6. Wait at least 10 ms for the reset process to complete.

7. Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0

8. Wait for the USBC_HPRT[PRTENCHNG] interrupt.

9. Read the port speed field to get the enumerated speed,
USBC_HPRT[PRTSPD].

10. Wait for an SOF transmission.

Read USBC_HFNUM while USBC_HFNUM[FRNUM] == 0x3FFF.

11. Program the host frame interval field, USBC_HFIR[FRINT]: 0x3750 for HS,
0x30000 for FS/LS.

12. Program the USBC_HFIR register with a value corresponding to the selected
PHY clock. At this point, the host is up and running and the port register will
begin to report device disconnects, etc. The port is active with SOFs occurring
down the enabled port.

13. Program the USBC_GRXFSIZ register to select the size of the receive FIFO.

14. Program the USBC_GNPTXFSIZ register to select the size and the start
address of the non- periodic transmit FIFO for nonperiodic transactions.

15. Program the USBC_HPTXFSIZ register to select the size and start address of
the periodic transmit FIFO for periodic transactions.

To communicate with devices, the system software must initialize and enable at least
one channel as described in Channel Initialization section (Section 21.5.1).
684 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Modes of Operation
21.2.4 Device Initialization

The application must perform the following steps to initialize the USB core as a
device on power-up. Device initialization consists of USB core initialization followed
by device endpoint initialization

1. Program the following fields in the USBC_DCFG register:

Device speed, USBC_DCFG[DEVSPD] = 0 (high speed)
Non-zero-length status OUT handshake, USBC_DCFG[NZSTSOUTHSHK] = 0
Periodic frame interval (if periodic endpoints are supported),
USBC_DCFG[PERFRINT] = 1

2. Program the USBC_GINTMSK register to unmask the following interrupts:

USB Reset, USBC_GINTMSK[USBRSTMSK] = 1
Enumeration done, USBC_GINTMSK[ENUMDONEMSK] = 1
SOF, USBC_GINTMSK[SOFMSK] = 1

3. Wait for the USBC_GINTSTS[USBRESET] interrupt, which indicates a reset
has been detected on the USB and lasts for about 10 ms. On receiving this
interrupt, the application must perform the steps listed in Section 21.6.1.1, “Ini-
tialization on USB Reset”.

4. Wait for the USBC_GINTSTS[ENUMERATIONDONE] interrupt, which indi-
cates the end of reset on the USB. On receiving this interrupt, the application
must read the USBC_DSTS register to determine the enumeration speed and
perform the steps listed in Section 21.6.1.2, “Initialization on Enumeration Com-
pletion”.

At this point, the device is ready to accept SOF packets and perform control transfers
on control endpoint 0.

21.3 Modes of Operation

The application operates the USB core in slave mode, where the application initiates
transfers for data fetch and store.

21.3.1 Slave Mode

In slave mode, the application can operate the USBC either in transaction-level
(packet-level) operation or in pipelined transaction-level operation.

21.3.1.1 Transaction-Level Operation

The application handles one data packet at a time per channel/endpoint in
transaction-level operations. Based on the handshake response received on the USB,
the application determines whether to retry the transaction or proceed with the next,
until the end of the transfer. The application is interrupted on completion of every
packet. The application performs transaction-level operations for a channel/endpoint
for a transmission (host mode: OUT/ device mode: IN) or reception (host mode: IN/
device mode: OUT) as shown in Figure 21–6.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 685

 USB Unit (USB): Modes of Operation
Host Mode

For an OUT transaction, the application enables the channel and writes the data
packet into the corresponding (periodic or nonperiodic) transmit FIFO. The USB core
automatically writes the channel number into the corresponding (periodic or
nonperiodic) request queue, along with the last Dword write of the packet.

For an IN transaction, the application enables the channel and the USB core
automatically writes the channel number into the corresponding request queue. The
application must wait for the packet-received interrupt, then empty the packet from
the receive FIFO.

Device Mode

For an IN transaction, the application enables the endpoint, writes the data packet
into the corresponding transmit FIFO, and waits for the packet completion interrupt
from the USB core.

For an OUT transaction, the application enables the endpoint, waits for the packet
received interrupt from the USB core, then empties the packet from the receive
FIFO.

The application has to finish writing one complete packet before switching to a
different channel/endpoint FIFO. Violating this rule will result in an error.

Figure 21–6 shows the transaction-level operations in slave mode.
686 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Modes of Operation

21.3.1.2 Pipelined Transaction-Level Operation

The application can pipeline more than one transaction (IN or OUT) with pipelined
transaction-level operations. In pipelined transaction-level operations, the
application can program the USB core to perform multiple transactions. The
advantage of this mode of operation compared to transaction-level operation is that
the application is not interrupted on a packet basis.

Host Mode

For an OUT transaction, the application sets up a transfer and enables the channel.
The application can write multiple packets back-to-back for the same channel into
the transmit FIFO, based on the space availability. It can also pipeline OUT
transactions for multiple channels by writing into the USBC_HCHARn register,
followed by a packet write to that channel. The USB core writes the channel number,
along with the last Dword write for the packet, into the request queue and schedules
transactions on the USB in the same order.

For an IN transaction, the application sets up a transfer and enables the channel,
and the USBC writes the channel number into the request queue. The application
can schedule IN transactions on multiple channels, provided space is available in the
request queue. The USB core initiates an IN token on the USB only when there is
enough space to receive at least of one maximum-packet-size packet of the channel in
the top of the request queue.

Figure 21–6 Transaction-Level Operations (Slave Mode)

Read packet from
the receive FIFO

RxFLvl or
Ch/EP interrupt?

Read Receive
Status Queue

Done

Start

Set up the
channel/endpoint

Yes

Yes

Yes

No

No

No

Transfer
complete?

Retry
required?

Receive Operation

Write 1 packet to
the transmit FIFO

Get
interrupt?

Get channel/endpoint
interrupt status

Retry
required?

Transfer
complete?

Done

Rewrite packet to
the transmit FIFO

Start

Set up the
channel/endpoint

Yes

Yes

Yes

No

No

No

Transmit Operation
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 687

 USB Unit (USB): Interrupt Handler
Device Mode

For an IN transaction, the application sets up a transfer and enables the endpoint.
The application can write multiple packets back-to-back for the same endpoint into
the transmit FIFO, based on available space. It can also pipeline IN transactions for
multiple channels by writing into the USBC_DIEPCTLn register followed by a
packet write to that endpoint. The USB core writes the endpoint number, along with
the last Dword write for the packet into the request queue. The USB core transmits
the data in the transmit FIFO when an IN token is received on the USB.

For an OUT transaction, the application sets up a transfer and enables the endpoint.
The USB core receives the OUT data into the receive FIFO, if it has available space.
As the packets are received into the FIFO, the application must empty data from it.

From this point on in this chapter, the terms pipelined-transaction mode and transfer
mode are used interchangeably.

21.3.2 Speed Mode

When the USB core is in host mode, all three speeds, high-speed (HS), full-speed (FS)
and low-speed (LS), are supported. When the USB core is in device mode, high-speed
(HS) and full-speed (FS) are supported. Low-speed (LS) is not supported in device
mode given that a high-speed capable device cannot support low-speed device
operation per the USB 2.0 specification.

Integrated 45Ω resistors set the HS input and output impedance: 1.5kΩ pull-up
resistor on a D+ line for FS operation in device mode, and 15kΩ pull-down resistors
on D+ and D- lines for HS/FS and LS operation in host mode. The USB core does not
integrate a 1.5kΩ pull-up resistor on a D- line in LS device mode operation since LS
device mode is not supported for a HS-capable device.

Once the enumerated speed is detected during host/device operation, the USB core
automatically enables or disables the 45Ω impedance for HS operation and 1.5kΩ
pull-up resistor on a D+ line for FS device operation, depending on the speed
condition and host/device operation. The 15kΩ pull-down resistors are controlled
through USBN_USBP_CTL_STATUS[DP_PULLD:DM_PULLD]. They are enabled
by default in host mode, and in device mode should be disabled through
USBN_USBP_CTL_STATUS[DP_PULLD:DM_PULLD].

21.4 Interrupt Handler
In order to initialize and process traffic from the USB interface, the USB-to-cnMIPS
interrupt must be enabled by programming the central interrupt unit interrupt-
enable register (CIU_INTn_EN0, where n = PPid × 2) as follows:

1. Program CIU_INTn_EN0[USB] = 1.

Once a cnMIPS core establishes that a USB interrupt has occurred, the interrupt
handler takes the following actions.

1. Read USBC_GINTSTS and USBC_GINTMSK to determine which interrupt
occurred.

2. If host port interrupt, read USBC_HPRT to further classify interrupt.
3. If host channel interrupt, read USBC_HAINT and USBC_HAINTMSK to fur-

ther classify interrupt.
4. Take appropriate interrupt action and clear interrupt by writing appropriate

interrupt status bit.
688 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Interrupt Handler
Figure 21–7 shows the USB interrupt handler.

Figure 21–7 USB Interrupt Handler

Read USBC_GOTGCTL
Generate OTG

OTG
interrupt?

otg_intr_handler

No

Host/

interrupt?
Device common

RTL

mode?
in Device

Read USBC_GINGSTS

Read

Generate

Read USBC_HAINT

channel-specific
software interrupt

Read

Generate IN-
endpoint-specific
software interrupt

Generate
device global

software interrupt

No

Generate
host global

software interrupt

Host

interrupt?
Port

Host

interrupt?
global

No

No

No
Clear interrupt

Yes

Yes

No

Read USBC_DAINT

No

IN

interrupt?
endpoint

Device

interrupt?
global

Yes

Yes

Yes

Yes

Yes

software interrupt

Wait for interrupt

Generate global
software interrupt

Clear interrupt

USBC_DOEPINTn.

Read

Generate OUT-
endpoint-specific
software interrupt

USBC_DOEPINTn.USBC_HCINTn.

Read

Generate
channel-specific
software interrupt

USBC_HCINTn.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 689

 USB Unit (USB): Host-Mode Programming Model
21.5 Host-Mode Programming Model

The following sections describe the steps required to program the USB unit in host
mode.

21.5.1 Channel Initialization

The application must initialize one or more channels before it can communicate with
connected devices. To initialize and enable a channel n, the application must perform
the following steps.

1. Program the USBC_GINTMSK register to unmask the following:

Channel interrupt field, [HCHINTMSK] = 1
Nonperiodic transmit FIFO empty field for OUT transactions (applicable for
slave mode that operates in pipelined transaction-level with the Packet
Count field programmed with more than one), [NPTXFEMPMSK].
Nonperiodic transmit FIFO half-empty field for OUT transactions (applicable
for slave mode that operates in pipelined transaction-level with the packet-
count field programmed with more than one), [NPTXFEMPMSK].
Receive FIFO non-empty mask field (if in slave mode), [RXFLVLMSK] = 1.

2. Program the USBC_HAINTMSK register to unmask the selected channels inter-
rupts.

Channel Interrupt Mask, [HAINTMSK] = (1<<n)

3. Program the USBC_HCINTMSKn register to unmask the transaction-related
interrupts of interest given in the host-channel interrupt register. Typical set of
interrupts of interest are as follows.

transfer-completed mask, [XFERCOMPLMSK] = 1
channel-halted mask, [CHHLTDMSK] = 1
AHB error mask, [AHBERRMSK] = 1
STALL response-received interrupt mask, [STALLMSK] = 1
NAK response-received interrupt mask, [NAKMSK] = 1
NYET response-received interrupt mask, [NYETMSK] = 1
transaction-error mask, [XACTERRMSK] = 1
babble-error mask, [BBLERRMSK] = 1
frame-overrun mask, [FRMOVRUNMSK] = 1
data-toggle-error mask, [DATATGLERRMSK] = 1

4. Program the selected channel’s USBC_HCTSIZn register with the total trans-
fer size (in bytes) and the expected number of packets, including short packets.
The application must program the PID field with the initial data PID (to be used
on the first OUT transaction or to be expected from the first IN transaction).

5. Program the selected channel’s USBC_HCSPLTn registers with the hub and
port addresses (split transactions only).

6. Program the USBC_HCCHARn register of the selected channel with the
device’s endpoint characteristics, such as type, speed, direction, etc. (The channel
can be enabled by setting the channel-enable bit to 1 only when the application is
ready to transmit or receive any packet).
690 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Host-Mode Programming Model
21.5.2 Halting a Channel

The application can disable any channel by setting USBC_HCCHARn[CHDIS,
CHENA] both to 1. This enables the USBC to flush the posted requests (if any) and
generates a channel-halted interrupt. The application must wait for the
USBC_HCINTn[CHHLTD] interrupt before reallocating the channel for other
transactions. The USBC does not interrupt the transaction that has been already
started on USB.

Before disabling a channel, the application must ensure that there is at least one free
space available in the nonperiodic request queue (when disabling a nonperiodic
channel) or the periodic request queue (when disabling a periodic channel). The
application can simply flush the posted requests when the request queue is full
(before disabling the channel), by setting USBC_HCCHARn[CHDIS] to 1, and
USBC_HCCHARn[CHENA] to 0.

The application is expected to disable a channel on any of the following conditions:

1. When a USBC_HCINTn[XFERCOMPL] interrupt is received during a nonperi-
odic IN transfer or high-bandwidth interrupt IN transfer.

2. When a USBC_HCINTn[STALL, XACTERR, BBLERR, OR DATATGLERR]
interrupt is received for an IN or OUT channel.

For high-bandwidth interrupt INs in slave mode, once the application has
received a [DATATGLERR] interrupt it must disable the channel and wait for a
channel-halted interrupt. The application must be able to receive other
interrupts (DATATGLERR, NAK, DATA, XACTERR, BABBLEERR) for the same
channel before receiving the halt.

3. When a disconnect-device interrupt (USBC_GINTSTS[DISCONNINT]) is
received. (The application is expected to disable all enabled channels).

4. When the application aborts a transfer before normal completion.

21.5.3 Ping Protocol

When the USBC operates in high speed, the application must initiate the ping
protocol when communicating with high-speed bulk or control (data and status stage)
OUT endpoints. The application must initiate the ping protocol when it receives a
NAK/NYET/XACTERR interrupt. When the USBC receives one of the above
responses, it does not continue any transaction for a specific endpoint, drops all
posted or fetched OUT requests (from the request queue), and flushes the
corresponding data (from the transmit FIFO).

The application can send a ping token either by setting USBC_HCTSIZn[DOPNG] to
1 before enabling the channel or by just writing the USBC_HCTSIZn register with
DoPng bit set if the channel is already enabled. This enables the DWC_otg host to
write a ping request entry to the request queue. The application must wait for the
response to the ping token (a NAK, ACK, or XACTERR interrupt) before continuing
the transaction or sending another ping token. The application can continue the data
transaction only after receiving an ACK from the OUT endpoint for the requested
ping. The channel-specific interrupt-service routine (ISR) for the ping protocol in
Slave mode is shown in Example 21–1.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 691

 USB Unit (USB): Host-Mode Programming Model
Example 21–1 ISR for Ping Protocol in Slave Mode

21.5.4 Sending a Zero-Length Packet

To send a zero-length data packet, the application must initialize an OUT channel as
follows.

1. Program USBC_HCTSIZn of the selected channel with a correct PID:
[XFERSIZE] = 0, and [PKTCNT] = 1.

2. Program USBC_HCCHARn[CHENA] = 1 and the device’s endpoint characteris-
tics, such as type, speed, and direction.

The application must treat a zero-length data packet as a separate transfer, and
cannot combine it with a non-zero-length transfer.

Unmask (ACK/NAK/XACTERR/CHHLTD/STALL)
if (ACK)
{
Reset Error Count
Re-initialize Channel (Do data transactions)
{
else if (NAK)
{
Reset Error Count
Send Ping
}
else if (STALL)
{
Disable Channel
}
else if (XACTERR)
{
Increment Error Count

if (Error_count < 3)
{
Send Ping
}
else
{
Disable Channel
}

}else if (CHHLTD)
{
De-allocate Channel
}

692 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Host-Mode Programming Model
21.5.5 Selecting the Queue Depth

Choose the periodic and nonperiodic request-queue depths carefully to match the
number of periodic/nonperiodic endpoints accessed.

● The nonperiodic request-queue depth affects the performance of nonperiodic
transfers. The deeper the queue (along with sufficient FIFO size), the more often
the USB core is able to pipeline nonperiodic transfers. If the queue size is small,
the USB core is able to put in new requests only when the queue space is freed
up.

● The periodic request-queue depth is critical to performing periodic transfers
as scheduled. Base the depth you select for the periodic queue on the number of
transfers scheduled in a microframe.

In slave mode, however, the application must also take into account the disable
entry that must be put into the queue.

If there are two non-high-bandwidth periodic endpoints, the periodic-request
queue depth must be at least four.

If at least one high-bandwidth endpoint is supported, the queue depth must
be eight.

If the periodic request-queue depth is smaller than the periodic transfers
scheduled in a microframe, a frame overrun condition results.

21.5.6 Handling Babble Conditions

The USBC handles two cases of babble: packet babble and port babble.

● Packet babble occurs if the device sends more data than the maximum packet
size for the channel.

● Port babble occurs if the USB core continues to receive data from the device at
EOF2 (the end of frame 2, which is very close to SOF).

When the USBC detects a packet babble, it stops writing data into the Rx buffer and
waits for the end of packet (EOP). When it detects an EOP, it flushes already-written
data in the Rx buffer and generates a Babble interrupt to the application.

When the USBC detects a port babble, it flushes the RxFIFO and disables the port.
The USB core then generates a port-disabled interrupt (USBC_GINTSTS[PrtInt],
USBC_HPRT[PrtEnChng]). On receiving this interrupt, the application must
determine that this is not due to an overcurrent condition (another cause of the port-
disabled interrupt) by checking USBC_HPRT[PrtOvrCurrAct], then perform a soft
reset. The USB core does not send any more tokens after it has detected a port babble
condition.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 693

 USB Unit (USB): Host-Mode Programming Model
21.5.7 Host Mode Slave Transactions

The application must initialize a channel as described in Section 21.5.1 before
communicating to the connected device. This section explains the sequence of
operation to be performed for different types of USB transactions.

Writing the Transmit FIFO in Slave Mode

Figure 21–8 shows the flow diagram for writing to the transmit FIFO in slave mode.
The USBC automatically writes an entry (OUT request) to the periodic/nonperiodic
request queue, along with the last Dword write of a packet. The application must
ensure that at least one free space is available in the periodic/nonperiodic request
queue before starting to write to the transmit FIFO. The application must always
write to the transmit FIFO in Dwords. If the packet size is non-Dword aligned, the
application must use padding. The USBC host determines the actual packet size
based on the programmed maximum packet size and transfer size.

Reading the Receive FIFO in Slave Mode

Figure 21–8 shows the flow diagram for reading the receive FIFO in slave mode. The
application must ignore all packet statuses other than IN data packet.

Figure 21–8 FIFO Task Flow Diagrams (Slave Mode)

Write 1 packet data
to transmit FIFO

Done

Start

No

No

Yes

Yes

Read USBC_GNPTXSTS/
USBC_HPTXFSIZ registers

for available FIFO and
queue spaces

More packets
to send?

Wait for
USBC_GAHBCFG

or
USBC_GAHBCFG

interrupt

1 MPS or

available?
LPS FIFO space

MPS = maximun packet size
LPS = last packet size

Read

Mask RxFLvl
interrupt

Start

No

No

Yes

BCnt > 0?

PktSts = 0x2?

Yes

RxFLvl interrupt?

Unmask RxFLvl
interrupt

Unmask RxFLvl
interrupt

Read the received
packet from the

No

Yes

receive FIFO

Transmit FIFO Write Task Receive FIFO Read Task

USBC_GRXSTSP

[NPTXFEMPLVL]

[PTXFEMPLVL]
694 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Host-Mode Programming Model
21.5.7.1 Host Bulk and Control OUT/SETUP in Slave Mode

The normal sequence of operations for a bulk or control OUT/SETUP transactions to
channel n are as follows:

1. Initialize and enable channel n as described in Section 21.5.1.

Host channel n transfer size register – USBC_HCTSIZn

[DOPNG] = 1 if USBC_HPRT[PRTSPD] = 0x0 (high speed)
[PID] = 0x0 (data0)
USBC_HCTSIZ0[PKTCNT] = (XFERSIZE + (MPS−1)) / MPS
[XFERSIZE] = total number of bytes to transfer

Host channel n characteristics register – USBC_HCCHARn

[DEVADDR]
[EPNUM]
[EPTYPE] = 0x2 (bulk)
[EPDIR] = 0 (out)
[MPS]
[CHENA] = 1

2. Write the first packet for channel n.

3. Along with the last Dword write, the USB core writes an entry to the nonperiodic
request queue.

4. As soon as the nonperiodic queue becomes non-empty, the USB core attempts to
send an OUT token in the current frame/microframe.

5. Wait for the PING protocol response (high-speed mode only), which should raise
an ACK, NACK, or NYET interrupt.

6. Continue writing packet data until the entire XFERSIZE has been written to
the nonperiodic FIFO.

7. The USB core generates the XFERCOMPL interrupt as soon as the last trans-
action is completed successfully.

8. In response to the XFERCOMPL interrupt, deallocate the channel for other
transfers.

Handling Non-ACK Responses

The channel-specific interrupt service routine for bulk and control OUT/SETUP
transactions in slave mode is shown in Example 21–2.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 695

 USB Unit (USB): Host-Mode Programming Model
Example 21–2 ISR for Bulk/Control Out/Setup Transactions in Slave Mode

21.5.7.2 Host Bulk and Control IN Transactions in Slave Mode

The normal sequence of operations for a bulk or control IN transactions to channel n
are as follows:

1. Initialize and enable channel n as described in Section 21.5.1.

Host channel n transfer size register – USBC_HCTSIZn

[DOPNG] = 0
[PID] = 0x1 (data1)
USBC_HCTSIZ0[PKTCNT] = (XFERSIZE + (MPS−1)) / MPS
[XFERSIZE] = total number of bytes to transfer

Unmask (NAK/XACTERR/NYET/STALL/XFERCOMPL)
if (XFERCOMPL)
{
Reset Error Count
Mask ACK
Deallocate Channel
}
else if (STALL)
{
Transfer Done = 1
Unmask CHHLTD
Disable Channel
}
else if (NAK or XACTERR or NYET)
{
Rewind Buffer Pointers
Unmask CHHLTD
Disable Channel

if (XACTERR)
{
Increment Error Count
Unmask ACK
}
else
{
Reset Error Count
}

}
else if (CHHLTD)
{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))
{
Deallocate Channel
}
else
{
Reinitialize Channel (Do ping protocol for HS)
}

}
else if (ACK)
{
Reset Error Count
Mask ACK
}

696 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Host-Mode Programming Model
2. Set USBC_HCCHARn[CHENA] to 1, to write an IN request to the nonperiodic
request queue.

Host channel n characteristics register – USBC_HCCHARn

[DEVADDR]
[EPNUM]
[EPTYPE]
[EPDIR] = 1 (in)
[MPS]
[CHENA] = 1

3. The USB core attempts to send an IN token.

4. The USB core generates an RXFLVL interrupt as soon as the received packet is
written to the receive FIFO. Each received packet generates an RXFLVL inter-
rupt.

5. In response to the RXFLVL interrupt, mask the RXFLVL interrupt and read
the received packet status to determine the number of bytes received, then read
the receive FIFO accordingly. Following this, unmask the RXFLVL interrupt.

 Set USBC_GINTMSK[RXFLVLMSK] = 0

If (USBC_GRXSTSPH[PKTSTS] = 0x2) &&
(USBC_GRXSTSPH[BCNT] ≠ 0x0)

for i=0; i<USBC_GRXSTSPH.BCnt; i+=4
Read USBC_NPTXDFIFO0, this is the IN packet data word i

 Set USBC_GINTMSK.RxFlvlMsk = 1

6. The USB core generates an additional RXFLVL interrupt for the transfer comple-
tion status entry in the receive FIFO.

7. The application must read and ignore the receive packet status if the receive
packet status is not an IN data packet (USBC_GRXSTSR[PKTSTS] ≠ 0x2).

8. The USB core generates the XFERCOMPL interrupt as soon as the receive
packet status is read.

9. In response to the XFERCOMPL interrupt, disable the channel (as explained in
Section 21.5.2) and stop writing the USBC_HCCHARn register for further
requests. The USB core writes a channel disable request to the nonperiodic
request queue as soon as USBC_HCCHARn is written.

Make sure there is space in the nonperiodic request queue by waiting until
USBC_GNPTXSTS[NPTXQSPCAVAIL] ≠ 0x0.

Halt the channel
– USBC_HCCHARn[CHENA] = 1

– USBC_HCCHARn[CHDIS] = 1

10. The USB core generates the RXFLVL interrupt as soon as the halt status is
written to the receive FIFO.

11. Read and ignore the receive packet status.

12. The USB core generates a CHHLTD interrupt as soon the halt status is popped
from the receive FIFO.

13. In response to the CHHLTD interrupt, deallocate the channel for other trans-
fers.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 697

 USB Unit (USB): Device Programming Model
Handling Non-ACK Responses

The channel-specific interrupt service routine for bulk and control IN transactions in
Slave mode is shown in Example 21–2.

Example 21–3 ISR for Bulk/Control IN Transactions in Slave Mode

21.6 Device Programming Model

21.6.1 Endpoint Initialization

21.6.1.1 Initialization on USB Reset

1. Set USBC_DOEPCTLn[SNAK] = 1 (for all OUT endpoints, n = 0-4).

2. Unmask the following interrupt bits:

USBC_DAINTMSK[INEPMSK] = 1 (control 0 IN endpoint)
USBC_DAINTMSK[OUTEPMSK] = 1 (control 0 OUT endpoint)
USBC_DOEPMSK[SETUPMSK] = 1
USBC_DOEPMSK[XFERCOMPLMSK] = 1
USBC_DIEPMSK[XFERCOMPLMSK] = 1
USBC_DIEPMSK[TIMEOUTMSK] = 1

3. To transmit or receive data, the device must initialize more registers as specified
in Section 21.6.1.7.

4. Set up the data FIFO RAM for each of the FIFOs:

Unmask (XACTERR/XFERCOMPL/BBLERR/STALL/DATATGLERR)
if (XFERCOMPL)
{
Reset Error Count
Unmask CHHLTD
Disable Channel
Reset Error Count
Mask ACK
}
else if (XACTERR or BBLERR or STALL)
{
Unmask CHHLTD
Disable Channel

if (XACTERR)
{Increment Error Count
Unmask ACK
}

}
else if (CHHLTD)
{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))
{
Deallocate Channel
}
else
{
Reinitialize Channel
}

}
else if (ACK)
{
Reset Error Count
Mask ACK
}
else if (DATATGLERR)
{
Reset Error Count
}

698 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Device Programming Model
Program USBC_GRXFSIZ to be able to receive control OUT data and SETUP
data. This must equal at least one maximum packet size of control endpoint 0
+ 2 Dwords (for the status of the control OUT data packet) + 10 Dwords (for
SETUP packets).

Program USBC_GNPTXFSIZ to be able to transmit control IN data. This
must equal at least one maximum packet size of control endpoint 0.

5. Program the following fields in the endpoint-specific registers for control OUT
endpoint 0 to receive a SETUP packet

USBC_DOEPTSIZ0[SUPCNT] = 0x3 (to receive up to three back-to-back
SETUP packets)
In DMA mode, USBC_DOEPDMA0 register with a memory address to store
any SETUP packets received

At this point, all initialization required to receive SETUP packets is done.

21.6.1.2 Initialization on Enumeration Completion

1. On receiving the enumeration-done interrupt
(USBC_GINTSTS[ENUMDONE] = 1), read USBC_DSTS to determine the enu-
meration speed.

2. Program USBC_DIEPCTL0[MPS] to set the maximum packet size. This step con-
figures control endpoint 0. The maximum packet size for a control endpoint
depends on the enumeration speed.

3. In DMA mode, set USBC_DOEPCTL0[EPENA] = 1 to enable control OUT end-
point 0, in order to receive a SETUP packet.

At this point, the device is ready to receive SOF packets and is configured to perform
control transfers on control endpoint 0.

21.6.1.3 Initialization on SetAddress Command

This section describes what the application must do when it receives a SetAddress
command in a SETUP packet.

1. Program USBC_DCFG with the device address received in the SetAddress com-
mand.

2. Program the USB core to send out a status IN packet.

21.6.1.4 Initialization on SetConfiguration/SetInterface Command

This section describes what the application must do when it receives a
SetConfiguration or SetInterface command in a SETUP packet.

1. When a SetConfiguration command is received, the application must program
the endpoint registers to configure them with the characteristics of the valid end-
points in the new configuration.

2. When a SetInterface command is received, the application must program the
endpoint registers of the endpoints affected by this command.

3. Some endpoints that were active in the prior configuration or alternate setting
may not be valid in the new configuration or alternate setting. These invalid end-
points must be deactivated.

4. For details on a particular endpoints activation or deactivation, see Sections
21.6.1.5 and 21.6.1.6.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 699

 USB Unit (USB): Device Programming Model
5. Unmask the interrupt for each active endpoint and mask the interrupts for all
inactive endpoints in USBC_DAINTMSK.

6. Set up the data FIFO RAM for each FIFO. See Section 21.7.1 for more detail.

7. After all required endpoints are configured, the application must program the
USB core to send a status IN packet.

At this point, the device core is configured to receive and transmit any type of data
packet.

21.6.1.5 Endpoint Activation

This section describes the steps required to activate a device endpoint or to configure
an existing device endpoint to a new type.

1. Program the characteristics of the required endpoint into the following fields of
USBC_DIEPCTLn (for IN or bidirectional endpoints) or
USBC_DOEPCTLn (for OUT or bidirectional endpoints).

Maximum packet size, [MPS]
USB active endpoint, [USBACTEP] = 1
Endpoint start data toggle, [.DPID] (for interrupt and bulk endpoints)
Endpoint type, [EPTYPE]
TxFIFO number, [TXFNUM] = 1

2. Once the endpoint is activated, the USB core starts decoding the tokens
addressed to that endpoint and sends out a valid handshake for each valid token
received for the endpoint.

21.6.1.6 Endpoint Deactivation

This section describes the steps required to deactivate an existing endpoint.

1. In the endpoint to be deactivated, clear USBC_DIEPCTLn[USBACTEP] = 0 (for
IN or bidirectional endpoints) or USBC_DOEPCTLn[USBACTEP] = 0 (for OUT
or bidirectional endpoints).

2. Once the endpoint is deactivated, the USB core ignores tokens addressed to
that endpoint, resulting in a timeout on the USB.

21.6.1.7 Device Slave Mode Initialization

The application must meet the following conditions to set up the device core to
handle traffic.

● USBC_GINTMSK[NPTXFEMPMSK], and
USBC_GINTMSK[RXFLVLMSK] must be unset.
700 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Miscellaneous Topics
21.7 Miscellaneous Topics

21.7.1 Data FIFO Allocation

The USBC has 1824, four-byte words (or 7296 bytes) that must be allocated among
different FIFOs before any transactions can start. The application must follow this
procedure every time it changes core FIFO RAM allocation.

The application must allocate storage per FIFO based on a number of system
parameters including PHY clock frequency, available bandwidth, and performance
required on the USB. Based on these criteria, the application must provide a table in
each mode (see Tables 21–1 and 21–2) with sizes for each FIFO.

21.7.1.1 Host Mode Allocation

The FIFO sizes in host mode are shown in Table 21–1.

Using the values in Table 21–1, the following registers must be programmed:

1. Receive FIFO size register (USBC_GRXFSIZ)
[RXFDEP] = rx_fifo_size

2. Nonperiodic transmit FIFO size register (USBC_GNPTXFSIZ)
[NPTXFDEP] = tx_fifo_size[0]
[NPTXFSTADDR] = rx_fifo_size

3. Host periodic transmit FIFO size register (USBC_HPTXFSIZ)
[PTXFSIZE] = tx_fifo_size[1]
[PTXFSTADDR] = USBC_GNPTXFSIZ[NPTXFSTADDR] + tx_fifo_size[0]

4. After RAM allocation, the transmit FIFOs/receive FIFO must be flushed for
proper FIFO function, using the USB core-reset register (USBC_GRSTCTL)
[TXFNUM] = 0x10
[TXFFLSH] = 1
[RXFFLSH] = 1

The application must wait until the [TXFFLSH] and [RXFFLSH] bits are cleared
before performing any operation on the USB core.

Table 21–1 Data FIFO Sizes in Host Mode

FIFO Name Data Size

Receive-data FIFO rx_fifo_size

Nonperiodic transmit FIFO tx_fifo_size[0]

Periodic transmit FIFO tx_fifo_size[1]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 701

 USB Unit (USB): Miscellaneous Topics
21.7.1.2 Device Mode Allocation

The FIFO sizes in device mode are shown in Table 21–2.

The following are considerations for allocating storage for some of the FIFOs in
device mode:

● Receive FIFO storage allocation:

storage for SETUP packets: (4 × n + 6) locations must be reserved in the
receive FIFO to receive up to n SETUP packets on control endpoints, where n
is the number of control endpoints the device controller supports. The
controller does not use these locations, which are reserved for SETUP
packets, to write any other data.

one location for global OUT NAK

Status information is written to the FIFO along with each received packet.
Therefore, a minimum space of [(Largest_Packet_Size / 4) + 1] must be
allotted to receive packets.

If a high-bandwidth endpoint is enabled, or multiple isochronous endpoints are
enabled, then at least two [(Largest_Packet_Size / 4) + 1] spaces must be allotted
to receive back-to-back packets. Typically, two [(Largest_Packet_Size / 4) + 1]
spaces are recommended so that when the previous packet is being transferred to
I/O bus, the USB can receive the subsequent packet. If I/O-bus latency is high,
you must allocate enough space to receive multiple packets. This is critical to
prevent dropping any isochronous packets.

Along with each endpoints last packet, transfer complete status information
is also pushed to the FIFO. Typically, one location for each OUT endpoint is
recommended.

● Transmit FIFO RAM allocation:

The size for the periodic-transmit FIFO must equal the maximum amount of
data that can be transmitted in a single microframe. The controller does not
use any data storage allocated over this requirement, and if data storage
allocated is less than this requirement, the controller may malfunction.

The minimum amount of storage required for the nonperiodic-transmit
FIFO is the largest maximum packet size among all supported nonperiodic IN
endpoints.

Table 21–2 Data FIFO Sizes in Device Mode

FIFO Name Data Size

Receive-data FIFO rx_fifo_size. This must include RAM for the following:
● SETUP packets
● OUT-endpoint control information
● data OUT packets

Nonperiodic transmit FIFO tx_fifo_size[0]

Periodic transmit FIFO1
Periodic transmit FIFO2
...
Periodic transmit FIFOi

tx_fifo_size[1]
tx_fifo_size[2]
...
tx_fifo_size[i]
702 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Miscellaneous Topics
More space allocated in the transmit-nonperiodic FIFO results in better
performance on the USB and can hide I/O-bus latencies. Typically, two
Largest_Packet_Size’s worth of space is recommended, so that when the
current packet is under transfer to the USB, the I/O bus can get the next
packet. If the I/O-bus latency is large, then you must allocate enough space to
buffer multiple packets.

It is assumed that i number of periodic FIFOs are implemented in device
mode (refer to Table 21–2).

With these considerations and the values in Table 21–2, the following registers must
be programmed:

1. Receive FIFO size register (USBC_GRXFSIZ)
[RXFDEP] = rx_fifo_size

2. Nonperiodic-transmit FIFO size register (USBC_GNPTXFSIZ)
[NPTXFDEP] = tx_fifo_size[0]
[NPTXFSTADDR] = rx_fifo_size

3. Device periodic-transmit FIFO 1 size register (USBC_DPTXFSIZ1)
[DPTXFSTADDR] = USBC_GNPTXFSIZ[NPTXFSTADDR] + tx_fifo_size[0]

4. Device periodic-transmit FIFO 2 size register (USBC_DPTXFSIZ2)
[DPTXFSTADDR] = USBC_DPTXFSIZ1[DPTXFSTADDR] + tx_fifo_size[1]

5. Device periodic-transmit FIFO n size register (USBC_DPTXFSIZn)
[DPTXFSTADDR] = USBC_DPTXFSIZn−1[DPTXFSTADDR] + tx_fifo_size[n−1]

6. After RAM allocation, the transmit FIFOs/receive FIFO must be flushed for
proper FIFO function, using the USB core-reset register (USBC_GRSTCTL)
[TXFNUM] = 0x10
[TXFFLSH] = 1
[RXFFLSH] = 1

The application must wait until the [TXFFLSH] and [RXFFLSH] bits are cleared
before performing any operation on the USB core.

21.7.1.3 FIFO Programming Recommendations

In the following sections, the minimum FIFO-depth allocations are specified,
followed by recommendations for minimum FIFO-depth allocations and optimum
FIFO-depth allocations.

Minimum FIFO-Depth Allocation (32-bit words)

The allocations specified in the section are the bare minimums needed to run the
USB core.

● RxFIFO in host mode:
When no high-bandwidth periodic channel is supported in host mode, the
minimum allocation is:
– (largest-USB-packet-used / 4) + 2

When a high-bandwidth channel is supported in host mode, the minimum
allocation is:
– 2 × ((largest-USB-packet-used / 4) + 1) + 1
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 703

 USB Unit (USB): Miscellaneous Topics
● RxFIFO in device mode:
When no high-bandwidth periodic endpoint and no more than one periodic
endpoint is to be supported in device mode, the minimum allocation is:
– (4 × number-of-control-endpoints + 6) + ((largest-USB-packet-used/4) + 1) + M

where:
M = (2 × number-of-OUT-endpoints) for transfer complete or
M = 1 for global NAK.

When a high-bandwidth endpoint, or more than one periodic endpoints are to
be supported in device mode, the minimum allocation is:
– (4 × number-of-control-endpoints + 6) + 2 × ((largest-USB-packet-used / 4)

 + 1) + M
where:
M = (2 × number-of-OUT-endpoints) for transfer complete or
M = 1 for global NAK.

● Nonperiodic TxFIFO:
The minimum allocation is:
– largest-nonperiodic-USB-packet-used / 4

● Periodic TxFIFO in host mode:
When support for only one non-high-bandwidth periodic endpoint is required,
or when there are high-bandwidth or multiple isochronous endpoints but no
nonisochronous transfers planned to run concurrent to the isochronous
transfers, the minimum allocation is:
– largest-periodic-USB-packet-used / 4

When support for a high-bandwidth endpoint or multiple periodic endpoints
is required and non-isochronous transfers are expected, the minimum
allocation is:
– 2 × largest-periodic-USB-packet-used / 4

● Periodic endpoint-specific TxFIFOs in device mode:
The minimum allocation is:
– (largest-periodic-USB-packet-used-for-an-endpoint / 4) ×

maximum-number-of-periodic-data-packets-per-microframe

Recommended Minimum FIFO-Depth Allocation (32-bit words)

The specified FIFO allocations guarantee that while a packet is being transferred on
the USB, the previous (next) packet is simultaneously transferred to the I/O bus.
This ensures that peak USB bandwidth is achieved and that back-to-back
isochronous packets can be received or sent.

● RxFIFO in host mode:
The recommended minimum allocation is:
– 2 × ((largest-USB-packet-used / 4) + 1) + 1

● RxFIFO in device mode:
The recommended minimum allocation is:
– (4 × number-of-control-endpoints + 6) + 2 × ((largest-USB-packet-used / 4)

+ 1) + (2 × number-of-OUT-endpoints) + 1

● Nonperiodic TxFIFO:
The recommended minimum allocation is:
– 2 × largest-nonperiodic-USB-packet-used / 4
704 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Miscellaneous Topics
● Periodic TxFIFO in host mode:
The recommended minimum allocation is:
– 2 × largest-periodic-USB-packet-used / 4

● Periodic endpoint-specific TxFIFO in device mode:
The recommended minimum allocation is:
– largest-periodic-USB-packet-used-for-an-endpoint / 4

If I/O bus latency is large (i.e. a received packet is not reliably transferred to the I/O
bus before the next packet is received from the USB), then allocating more FIFO to
the RxFIFO, nonperiodic TxFIFO, and host periodic TxFIFO is recommended. This is
critical for isochronous transfers.

Recommended Optimum FIFO-Depth Allocation (32-bit words)

For the following examples, X is an integer. If there is a fractional value, X is rounded
up to the next integer. X has the following value:

● RxFIFO in host mode:
The recommended allocation is:
– (X + 1) × (largest-USB-packet-used / 4) + 2

● RxFIFO in device mode:
The recommended allocation is:
– (4 × number-of-control-endpoints + 6) + (X + 1) × [(largest-USB-packet-used/4) +

1] + (2 × number-of-OUT-device-mode-endpoints + 1)

● Nonperiodic TxFIFO:
The recommended allocation is:
– (X + 1) × largest-nonperiodic-USB-packet-used / 4

● Periodic TxFIFO in host mode:
The recommended allocation is:
– (X + 1) × largest-periodic-USB-packet-used / 4

● Periodic endpoint-specific TxFIFO in device mode:
The recommended allocation is:
– (largest-periodic-USB-packet-used-for-an-endpoint / 4)

× maximum-number-of-periodic-data-packets-per-microframe

For example, it takes approximately 10 µs to transfer a 512-byte packet on the USB
(in high-speed mode). If the largest packet is 512 bytes, there are only one control
endpoint and two bulk OUT endpoints, and if the I/O-bus latency plus the time to
transfer 512 bytes on the I/O bus equals 20µs, then the following allocation is
recommended:

RxFIFO = (4 × 1 + 6) + ((20/10 + 1) × (512/4 + 1)) + (2 × 2 + 1) = 402 deep
Nonperiodic TxFIFO = 384 deep
Periodic TxFIFO (host mode) = 384 deep

Because there is a separate FIFO for each device-periodic endpoint, each has an
almost 1−microframe (125µs) latency to get the next packet. Hence, only one packet-
size worth of data may be allocated to them.

X = time to transfer largest packet on USB
I/O bus latency + time to transfer largest packet on I/O bus
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 705

 USB Unit (USB): Miscellaneous Topics
21.7.2 Dynamic FIFO Allocation

With dynamic FIFO allocation, the application can change the RAM allocation for
each FIFO during the operation of the USB core.

Host Mode

In host mode, before changing FIFO data RAM allocation, the application must
determine the following.

● All channels are disabled
● All FIFOs are empty

Once these conditions are met, the application can reallocate FIFO data RAM as
explained in Section 21.7.1.

After reallocating the FIFO data RAM, the application must flush all FIFOs in the
USB core using the USBC_GRSTCTL[TXFFLSH, RXFFLSH] fields. Flushing is
required to reset the pointers in the FIFOs for proper FIFO operation after
reallocation.

Device Mode

In device mode, before changing FIFO data RAM allocation, the application must
determine the following.

● All IN and OUT endpoints are disabled
● NAK mode is enabled in the USB core on all IN endpoints
● Global OUT NAK mode is enabled in the USB core
● All FIFOs are empty

Once these conditions are met, the application can reallocate FIFO data RAM as
explained in Section 21.7.1. When NAK mode is enabled in the USB core, the core
responds with a NAK handshake on all tokens received on the USB, except for
SETUP packets.

After the reallocating the FIFO data RAM, the application must flush all FIFOs in
the USB core using the USBC_GRSTCTL[TXFFLSH, RXFFLSH] fields. Flushing is
required to reset the pointers in the FIFOs for proper FIFO operation after
reallocation.

21.7.3 Power Saving Modes

In systems in which the USB is not present, software can clear
USBN_CLK_CTL[ENABLE] to 0 to prevent the USB clock from being generated,
providing some power-savings.

In systems in which USB is present, the USBC has no support for additional power
saving modes.
706 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): Miscellaneous Topics
21.7.4 Reference Clocks

The USB interface supports the following reference clock sources:

● Crystal connected to the xi and xo pins: The crystal must have a
fundamental frequency of 12 MHz, with a frequency tolerance of ±400 ppm, peak
jitter of ±100 ps, and an output differential voltage of no less than 500 mV with
respect to the xi signal. Peak jitter is the absolute jitter over an 18µs period.

● External clock connected to the xo pin: The signal must have a fundamental
frequency of 12/24/48 MHz, with a frequency tolerance of ±400 ppm, peak jitter of
±100 ps, duty cycle between 40/60 and 60/40 percent, and signal swing of 3.3V ±
7%. Peak jitter is the absolute jitter over an 18µs period. The xi pin should be tied
to ground.

The external clock is set through USBN_CLK_CTL[P_C_SEL, P_RTYPE,]. Refer to
Section 21.2.1.

21.7.5 Crystal Oscillators

Refer to Cavium Networks OCTEON Plus USB Crystal Selection Application Note
(CN5XXX_USB-AN-0.9) for the selection of a crystal oscillator.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 707

 USB Unit (USB): USB Registers
21.8 USB Registers

The USB controller supports two kinds of CSRs: registers that interface with the
USB core (USBN) in Table 21–3 and registers that control the USB core (USBC) in
Table 21–4.

21.8.1 USBN Registers

The USBN registers are shown in Table 21–3.

Table 21–3 USBN Registers

Register Address

CSR

Type1

1. RSL-type registers are accessed indirectly across the I/O Bus.

Detailed
Description

USBN_INT_SUM 0x0001180068000000 RSL See page 709
USBN_INT_ENB 0x0001180068000008 RSL See page 710
USBN_CLK_CTL 0x0001180068000010 RSL See page 712
USBN_USBP_CTL_STATUS 0x0001180068000018 RSL See page 713
USBN_BIST_STATUS 0x00011800680007F8 RSL See page 715
USBN_CTL_STATUS 0x00016F0000000800 RSL See page 715
USBN_DMA_TEST 0x00016F0000000808 RSL See page 716
USBN_DMA0_INB_CHN0

...

USBN_DMA0_INB_CHN7

0x00016F0000000818

...

0x00016F0000000850

RSL See page 716

USBN_DMA0_OUTB_CHN0

...

USBN_DMA0_OUTB_CHN7

0x00016F0000000858

...

0x00016F0000000890

RSL See page 716
708 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Interrupt Summary Register
USBN_INT_SUM

This register contains the interrupt summary bits of the USBN. See Table 21–3 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:38> — RAZ — — Reserved.
<37> ND4O_DPF R/W1C — 0 I/O bus DMA out data FIFO push full.
<36> ND4O_DPE R/W1C — 0 I/O bus DMA out data FIFO pop empty.
<35> ND4O_RPF R/W1C — 0 I/O bus DMA out request FIFO push full.
<34> ND4O_RPE R/W1C — 0 I/O bus DMA out request FIFO pop empty.
<33> LTL_F_PF R/W1C 0 0 L2C transfer-length FIFO push full.
<32> LTL_F_PE R/W1C 0 0 L2C transfer-length FIFO pop empty.
<31:26> — R/W1C — 0x0 Reserved.
<25> UOD_PF R/W1C — 0 UOD FIFO push full.
<24> UOD_PE R/W1C — 0 UOD FIFO pop empty.
<23> RQ_Q3_E R/W1C 0 0 Request Queue 3 FIFO pushed when full.
<22> RQ_Q3_F R/W1C 0 0 Request Queue 3 FIFO pushed when full.
<21> RQ_Q2_E R/W1C 0 0 Request Queue 2 FIFO pushed when full.
<20> RQ_Q2_F R/W1C 0 0 Request Queue 2 FIFO pushed when full.
<19> RG_FI_F R/W1C 0 0 Register request FIFO pushed when full.
<18> RG_FI_E R/W1C 0 0 Register request FIFO pushed when full.
<17> LT_FI_F R/W1C 0 0 L2C request FIFO pushed when full.
<16> LT_FI_E R/W1C 0 0 L2C request FIFO pushed when full.
<15> L2C_A_F R/W1C — 0 L2C credit count added when full.
<14> L2C_S_E R/W1C — 0 L2C credit count subtracted when empty.
<13> DCRED_F R/W1C 0 0 Data credit FIFO pushed when full.
<12> DCRED_E R/W1C 0 0 Data credit FIFO pushed when full.
<11> LT_PU_F R/W1C 0 0 L2C transaction FIFO pushed when full.
<10> LT_PO_E R/W1C 0 0 L2C transaction FIFO popped when full.
<9> NT_PU_F R/W1C 0 0 NPI transaction FIFO pushed when full.
<8> NT_PO_E R/W1C 0 0 NPI transaction FIFO popped when full.
<7> PT_PU_F R/W1C 0 0 Core transaction FIFO pushed when full.
<6> PT_PO_E R/W1C 0 0 Core transaction FIFO popped when full.
<5> LR_PU_F R/W1C 0 0 L2C request FIFO pushed when full.
<4> LR_PO_E R/W1C 0 0 L2C request FIFO popped when empty.
<3> NR_PU_F R/W1C 0 0 NPI request FIFO pushed when full.
<2> NR_PO_E R/W1C 0 0 NPI request FIFO popped when empty.
<1> PR_PU_F R/W1C 0 0 Core request FIFO pushed when full.
<0> PR_PO_E R/W1C 0 0 Core request FIFO popped when empty.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 709

 USB Unit (USB): USB Registers
Interrupt Enable Register
USBN_INT_ENB

This register contains the interrupt summary bits of the USBN. See Table 21–3 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:38> — RAZ — — Reserved.
<37> ND4O_DPF R/W 0 0 When set to 1 and bit <37> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<36> ND4O_DPE R/W 0 0 When set to 1 and bit <36> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<35> ND4O_RPF R/W 0 0 When set to 1 and bit <35> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<34> ND4O_RPE R/W 0 0 When set to 1 and bit <34> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<33> LTL_F_PF R/W 0 0 When set to 1 and bit <33> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<32> LTL_F_PE R/W 0 0 When set to 1 and bit <32> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<31:26> — R/W 0x0 0x0 Reserved.
<25> UOD_PF R/W 0 0 When set to 1 and bit <25> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<24> UOD_PE R/W 0 0 When set to 1 and bit <24> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<23> RQ_Q3_E R/W 0 0 When set to 1 and bit <23> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<22> RQ_Q3_F R/W 0 0 When set to 1 and bit <22> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<21> RQ_Q2_E R/W 0 0 When set to 1 and bit <21> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<20> RQ_Q2_F R/W 0 0 When set to 1 and bit <20> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<19> RG_FI_F R/W 0 0 When set to 1 and bit <19> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<18> RG_FI_E R/W 0 0 When set to 1 and bit <18> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<17> LT_FI_F R/W 0 0 When set to 1 and bit <17> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<16> LT_FI_E R/W 0 0 When set to 1 and bit <16> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<15> L2C_A_F R/W 0 0 When set to 1 and bit <15> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<14> L2C_S_E R/W 0 0 When set to 1 and bit <14> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<13> DCRED_F R/W 0 0 When set to 1 and bit <13> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<12> DCRED_E R/W 0 0 When set to 1 and bit <12> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<11> LT_PU_F R/W 0 0 When set to 1 and bit <11> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<10> LT_PO_E R/W 0 0 When set to 1 and bit <10> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
<9> NT_PU_F R/W 0 0 When set to 1 and bit <9> of USBN_INT_SUM is asserted, the USBN

asserts an interrupt.
710 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
<8> NT_PO_E R/W 0 0 When set to 1 and bit <8> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<7> PT_PU_F R/W 0 0 When set to 1 and bit <7> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<6> PT_PO_E R/W 0 0 When set to 1 and bit <6> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<5> LR_PU_F R/W 0 0 When set to 1 and bit <5> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<4> LR_PO_E R/W 0 0 When set to 1 and bit <4> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<3> NR_PU_F R/W 0 0 When set to 1 and bit <3> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<2> NR_PO_E R/W 0 0 When set to 1 and bit <2> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<1> PR_PU_F R/W 0 0 When set to 1 and bit <1> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

<0> PR_PO_E R/W 0 0 When set to 1 and bit <0> of USBN_INT_SUM is asserted, the USBN
asserts an interrupt.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 711

 USB Unit (USB): USB Registers
Clock-Control Register
USBN_CLK_CTL

This register controls the frequency of the HCLK and the HRESET and PHY_RST
signals. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:20> — RAZ — — Reserved.
<19:18> DIVIDE2 R/W 0x0 0x1 The HCLK used by the USB subsystem is derived from the ECLK (core

clock). Also see [DIVIDE]. DIVIDE2<1> must currently be zero because
it is not implemented, so the maximum ratio of ECLK/HCLK is
currently 16. The actual divide number for HCLK is:
(DIVIDE2 + 1) × (DIVIDE + 1).

<17> HCLK_RST R/W 1 1 HCLK reset. Active low. When set to 0, DIVIDE (used to generate the
HCLK in the USB subsystem) is held in reset. This bit must be set to 0
before changing the value of DIVIDE. The reset to the DIVIDE is also
asserted when core reset is asserted.

<16> — RAZ — — Reserved.
<15:14> P_RTYPE R/W 0x0 0x0 PHY reference-clock type.

00 = uses 12MHz crystal as clock source at USB_XO and USB_XI.
01 = reserved.
10 = uses 12/24/48MHz 2.5V board clock source at USB_XO.

USB_XI should be tied to GND.
11 = reserved.

<13> P_COM_ON R/W 1 1 Force USB-PHY XO bias, bandgap, and PLL to remain on in suspend
mode.

0 = USB-PHY XO bias, bandgap, and PLL remain powered on
during suspend.

1 = USB-PHY XO bias, bandgap, and PLL are powered down during
suspend.

This value must be set while POR is active.
<12:11> P_C_SEL R/W 0x2 0x0 PHY clock speed select. Selects the reference clock/crystal frequency.

00 = 12 MHz, 01 = 24 MHz, 10 = 48 MHz, 11 = Reserved
This value must be set while POR is active.
NOTE: If a crystal is used as a reference clock, this field must be set to

12 MHz. Values 01 and 10 are reserved when a crystal is used.
<10> CDIV_BYP R/W 0 0 Used to enable the bypass input to the USB_CLK_DIV.
<9:8> SD_MODE R/W 0x0 0x0 Scaledown mode for the USBC. Controls timing events in the USBC. For

normal operation, this field must be 0x0.
<7> S_BIST R/W 0 1 Starts BIST on the HCLK memories, during the 0-to-1 transition.
<6> POR R/W 1 0 Power on reset for the PHY. Resets all the PHY’s registers and state

machines.
<5> ENABLE R/W 1 1 HCLK enable. When set to 1, allows the generation of the HCLK. When

cleared to 0, the HCLK is not generated. See [DIVIDE] of this register.
<4> PRST R/W 0 1 PHY_CLK reset. This is the value for PHY_RST_N. When this field is '0'

the logic associated with the PHY_CLK functionality in the USB
subsystem is held in reset. This should not be set to 1 until the time it
takes for six clock cycles (HCLK or PHY_CLK, whichever is slower) has
passed.

Under normal operation, once this bit is set to 1, it should not be set to 0.
<3> HRST R/W 0 1 HCLK reset. This is the value for HRESET_N. When this field is 0, the

logic associated with the HCLK functionality in the USB subsystem is
held in reset. This should not be set to 1 until 12 ms after PHY_CLK is
stable.

Under normal operation, once this bit is set to 1, it should not be set to 0.
712 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
USBP Control and Status Register
USBN_USBP_CTL_STATUS

This register contains general control and status information for the USBN block.
See Table 21–3 for the address.

<2:0> DIVIDE R/W 0x4 0x0 The frequency of HCLK used by the USB subsystem is the ECLK (core
clock) frequency divided by the value of (DIVIDE2 + 1) × (DIVIDE + 1).
Also see the DIVIDE2 field of this register. The HCLK frequency should
be less than 125 Mhz. After writing a value to this field, the software
should read the field for the value written. The [ENABLE] field of this
register should not be set until after this field is set and then read.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63> TXRISETUNE R/W 0 0 HS transmitter rise/fall time adjustment.
<62:59> TXVREFTUNE R/W 0x7 0x7 HS DC voltage level adjustment.
<58:55> TXFSLSTUNE R/W 0x3 0x3 FS/LS source impedance adjustment.
<54:53> TXHSXVTUNE R/W 0x0 0x0 Transmitter high-speed crossover adjustment.
<52:50> SQRXTUNE R/W 0x3 0x3 Squelch threshold adjustment.
<49:47> COMPDISTUNE R/W 0x2 0x2 Disconnect threshold adjustment.
<46:44> OTGTUNE R/W 0x2 0x2 VBUS valid threshold adjustment.
<43> OTGDISABLE R/W 1 1 OTG block disable.
<42> PORTRESET R/W 0 0 Per-port reset.
<41> DRVVBUS R/W 0 0 Drive VBUS.
<40> LSBIST R/W 0 0 Low-speed BIST enable.
<39> FSBIST R/W 0 0 Full-speed BIST enable.
<38> HSBIST R/W 0 0 High-speed BIST enable.
<37> BIST_DONE RO 0 0 PHY BIST done. Asserted at the end of the PHY BIST

sequence.
<36> BIST_ERR RO 0 0 PHY BIST error. Indicates an internal error was detected

during the BIST sequence.
<35:32> TDATA_OUT RO — — PHY test data out. Presents either internally generated

signals or test register contents, based upon the value of
TDATA_SEL.

<31> — R/W 0 0 Spare bit.
<30> TXPREEMPHASISTUNE R/W 0 0 HS transmitter pre-emphasis enable.
<29> DMA_BMODE R/W 0 0 DMA byte-count mode. When set to 1, the L2C DMA

address is updated with byte counts between packets.
When set to 0, the L2C DMA address is incremented to the
next 4-byte aligned address after adding byte count.

<28> USBC_END R/W 0 0 Big-endian input to the USB core. This should be set to 0
for operation.

<27> USBP_BIST R/W 1 1 This is cleared 0 to run BIST on the USBP.
<26> TCLK R/W 0 0 PHY test clock, used to load TDATA_IN to the USBP.
<25> DP_PULLD R/W 1 1 DP_PULLDOWN input to the USB-PHY. This signal

enables the pull-down resistance on the D+ line.
1 = pull-down resistance is connected to D+.
0 = pull-down resistance is not connected to D+.

When an A/B device is acting as a host (downstream-
facing port), DP_PULLDOWN and DM_PULLDOWN are
enabled. This must not toggle during normal operation.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 713

 USB Unit (USB): USB Registers
<24> DM_PULLD R/W 1 1 DM_PULLDOWN input to the USB-PHY. This signal
enables the pull-down resistance on the D− line.

1 = pull-down resistance is connected to D−.
0 = pull-down resistance is not connected to D−.

When an A/B device is acting as a host (downstream-
facing port), DP_PULLDOWN and DM_PULLDOWN are
enabled. This must not toggle during normal operation.

<23> HST_MODE R/W 0 0 Host mode: 0 = USB is acting as HOST, 1 = USB is acting
as device.

This field needs to be set while the USB is in reset.
<22:19> — R/W 0x0 0x0 Spares bits.
<18> TX_BS_ENH R/W 0 0 Transmit-bit stuffing on [15:8]. When set, enables bit

stuffing on data[15:8] when bit-stuffing is enabled.
<17> TX_BS_EN R/W 0 0 Transmit-bit stuffing on [7:0]. When set, enables bit

stuffing on data[7:0] when bit-stuffing is enabled.
<16> LOOP_ENB R/W 0 0 Loopback enable.

1 = During data transmission, the receive is enabled.
0 = During data transmission, the receive is disabled.

Must be 0 for normal operation.
<15> VTEST_ENB R/W 0 0 Analog test-pin enable.

1 = The PHY’s ANALOG_TEST pin is enabled for the
input and output of applicable analog test signals.

0 = The ANALOG_TEST pin is disabled.
<14> BIST_ENB R/W 0 0 BIST enable.
<13> TDATA_SEL R/W 0 0 Test data out select.

1 = TDATA_OUT[3:0] are output.
0 = internally generated signals are output.

<12:9> TADDR_IN R/W 0x0 0x0 Mode address for test interface. Specifies the register
address for writing to or reading from the PHY test
interface register.

<8:1> TDATA_IN R/W 0x0 0x0 Internal testing register input data and select. This is a
test bus. Data is present on [3:0], and its corresponding
select (enable) is present on bits [7:4].

<0> ATE_RESET R/W 0 0 Reset input from automatic-test equipment. This is a test
signal. When the USB core is powered up (not in suspend
mode), an automatic tester can use this to disable
PHY_CLOCK and FREE_CLK, then re-enable them with
an aligned phase.

1 = PHY_CLK and FREE_CLK outputs are disabled.
0 = PHY_CLK and FREE_CLK outputs are available

within a specific period after the deassertion.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
714 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
BIST Status Register
USBN_BIST_STATUS

This register contains status information about the USB built-in selftests. See Table
21–3 for the address.

Control and Status Register
USBN_CTL_STATUS

This register contains general control and status information for the USBN block.
See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:7> — RAZ — — Reserved.
<6> U2NC_BIS RO 0 0 BIST status U2N CTL FIFO Memory.
<5> U2NF_BIS RO 0 0 BIST status U2N FIFO Memory.
<4> E2HC_BIS RO 0 0 BIST status E2H CTL FIFO Memory.
<3> N2UF_BIS RO 0 0 BIST status N2U FIFO Memory.
<2> USBC_BIS RO 0 0 BIST status USBC FIFO memory.
<1> NIF_BIS RO 0 0 BIST status for inbound memory.
<0> NOF_BIS RO 0 0 BIST status for outbound memory.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:6> — RAZ — — Reserved.
<5> DMA_0PAG R/W 0 0 DMA zero page. When set to 1, sets the DMA engine sets the zero-page

bit in the L2C store operation to the IOB.
<4> DMA_STT R/W 0 0 DMA STT mode. When set to 1, sets the DMA engine to use STT

operations.
<3> DMA_TEST R/W 0 0 DMA test mode. When set to 1, sets the DMA engine into test mode. For

normal operation, this bit should be 0.
<2> INV_A2 R/W 0 0 Address bit<2> invert. When set to 1, causes the address bit <2> driven

on the AHB for USB-core FIFO access to be inverted. Also data written
to and read from the AHB has its byte order swapped. If the original
order was A-B-C-D the new byte order is D-C-B-A.

<1:0> L2C_EMOD R/W 0x1 0x1 Endian format for data from/to the L2C.

IN: A-B-C-D-E-F-G-H
OUT0: A-B-C-D-E-F-G-H
OUT1: H-G-F-E-D-C-B-A
OUT2: D-C-B-A-H-G-F-E
OUT3: E-F-G-H-A-B-C-D
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 715

 USB Unit (USB): USB Registers
DMA Test Register
USBN_DMA_TEST

This register allows the external DMA engine (to the USB core) to make transfers to/
from the L2C/USB FIFOs. See Table 21–3 for the address.

Inbound DMA Registers
USBN_DMA0_INB_CHN(0..7)

These registers contains the starting address to use when the USB writes to L2C via
channel n. Writing these registers sets the base address. See Table 21–3 for the
address.

Outbound DMA Registers
USBN_DMA0_OUTB_CHN(0..7)

These registers contains the starting address to use when the USB reads from L2C
via channel n. Writing these registers sets the base address. See Table 21–3 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:40> — RAZ — — Reserved.
<39> DONE R/W1C 0 0 This field sets to 1 when a DMA operation completes.
<38> REQ R/W1C 0 0 DMA request. Writing a 1 to this register causes a DMA request as

specified in the other fields of this register to take place. This field
always reads as 0.

<37:20> F_ADDR R/W 0x0 0x0 FIFO address. Indicates the address in the data FIFO to read from.
<19:9> COUNT R/W 0x0 0x0 DMA request count.
<8:4> CHANNEL R/W 0x0 0x0 DMA channel endpoint.
<3:0> BURST R/W 0 0 DMA burst size.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ — — Reserved.
<35:0> ADDR R/W 0x0 — Base address for DMA writes to L2C.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<63:36> — RAZ — — Reserved.
<35:0> ADDR R/W 0x0 — Base address for DMA reads from L2C.
716 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
21.8.2 USBC Registers

The USBC registers are 32-bit NCB registers and should be accessed with 32-bit core
load/store operations. The USBC register addresses (both little-endian and big-
endian) are shown in Table 21–4.

Table 21–4 USBC Registers

Register
Address (NCB,
Little-Endian)

Address (NCB,
Big-Endian)

CSR
Type1

Detailed
Description

USBC_GOTGCTL 0x00016F0010000000 0x00016F0010000004 NCB See page 719
USBC_GOTGINT 0x00016F0010000004 0x00016F0010000000 NCB See page 720
USBC_GAHBCFG 0x00016F0010000008 0x00016F001000000C NCB See page 721
USBC_GUSBCFG 0x00016F001000000C 0x00016F0010000008 NCB See page 722
USBC_GRSTCTL 0x00016F0010000010 0x00016F0010000014 NCB See page 724
USBC_GINTSTS 0x00016F0010000014 0x00016F0010000010 NCB See page 726
USBC_GINTMSK 0x00016F0010000018 0x00016F001000001C NCB See page 729
USBC_GRXSTSRH 0x00016F001000001C 0x00016F0010000018 NCB See page 730
USBC_GRXSTSPH 0x00016F0010000020 0x00016F0010000024 NCB See page 730
USBC_GRXFSIZ 0x00016F0010000024 0x00016F0010000020 NCB See page 732
USBC_GNPTXFSIZ 0x00016F0010000028 0x00016F001000002C NCB See page 733
USBC_GNPTXSTS 0x00016F001000002C 0x00016F0010000028 NCB See page 733
USBC_GSNPSID 0x00016F0010000040 0x00016F0010000044 NCB See page 734
USBC_GHWCFG1
USBC_GHWCFG2
USBC_GHWCFG3
USBC_GHWCFG4

0x00016F0010000044
0x00016F0010000048
0x00016F001000004C
0x00016F0010000050

0x00016F0010000040
0x00016F001000004C
0x00016F0010000048
0x00016F0010000054

NCB See page 734

USBC_HPTXFSIZ 0x00016F0010000100 0x00016F0010000104 NCB See page 737
USBC_DPTXFSIZ1
USBC_DPTXFSIZ2
USBC_DPTXFSIZ3
USBC_DPTXFSIZ4

0x00016F0010000104
0x00016F0010000108
0x00016F001000010C
0x00016F0010000110

0x00016F0010000100
0x00016F001000010C
0x00016F0010000108
0x00016F0010000114

NCB See page 737

USBC_HCFG 0x00016F0010000400 0x00016F0010000404 NCB See page 737
USBC_HFIR 0x00016F0010000404 0x00016F0010000400 NCB See page 738
USBC0_HFNUM 0x00016F0010000408 0x00016F001000040C NCB See page 739
USBC_HPTXSTS 0x00016F0010000410 0x00016F0010000414 NCB See page 739
USBC_HAINT 0x00016F0010000414 0x00016F0010000410 NCB See page 740
USBC_HAINTMSK 0x00016F0010000418 0x00016F001000041C NCB See page 740
USBC_HPRT 0x00016F0010000440 0x00016F0010000444 NCB See page 741
USBC_HCCHAR0
USBC_HCCHAR1
...

USBC_HCCHAR6
USBC_HCCHAR7

0x00016F0010000500
0x00016F0010000520
...

0x00016F00100005C0
0x00016F00100005E0

0x00016F0010000504
0x00016F0010000524
...

0x00016F00100005C4
0x00016F00100005E4

NCB See page 743

USBC_HCSPLT0
USBC_HCSPLT1
...

USBC_HCSPLT6
USBC_HCSPLT7

0x00016F0010000504
0x00016F0010000524
...

0x00016F00100005C4
0x00016F00100005E4

0x00016F0010000500
0x00016F0010000520
...

0x00016F00100005C0
0x00016F00100005E0

NCB See page 744

USBC_HCINT0
USBC_HCINT1
...

USBC_HCINT06
USBC_HCINT7

0x00016F0010000508
0x00016F0010000528
...

0x00016F00100005C8
0x00016F00100005E8

0x00016F001000050C
0x00016F001000052C
...

0x00016F00100005CC
0x00016F00100005EC

NCB See page 744
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 717

 USB Unit (USB): USB Registers
USBC_HCINTMSK0
USBC_HCINTMSK1
...

USBC_HCINTMSK6
USBC_HCINTMSK7

0x00016F001000050C
0x00016F001000052C
...

0x00016F00100005CC
0x00016F00100005EC

0x00016F0010000508
0x00016F0010000528
...

0x00016F00100005C8
0x00016F00100005E8

NCB See page 745

USBC_HCTSIZ0
USBC_HCTSIZ1
...

USBC_HCTSIZ06
USBC_HCTSIZ7

0x00016F0010000510
0x00016F0010000530
...

0x00016F00100005D0
0x00016F00100005F0

0x00016F0010000514
0x00016F0010000534
...

0x00016F00100005D4
0x00016F00100005F4

NCB See page 745

USBC_DCFG 0x00016F0010000800 0x00016F0010000804 NCB See page 746
USBC_DCTL 0x00016F0010000804 0x00016F0010000800 NCB See page 747
USBC_DSTS 0x00016F0010000808 0x00016F001000080C NCB See page 748
USBC_DIEPMSK 0x00016F0010000810 0x00016F0010000814 NCB See page 749
USBC_DOEPMSK 0x00016F0010000814 0x00016F0010000810 NCB See page 749
USBC_DAINT 0x00016F0010000818 0x00016F001000081C NCB See page 750
USBC_DAINTMSK 0x00016F001000081C 0x00016F0010000818 NCB See page 750
USBC_DTKNQR1
USBC_DTKNQR2
USBC_DTKNQR3
USBC_DTKNQR4

0x00016F0010000820
0x00016F0010000824
0x00016F0010000830
0x00016F0010000834

0x00016F0010000824
0x00016F0010000820
0x00016F0010000834
0x00016F0010000830

NCB See page 750

USBC_DIEPCTL0
USBC_DIEPCTL1
USBC_DIEPCTL2
USBC_DIEPCTL3
USBC_DIEPCTL4

0x00016F0010000900
0x00016F0010000920
0x00016F0010000940
0x00016F0010000960
0x00016F0010000980

0x00016F0010000904
0x00016F0010000924
0x00016F0010000944
0x00016F0010000964
0x00016F0010000984

NCB See page 751

USBC_DIEPINT0
USBC_DIEPINT1
USBC_DIEPINT2
USBC_DIEPINT3
USBC_DIEPINT4

0x00016F0010000908
0x00016F0010000928
0x00016F0010000948
0x00016F0010000968
0x00016F0010000988

0x00016F001000090C
0x00016F001000092C
0x00016F001000094C
0x00016F001000096C
0x00016F001000098C

NCB See page 754

USBC_DIEPTSIZ0
USBC_DIEPTSIZ1
USBC_DIEPTSIZ2
USBC_DIEPTSIZ3
USBC_DIEPTSIZ4

0x00016F0010000910
0x00016F0010000930
0x00016F0010000950
0x00016F0010000970
0x00016F0010000990

0x00016F0010000914
0x00016F0010000934
0x00016F0010000954
0x00016F0010000974
0x00016F0010000994

NCB See page 755

USBC_DOEPCTL0
USBC_DOEPCTL1
USBC_DOEPCTL2
USBC_DOEPCTL3
USBC_DOEPCTL4

0x00016F0010000B00
0x00016F0010000B20
0x00016F0010000B40
0x00016F0010000B60
0x00016F0010000B80

0x00016F0010000B04
0x00016F0010000B24
0x00016F0010000B44
0x00016F0010000B64
0x00016F0010000B84

NCB See page 756

USBC_DOEPINT0
USBC_DOEPINT1
USBC_DOEPINT2
USBC_DOEPINT3
USBC_DOEPINT4

0x00016F0010000B08
0x00016F0010000B28
0x00016F0010000B48
0x00016F0010000B68
0x00016F0010000B88

0x00016F0010000B0C
0x00016F0010000B2C
0x00016F0010000B4C
0x00016F0010000B6C
0x00016F0010000B8C

NCB See page 759

USBC_DOEPTSIZ0
USBC_DOEPTSIZ1
USBC_DOEPTSIZ2
USBC_DOEPTSIZ3
USBC_DOEPTSIZ4

0x00016F0010000B10
0x00016F0010000B30
0x00016F0010000B50
0x00016F0010000B70
0x00016F0010000B90

0x00016F0010000B14
0x00016F0010000B34
0x00016F0010000B54
0x00016F0010000B74
0x00016F0010000B94

NCB See page 759

USBC_PCGCCTL 0x00016F0010000E00 0x00016F0010000E04 NCB See page 760
USBC_NPTXDFIFO0 0x00016F0010001000 0x00016F0010001004 NCB See page 761

Table 21–4 USBC Registers (Continued)

Register
Address (NCB,
Little-Endian)

Address (NCB,
Big-Endian)

CSR
Type1

Detailed
Description
718 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
OTG Control and Status Register
USBC_GOTGCTL

This register controls the behavior and reflects the status of the OTG function of the
core. See Table 21–4 for the address.

USBC_NPTXDFIFO1 0x00016F0010002000 0x00016F0010002004 NCB See page 761
USBC_NPTXDFIFO2 0x00016F0010003000 0x00016F0010003004 NCB See page 761
USBC_NPTXDFIFO3 0x00016F0010004000 0x00016F0010004004 NCB See page 761
USBC_NPTXDFIFO4 0x00016F0010005000 0x00016F0010005004 NCB See page 761
USBC_NPTXDFIFO5 0x00016F0010006000 0x00016F0010006004 NCB See page 761
USBC_NPTXDFIFO6 0x00016F0010007000 0x00016F0010007004 NCB See page 761
USBC_NPTXDFIFO7 0x00016F0010008000 0x00016F0010008004 NCB See page 761
USBC_GRXSTSRD 0x00016F001004001C 0x00016F0010040018 NCB See page 731
USBC_GRXSTSPD 0x00016F0010040020 0x00016F0010040024 NCB See page 732

1. NCB-type registers are accessed directly across the I/O Bus.

Table 21–4 USBC Registers (Continued)

Register
Address (NCB,
Little-Endian)

Address (NCB,
Big-Endian)

CSR
Type1

Detailed
Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:21> — RO — — Reserved
<20> — RO — — Present release of code incorrectly attaches this to the device-mode

status bit. Software should disregard the value of this bit.
<19> BSESVLD RO — — B-Session valid. Indicates the device mode transceiver status. Valid

only when CN50XX USB core is configured as a USB device.

0 = B-session is not valid, 1 = B-session is valid.
<18> ASESVLD RO — — A-Session valid. Indicates the host mode transceiver status. Valid

only when CN50XX USB core is configured as a USB host.

0 = A-session is not valid, 1 = A-session is valid
<17> DBNCTIME RO 0 0 Long/short debounce time. In the present version of the core, this

bit will only read as 0.
<16> CONIDSTS RO — — Connector ID status. Indicates the connector ID status on a connect

event.

0 = the CN50XX USB core is in A-device mode
1 = the CN50XX USB core is in B-device mode

<15:12> — RO — — Reserved
<11> DEVHNPEN R/W 0 0 Device HNP enabled. Since CN50XX USB core is not HNP capable,

this bit is 0.
<10> HSTSETHNPEN R/W 0 0 Host set HNP enable. Since CN50XX USB core is not HNP capable,

this bit is 0.
<9> HNPREQ R/W 0 0 Host request. Since CN50XX USB core is not HNP capable, this bit

is 0.
<8> HSTNEGSCS R/W 0 0 Host negotiation success. Since CN50XX USB core is not HNP

capable, this bit is 0.
<7:2> — RO — — Reserved
<1> SESREQ R/W 0 0 Session request. Since CN50XX USB core is not HNP capable, this

bit is 0.
<0> SESREQSCS R/W 0 0 Session request success. Since CN50XX USB core is not HNP

capable, this bit is 0.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 719

 USB Unit (USB): USB Registers
OTG Interrupt Register
USBC_ GOTGINT

The application reads this register whenever there is an OTG interrupt and clears
the bits in this register to clear the OTG interrupt. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:20> — RO — — Reserved.
<19> DBNCEDONE R/W1C 0 0 Debounce done. In the present version of the code this bit is tied to

0.
<18> ADEVTOUTCHG R/W1C 0 0 A-device timeout change. Since CN50XX USB core is not HNP or

SRP capable, this bit is 0.
<17> HSTNEGDET R/W1C 0 0 Host negotiation detected. Since CN50XX USB core is not HNP or

SRP capable, this bit is 0.
<16:10> — RO — — Reserved.
<9> HSTNEGSUCSTS

CHNG
R/W1C 0 0 Host negotiation success status change. Since CN50XX USB core

is not HNP or SRP capable, this bit is 0.
<8> SESREQSUCSTS

CHNG
R/W1C 0 0 Session request success status change. Since CN50XX USB core is

not HNP or SRP capable, this bit is 0.
<7:3> — RO — — Reserved.
<2> SESENDDET R/W1C 0 0 Session end detected. Since CN50XX USB core is not HNP or SRP

capable, this bit is 0.
<1> — RO — — Reserved.
<0> — RO — — Reserved. Present version of the code ties this to device-mode.

Software should disregard the value of this bit.
720 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
USB Core AHB Configuration Register
USBC_ GAHBCFG

This register can be used to configure the core after power-on or a change in mode of
operation. It mainly contains AHB system-related configuration parameters. The
AHB is the processor interface to the CN50XX USB core. In general, software need
not know about this interface except to program the values as specified. The
application must program this register as part of the CN50XX USB core
initialization. Do not change this register after the initial programming. See Table
21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:9> — RO — — Reserved.
<8> PTXFEMPLVL R/W 0 1 Periodic TxFIFO empty level. Indicates when

GINTSTS[PTXFEMP] is triggered. Software should set this bit to 1.
This bit is used only in slave mode.

0 = GINTSTS[PTXFEMP] indicates that the periodic TxFIFO
is half empty

1 = GINTSTS[PTXFEMP] indicates that the periodic TxFIFO
is completely empty

<7> NPTXFEMPLVL R/W 0 1 Nonperiodic TxFIFO empty level. Indicates when
GINTSTS[NPTXFEMP] is triggered. Software should set this bit to
1. This bit is used only in slave mode.

0 = GINTSTS[NPTXFEMP] indicates that the nonperiodic
TxFIFO is half empty

1 = GINTSTS[NPTXFEMP] indicates that the nonperiodic
TxFIFO is completely empty

<6> — RO — — Reserved.
<5> DMAEN R/W 0 0 DMA enable.

0 = USB core operates in slave mode
1 = USB core operates in a DMA mode

<4:1> HBSTLEN R/W 0x0 0x0 Burst length/type. This field has no effect and should be left as 0x0.
<0> GLBLINTRMSK R/W 0 0 Global interrupt mask. The application uses this bit to mask or

unmask the interrupt line assertion to itself. Regardless of this bit’s
setting, the interrupt status registers are updated by the core.
Software should set this field to 1.

0 = Mask the interrupt assertion to the application.
1 = Unmask the interrupt assertion to the application.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 721

 USB Unit (USB): USB Registers
USB Core Configuration Register
USBC_GUSBCFG

This register can be used to configure the USB core after power-on or a changing to
host mode or device mode. It contains USB and USB-PHY related configuration
parameters. The application must program this register before starting any
transactions on either the AHB or the USB. Do not make changes to this register
after the initial programming. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:17> — RO — — Reserved.
<16> OTGI2CSEL RO 0 0 UTMIFS or I2C interface select. This bit is always 0.
<15> PHYLPWRCLKSEL R/W 0 0 PHY low-power clock select. Selects either 480-MHz or 48-MHz

(low-power) PHY mode. In FS and LS modes, the PHY can
usually operate on a 48-MHz clock to save power. Software
should set this bit to 0.

0 = 480-MHz internal PLL clock
1 = 48-MHz external clock

In 480-MHz mode, the UTMI interface operates at either 60- or
30-MHz, depending upon whether 8- or 16-bit data width is
selected.

In 48-MHz mode, the UTMI interface operates at 48-MHz in FS
mode and at either 48- or 6-MHz in LS mode (depending on the
PHY vendor). This bit drives the utmi_fsls_low_power core
output signal, and is valid only for UTMI+ PHYs.

<14> — RO — — Reserved.
<13:10> USBTRDTIM R/W 0x5 0x5 USB turnaround time. Sets the turnaround time in PHY clocks.

Specifies the response time for a MAC request to the packet
FIFO controller (PFC) to fetch data from the DFIFO (SPRAM).
This must be programmed to 0x5.

<9> HNPCAP RO 0 0 HNP-capable. This bit is always 0.
<8> SRPCAP RO 0 0 SRP-capable. This bit is always 0.
<7> DDRSEL R/W 0 0 ULPI DDR select. Software should set this bit to 0.
<6> PHYSEL WO 0 0 USB 2.0 high-speed PHY or USB 1.1 full-speed serial. Software

should set this bit to 0.
<5> FSINTF WO 0 0 Full-speed serial interface select. Software should set this bit to

0.
<4> ULPI_UTMI_SEL RO 0 0 ULPI or UTMI+ select. This bit is always 0.
<3> PHYIF RO 1 1 PHY Interface. This bit is always 1.
722 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
<2:0> TOUTCAL R/W 0x0 0x0 HS/FS timeout calibration (TOutCal). The number of PHY clocks
that the application programs in this field is added to the high-
speed/full-speed interpacket timeout duration in the core to
account for any additional delays introduced by the PHY. This
may be required, since the delay introduced by the PHY in
generating the linestate condition may vary from one PHY to
another.

The USB standard timeout value for high-speed operation is 736
to 816 (inclusive) bit times. The USB standard timeout value for
full-speed operation is 16 to 18 (inclusive) bit times. The
application must program this field based on the speed of
enumeration. The number of bit times added per PHY clock are:

High-speed operation:
● One 30-MHz PHY clock = 16 bit times
● One 60-MHz PHY clock = 8 bit times

Full-speed operation:
● One 30-MHz PHY clock = 0.4 bit times
● One 60-MHz PHY clock = 0.2 bit times
● One 48-MHz PHY clock = 0.25 bit times

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 723

 USB Unit (USB): USB Registers
USB Core Reset Register
USBC_GRSTCTL

The application uses this register to reset various hardware features inside the USB
core. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> AHBIDLE RO 1 1 AHB master idle. Indicates that the AHB master state machine is in
the IDLE condition.

<30> DMAREQ RO 0 0 DMA request signal. Indicates that the DMA request is in progress.
Used for debug purposes.

<29:11> — RO — — Reserved.
<10:6> TXFNUM R/W 0x0 0x0 TxFIFO number. Indicates the FIFO number that must be flushed

using TXFFLSH. This field must not be changed until the USB core
clears TXFFLSH.

0x0 = nonperiodic TxFIFO flush
0x1 = periodic TxFIFO1 flush in device mode or periodic TxFIFO

flush in Host mode
0x2 = periodic TxFIFO2 flush in device mode
...
0xF = periodic TxFIFO15 flush in device mode
0x10 = Flush all the periodic and nonperiodic TxFIFOs in the

USB core
<5> TXFFLSH R/W 0 0 TxFIFO flush. This bit selectively flushes a single or all transmit

FIFOs, but cannot do so if the core is in the midst of a transaction.
The application must only write this bit after checking that the core
is neither writing to nor reading from the TxFIFO. The application
must wait until the core clears this bit before performing any
operations. This bit takes eight clock cycles (of PHY_CLK or HCLK,
whichever is slower) to clear.

<4> RXFFLSH R/W 0 0 RxFIFO flush. The application can flush the entire RxFIFO using
this bit, but must first ensure that the core is not in the middle of a
transaction. The application must only write to this bit after
checking that the core is neither reading from nor writing to the
RxFIFO. The application must wait until the bit is cleared before
performing any other operations. This bit will take eight clock cycles
(of PHY_CLK or HCLK, whichever is slower) to clear.

<3> INTKNQFLSH R/W 0 0 IN token sequence learning-queue flush. The application writes this
bit to flush the IN token sequence learning queue.

<2> FRMCNTRRST R/W 0 0 Host frame counter reset. The application writes this bit to reset the
(micro)frame number counter inside the USB core. When the
(micro)frame counter is reset, the subsequent SOF sent out by the
USB core has a (micro)frame number of 0.
724 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
<1> HSFTRST R/W 0 0 HCLK soft reset. The application uses this bit to flush the control
logic in the AHB clock domain. Only AHB clock domain pipelines are
reset.

● FIFOs are not flushed with this bit.
● All state machines in the AHB clock domain are reset to the

idle state after terminating the transactions on the AHB,
following the protocol.

● CSR control bits used by the AHB clock domain state
machines are cleared.

● To clear this interrupt, status mask bits that control the
interrupt status and are generated by the AHB clock domain
state machine are cleared.

● Because interrupt status bits are not cleared, the application
can get the status of any core events that occurred after it
set this bit.

This is a self-clearing bit that the USB core clears after all necessary
logic is reset in the core. This may take several clock cycles,
depending on the USB core’s current state.

<0> CSFTRST R/W 0 0 USB core soft reset. Resets the HCLK and PHY_CLOCK domains as
follows:

● Clears the interrupts and all the CSR registers except the
following register bits:
USBC_PCGCCTL[RSTPDWNMODULE]
USBC_PCGCCTL[GATEHCLK]
USBC_PCGCCTL[PWRCLMP]
USBC_PCGCCTL[STOPPPHYLPWRCLKSELCLK]
USBC_GUSBCFG[PHYLPWRCLKSEL]
USBC_GUSBCFG[DDRSEL]
USBC_GUSBCFG[PHYSEL]
USBC_GUSBCFG[FSINTF]
USBC_GUSBCFG[ULPI_UTMI_SEL]
USBC_GUSBCFG[PHYIF]
USBC_HCFG[FSLSPCLKSEL]
USBC_DCFG[DEVSPD]

● All module state machines except the AHB slave unit are reset
to the IDLE state, and all the transmit FIFOs and the receive
FIFO are flushed.

● Any transactions on the AHB master are terminated as soon as
possible, after gracefully completing the last data phase of an
AHB transfer. Any transactions on the USB are terminated
immediately.

The application can write to this bit any time it wants to reset the
core. This is a self-clearing bit and the core clears this bit after all the
necessary logic is reset in the core, which may take several clock
cycles, depending on the current state of the USB core. Once this bit
is cleared, software should wait at least three PHY clock cycles before
doing any access to the PHY domain (synchronization delay).
Software should also should check that bit [31] of this register is 1
(AHB master is IDLE) before starting any operation.

Typically software reset is used during software development and
also when you dynamically change the PHY selection bits in the USB
configuration registers listed above. When you change the PHY, the
corresponding clock for the PHY is selected and used in the PHY
domain. Once a new clock is selected, the PHY domain has to be reset
for proper operation.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 725

 USB Unit (USB): USB Registers
USB Core Interrupt Register
USBC_ GINTSTS

This register interrupts the application for system-level events in the current mode
of operation (device mode or host mode). Some of the bits in this register are valid
only in host mode, while others are valid in device mode only. This register also
indicates the current mode of operation. In order to clear the interrupt status bits of
type R/W1C, the application must write 1 into the bit. The FIFO status interrupts
are read only; once software reads from or writes to the FIFO while servicing these
interrupts, FIFO interrupt conditions are cleared automatically. See Table 21–3 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> WKUPINT R/W1C 0x0 0x0 Resume/remote wakeup detected interrupt. In device mode, this
interrupt is asserted when a resume is detected on the USB. In
host mode, this interrupt is asserted when a remote wakeup is
detected on the USB.

<30> SESSREQINT R/W1C 0x0 0x0 Session request/new session detected interrupt. In host mode, this
interrupt is asserted when a session request is detected from the
device. In device mode, this interrupt is asserted when the
utmiotg_bvalid signal goes high.

<29> DISCONNINT R/W1C 0x0 0x0 Disconnect detected interrupt. Asserted when a device disconnect
is detected.

<28> CONIDSTSCHNG R/W1C 0x0 0x0 Connector ID status change. The USB core sets this bit when there
is a change in connector ID status.

<27> — RO — — Reserved.
<26> PTXFEMP RO 0x0 0x0 Periodic TxFIFO empty. Asserted when the periodic transmit

FIFO is either half or completely empty and there is space for at
least one entry to be written in the periodic request queue. The
half- or completely-empty status is determined by
USBC_GAHBCFG[PTXFEMPLVL].

<25> HCHINT RO 0x0 0x0 Host channels interrupt. The USB core sets this bit to indicate
that an interrupt is pending on one of the channels of the core (in
host mode). The application must read USBC_HAINT to
determine the exact number of the channel on which the interrupt
occurred, and then read the corresponding USBC_HCINTn
register to determine the exact cause of the interrupt. The
application must clear the appropriate status bit in
USBC_HCINTn to clear this bit.

<24> PRTINT RO 0x0 0x0 Host port interrupt. The USB core sets this bit to indicate a
change in port status of one of the CN50XX USB core ports in host
mode. The application must read USBC_HPRT to determine the
exact event that caused this interrupt. The application must clear
the appropriate status bit in USBC_HPRT to clear this bit.

<23> — RO — — Reserved.
<22> FETSUSP R/W1C 0x0 0x0 Data fetch suspended. This interrupt is valid only in DMA mode.

This interrupt indicates that the core has stopped fetching data for
IN endpoints due to the unavailability of TxFIFO space or request-
queue space. This interrupt is used by the application for an
endpoint mismatch algorithm.

<21> INCOMPLP R/W1C 0x0 0x0 Incomplete periodic transfer. In host mode, the core sets this
interrupt bit when there are incomplete periodic transactions still
pending that are scheduled for the current microframe.
Incomplete Isochronous OUT Transfer (INCOMPISOOUT)
In device mode, the core sets this interrupt to indicate that there is
at least one isochronous OUT endpoint on which the transfer is not
completed in the current microframe. This interrupt is asserted
along with EOPF.
726 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
<20> INCOMPISOIN R/W1C 0x0 0x0 Incomplete isochronous IN transfer. The USB core sets this
interrupt to indicate that there is at least one isochronous IN
endpoint on which the transfer is not completed in the current
microframe. This interrupt is asserted along with EOPF.

<19> OEPINT RO 0x0 0x0 OUT endpoints interrupt. The core sets this bit to indicate that an
interrupt is pending on one of the OUT endpoints of the core (in
device mode). The application must read USBC_DAINT to
determine the exact number of the OUT endpoint on which the
interrupt occurred, and then read the corresponding
USBC_DOEPINTn register to determine the exact cause of the
interrupt. The application must clear the appropriate status bit in
the corresponding USBC_DOEPINTn to clear this bit.

<18> IEPINT RO 0x0 0x0 IN endpoints interrupt. The USB core sets this bit to indicate that
an interrupt is pending on one of the IN endpoints of the core (in
device mode). The application must read USBC_DAINT to
determine the exact number of the IN endpoint on which the
interrupt occurred, and then read the corresponding
USBC_DIEPINTn resister to determine the exact cause of the
interrupt. The application must clear the appropriate status bit in
the corresponding USBC_DIEPINTn register to clear this bit.

<17> EPMIS R/W1C 0x0 0x0 Endpoint mismatch interrupt. Indicates that an IN token has been
received for a nonperiodic endpoint, but the data for another
endpoint is present in the top of the nonperiodic transmit FIFO
and the IN endpoint mismatch count programmed by the
application has expired.

<16> — RO — — Reserved.
<15> EOPF R/W1C 0x0 0x0 End of periodic frame interrupt. Indicates that the period specified

in USBC_DCFG[PERFRINT] has been reached in the current
microframe.

<14> ISOOUTDROP R/W1C 0x0 0x0 Isochronous OUT packet dropped interrupt. The core sets this bit
when it fails to write an isochronous OUT packet into the RxFIFO
because the RxFIFO doesn't have enough space to accommodate a
maximum-packet-size packet for the isochronous OUT endpoint.

<13> ENUMDONE R/W1C 0x0 0x0 Enumeration done. The core sets this bit to indicate that speed
enumeration is complete. The application must read
USBC_DSTS to obtain the enumerated speed.

<12> USBRST R/W1C 0x0 0x0 USB reset. The USB core sets this bit to indicate that a reset is
detected on the USB.

<11> USBSUSP R/W1C 0x0 0x0 USB suspend. The USB core sets this bit to indicate that a
suspend was detected on the USB. The USB core enters the
suspended state when there is no activity on the phy_line_state_i
signal for an extended period of time.

<10> ERLYSUSP R/W1C 0x0 0x0 Early suspend. The USB core sets this bit to indicate that an Idle
state has been detected on the USB for 3 ms.

<9> I2CINT R/W1C 0x0 0x0 I2C interrupt. This bit is always 0.
<8> ULPICKINT R/W1C 0x0 0x0 ULPI carkit interrupt. This bit is always 0.
<7> GOUTNAKEFF RO 0x0 0x0 Global OUT NAK effective. Indicates that

USBC_DCTL[SGOUTNAK], set by the application, has taken
effect in the USB core. This bit can be cleared by writing to
USBC_DCTL[CGOUTNAK].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 727

 USB Unit (USB): USB Registers
<6> GINNAKEFF RO 0x0 0x0 Global IN nonperiodic NAK effective. Indicates that
USBC_DCTL[SGNPINNAK], set by the application, has taken
effect in the USB core (i.e. the USB core has sampled the global IN
NAK bit set by the application). This bit can be cleared by clearing
USBC_DCTL[CGNPINNAK]. This interrupt does not necessarily
mean that a NAK handshake is sent out on the USB. The STALL
bit takes precedence over the NAK bit.

<5> NPTXFEMP RO 0x0 0x0 Nonperiodic TxFIFO empty. This interrupt is asserted when the
nonperiodic TxFIFO is either half or completely empty, and there
is space for at least one entry to be written to the nonperiodic
transmit request queue. The half or completely empty status is
determined by USBC_GAHBCFG[NPTXFEMPLVL].

<4> RXFLVL RO 0x0 0x0 RxFIFO non-empty. Indicates that there is at least one packet
pending to be read from the RxFIFO.

<3> SOF R/W1C 0x0 0x0 Start of (micro)frame. In host mode, the USB core sets this bit to
indicate that an SOF (FS), micr-SOF (HS), or keep-alive (LS) is
transmitted on the USB. The application must write a 1 to this bit
to clear the interrupt.

In device mode, in the USB core sets this bit to indicate that an
SOF
token has been received on the USB. The application can read
the device-status register to get the current (micro)frame number.
This interrupt is seen only when the core is operating at either HS
or FS.

<2> OTGINT RO 0x0 0x0 OTG interrupt. The USB core sets this bit to indicate an OTG
protocol event. The application must read USBC_GOTGINT to
determine the exact event that caused this interrupt. The
application must clear the appropriate status bit in
USBC_GOTGINT to clear this bit.

<1> MODEMIS R/W1C 0x0 0x0 Mode mismatch interrupt. The USB core sets this bit when the
application is trying to access:

●a host mode register, when the core is operating in device mode
●a device mode register, when the core is operating in host mode

The register access is completed on the AHB with an OKAY
response, but is ignored by the core internally and does not affect
the operation of the USB core.

<0> CURMOD RO 0x0 0x0 Current mode of operation. Indicates the current mode of
operation.

0 = device mode, 1 = host mode

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
728 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Core Interrupt Mask Register
USBC_GINTMSK

This register works with USBC_GINTSTS to interrupt the application. When an
interrupt bit is masked, the interrupt associated with that bit is not generated.
However, the USBC_GINTSTS bit corresponding to that interrupt is set.

For all interrupts, 0 = mask the interrupt, 1 =1 unmask interrupt. See Table 21–3 for
the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> WKUPINTMSK R/W 0 0 Resume/remote wakeup detected interrupt mask.
<30> SESSREQINTMSK R/W 0 0 Session request/new session detected interrupt mask.
<29> DISCONNINTMSK R/W 0 0 Disconnect detected interrupt mask.
<28> CONIDSTSCHNGMSK R/W 0 0 Connector ID status change mask.
<27> — RO — — Reserved.
<26> PTXFEMPMSK R/W 0 0 Periodic TxFIFO empty mask.
<25> HCHINTMSK R/W 0 0 Host channels interrupt mask.
<24> PRTINTMSK R/W 0 0 Host port interrupt mask.
<23> — RO — — Reserved.
<22> FETSUSPMSK R/W 0 0 Data fetch suspended mask.
<21> INCOMPISOOUTMSK R/W 0 0 Incomplete periodic transfer mask (host mode).

Incomplete isochronous OUT transfer mask (device mode).
<20> INCOMPISOINMSK R/W 0 0 Incomplete isochronous IN transfer mask.
<19> OEPINTMSK R/W 0 0 OUT endpoints interrupt mask.
<18> INEPINTMSK R/W 0 0 IN endpoints interrupt mask.
<17> EPMISMSK R/W 0 0 Endpoint mismatch interrupt mask.
<16> — RO — — Reserved.
<15> EOPFMSK R/W 0 0 End of periodic frame interrupt mask.
<14> ISOOUTDROPMSK R/W 0 0 Isochronous OUT packet dropped interrupt mask.
<13> ENUMDONEMSK R/W 0 0 Enumeration done mask.
<12> USBRSTMSK R/W 0 0 USB reset mask.
<11> USBSUSPMSK R/W 0 0 USB suspend mask.
<10> ERLYSUSPMSK R/W 0 0 Early suspend mask.
<9> I2CINT R/W 0 0 I2C interrupt mask.
<8> ULPICKINTMSK R/W 0 0 ULPI carkit interrupt mask, I2C carkit interrupt mask.
<7> GOUTNAKEFFMSK R/W 0 0 Global OUT NAK effective mask.
<6> GINNAKEFFMSK R/W 0 0 Global nonperiodic IN NAK effective mask.
<5> NPTXFEMPMSK R/W 0 0 Nonperiodic TxFIFO empty mask.
<4> RXFLVLMSK R/W 0 0 Receive FIFO non-empty mask.
<3> SOFMSK R/W 0 0 Start of (micro)frame mask.
<2> OTGINTMSK R/W 0 0 OTG interrupt mask.
<1> MODEMISMSK R/W 0 0 Mode mismatch interrupt mask.
<0> — RO — — Reserved.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 729

 USB Unit (USB): USB Registers
Receive-Status Debug Read Register, Host Mode
USBC_GRXSTSRH

A read to this register returns the contents of the top of the receive FIFO.

 See Table 21–3 for the address.

Receive-Status Read and Pop Register, Host Mode
USBC_GRXSTSPH

A read to the receive-status read and pop register returns and additionally pops the
top data entry out of the RxFIFO.

 See Table 21–3 for the address.

NOTE: This description is only valid when the core is in host mode. For device mode, use
USBC_GRXSTSRD instead. USBC_GRXSTSRH and USBC_GRXSTSRD are physically the same
register and share the same offset in the CN50XX USB core. The address difference specified in
this document is for software clarity and is actually ignored by the hardware.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:21> — RO — — Reserved.
<20:17> PKTSTS RO 0x0 0x0 Packet status. Indicates the status of the received packet.

0x0 = IN data packet received
0x3 = IN transfer completed (triggers an interrupt)
0x5 = data toggle error (triggers an interrupt)
0x7 = channel halted (triggers an interrupt)
All other values = reserved

<16:15> DPID RO 0x0 0x0 Data PID.
0 = data0
2 = data1
1 = data2
3 = Mdata

<14:4> BCNT RO 0x0 0x0 Byte count. Indicates the byte count of the received IN data packet.
<3:0> CHNUM RO 0x0 0x0 Channel number. Indicates the channel number to which the current

received packet belongs.

NOTE: This description is only valid when the core is in host mode. For device mode, use
USBC_GRXSTSRD instead. USBC_GRXSTSPH and USBC_GRXSTSPD are physically the same
register and share the same offset in the CN50XX USB core. The address difference specified in
this document is for software clarity and is actually ignored by the hardware.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:21> — RO — — Reserved.
<20:17> PKTSTS RO 0x0 0x0 Packet status. Indicates the status of the received packet.

0x0 = IN data packet received
0x3 = IN transfer completed (triggers an interrupt)
0x5 = data toggle error (triggers an interrupt)
0x7 = channel halted (triggers an interrupt)
All other values = reserved

<16:15> DPID RO 0x0 0x0 Data PID.
0 = data0
2 = data1
1 = data2
3 = Mdata
730 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Receive-Status Debug Read Register, Device Mode
USBC_GRXSTSRD

A read to the receive-status debug read register returns the contents of the top of the
receive FIFO.

See Table 21–3 for the address.

<14:4> BCNT RO 0x0 0x0 Byte count. Indicates the byte count of the received IN data packet.
<3:0> CHNUM RO 0x0 0x0 Channel number. Indicates the channel number to which the current

received packet belongs.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

NOTE: This description is only valid when the core is in DEVICE mode. For HOST mode, use
USBC_GRXSTSRH instead. USBC_GRXSTSPH and USBC_GRXSTSPD are physically the same
register and share the same offset in the CN50XX USB core. The address difference specified in
this document is for software clarity and is actually ignored by the hardware.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:25> — RO — — Reserved.
<24:21> FN RO 0x0 0x0 Frame number. Indicates the least significant four bits of the

(micro)frame number in which the packet is received on the USB. This
field is supported only when the isochronous OUT endpoints are
supported.

<20:17> PKTSTS RO 0x0 0x0 Packet status. Indicates the status of the received packet.
0x1 = Global OUT NAK (triggers an interrupt)
0x2 = OUT data packet received
0x4 = SETUP transaction completed (triggers an interrupt)
0x6 = SETUP data packet received
All other values = reserved

<16:15> DPID RO 0x0 0x0 Data PID.
0 = data0
2 = data1
1 = data2
3 = Mdata

<14:4> BCNT RO 0x0 0x0 Byte count. Indicates the byte count of the received data packet.
<3:0> EPNUM RO 0x0 0x0 Endpoint number. Indicates the endpoint number to which the current

received packet belongs.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 731

 USB Unit (USB): USB Registers
Receive-Status Debug Read Register, Device Mode
USBC_ GRXSTSPD

A read to the receive-status read and pop register returns and additionally pops the
top data entry out of the RxFIFO.

See Table 21–3 for the address.

Receive FIFO Size Register
USBC_ GRXFSIZ

The application can program the RAM size that must be allocated to the RxFIFO. See
Table 21–3 for the address.

NOTE: This description is only valid when the core is in device mode. For host mode, use
USBC_GRXSTSRH instead. USBC_GRXSTSPH and USBC_GRXSTSPD are physically the same
register and share the same offset in the CN50XX USB core. The address difference specified in
this document is for software clarity and is actually ignored by the hardware.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:25> — RO — — Reserved.
<24:21> FN RO 0x0 0x0 Frame number. Indicates the least significant four bits of the

(micro)frame number in which the packet is received on the USB. This
field is supported only when the isochronous OUT endpoints are
supported.

<20:17> PKTSTS RO 0x0 0x0 Packet status. Indicates the status of the received packet.
0x1 = Global OUT NAK (triggers an interrupt)
0x2 = OUT data packet received
0x4 = SETUP transaction completed (triggers an interrupt)
0x6 = SETUP data packet received
All other values = reserved

<16:15> DPID RO 0x0 0x0 Data PID.
0 = data0
2 = data1
1 = data2
3 = Mdata

<14:4> BCNT RO 0x0 0x0 Byte count. Indicates the byte count of the received data packet.
<3:0> EPNUM RO 0x0 0x0 Endpoint number. Indicates the endpoint number to which the current

received packet belongs.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> — RO — — Reserved.
<15:0> RXFDEP R/W 0x720 0x1C8 RxFIFO depth. This value is in terms of 32-bit words.
732 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Nonperiodic Transmit FIFO Size Register
USBC_GNPTXFSIZ

The application can program the RAM size and the memory start address for the
nonperiodic TxFIFO. See Table 21–3 for the address.

Nonperiodic Transmit FIFO/Queue Status Register
USBC_GNPTXSTS

The application can program the RAM size and the memory start address for the
nonperiodic TxFIFO. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> NPTXFDEP R/W 0x720 0x390 Nonperiodic TxFIFO depth. This value is in terms of 32-bit words.
Minimum value is 16. Maximum value is 32768.

<15:0> NPTXFSTADDR R/W 0x720 0x1C8 Nonperiodic transmit RAM start address. Contains the memory
start address for nonperiodic transmit FIFO RAM.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> — RO — — Reserved.
<30:24> NPTXQTOP RO 0x0 0x0 Top of the nonperiodic transmit request queue. Entry in the

nonperiodic Tx request queue that is currently being processed
by the MAC.

Bits [30:27] = channel/endpoint number
Bits [26:25]:

● 0x0 = IN/OUT token
● 0x1 = Zero-length transmit packet (device IN/host

OUT)
● 0x2 = PING/CSPLIT token
● 0x3 = channel halt command

Bit [24]: terminate (last entry for selected channel/
endpoint)

<23:16> NPTXQSPCAVAIL RO 0x0 0x0 Nonperiodic transmit request queue space available. Indicates
the amount of free space available in the nonperiodic transmit
request queue.
This queue holds both IN and OUT requests in host mode.
Device mode has only IN requests.

0x0 = nonperiodic transmit-request queue is full
0x1 = one location available
0x2 = two locations available
...
0x8 = eight locations available
All others = reserved

<15:0> NPTXFSPCAVAIL RO 0x0 0x0 Nonperiodic TxFIFO space available. Indicates the amount of
free space available in the nonperiodic TxFIFO. Values are in
terms of 32-bit words.

0x0 = nonperiodic TxFIFO is full
0x1 = one location available
0x2 = two locations available
...
0x8 = eight locations available
All others = reserved
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 733

 USB Unit (USB): USB Registers
Synopsys ID Register
USBC_GSNPSID

This is a read-only register that contains the release number of the core being used.
See Table 21–3 for the address.

User Hardware Configuration Register 1
USBC_GHWCFG1

This register contains the logical endpoint directions of the CN50XX USB core. See
Table 21–3 for the address.

User Hardware Configuration Register 2
USBC_GHWCFG2

This register contains configuration options of the CN50XX USB core. See Table 21–
3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> SYNOPSYSID RO — — Release number of the core being used, in the format:
0x4F54<version>A.

0x4F54220A = pass 1.x, 0x4F54240A = pass 2.x

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> EPDIR RO 0x0 0x0 Endpoint direction. Two bits per endpoint represent the direction.
00 = bidirectional (IN and OUT) endpoint
01 = IN endpoint
10 = OUT endpoint
11 = reserved

Bits <31:30>: Endpoint 15 direction
Bits <29:28>: Endpoint 14 direction
...
Bits <3:2>: Endpoint 1 direction
Bits<1:0>: Endpoint 0 direction (always BIDIR)

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> — RO — — Reserved.
<30:26> TKNQDEPTH RO 0x1E 0x1E Device-mode IN token sequence learning queue depth.

Range: 0x0–0x30.
<25:24> PTXQDEPTH RO 0x2 0x2 Host-mode periodic request-queue depth.

00 = 2, 01 = 4, 10 = 8, 11 = reserved
<23:22> NPTXQDEPTH RO 0x2 0x2 Nonperiodic request-queue depth.

00 = 2, 01 = 4, 10 = 8, 11 = reserved
<21:20> — RO — — Reserved.
<19> DYNFIFOSIZING RO 1 1 Dynamic FIFO sizing enabled. 0 = not enabled, 1 = enabled
<18> PERIOSUPPORT RO 1 1 Periodic OUT channels supported in host mode.

0 = not supported, 1 = supported
<17:14> NUMHSTCHN1 RO 0x7 0x7 Number of host channels. Indicates the number of host channels

supported by the USB core in host mode.

The range of this field is 0–15:
0 specifies 1 channel, ... 15 specifies 16 channels.
734 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
User Hardware Configuration Register 3
USBC_GHWCFG3

This register contains configuration options of the CN50XX USB core. See Table 21–
3 for the address.

<13:10> NUMDEVEPS RO 0x4 0x4 Number of device endpoints. Indicates the number of device
endpoints supported by the USB core in device mode in addition
to control endpoint 0. The range of this field is 1–15.

<9:8> FSPHYTYPE RO 0x0 0x0 Full-speed PHY interface type.
00 = Full-speed interface not supported
01 = Dedicated full-speed interface
10 = Full-speed pins shared with UTMI+ pins
11 = Full-speed pins shared with ULPI pins

<7:6> HSPHYTYPE RO 0x1 0x1 High-speed PHY interface type.
00 = High-speed interface not supported
01 = UTMI+
10 = ULPI
11 = UTMI+ and ULPI

<5> SINGPNT RO 0 0 Single point.
0 = multipoint application, 1 = single-point application

<4:3> OTGARCH RO 0x1 0x1 Architecture.
00 = slave only
01 = external DMA
10 = internal DMA
11 = reserved

<2:0> OTGMODE RO 0x2 0x2 Mode of operation.
0x0 = HNP- and SRP-capable OTG (host and device)
0x1 = SRP-Capable OTG (host and device)
0x2 = Non-HNP and Non-SRP Capable OTG (host and
device)
0x3 = SRP-capable Device
0x4 = non-OTG Device
0x5 = SRP-capable host
0x6 = non-OTG host
0x7 = reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> DFIFODEPTH RO 0x720 0x720 DFIFO depth. This value is in terms of 32-bit words.
Minimum value is 32.
Maximum value is 32768.

<15:13> — RO — — Reserved.
<12> AHBPHYSYNC RO 0 0 AHB and PHY synchronous. Indicates whether AHB and PHY

clocks are synchronous to each other.
0 = not tied together, 1 = tied together

<11> RSTTYPE RO 1 1 Reset style for clocked always blocks in RTL.
0 = asynchronous reset is used in the USB core
1 = synchronous reset is used in the USB core

<10> OPTFEATURE RO 1 1 Optional features removed. Indicates whether the user ID
register, GPIO interface ports, and SOF toggle and counter
ports were removed for gate count optimization.

0 = not removed, 1 = removed
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 735

 USB Unit (USB): USB Registers
User Hardware Configuration Register 4
USBC_GHWCFG4

This register contains configuration options of the CN50XX USB core. See Table 21–
3 for the address.

<9> VENDOR_CONTR
OL_INTERFACE_
SUPPORT

RO 1 1 Vendor-control interface support.
0 = vendor-control interface is not available on the USB
core.
1 = vendor-control interface is available.

<8> I2C_SELECTION RO 0 0 I2C selection
0 = I2C Interface is not available on the USB core.
1 = I2C interface is available.

<7> OTGEN RO 1 1 OTG function enabled. The application uses this bit to indicate
the CN50XX USB cores OTG capabilities.

0 = not OTG capable
1 = OTG Capable

<6:4> PKTSIZEWIDTH RO 0x6 0x6 Width of packet-size counters.
0x0 = 4 bits
0x1 = 5 bits
...
0x6 = 10 bits
0x7 = reserved

<3:0> XFERSIZEWIDTH RO 0x8 0x8 Width of transfer-size counters.
0x0 = 11 bits
0x1 = 12 bits
...
0x8 = 19 bits
All others = reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:30> — RO — — Reserved.
<29:26> NumDevModInEnd RO 0x2 0x2 Enable dedicated transmit FIFO for device IN endpoints.
<25> EnDedTrFifo RO 0 0 Enable dedicated transmit FIFO for device IN endpoints.
<24> SESSENDFLTR RO 0 0 session_end filter enabled.

0 = no filter
1 = filter enabled

<23> BVALIDFLTR RO 0 0 b_valid filter enabled.
0 = no filter
1 = filter enabled

<22> AVALIDFLTR RO 0 0 a_valid filter enabled
0 = no filter
1 = filter enabled

<21> VBUSVALIDFLTR RO 1 1 vbus_valid filter enabled.
0 = no filter
1 = filter enabled

<20> IDDGFLTR RO 1 1 iddig filter enabled.
0 = no filter
1 = filter enabled

<19:16> NUMCTLEPS RO 0x4 0x4 Number of device-mode control endpoints in addition to
endpoint 0. Range: 0x1-0xF.
736 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Host Periodic Transmit FIFO Size Register
USBC_HPTXFSIZ

This register holds the size and the memory start address of the periodic TxFIFO.
See Table 21–3 for the address.

Device Periodic Transmit FIFOn Size Registers
USBC_DPTXFSIZ(1..4)

This register holds the memory start address of each periodic TxFIFO to be
implemented in device mode. Each periodic FIFO holds the data for one periodic IN
endpoint. This register is repeated for each periodic FIFO instantiated. See Table 21–
3 for the address.

Host Configuration Register
USBC_HCFG

This register configures the core after power-on. Do not make changes to this register
after initializing the host. See Table 21–3 for the address.

<15:14> PHYDATAWIDTH RO 0x1 0x1 UTMI+ PHY/ULPI-to-internal UTMI+ wrapper data width.
When a ULPI PHY is used, an internal wrapper converts
ULPI to UTMI+.

00 = 8 bits
01 = 16 bits
10 = 8/16 bits, software selectable
11 = reserved

<13:6> — RO — — Reserved.
<5> AHBFREQ RO 1 1 Minimum AHB frequency less than 60 MHz.

0 = no, 1 = yes
<4> ENABLEPWROPT RO 0 0 Enable power optimization? (EnablePwrOpt)

0 = no, 1 = yes
<3:0> NUMDEVPERIOEPS RO 0x4 0x4 Number of device mode periodic IN endpoints. Range: 0–0xF.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> PTXFSIZE R/W 0x100 0x1C8 Host periodic TxFIFO depth. This value is in terms of 32-bit words.

Minimum value is 16, maximum value is 32768.
<15:0> PTXFSTADDR R/W 0xE40 0x390 Host periodic TxFIFO start address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> DPTXFSIZE RO 0x768 0x768 Device periodic TxFIFO size. This value is in terms of 32-bit words.

Minimum value is 4, maximum value is 768.
<15:0> PTXFSTADDR R/W 0xE40 0x390 Device periodic TxFIFO RAM start address. Holds the start address

in the RAM for this periodic FIFO.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:3> — RO — — Reserved.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 737

 USB Unit (USB): USB Registers
Host Frame Interval Register
USBC_HFIR

This register contains the interrupt summary bits of the USBN. See Table 21–3 for
the address.

<2> FSLSSUPP R/W 0 0 FS- and LS-only support. The application uses this bit to control the
USB core’s enumeration speed. Using this bit, the application can
make the USB core enumerate as a FS host, even if the connected
device supports HS traffic. Do not make changes to this field after
initial programming.

0 = HS/FS/LS, based on the maximum speed supported by the
connected device

1 = FS/LS-only, even if the connected device can support HS.
<1:0> FSLSPCLK

SEL
R/W 0 0 FS/LS PHY clock select.

When the USB core is in FS host mode:
00 = PHY clock is running at 30/60 MHz
01 = PHY clock is running at 48 MHz
1x = reserved

When the core is in LS host mode:
00 = PHY clock is running at 30/60 MHz. When the UTMI+/ULPI

PHY low-power mode is not selected, use 30/60 MHz.
01 = PHY clock is running at 48 MHz. When the UTMI+ PHY low-

power mode is selected, use 48 MHz if the PHY supplies a 48-
MHz clock during LS mode.

10 = PHY clock is running at 6 MHz. In USB 1.1 FS mode, use 6
MHz when the UTMI+ PHY low-power mode is selected and
the PHY supplies a 6-MHz clock during LS mode. If you select
a 6-MHz clock during LS mode, you must do a soft reset.

11 = reserved

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> — RO — — Reserved.
<15:0> FRINT R/W 0x0B8F 0x0EA6 Frame interval. The value that the application programs to this field

specifies the interval between two consecutive SOFs (FS) or microSOFs
(HS) or Keep-Alive tokens (HS). This field contains the number of PHY
clocks that constitute the required frame interval. The default value
set in this field for a FS operation when the PHY clock frequency is 60
MHz. The application can write a value to this register only after
USBC_HPRT[PRTENAPORT)] has been set. If no value is
programmed, the USB core calculates the value based on the PHY
clock specified in USBC_HCFG[FSLSPCLKSEL]. Do not change the
value of this field after the initial configuration.

125 µs (PHY clock frequency for HS)
1 ms (PHY clock frequency for FS/LS)
738 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Host Frame Number/Frame Time Remaining Register
USBC_HFNUM

This register indicates the current frame number and indicates the time remaining
(in terms of the number of PHY clocks) in the current frame or microframe. See Table
21–3 for the address.

Host Periodic Transmit FIFO/Queue Status Register
USBC_HPTXSTS

This read-only register contains the free space information for the periodic TxFIFO
and the periodic transmit-request queue. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> FRREM RO 0x0 0x0 Frame time remaining. Indicates the amount of time remaining in the
current microframe (HS) or frame (FS/LS), in terms of PHY clock
cycles. This field decrements on each PHY clock. When it reaches zero,
this field is reloaded with the value in USBC_HFIR and a new SOF is
transmitted on the USB.

<15:0> FRNUM RO 0x3F
FF

0x0 Frame number. This field increments when a new SOF is transmitted
on the USB, and is reset to 0x0 when it reaches 0x3FFF.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:24> PTXQTOP RO 0x0 0x0 Top of the periodic transmit-request queue. This indicates the entry
in the periodic Tx request queue that is currently being processes
by the MAC. This register is used for debugging.

Bit [31]: odd/even (micro)frame
● 0 = send in even (micro)frame
● 1 = send in odd (micro)frame

Bits [30:27]: channel/endpoint number

Bits [26:25]: type
● 00 = IN/OUT
● 01 = Zero-length packet
● 10 = CSPLIT
● 11 = Disable channel command

Bit [24]: terminate (last entry for the selected channel/
endpoint)

<23:16> PTXQSPCAVAIL RO 0x0 0x0 Periodic transmit-request queue space available. Indicates the
number of free locations available to be written in the periodic
transmit-request queue. This queue holds both IN and OUT
requests.

0x0 = periodic transmit-request queue is full
0x1 = 1 location available
0x2 = 2 locations available
0xN = N locations available (0..0x8)
All others = reserved

<15:0> PTXFSPCAVAIL RO 0x0 0x0 Periodic transmit-data FIFO space available. Indicates the number
of free locations available to be written to in the periodic TxFIFO.
Values are in terms of 32-bit words.

0x0 = Periodic TxFIFO is full
0x1 = 1 word available
0x2 = 2 words available
0xN = N words available (0..0x8000)
All others = reserved
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 739

 USB Unit (USB): USB Registers
Host All Channels Interrupt Register
USBC_HAINT

When a significant event occurs on a channel, this register interrupts the application
using USBC_ GINTSTS[HCHINT]. There is one interrupt bit per channel, up to a
maximum of 16 bits. Bits in this register are set and cleared when the application
sets and clears bits in the corresponding USBC_HCINTn register. See Table 21–3 for
the address.

Host All Channels Interrupt Mask Register
USBC_HAINTMSK

This register works with USBC_HAINT to interrupt the application when an event
occurs on a channel. There is one interrupt mask bit per channel, up to a maximum
of 16 bits. 0 = mask the interrupt, 1 = unmask the interrupt. See Table 21–3 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> — RO — — Reserved.
<15:0> HAINT RO 0x0 0x0 Channel interrupts. One bit per channel: bit<0> for channel 0, ...,

bit<15> for channel 15

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> — RO — — Reserved.
<15:0> HAINTMSK R/W 0x0 0x0 Channel interrupt masks. One bit per channel: bit<0> for channel 0, ...,

bit<15> for channel 15
740 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Host Port Control and Status Register
USBC_HPRT

This register is available in both host and device modes. Currently, the OTG host
supports only one port. A single register holds USB port-related information such as
USB reset, enable, suspend, resume, connect status, and test mode for each port. The
R/W1C bits in this register can trigger an interrupt to the application through the
USBC_GINTSTS[PRTINT] bit. On a port interrupt, the application must read this
register and clear the bit that caused the interrupt. For the R/W1C bits, the
application must write a 1 to the bit to clear the interrupt. See Table 21–3 for the
address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:19> — RO — — Reserved.
<18:17> PRTSPD RO 0x0 0x0 Port speed. Indicates the speed of the device attached to this port.

00 = high speed, 01 = full speed, 10 = low speed, 11 = reserved
<16:13> PRTTSTCTL R/W 0x0 0x0 Port test control. The application writes a nonzero value to this

field to put the port into a test mode, and the corresponding
pattern is signaled on the port.

0x0 = test mode disabled
0x1 = Test_J mode
0x2 = Test_K mode
0x3 = Test_SE0_NAK mode
0x4 = Test_Packet mode
0x5 = Test_Force_Enable
All others = reserved

To use the PRTTSTCTL test modes, PRTSPD must be zero (i.e. the
interface must be in high-speed mode).

<12> PRTPWR R/W 0x0 0x0 Port power. The application uses this field to control power to this
port, and the USB core clears this bit on an overcurrent condition.

0 = power off
1 = power on

<11:10> PRTLNSTS RO 0x0 0x0 Port line status. Indicates the current logic level of USB data lines.

Bit [10]: logic level of D–
Bit [11]: logic level of D+

<9> — RO — — Reserved.
<8> PRTRST R/W 0 0 Port reset. When the application sets this bit, a reset sequence is

started on this port. The application must time the reset period
and clear this bit after the reset sequence is complete.

0 = port not in reset
1 = port in reset

The application must leave this bit set for at least the minimum
duration mentioned below to start a reset on the port. The
application can leave it set for another 10 ms in addition to the
required minimum duration, before clearing the bit, even though
there is no maximum limit set by the USB standard.

● high speed: 50 ms
● full speed/low speed: 10 ms
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 741

 USB Unit (USB): USB Registers
<7> PRTSUSP R/W 0 0 Port suspend. The application sets this bit to put this port in
suspend mode. The USB core only stops sending SOFs when this is
set.

To stop the PHY clock, the application must set the Port Clock Stop
bit, which will assert the suspend input pin of the PHY.

The read value of this bit reflects the current suspend status of the
port. This bit is cleared by the core after a remote wakeup signal is
detected or the application sets PRTRST or PRTRES bit in this
register or the USBC_GINTSTS[WKUPINT, DISCONNINT] bits,
respectively).

0 = port is not in suspend mode
1 = port is in suspend mode

<6> PRTRES R/W 0 0 Port resume. The application sets this bit to drive resume signaling
on the port. The USB core continues to drive the resume signal
until the application clears this bit.

If the core detects a USB remote-wakeup sequence, as indicated by
USBC_GINTSTS[WKUPINT], the core starts driving resume
signaling without application intervention and clears this bit when
it detects a disconnect condition. The read value of this bit
indicates whether the core is currently driving resume signaling.

0 = resume is not driven
1 = resume is driven

<5> PRTOVRCURR
CHNG

R/W1C 0 0 Port overcurrent change. The USB core sets this bit when the
status of PRTOVRCURACT changes.

<4> PRTOVRCURR
ACT

RO 0 0 Port overcurrent active. Indicates the overcurrent condition of the
port.

0 = no overcurrent condition
1 = overcurrent condition

<3> PRTENCHNG R/W1C 0 0 Port enable/disable change. The USB core sets this bit when the
status of PRTENA changes.

<2> PRTENA R/W1C 0 0 Port enable. A port is enabled only by the core after a reset
sequence, and is disabled by an overcurrent condition, a disconnect
condition, or by the application clearing this bit. The application
cannot set this bit by a register write. It can only clear it to disable
the port. This bit does not trigger any interrupt to the application.

0 = port disabled
1 = port enabled

<1> PRTCONNDET R/W1C 0 0 Port connect detected. The USB core sets this bit when a device
connection is detected to trigger an interrupt to the application
using USBC_GINTSTS[PRTINT].

<0> PRTCONNSTS RO 0 0 Port connect status.

0 = no device is attached to the port.
1 = a device is attached to the port.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
742 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Host Channel Characteristics Registers
USBC_HCCHAR(0..7)

This register contains characteristic information for the corresponding channel. See
Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> CHENA R/W 0 0 Channel enable. This field is set by the application and cleared by the
OTG host: 0 = channel is disabled, 1 = channel is enabled.

<30> CHDIS R/W 0 0 Channel disable. The application sets this bit to stop transmitting/
receiving data on a channel, even before the transfer for that channel
is complete. The application must wait for the channel-disabled
interrupt before treating the channel as disabled.

<29> ODDFRM R/W 0 0 Odd frame. This field is set or reset by the application to indicate that
the OTG host must perform a transfer in an odd (micro)frame. This
field is applicable for only periodic (isochronous and interrupt)
transactions.

0 = even (micro)frame
1 = odd (micro)frame

<28:22> DEVADDR R/W 0x0 0x0 Device address. This field selects the specific device serving as the data
source or sink.

<21:20> EC R/W 0x0 0x0 Multicount/error count. When USBC_HCSPLTn[SPLTENA] is reset to
0, this field indicates to the host the number of transactions that
should be executed per microframe for this endpoint.

00 = reserved. This field yields undefined results.
01 = 1 transaction
10 = 2 transactions to be issued for this endpoint per microframe
11 = 3 transactions to be issued for this endpoint per microframe

When USBC_HCSPLTn[SPLTENA] is set to 1, this field indicates the
number of immediate retries to be performed for a periodic split
transactions on transaction errors. This field must be set to at least
0x1.

<19:18> EPTYPE R/W 0x0 0x0 Endpoint type. Indicates the transfer type selected.

00 = control
01 = isochronous
10 = bulk
11 = interrupt

<17> LSPDDEV R/W 0 0 Low-speed device. This field is set by the application to indicate that
this channel is communicating to a low-speed device.

<16> — RO — — Reserved.
<15> EPDIR R/W 0 0 Endpoint direction. Indicates whether the transaction is IN or OUT.

0 = OUT, 1 = IN
<14:11> EPNUM R/W 0x0 0x0 Endpoint number. Indicates the endpoint number on the device serving

as the data source or sink.
<10:0> MPS R/W 0x0 0x0 Maximum packet size. Indicates the maximum packet size of the

associated endpoint.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 743

 USB Unit (USB): USB Registers
Host Channel Split Control Registers
USBC_HCSPLT(0..7)

This register contains split information for the corresponding channel. See Table 21–
3 for the address.

Host Channel Interrupt Registers
USBC_HCINT(0..7)

This register indicates the status of a channel with respect to USB- and AHB-related
events. The application must read this register when USBC_GINTSTS[HCHINT] is
set. Before the application can read this register, it must first read
USBC_HAINT to get the exact channel number for USBC_HINTn. The application
must clear the appropriate bit in this register to clear the corresponding bits in the
USBC_HAINT and USBC_GINTSTS registers. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> SPLTENA R/W 0 0 Split enable. The application sets this field to indicate that this
channel is enabled to perform split transactions.

<30:17> — RO — — Reserved.
<16> COMPSPLT R/W 0 0 Perform complete split. The application sets this field to request the

OTG host to perform a complete split transaction.
<15:14> XACTPOS R/W 0x0 0x0 Transaction position. This field is used to determine whether to send

all, first, middle, or last payloads with each OUT transaction.

11 = all This is the entire data payload of this transaction
(which is less than or equal to 188 bytes).

10 = begin This is the first data payload of this transaction
(which is larger than 188 bytes).

00 = middle This is the middle payload of this transaction (which
is larger than 188 bytes).

01 = end This is the last payload of this transaction (which is
larger than 188 bytes).

<13:7> HUBADDR R/W 0x0 0x0 Hub address. This field holds the device address of the transaction
translator’s hub.

<6:0> PRTADDR R/W 0x0 0x0 Port address. This field is the port number of the recipient transaction
translator.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:11> — RO — — Reserved.
<10> DATATGLERR R/W1C 0 0 Data toggle error.
<9> FRMOVRUN R/W1C 0 0 Frame overrun.
<8> BBLERR R/W1C 0 0 Babble error.
<7> XACTERR R/W1C 0 0 Transaction error.
<6> NYET R/W1C 0 0 NYET response-received interrupt.
<5> ACK R/W1C 0 0 ACK response-received interrupt.
<4> NAK R/W1C 0 0 NAK response-received interrupt.
<3> STALL R/W1C 0 0 STALL response-received interrupt.
<2> AHBERR R/W1C 0 0 This bit is always 0.
<1> CHHLTD R/W1C 0 0 Channel halted. Indicates the transfer completed abnormally either

because of any USB transaction error or in response to disable
request by the application.

<0> XFERCOMPL R/W1C 0 0 Transfer completed. The transfer completed normally without any
errors.
744 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Host Channel Interrupt Mask Registers
USBC_HCINTMSK(0..7)

This register reflects the mask for each channel status described in
USBC_HCINT(0..7): 0 = mask the interrupt, 1 = unmask the interrupt. See Table 21–
3 for the address.

Host Channel Transfer Size Registers
USBC_HCTSIZ(0..7)

This register contains the transfer size and packet count, as well as the PING enable
bit. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:11> — RO — — Reserved.
<10> DATATGLERRMSK R/W 0 0 Data-toggle-error mask.
<9> FRMOVRUNMSK R/W 0 0 Frame-overrun mask.
<8> BBLERRMSK R/W 0 0 Babble-error mask.
<7> XACTERRMSK R/W 0 0 Transaction-error mask.
<6> NYETMSK R/W 0 0 NYET response-received interrupt mask.
<5> ACKMSK R/W 0 0 ACK response-received interrupt mask.
<4> NAKMSK R/W 0 0 NAK response-received interrupt mask.
<3> STALLMSK R/W 0 0 STALL response-received interrupt mask.
<2> AHBERRMSK R/W 0 0 AHB-error mask.
<1> CHHLTDMSK R/W 0 0 Channel-halted mask.
<0> XFERCOMPLMSK R/W 0 0 Transfer-completed mask.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> DOPNG R/W 0 0 Do PING. Setting this field to 1 directs the host to do PING protocol.
<30:29> PID R/W 0x0 0x0 PID. The application programs this field with the type of PID to use for

the initial transaction. The host maintains this field for the rest of the
transfer.

00 = data0
01 = data2
10 = data1
11 = Mdata (non-control)/SETUP (control)

<28:19> PKTCNT R/W 0x0 0x0 Packet count. This field is programmed by the application with the
expected number of packets to be transmitted (OUT) or received (IN).
The host decrements this count on every successful transmission or
reception of an OUT/IN packet. Once this count reaches zero, the
application is interrupted to indicate normal completion.

<18:0> XFERSIZE R/W 0x0 0x0 Transfer size. For an OUT, this field is the number of data bytes the
host sends during the transfer For an IN, this field is the buffer size
that the application has reserved for the transfer. The application is
expected to program this field as an integer multiple of the maximum
packet size for IN transactions (periodic and nonperiodic).
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 745

 USB Unit (USB): USB Registers
Device Configuration Register
USBC_DCFG

This register configures the USB core in device mode after power-on or after certain
control commands or enumeration. Do not make changes to this register after initial
programming. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:23> — RO — — Reserved.
<22:18> EPMISCNT R/W 0x8 0x0 IN endpoint-mismatch count. The application programs this field

with a count that determines when the core generates an
Endpoint Mismatch interrupt (USBC_GINTSTS[EPMIS]). The
core loads this value into an internal counter and decrements it.
The counter is reloaded whenever there is a match or when the
counter expires. The width of this counter depends on the depth of
the token queue.

<17:13> — RO — — Reserved.
<12:11> PERFRINT R/W 0x0 0x0 Periodic frame interval. Indicates the time within a (micro)frame

at which the application must be notified using the end-of-
periodic-frame interrupt. This can be used to determine if all the
isochronous traffic for that (micro)frame is complete.

00 = 80% of the (micro)frame interval
01 = 85%
10 = 90%
11 = 95%

<10:4> DEVADDR R/W 0x0 0x0 Device address. The application must program this field after
every SetAddress control command.

<3> — RO — — Reserved.
<2> NZSTSOUTHSHK R/W 0x0 0x0 Nonzero-length status OUT handshake. The application can use

this field to select the handshake the core sends on receiving a
nonzero-length data packet during the OUT transaction of a
control transfer’s status stage.

1 = Send a STALL handshake on a nonzero-length status
OUT transaction and do not send the received OUT
packet to the application.

0 = Send the received OUT packet to the application (zero-
length or nonzero-length) and send a handshake based on
the NAK and STALL bits for the endpoint in the device-
endpoint control register.

<1:0> DEVSPD R/W 0x0 0x0 Device speed. Indicates the speed at which the application
requires the USB core to enumerate, or the maximum speed the
application can support. However, the actual bus speed is
determined only after the chirp sequence is completed, and is
based on the speed of the USB host to which the core is connected.

00 = high speed (USB 2.0 PHY clock is 30 MHz or 60 MHz)
01 = full speed (USB 2.0 PHY clock is 30 MHz or 60 MHz)
10 = low speed (USB 1.1 transceiver clock is 6 MHz). If you

select 6-MHz LS mode, you must do a soft reset.
11 = full speed (USB 1.1 transceiver clock is 48 MHz)
746 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Device Control Register
USBC_DCTL

This register contains the control bits for the operation of the USB core. See Table
21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:12> — RO — — Reserved.
<11> PWRONPRGDONE R/W 0 0 Power-on programming done. The application uses this bit to

indicate that register programming is completed after a wake-up
from power-down mode.

<10> CGOUTNAK WO 0 0 Clear global OUT NAK. A write to this field clears the global
OUT NAK.

<9> SGOUTNAK WO 0 0 Set global OUT NAK. A write to this field sets the global OUT
NAK. The application uses this bit to send a NAK handshake on
all OUT endpoints. The application should set the this bit only
after making sure that USBC_GINTSTS[GOUTNAKEFF] is
cleared.

<8> CGNPINNAK WO 0 0 Clear global nonperiodic IN NAK. A write to this field clears the
global nonperiodic IN NAK.

<7> SGNPINNAK WO 0 0 Set global nonperiodic IN NAK. A write to this field sets the
global nonperiodic IN NAK. The application uses this bit to send
a NAK handshake on all nonperiodic IN endpoints. The USB core
can also set this bit when a timeout condition is detected on a
nonperiodic endpoint. The application should set this bit only
after making sure that USBC_GINTSTS[GINNAKEFF] is
cleared.

<6:4> TSTCTL R/W 0x0 0x0 Test control.

000 = test mode disabled
001 = test_J mode
010 = test_K mode
011 = test_SE0_NAK mode
100 = test_Packet mode
101 = test_Force_Enable
All others = reserved

<3> GOUTNAKSTS RO 0 0 Global OUT NAK status.

0 = A handshake is sent based on the FIFO Status and the
NAK and STALL bit settings.

1 = No data is written to the RxFIFO, irrespective of space
availability. Sends a NAK handshake on all packets,
except on SETUP transactions. All isochronous OUT
packets are dropped.

<2> GNPINNAKSTS RO 0 0 Global nonperiodic IN NAK status.

0 = A handshake is sent based on the data availability in the
transmit FIFO.
1 = A NAK handshake is sent out on all non-periodic IN

endpoints, irrespective of the data availability in the
transmit FIFO.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 747

 USB Unit (USB): USB Registers
Device Status Register
USBC_DSTS

This register indicates the status of the USB core with respect to USB-related events.
It must be read on interrupts from USBC_DAINT. See Table 21–3 for the address.

<1> SFTDISCON R/W 0 0 Soft disconnect. The application uses this bit to signal the
CN50XX USB core to do a soft disconnect. As long as this bit is
set, the host will not see that the device is connected, and the
device will not receive signals on the USB. The core stays in the
disconnected state until the application clears this bit. The
minimum duration for which the core must keep this bit set is
specified in Minimum Duration for Soft Disconnect.

0 = Normal operation. When this bit is cleared after a soft
disconnect, the core drives the phy_opmode_o signal on
the UTMI+ to 0x0, which generates a device connect
event to the USB host. When the device is reconnected,
the USB host restarts device enumeration.

1 = The USB core drives the phy_opmode_o signal on the
UTMI+ to 0x1, which generates a device disconnect event
to the USB host.

<0> RMTWKUPSIG R/W 0 0 Remote wakeup signaling. When the application sets this bit, the
USB core initiates remote signaling to wake up the USB
host.The application must set this bit to get the USB core out of
suspended state and must clear this bit after the USB core comes
out of suspended state.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:22> — RO — — Reserved.
<21:8> SOFFN RO 0x0 0x0 Frame or microframe number of the received SOF. When the USB core

is operating at high speed, this field contains a microframe number.
When the USB core is operating at full or low speed, this field contains
a frame number.

<7:4> — RO — — Reserved.
<3> ERRTICERR RO 0x0 0x0 Erratic error. The USB core sets this bit to report any erratic errors

(phy_rxvalid_i/phy_rxvldh_i or phy_rxactive_i is asserted for at least 2
ms, due to PHY error) seen on the UTMI+. Due to erratic errors, the
CN50XX USB core goes into suspended state and an interrupt is
generated to USBC_GINTSTS[ERLYSUSP]. If the early suspend is
asserted due to an erratic error, the application can only perform a soft
disconnect recover.

<2:1> ENUMSPD RO 0x0 0x0 Enumerated speed. Indicates the speed at which the CN50XX USB core
has come up after speed detection through a chirp sequence.

00 = high speed (PHY clock is running at 30 or 60 MHz)
01 = full speed (PHY clock is running at 30 or 60 MHz)
10 = low speed (PHY clock is running at 6 MHz)
11 = full speed (PHY clock is running at 48 MHz)

Low speed is not supported for devices using a UTMI+ PHY.
748 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Device IN Endpoint Common Interrupt Mask Register
USBC_DIEPMSK

This register works with each of the USBC_DIEPINTn registers for all endpoints to
generate an interrupt per IN endpoint. The IN endpoint interrupt for a specific
status in the USBC_DIEPINTn register can be masked by writing to the
corresponding bit in this register. Status bits are masked by default: 0 = mask the
interrupt, 1 = unmask the interrupt. See Table 21–3 for the address.

Device OUT Endpoint Common Interrupt Mask Register
USBC_DOEPMSK

This register contains the interrupt summary bits of the USBN. See Table 21–3 for
the address.

<0> SUSPSTS RO 0x0 0x0 Suspend status. In device mode, this bit is set as long as a suspend
condition is detected on the USB. The USB core enters the suspended
state when there is no activity on the phy_line_state_i signal for an
extended period of time. The USB core comes out of the suspend:

● When there is any activity on the phy_line_state_i signal
● When the application writes to USBC_DCTL[RMTWKUPSIG].

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:7> — RO — — Reserved.
<6> INEPNAKEFFMSK R/W 0 0 IN endpoint NAK effective mask.
<5> INTKNEPMISMSK R/W 0 0 IN token received with EP mismatch mask.
<4> INTKNTXFEMPMSK R/W 0 0 IN token received when TxFIFO empty mask.
<3> TIMEOUTMSK R/W 0 0 Timeout condition mask (non-isochronous endpoints).
<2> AHBERRMSK R/W 0 0 AHB error mask.
<1> EPDISBLDMSK R/W 0 0 Endpoint disabled interrupt mask.
<0> XFERCOMPLMSK R/W 0 0 Transfer completed interrupt mask.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:5> — RO — — Reserved.
<4> OUTTKNEPDISMSK R/W 0 0 OUT token received when endpoint disabled mask. Applies to

control OUT endpoints only.
<3> SETUPMSK R/W 0 0 SETUP phase done mask. Applies to control endpoints only.
<2> AHBERRMSK R/W 0 0 AHB error.
<1> EPDISBLDMSK R/W 0 0 Endpoint disabled interrupt mask.
<0> XFERCOMPLMSK R/W 0 0 Transfer completed interrupt mask.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 749

 USB Unit (USB): USB Registers
Device All Endpoints Interrupt Register
USBC_DAINT

When a significant event occurs on an endpoint, this register interrupts the
application using USBC_GINTSTS[OEPINT or IEPINT] respectively. There is one
interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 bits
for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT
interrupt bits are used. Bits in this register are set and cleared when the application
sets and clears bits in the corresponding USBC_DIEPINTn/USBC_DOEPINTn
register. See Table 21–3 for the address.

Device All Endpoints Interrupt Mask Register
USBC_DAINTMSK

This register contains the. See Table 21–3 for the address.

Device IN Token Sequence Learning Queue Read Register 1
USBC_DTKNQR1

The depth of the IN token-sequence learning queue is specified for device-mode IN
token-sequence learning queue depth. The queue is four bits wide to store the
endpoint number. A read from this register returns the first five endpoint entries of
the IN token-sequence learning queue. When the queue is full, the new token is
pushed into the queue and oldest token is discarded. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> OUTEPINT RO 0x0 0x0 OUT endpoint interrupt bits. One bit per OUT endpoint. Bit 16 is for
OUT endpoint 0; bit 31 is for OUT endpoint 15.

<15:0> INEPINT RO 0x0 0x0 IN endpoint interrupt bits. One bit per IN endpoint. Bit 0 is for IN
endpoint 0; bit 15 is for IN endpoint 15.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:16> OUTEPMSK R/W 0x0 0x0 OUT EP interrupt mask bits. One per OUT endpoint. Bit 16 is for OUT
EP 0; bit 31 is for OUT EP 15.

<15:0> INEPMSK R/W 0x0 0x0 IN EP interrupt mask bits. One bit per IN endpoint. Bit 0 is for IN EP 0;
bit 15 is for IN EP 15.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:8> EPTKN RO 0x0 0x0 Endpoint token. Four bits per token represent the endpoint number of
the token:

Bits [31:28]: endpoint number of token 5
Bits [27:24]: endpoint number of token 4
...
Bits [15:12]: endpoint number of token 1
Bits [11:8]: endpoint number of token 0

<7> WRAPBIT RO 0x0 0x0 Wrap bit. This bit is set when the write pointer wraps. It is cleared
when the learning queue is cleared.

<6:5> — RO — — Reserved.
<4:0> INTKNWPTR RO 0x0 0x0 IN token queue write pointer.
750 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Device IN Token Sequence Learning Queue Read Registers
USBC_DTKNQR2/3/4

A read from one of these registers returns the next eight endpoint entries of the
learning queue.

● USBC_DTKNQR2 handles tokens 6–13.

● USBC_DTKNQR3 handles tokens 14–21.

● USBC_DTKNQR4 handles tokens 22–29.

See Table 21–3 for the address.

Device Control IN Endpoint 0 Control Register
USBC_DIEPCTL0

The application uses this register to control the behavior of logical IN endpoint 0.
Note that nonzero control IN endpoints use USBC_DIEPCTL(1..4). See Table 21–3
for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> EPTKN RO 0x0 0x0 Endpoint token. Four bits per token represent the endpoint number of
the token:

Bits [31:28]: endpoint number of token 13/21/29
Bits [27:24]: endpoint number of token 12/20/28
...
Bits [7:4]: endpoint number of token 7/15/23
Bits [3:0]: endpoint number of token 6/14/22

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> EPENA R/W 0 0 Endpoint enable. Indicates that data is ready to be transmitted on the
endpoint. The USB core clears this bit before setting any of the
following interrupts on this endpoint:

●endpoint disabled
●transfer completed

<30> EPDIS R/W 0 0 Endpoint disable. The application sets this bit to stop transmitting data
on an endpoint, even before the transfer for that endpoint is complete.
The application must wait for the endpoint-disabled interrupt before
treating the endpoint as disabled. The USB core clears this bit before
setting the endpoint-disabled interrupt. The application should set this
bit only if EPENA is already set for this endpoint.

<29:28> — RO — — Reserved.
<27> SNAK WO 0 0 Set NAK. A write to this bit sets the NAK bit for the endpoint. Using

this bit, the application can control the transmission of NAK
handshakes on an endpoint. The USB core can also set this bit for an
endpoint after a SETUP packet is received on that endpoint.

<26> CNAK WO 0 0 Clear NAK. A write to this bit clears the NAK bit for the endpoint.
<25:22> TXFNUM RO 0x0 0x0 TxFIFO number. This value is always set to 0, indicating that control

IN endpoint 0 data is always written in the nonperiodic transmit FIFO.
<21> STALL R/W 0 0 STALL handshake. The application can only set this bit, and the USB

core clears it, when a SETUP token is received for this endpoint. If a
NAK bit, global nonperiodic IN NAK, or global OUT NAK is set along
with this bit, the STALL bit takes priority.

<20> — RO — — Reserved.
<19:18> EPTYPE RO 0x0 0x0 Endpoint type. Hardcoded to 00 for control.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 751

 USB Unit (USB): USB Registers
Device IN Endpoint Control Registers
USBC_DIEPCTL(1..4)

The application uses these registers to control the behavior of each logical nonzero IN
endpoint. See Table 21–3 for the address.

<17> NAKSTS RO 0 0 NAK status. Indicates the following:
0 = The USB core is transmitting non-NAK handshakes based on

the FIFO status
1 = The USB core is transmitting NAK handshakes on this

endpoint.

When this bit is set, either by the application or core, the USB core
stops transmitting data, even if there is data available in the TxFIFO.
Regardless of this bit’s setting, the USB core always responds to
SETUP data packets with an ACK handshake.

<16> — RO — — Reserved.
<15> USBACTE

P
RO 1 0 USB active endpoint. This bit is always set to 1, indicating that control

endpoint 0 is always active in all configurations and interfaces.
<14:11> NEXTEP R/W 0x0 0x0 Next endpoint. Applies to nonperiodic IN endpoints only. Indicates the

endpoint number to be fetched after the data for the current endpoint is
fetched. The core can access this field, even when EPENA is not set.
This field is not valid in slave mode.

<10:2> — RO — — Reserved.
<1:0> MPS R/W 0x0 0x0 Maximum packet size. Applies to IN and OUT endpoints. The

application must program this field with the maximum packet size for
the current logical endpoint.

00 = 64 bytes, 01 = 32 bytes, 10 = 16 bytes, 11 = 8 bytes

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> EPENA R/W 0 0 Endpoint enable. Indicates that data is ready to be transmitted on the
endpoint. The USB core clears this bit before setting any of the following
interrupts on this endpoint:

●endpoint disabled
●transfer completed

<30> EPDIS R/W 0 0 Endpoint disable. The application sets this bit to stop transmitting data
on an endpoint, even before the transfer for that endpoint is complete.
The application must wait for the endpoint-disabled interrupt before
treating the endpoint as disabled. The USB core clears this bit before
setting the endpoint-disabled interrupt. The application should set this
bit only if EPENA is already set for this endpoint.

<29> SETD1PID WO 0 0 For Interrupt/BULK endpoints: set data1 PID. Writing to this field sets
DPID to data1.

For Isochronous endpoints: set odd (micro)frame (SETODDFR). Writing
to this field sets EO_FRNUM to odd (micro)frame.

<28> SETD0PID WO 0 0 For Interrupt/BULK endpoints: set data0 PID. Writing to this field sets
DPID to data0.

For Isochronous endpoints: Set even (micro)frame (SETEVENFR).
Writing to this field sets EO_FRNUM to even (micro)frame.

<27> SNAK WO 0 0 Set NAK. A write to this bit sets the NAK bit for the endpoint. Using this
bit, the application can control the transmission of NAK handshakes on
an endpoint. The USB core can also set this bit for an endpoint after a
SETUP packet is received on the endpoint.
752 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
<26> CNAK WO 0 0 Clear NAK. A write to this bit clears the NAK bit for the endpoint.
<25:22> TXFNUM R/W 0x0 0x0 TxFIFO number. Nonperiodic endpoints must set this bit to 0x0. Periodic

endpoints must map this to the corresponding periodic TxFIFO number.

0x0 = nonperiodic TxFIFO
All others = specified periodic TxFIFO number

<21> STALL R/W 0 0 STALL handshake.

For noncontrol, nonisochronous endpoints: The application sets this bit
to stall all tokens from the USB host to this endpoint. If a NAK bit,
global nonperiodic IN NAK, or global OUT NAK is set along with this
bit, the STALL bit takes priority. Only the application can clear this bit,
never the USB core.

For control endpoints: The application can only set this bit, and the USB
core clears it, when a SETUP token is received for this endpoint. If a
NAK bit, global nonperiodic IN NAK, or global OUT NAK is set along
with this bit, the STALL bit takes priority. Regardless of this bit’s
setting, the USB core always responds to SETUP data packets with an
ACK handshake.

<20> — RO — — Reserved.
<19:18> EPTYPE R/W 0x0 0x0 Endpoint type. This is the transfer type supported by this logical

endpoint.

00 = control
01 = isochronous
10 = bulk
11 = interrupt

<17> NAKSTS RO 0 0 NAK status. Indicates the following:
0 = USB core is transmitting non-NAK handshakes based on the

FIFO status
1 = USB core is transmitting NAK handshakes on this endpoint.

When either the application or the USB core sets this bit:
●For nonisochronous IN endpoints: the USB core stops transmitting

any data on an IN endpoint, even if data is available in the TxFIFO.
●For isochronous IN endpoints: the USB core sends out a zero-length

data packet, even if data is available in the TxFIFO.
Regardless of this bit’s setting, the core always responds to SETUP data
packets with an ACK handshake.

<16> DPID RO 0 0 For interrupt/bulk IN and OUT endpoints: Endpoint data PID (DPID)

Contains the PID of the packet to be received or transmitted on this
endpoint. The application should program the PID of the first packet to
be received or transmitted on this endpoint, after the endpoint is
activated. Applications use the SETD1PID and SETD0PID fields of this
register to program either data0 or data1 PID.

0 = data0
1 = data1

For isochronous IN and OUT endpoints: even/odd (micro)frame
(EO_FRNUM)

Indicates the (micro)frame number in which the core transmits/receives
isochronous data for this endpoint. The application should program the
even/odd (micro) frame number in which it intends to transmit/receive
isochronous data for this endpoint using the SETEVNFR and
SETODDFR fields in this register.

0 = even (micro)frame
1 = odd (micro)frame

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 753

 USB Unit (USB): USB Registers
Device IN Endpoint Interrupt Registers
USBC_DIEPINT(0..4)

This register indicates the status of an endpoint with respect to USB- and AHB-
related events. The application must read this register when the
USBC_GINTSTS[OEPINT or IEPINT] bits are set. Before the application can read
this register, it must first read the USBC_DAINT register to get the exact endpoint
number for USBC_DIEPINT(0..4). The application must clear the appropriate bit in
this register to clear the corresponding bits in the
USBC_DAINT and USBC_GINTSTS registers. See Table 21–3 for the address.

<15> USBACTEP R/W 1 0 USB active endpoint. Indicates whether this endpoint is active in the
current configuration and interface. The USB core clears this bit for all
endpoints (other than EP 0) after detecting a USB reset. After receiving
the SetConfiguration and SetInterface commands, the application must
program endpoint registers accordingly and set this bit.

<14:11> NEXTEP R/W 0 0 Next endpoint. Applies to nonperiodic IN endpoints only. Indicates the
endpoint number to be fetched after the data for the current endpoint is
fetched. The USB core can access this field, even when EPENA is not set.
This field is not valid in slave mode.

<10:0> MPS R/W 0x0 0x0 Maximum packet size. Applies to IN and OUT endpoints. The
application must program this field with the maximum packet size for
the current logical endpoint. This value is in bytes.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:7> — RO — — Reserved.
<6> INEPNAKEFF RO 0 0 IN endpoint NAK effective. Applies to periodic IN endpoints only.

Indicates that the IN endpoint NAK bit set by the application has
taken effect in the USB core. This bit can be cleared when the
application clears the IN endpoint NAK by writing to
USBC_DIEPCTLn[CNAK]. This interrupt indicates that the USB
core has sampled the NAK bit set (either by the application or by
the USB core). This interrupt does not necessarily mean that a
NAK handshake is sent on the USB. A STALL bit takes priority
over a NAK bit.

<5> INTKNEPMIS R/W 0 0 IN token received with EP mismatch. Applies to nonperiodic IN
endpoints only. Indicates that the data in the top of the
nonperiodic TxFIFO belongs to an endpoint other than the one for
which the IN token was received. This interrupt is asserted on the
endpoint for which the IN token was received.

<4> INTKNTXFEMP R/W1C 0 0 IN token received when TxFIFO is empty. Applies only to non-
periodic IN endpoints. Indicates that an IN token was received
when the associated TxFIFO (periodic/nonperiodic) was empty.
This interrupt is asserted on the endpoint for which the IN token
was received.

<3> TIMEOUT R/W1C 0 0 Timeout condition. Applies to nonisochronous IN endpoints only.
Indicates that the core has detected a timeout condition on the
USB for the last IN token on this endpoint.

<2> AHBERR R/W1C 0 0 AHB error. This is generated only in internal-DMA mode when
there is an AHB error during an AHB read/write operation. The
application can read the corresponding endpoint DMA address
register to get the error address.

<1> EPDISBLD R/W1C 0 0 Endpoint disabled interrupt. This bit indicates that the endpoint is
disabled per the application's request.
754 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Device IN Endpoint 0 Transfer-Size Register
USBC_DIEPTSIZ0

This register contains the. See Table 21–3 for the address.

Device IN Endpoint Transfer-Size Registers
USBC_DIEPTSIZ(1..4)

The application must modify this register before enabling the endpoint. Once
endpoint 0 is enabled (using either USBC_DIEPCTL0[EPENA] or
USBC_DOEPCTL0[EPENA]), the USB core modifies this register. The application
can only read this register once the USB core has cleared the EPENA bit. This
register is used only for endpoints other than endpoint 0. See Table 21–3 for the
address.

<0> XFERCOMPL R/W1C 0 0 Transfer completed interrupt. Indicates that the programmed
transfer is complete on the AHB as well as on the USB, for this
endpoint.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:20> — RO — — Reserved.
<19> PKTCNT R/W 0 0 Packet count. Indicates the total number of USB packets that

constitute the transfer-size amount of data for endpoint 0. This field is
decremented every time a packet (maximum-size or short packet) is
read from the TxFIFO.

<18:7> — RO — — Reserved.
<6:0> XFERSIZE R/W 0x0 0x0 Transfer size. Indicates the transfer size in bytes for endpoint 0. The

USB core interrupts the application only after it has exhausted the
transfer-size amount of data. The transfer size can be set to the
maximum packet size of the endpoint, to be interrupted at the end of
each packet. The USB core decrements this field every time a packet
from the external memory is written to the TxFIFO.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> — RO — — Reserved.
<30:29> MC R/W 0x0 0x0 Multicount. Applies to IN endpoints only.

For periodic IN endpoints, this field indicates the number of packets
that must be transmitted per microframe on the USB. The USB core
uses this field to calculate the data PID for isochronous IN endpoints.

01 = 1 packet
10 = 2 packets
11 = 3 packets

For non-periodic IN endpoints, this field is valid only in internal-DMA
mode. It specifies the number of packets the USB core should fetch for
an IN endpoint before it switches to the endpoint pointed to by
USBC_DIEPCTLn[NEXTEP].

<28:19> PKTCNT R/W 0x0 0x0 Packet count. Indicates the total number of USB packets that
constitute the transfer-size amount of data for this endpoint.

IN endpoints: This field is decremented every time a packet
(maximum-size or short packet) is read from the TxFIFO.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 755

 USB Unit (USB): USB Registers
Device Control OUT Endpoint 0 Control Register
USBC_DOEPCTL0

The application uses this register to control the behavior of logical IN endpoint 0.
Note that nonzero control IN endpoints use USBC_DIEPCTL(1..4). See Table 21–3
for the address.

<18:0> XFERSIZE R/W 0x0 0x0 Transfer size. This field contains the transfer size in bytes for the
current endpoint. The USB core only interrupts the application after it
has exhausted the transfer-size amount of data. The transfer size can
be set to the maximum-packet size of the endpoint, to be interrupted at
the end of each packet.

IN endpoints: The USB core decrements this field every time a packet
from the external memory is written to the TxFIFO.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> EPENA R/W 0 0 Endpoint enable. Indicates that the application has allocated the
memory to start receiving data from the USB. The USB core clears this
bit before setting any of the following interrupts on this endpoint:

●SETUP phase done
●endpoint disabled
●transfer completed

<30> EPDIS R/W 0 0 Endpoint disable. The application cannot disable control OUT endpoint
0.

<29:28> — RO — — Reserved.
<27> SNAK WO 0 0 Set NAK. A write to this bit sets the NAK bit for the endpoint. Using this

bit, the application can control the transmission of NAK handshakes on
an endpoint. The USB core can also set bit on a transfer-completed
interrupt, or after a SETUP is received on the endpoint.

<26> CNAK WO 0 0 Clear NAK. A write to this bit clears the NAK bit for the endpoint.
<25:22> — RO — — Reserved.
<21> STALL R/W 0 0 STALL handshake. The application can only set this bit, and the USB

core clears it, when a SETUP token is received for this endpoint. If a
NAK bit or global OUT NAK is set along with this bit, the STALL bit
takes priority. Regardless of this bit’s setting, the core always responds to
SETUP data packets with an ACK handshake.

<20> SNP R/W 0 0 Snoop mode. This bit configures the endpoint to snoop mode. In snoop
mode, the USB core does not check the correctness of OUT packets before
transferring them to application memory.

<19:18> EPTYPE RO 0x0 0x0 Endpoint type. Hardcoded to 00 for control.
<17> NAKSTS RO 0 0 NAK status. Indicates the following:

0 = The USB core is transmitting non-NAK handshakes based on the
FIFO status

1 = The USB core is transmitting NAK handshakes on this endpoint.

When either the application or the core sets this bit, the USB core stops
receiving data, even if there is space in the RxFIFO to accommodate the
incoming packet. Regardless of this bit's setting, the core always
responds to SETUP data packets with an ACK handshake.

<16> — RO — — Reserved.
<15> USBACTEP RO 1 0 USB active endpoint. This bit is always set to 1, indicating that control

endpoint 0 is always active in all configurations and interfaces.
<14:2> — RO — — Reserved.
756 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Device OUT Endpoint Control Registers
USBC_DOEPCTL(1..4)

The application uses these registers to control the behavior of each logical nonzero IN
endpoint. See Table 21–3 for the address.

<1:0> MPS R/W 0x0 0x0 Maximum packet size. The maximum packet size for control OUT
endpoint 0 is the same as what is programmed in control IN endpoint 0.

00 = 64 bytes, 01 = 32 bytes, 10 = 16 bytes, 11 = 8 bytes

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> EPENA R/W 0 0 Endpoint enable. Indicates that data is ready to be transmitted on the
endpoint. The USB core clears this bit before setting any of the following
interrupts on this endpoint:

●SETUP phase done
●endpoint disabled
●transfer completed

For control OUT endpoints in DMA mode, this bit must be set to be able
to transfer SETUP data packets in memory.

<30> EPDIS R/W 0 0 Endpoint disable. The application sets this bit to stop transmitting data
on an endpoint, even before the transfer for that endpoint is complete.
The application must wait for the endpoint-disabled interrupt before
treating the endpoint as disabled. The USB core clears this bit before
setting the endpoint-disabled interrupt. The application should set this
bit only if EPENA is already set for this endpoint.

<29> SETD1PID WO 0 0 For Interrupt/BULK endpoints: set data1 PID. Writing to this field sets
DPID to data1.

For Isochronous endpoints: set odd (micro)frame (SETODDFR). Writing
to this field sets EO_FRNUM to odd (micro)frame.

<28> SETD0PID WO 0 0 For Interrupt/BULK endpoints: set data0 PID. Writing to this field sets
DPID to data0.

For Isochronous endpoints: Set even (micro)frame (SETEVENFR).
Writing to this field sets EO_FRNUM to even (micro)frame.

<27> SNAK WO 0 0 Set NAK. A write to this bit sets the NAK bit for the endpoint. Using this
bit, the application can control the transmission of NAK handshakes on
an endpoint. The USB core can also set this bit for an endpoint after a
SETUP packet is received on the endpoint.

<26> CNAK WO 0 0 Clear NAK. A write to this bit clears the NAK bit for the endpoint.
<25:22> — RO — — Reserved.
<21> STALL R/W 0 0 STALL handshake.

For noncontrol, nonisochronous endpoints: The application sets this bit
to stall all tokens from the USB host to this endpoint. If a NAK bit,
global nonperiodic IN NAK, or global OUT NAK is set along with this
bit, the STALL bit takes priority. Only the application can clear this bit,
never the USB core.

For control endpoints: The application can only set this bit, and the USB
core clears it, when a SETUP token is received for this endpoint. If a
NAK bit, global nonperiodic IN NAK, or global OUT NAK is set along
with this bit, the STALL bit takes priority. Regardless of this bit’s
setting, the USB core always responds to SETUP data packets with an
ACK handshake.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 757

 USB Unit (USB): USB Registers
<20> SNP R/W 0 0 Snoop mode. This bit configures the endpoint to snoop mode. In snoop
mode, the USB core does not check the correctness of OUT packets before
transferring them to application memory.

<19:18> EPTYPE R/W 0x0 0x0 Endpoint type. This is the transfer type supported by this logical
endpoint.

00 = control
01 = isochronous
10 = bulk
11 = interrupt

<17> NAKSTS RO 0 0 NAK status. Indicates the following:
0 = USB core is transmitting non-NAK handshakes based on the

FIFO status
1 = USB core is transmitting NAK handshakes on this endpoint.

When either the application or the USB core sets this bit:
●The core stops receiving any data on an OUT endpoint, even if there is

space in the RxFIFO to accommodate the incoming packet.
<16> DPID RO 0 0 For interrupt/bulk IN and OUT endpoints: endpoint data PID (DPID)

Contains the PID of the packet to be received or transmitted on this
endpoint. The application should program the PID of the first packet to
be received or transmitted on this endpoint, after the endpoint is
activated. Applications use the SETD1PID and SETD0PID fields of this
register to program either data0 or data1 PID.

0 = data0
1 = data1

For isochronous IN and OUT endpoints: even/odd (micro)frame
(EO_FRNUM)

Indicates the (micro)frame number in which the core transmits/receives
isochronous data for this endpoint. The application should program the
even/odd (micro) frame number in which it intends to transmit/receive
isochronous data for this endpoint using the SETEVNFR and
SETODDFR fields in this register.

0 = even (micro)frame
1 = odd (micro)frame

<15> USBACTEP R/W 1 0 USB active endpoint. Indicates whether this endpoint is active in the
current configuration and interface. The USB core clears this bit for all
endpoints (other than EP 0) after detecting a USB reset. After receiving
the SetConfiguration and SetInterface commands, the application must
program endpoint registers accordingly and set this bit.

<14:11> — RO — — Reserved.
<10:0> MPS R/W 0x0 0x0 Maximum packet size. Applies to IN and OUT endpoints. The

application must program this field with the maximum packet size for
the current logical endpoint. This value is in bytes.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description
758 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
Device OUT Endpoint Interrupt Registers
USBC_DOEPINT(0..4)

This register contains the. See Table 21–3 for the address.

Device OUT Endpoint 0 Transfer-Size Register
USBC_DOEPTSIZ0

This register contains the. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:5> — RO — — Reserved.
<4> OUTTKNEPDIS R/W1C 0 0 OUT token received when endpoint disabled. Applies only to

control OUT endpoints. Indicates that an OUT token was received
when the endpoint was not yet enabled. This interrupt is asserted
on the endpoint for which the OUT token was received.

<3> SETUP R/W1C 0 0 SETUP phase done. Applies to control OUT endpoints only.
Indicates that the SETUP phase for the control endpoint is
complete and no more back-to-back SETUP packets were received
for the current control transfer. On this interrupt, the application
can decode the received SETUP data packet.

<2> AHBERR R/W1C 0 0 AHB error. This is generated only in internal-DMA mode when
there is an AHB error during an AHB read/write operation. The
application can read the corresponding endpoint DMA address
register to get the error address.

<1> EPDISBLD R/W1C 0 0 Endpoint disabled interrupt. This bit indicates that the endpoint is
disabled per the application's request.

<0> XFERCOMPL R/W1C 0 0 Transfer completed interrupt. Indicates that the programmed
transfer is complete on the AHB as well as on the USB, for this
endpoint.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> — RO — — Reserved.
<30:29> SUPCNT R/W 0x0 0x0 SETUP packet count. This field specifies the number of back-to-back

SETUP data packets the endpoint can receive.
01 = 1 packet
10 = 2 packets
11 = 3 packets

<28:20> — RO — — Reserved.
<19> PKTCNT R/W 0 0 Packet count. Indicates the total number of USB packets that

constitute the transfer-size amount of data for endpoint 0. This field is
decremented every time a packet (maximum-size or short packet) is
read from the TxFIFO.

<18:7> — RO — — Reserved.
<6:0> XFERSIZE R/W 0x0 0x0 Transfer size. Indicates the transfer size in bytes for endpoint 0. The

USB core interrupts the application only after it has exhausted the
transfer-size amount of data. The transfer size can be set to the
maximum packet size of the endpoint, to be interrupted at the end of
each packet. The USB core decrements this field every time a packet
from the external memory is written to the TxFIFO.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 759

 USB Unit (USB): USB Registers
Device OUT Endpoint Transfer-Size Registers
USBC_DOEPTSIZ(1..4)

The application must modify this register before enabling the endpoint. Once
endpoint 0 is enabled (using either USBC_DIEPCTL0[EPENA] or
USBC_DOEPCTL0[EPENA]), the USB core modifies this register. The application
can only read this register once the USB core has cleared the EPENA bit. This
register is used only for endpoints other than endpoint 0. See Table 21–3 for the
address.

Power and Clock-Gating Control Register
USBC_PCGCCTL

The application can use this register to control the USB core’s power-down and clock
gating features. See Table 21–3 for the address.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31> — RO — — Reserved.
<30:29> MC R/W 0x0 0x0 Multicount.

Received data PID (RxDPID). Applies to isochronous OUT endpoints
only. This is the data PID received in the last packet for this endpoint.

00 = data0
01 = data1
10 = data2
11 = Mdata

SETUP packet count. Applies to control OUT endpoints only. This field
specifies the number of back-to-back SETUP data packets the endpoint
can receive.

01 = 1 packet
10 = 2 packets
11 = 3 packets

<28:19> PKTCNT R/W 0x0 0x0 Packet count. Indicates the total number of USB packets that
constitute the transfer-size amount of data for this endpoint.

OUT endpoints: This field is decremented every time a packet
(maximum-size or short packet) is written to the RxFIFO.

<18:0> XFERSIZE R/W 0x0 0x0 Transfer size. This field contains the transfer size in bytes for the
current endpoint. The USB core only interrupts the application after it
has exhausted the transfer-size amount of data. The transfer size can
be set to the maximum-packet size of the endpoint, to be interrupted at
the end of each packet.

OUT endpoints: The USB core decrements this field every time a
packet is read from the RxFIFO and written to the external memory.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:5> — RO — — Reserved.
<4> PHYSUSPENDED RO 0 0 PHY suspended. Indicates that the PHY has been suspended.

After the application sets STOPPCLK (bit <0>), this bit is
updated once the PHY is suspended. Since the UTMI+ PHY
suspend is controlled through a port, the UTMI+ PHY is
suspended immediately after STOPPCLK is set. However, the
ULPI PHY takes a few clocks to suspend, because the suspend
information is conveyed through the ULPI protocol to the ULPI
PHY.
760 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

USB Unit (USB): USB Registers
NPTX Data FIFO Registers
USBC_NPTXDFIFO(0..7)

A slave-mode application uses one of these registers to access the Tx FIFO for
channel n. See Table 21–3 for the address.

<3> RSTPDWNMODULE R/W 0 0 Reset power-down modules. This bit is valid only in partial-
power-down mode. The application sets this bit when the power
is turned off. The application clears this bit after the power is
turned on and the PHY clock is up.

<2> PWRCLMP R/W 0 0 Power clamp. This bit is only valid in partial-power-down mode.
The application sets this bit before the power is turned off to
clamp the signals between the power-on modules and the power-
off modules. The application clears the bit to disable the
clamping before the power is turned on.

<1> GATEHCLK R/W 0 0 Gate HCLK. The application sets this bit to gate HCLK to
modules other than the AHB slave and master and wakeup logic
when the USB is suspended or the session is not valid. The
application clears this bit when the USB is resumed or a new
session starts.

<0> STOPPCLK R/W 0 0 Stop PCLK. The application sets this bit to stop the PHY clock
(phy_clk) when the USB is suspended, the session is not valid,
or the device is disconnected. The application clears this bit
when the USB is resumed or a new session starts.

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

Bit Pos Field Name
Field
Type

Reset
Value

Typical
Value Field Description

<31:0> DATA R/W 0x0 0x0 Reserved.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 761

 USB Unit (USB): USB Registers
762 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 22

Electrical Specifications
This chapter contains the following subjects:

● Overview

● Absolute Maximum Ratings

● Recommended Operating Conditions

● Power Sequencing

● Power Consumption

● DC Electrical Characteristics
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 763

 Electrical Specifications: Absolute Maximum Ratings
Overview
This chapter provides absolute maximum ratings, recommended operating
conditions, power consumption, and DC characteristics for all I/O types present on
the CN50XX.

22.1 Absolute Maximum Ratings

If absolute maximum ratings are exceeded, the device may fail permanently. Device
operation at or above these limits is not recommended. Exposure to absolute
maximum ratings for extended periods of time may also diminish device function.

22.1.1 Absolute Maximum Storage Temperatures

Table 22–2 shows the CN50XX maximum storage temperature range.

22.2 Recommended Operating Conditions

Table 22–3 shows recommended commercial-grade operating conditions, defining the
upper and lower limits between which the device is tested to function.

Table 22–1 Voltage Absolute Maximum Ratings
Parameter Description Min Max Unit
VDD Core supply voltage −0.3 1.32 V
VDD18_DDR DDR2 SSTL-2 (1.8V) supply voltage −0.3 2.1 V
VDD33 PCI3 supply voltage −0.3 3.97 V
VDD25_RGM RGMII/GMII/MII (2.5V) supply voltage −0.3 2.8 V
USB_VDD33 USB (3.3V) supply voltage −0.3 3.97 V
VIN-3.3 PCI3 (3.3V) input voltage −0.3 3.97 V

VIN-SSTL18 SSTL18 input voltage −0.3 2.1 V

DDR_VREF DDR2 interface reference voltage −0.3 2.1 V
DDR_PLL_VDD33 DDR2 PLL supply voltage −0.3 3.6 V
PLL_VDD33 Core PLL supply voltage −0.3 3.6 V
PCI_DLL_VDD33 PCI DLL supply voltage −0.3 3.6 V

Table 22–2 Absolute Maximum Storage Temperatures
Parameter Description Min Max Unit
TSTORAGE Storage temperature −40 120 oC

Table 22–3 Recommended Operating Temperatures (Commercial Grade)

Frequency
Junction Temp. (TJ) Case Temp. (TC)

UnitMin Max Min Max
300/350/400 MHz 0 110 0 90 oC
500 MHz 0 110 0 85 oC
600 MHz 0 105 0 75 oC
700 MHz 0 105 0 70 oC

NOTE: The CN50XX chips are tested to the specified case temperatures (TC). The junction temperature
(TJ) is provided for guidance purposes. When you design the system thermal solution, the maximum
case temperature must not be exceeded.
764 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Electrical Specifications: Power Sequencing
22.2.1 Supply Voltages for the Chip Core Voltage and External Interfaces

Table 22–4 shows CN50XX’s recommended supply voltages for the chip core voltage
and external interfaces.

22.2.2 Supply Voltages for the On-Chip PLLs and DLLs

Table 22–5 shows CN50XX’s supply voltages for the on-chip PLLs and DLLs.

22.2.3 Reference Voltages

Table 22–6 shows CN50XX’s reference voltage supplies.

22.3 Power Sequencing

The CN50XX has a core voltage, multiple interface supply voltages and several PLL
and DLL voltages. These supply voltages must be brought online or offline in a specific
sequence to ensure correct device functionality, stability, and reliability.

22.3.1 Power Up

The power-up sequence is dependent on the value of PCI_HOST_MODE. The
sequences for when PCI host mode is enabled and disabled are explained in the
following subsections.

Table 22–4 Recommended Operating Supply Voltages

Parameter Description Min Typical Max Unit

VDD Core supply voltage for 300/350/400/500 MHz 1.0 1.05 1.1 V

VDD Core supply voltage for 600 MHz 1.05 1.1 1.15 V

VDD Core supply voltage for 700 MHz 1.15 1.2 1.25 V

VDD18_DDR DDR2 SSTL-2 (1.8V) supply voltage 1.7 1.8 1.9 V

VDD33 PCI3 supply voltage 3.14 3.3 3.46 V

VDD25_RGM RGMII (2.5V) supply voltage 2.375 2.5 2.625 V

USB_VDD33 USB supply voltage 3.07 3.3 3.53 V

Table 22–5 Power Supplies

Supply Description Min Typical Max Unit

DDR_PLL_VDD33 DDR2 PLL supply voltage 3.14 3.3 3.46 V

PLL_VDD33 Core PLL supply voltage 3.14 3.3 3.46 V

PCI_DLL_VDD33 PCI DLL supply voltage 3.14 3.3 3.46 V

Table 22–6 VREF Parameters

Parameter Description Min Typical Max Unit

DDR_VREF DDR2 interface reference voltage 0.85 0.9 0.95 V
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 765

 Electrical Specifications: Power Sequencing
22.3.1.1 Power Sequencing with PCI_HOST_MODE = 1

The power-up sequence in host mode is specified in the following steps.

1. Enable all PLL reference clocks before or at the same time that VDD33 is pow-
ered. PLL_DCOK must be deasserted low, and CHIP_RESET_L must be asserted
low during powerup.

2. Once VDD33 is enabled, all PLL/DLL voltages and other interface voltages based
on 3.3V can be enabled in any order. This may be done before, coincident with, or
after VDD is powered up.

3. Power up VDD once VDD33 is stable.

4. Enable VDD18_DDR after VDD is stable.

5. Power up all other interface voltages in any order.

6. Assert signal PLL_DCOK at least 3 ms after the power supplies are stable. The
CN50XX samples PLL_MUL on the rising edge of PLL_DCOK to determine the
internal core-clock and DDR-memory-clock multiplier ratios respectively.

7. Deassert signal CHIP_RESET_L high at least 1 ms after PLL_DCOK is asserted.

Figure 22–1 shows the power-up sequence with the PCI in host mode.

Figure 22–1 Power Sequencing with PCI_HOST_MODE=1

PLL_DCOK

PLL_REF_CLK

VDD

PLL_MUL

CHIP_RESET_L

Cores

BOOT_CE_0_L

VDD18_DDR

VDD33

At least 3 ms

Sample

PCI_REF_CLKIN

VDD25_RGM

At least 1 ms

~180K core-clock cycles

In reset Core 0 comes out of reset (assumes PCI_BOOT = 0)

Core 0 fetches boot code

PLL_VDD33
DDR_PLL_VDD33
PCI_DLL_VDD33

USB_VDD33
766 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Electrical Specifications: Power Sequencing
22.3.1.2 Power Sequencing with PCI_HOST_MODE = 0

The power-up sequence in non-host mode is specified in the following steps.

1. Enable all PLL reference clocks before or at the same time that VDD33 is pow-
ered. PLL_DCOK must be deasserted low, and PCI_RST_L must be asserted low
during powerup.

2. Once VDD33 is enabled, all PLL/DLL voltages and other interface voltages based
on 3.3V can be enabled in any order. This may be done before, coincident with, or
after VDD is powered up.

3. Power up VDD once VDD33 is stable.

4. Enable VDD18_DDR after VDD is stable.

5. Power up all other interface voltages in any order.

6. Assert signal PLL_DCOK at least 3 ms after the power supplies are stable. The
CN50XX samples PLL_MUL on the rising edge of PLL_DCOK to determine the
internal core-clock and DDR-memory-clock multiplier ratios respectively.

7. Deassert signal PCI_RST_L high at least 1 ms after PLL_DCOK is asserted.

Figure 22–2 shows the power-up sequence in non-host mode.

Refer to Section 9.11.2, “PCI Reset Sequence in Non-Host Mode”, on page 399 for
more detail about the PCI reset sequence in non-host mode.

22.3.2 Power Down

Power supplies can be removed in any order without any restrictions.

Figure 22–2 Power Sequencing with PCI_HOST_MODE=0

PLL_DCOK

PLL_REF_CLK

VDD

PLL_MUL

PCI_RST_L

VDD18_DDR

VDD33

At least 3 ms

Sample

PCI_REF_CLKIN

VDD25_RGM

At least 1 ms

PLL_VDD33
DDR_PLL_VDD33
PCI_DLL_VDD33

USB_VDD33

NOTE: When powering down, the reference clock must not be stopped until PLL_DCOK has been
deasserted.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 767

 Electrical Specifications: Power Consumption
22.4 Power Consumption

Table 22–7 lists CN50XX’s power consumption.

Table 22–8 shows CN50XX’s DDR2 memory interface supply current.

Table 22–9 shows CN50XX’s USB 2.0 interface supply current.

Table 22–10 shows CN50XX’s 3.3-V supply current for the PCI interface and the
other miscellaneous I/O interfaces.

Table 22–7 CN50XX Core Power Supply Specification

Frequency/
Voltage Parameter Description 1 Core 2 Cores Units

300 MHz
@ 1.05V

ICC ICC for VDD supply 1.8 2.0 A

ICCRst ICC for VDD supply (reset) 1.8 1.8 A

350 MHz
@ 1.05V

ICC ICC for VDD supply 2.0 2.2 A

ICCRst ICC for VDD supply (reset) 2.0 2.0 A

400 MHz
@ 1.05V

ICC ICC for VDD supply 2.2 2.4 A

ICCRst ICC for VDD supply (reset) 2.2 2.2 A

500 MHz
@ 1.05V

ICC ICC for VDD supply 2.4 2.8 A

ICCRst ICC for VDD supply (reset) 2.4 2.4 A

600 MHz
@ 1.1V

ICC ICC for VDD supply 3.2 3.7 A

ICCRst ICC for VDD supply (reset) 3.2 3.2 A

700 MHz
@ 1.2V

ICC ICC for VDD supply 3.9 4.4 A

ICCRst ICC for VDD supply (reset) 3.9 3.9 A

Table 22–8 DDR2 Memory Interface Supply Current

Parameter Description

DDR Data Rate (MHz)

Units400 533 667

IDDR18 (@1.8V) ICC for VDD18 supply for 36-bit wide memory 234 311 390 mA

IDDR18 (@1.8V) ICC for VDD18 supply for 18-bit wide memory 117 155 195 mA

Table 22–9 USB 2.0 Interface (3.3V) Supply Current For Different Speed Modes (HS/FS/
LS)

Parameter Description
Supply
Current Units

IHSTRANS
(@3.3V)

HS transmit: represents the average current drawn from
USB_VDD33 supply, during packet transmission while driving a 10-
pF load

4.0 mA

IFSTRANS
(@3.3V)

FS transmit: represents the average current drawn from
USB_VDD33 supply, during packet transmission while driving a 50-
pF load

16.0 mA

ILSTRANS
(@3.3V)

LS transmit: represents the average current drawn from
USB_VDD33 supply, during packet transmission while driving a 600-
pF load

16.0 mA

Table 22–10 PCI3/Miscellaneous Supply Current

Parameter Description

Misc.
I/O

Interfaces

PCI FREQ (MHz)

Units33 66

IPCI33 (@3.3V) ICC for VDD33 supply at 32-bits 40 30 50 mA
768 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Electrical Specifications: DC Electrical Characteristics
Table 22–11 shows CN50XX’s RGMII/GMII/MII supply current per port.

Table 22–12 shows CN50XX’s on-chip PLL/DLL supply current.

22.5 DC Electrical Characteristics

The following tables describe the DC electrical characteristics for different types and
combinations of input receivers and output drivers on the CN50XX chip.

22.5.1 2.5V CMOS Point-to-Point I/O for the RGMII/GMII/MII Interface

Table 22–13 lists CN50XX’s 2.5V CMOS point-to-point I/O for the RGMII/GMII/MII
interface electrical characteristics.

Table 22–11 RGMII/GMII/MII Supply Current Per Port

Parameter Description
RGMII Supply

Current Units

IRGMII25 (@2.5V) 1

1. For possible combinations of ports, refer to Table 13–1.

ICC for VDD_INT1 supply 110 mA

Table 22–12 On-Chip PLL/DLLs Supply Current
Supply Description Min Typical Max Unit

DDR_PLL_VDD331

1. The DDR PLL supply feeds the core PLL as well as the DDR PLL. PLL_VDD33 is not being used
on the chip. It is specified only for 30XX-compatibility purposes.

DDR2 PLL supply voltage 32 36 40 mA

PLL_VDD331 Core PLL supply voltage 0.1 0.5 1.0 mA

PCI_DLL_VDD33 PCI DLL supply voltage 16 18 20 mA

Table 22–13 2.5V CMOS Point-to-Point I/O for RGMII/GMII/MII Interface

Symbol Parameter Min Nom Max Unit

VDD_INT RGMII interface supply voltage 2.375 2.5 2.625 V

VIH (DC) DC input logic high 1.7 — 3.61 V

VIL (DC) DC input logic low −0.3 — 0.7 V

VOL (DC) DC output logic low 0 — — V

VOH (DC) DC output logic high — — VDD25_RGM V

ILEAK (DC) DC input leakage current — — 1 µA

Rout_up Output impedance (pull-up) 0.9 × Rext_up_RGM2 Rext_up_RGM 1.1 × Rext_up_RGM Ω

Rout_dn Output impedance (pull-down) 0.9 × Rext_up_RGM3 Rext_up_RGM 1.1 × Rext_up_RGM Ω

CPIN RGMII interface pin capacitance — — 2.5 pF

1. The RGMII/GMII/MII receivers are 3.3V tolerant.
2. Rext_up_RGM is an external compensation resistor (50 Ω).
3. Rext_dn_RGM is an external compensation resistor (50 Ω)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 769

 Electrical Specifications: DC Electrical Characteristics
22.5.2 SSTL18 Bidirectional I/O for the DDR2 Memory Interface

Table 22–14 lists CN50XX’s SSTL18 bidirectional I/O for the DDR2 memory interface
electrical characteristics.

Table 22–14 SSTL18 Bidir I/O for DDR2 Memory Interface

Symbol Parameter Min Nom Max Unit

VDD18_DDR DDR interface supply voltage 1.7 1.8 1.9 V

DDR_VREF DDR interface input reference voltage 0.85 0.9 0.95 V

VIH (DC) DC input logic high DDR_VREF+0.125 — VDD18_DDR+0.3 V

VIL (DC) DC input logic low −0.3 — DDR_VREF−0.125 V

VIH (AC) AC input logic high DDR_VREF+0.25 — — V

VIL (AC) AC input logic low — — DDR_VREF−0.25 V

VOH (DC)1 DC output logic high VDD18_DDR−0.5 — VDD18_DDR−0.2 V

VOL (DC)2 DC output logic low 0.2 — 0.5 V

IOH (DC)3 DC output pull-up current 10 — 14 mA

IOL (DC)4 DC output pull-down current 10 — 14 mA

ILEAK (DC) DC input leakage current — — 1 µA

Rout_up Output impedance (pull-up) 0.9 × Rext_up_ddr5 Rext_up_ddr 1.1 × Rext_up_ddr Ω

Rout_dn Output impedance (pull-down) 0.9 × Rext_up_ddr6 Rext_up_ddr 1.1 × Rext_up_ddr Ω

CPIN DDR interface pin capacitance — — 2.5 pF

Differential Signals

VIN (DC)7 DC input signal voltage −0.3 — VDD18_DDR + 0.3 V

VID (DC) DC differential input voltage 0.25 — VDD18_DDR + 0.6 V

VID (AC) AC differential input voltage 0.5 — VDD18_DDR + 0.6 V

VIX (AC)8 AC differential input crosspoint voltage 0.5 × VDD18_DDR − 0.175 — 0.5 × VDD18_DDR + 0.175 V

VOX (AC)9 AC differential output crosspoint voltage 0.5 × VDD18_DDR − 0.125 — 0.5 × VDD18_DDR + 0.125 V

1. VOH is specified with a 50Ω load to a termination voltage equal to 0.5 × VDD_DDR.

2. VOL is specified with a 50Ω load to a termination voltage equal to 0.5 × VDD_DDR.

3. IOH is specified with a 50Ω load to a termination voltage equal to 0.5 × VDD_DDR.

4. IOL is specified with a 50Ω load to a termination voltage equal to 0.5 × VDD_DDR.

5. Rext_up_ddr is an external compensation resistor (18Ω – 57Ω).

6. Rext_dn_ddr is an external compensation resistor (18Ω – 57Ω).

7. Allowable DC excursion for each differential input.

8. VIX (AC) indicates the voltage at which differential inputs must cross.

9. VOX (AC) indicates the voltage at which differential outputs must cross.
770 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Electrical Specifications: DC Electrical Characteristics
22.5.3 3.3V CMOS Bidirectional and Point-to-Point I/O for the PCI/Miscellaneous
Interfaces

Table 22–15 lists CN50XX’s 3.3V CMOS bidirectional and point-to-point I/O for the
PCI and miscellaneous interfaces electrical characteristics.

22.5.4 GMII/RGMII Reference-Clock Differential Input

Table 22–16 lists CN50XX’s GMII/RGMII reference-clock differential input electrical
characteristics.

Table 22–15 3.3V CMOS Point-to-Point I/O for PCI/Miscellaneous Interfaces

Symbol Parameter Min Nom Max Unit

VDD33 Interface supply voltage 3.14 3.3 3.46 V

VIH (DC) DC input logic high 0.6 × VDD33 — VDD33 + 0.5 V

VIL (DC) DC input logic low −0.5 — 0.15 × VDD33 V

VOH (DC) DC output logic high 0.9 × VDD33 — — V

VOL (DC) DC output logic low — — 0.1 × VDD33 V

ILEAK (DC) DC input leakage current — — 1 µA

Rout1

1.The source and sink currents for a driver can be computed for a specified load, and the
driver supply voltage.

Driver output impedance (DC) 20 — 30 Ω

Table 22–16 GMII/RGMII Reference-Clock Differential Input

Symbol Parameter Min Nom Max Unit

VI Input voltage range −0.3 — VDD25_RGM + 0.3 V

VID Input differential voltage 400 — — mV

VCM Input common mode voltage range 0.5 — 2 V

IIL Receiver input leakage current — — 2 µA
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 771

 Electrical Specifications: DC Electrical Characteristics
772 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 23

AC Characteristics
This chapter contains the following subjects:

● Input Clocks

● PCI Interface

● DDR2 SDRAM Interface

● RGMII Interface

● GMII Interface

● MII Interface

● EEPROM Interface

● Boot Bus Interface

● JTAG Interface

● MPI/SPI Interface

● TWSI Interface

● SMI/MDIO Interface
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 773

 AC Characteristics: Input Clocks
23.1 Input Clocks

23.1.1 Reference-Clock Input

Table 23–1 lists CN50XX’s reference-clock input electrical characteristics.

23.2 PCI Interface

23.2.1 PCI I/O Signal Timing

Table 23–2 lists CN50XX’s PCI I/O timing.

Notes for Table 23–2:

1. See timing measurement conditions in Figure 23–1.
2. Setup time for point-to-point signals applies to REQ# and GNT# only. All other

signals are bused.
3. See timing measurement conditions in Figure 23–2.
4. RST# is asserted and deasserted asynchronously with respect to CLK.

Table 23–1 Reference-Clock Input

Clock Name Frequency
Frequency
Tolerance

Duty
Cycle

Period
Jitter
(P-P)1 Edge Rate2 Levels Termination

PLL_REF_CLK 50 MHz ±150 ppm 40/60 150 ps 2 ns 0.0–3.3V N/A

GMI_REF_CLK_P/N 125 MHz ±150 ppm 45/55 100 ps 1 ns Refer to
Table 22–16

N/A

PCI_PCLK 33/66 MHz ±150 ppm 40/60 200 ps 2 ns 0.0–3.3V N/A

1. Cycle to cycle, peak to peak.

2. Edge rate is 10%–90% (rise) and 90%–10% (fall).

Table 23–2 PCI I/O Timing

Parame-
ter Description

PCI 66 (Ref) PCI 33 (Ref)

Units NotesMin Max Min Max

TVAL PCI_PCLK to signal valid delay - bused signals 2 6 2 11 ns 1, 2

TVAL(PTP) PCI_PCLK to signal valid delay - point-to-point signals 2 6 2 12 ns 1, 2

TON Float to active delay 2 2 ns 1, 6

TOFF Active to float delay 14 28 ns 1, 6

TSU Input setup time to PCI_PCLK - bused signals 3 7 ns 2, 3, 7

TSU(PTP) Input Set up Time to PCI_PCLK - point-to-point signals 5 10, 12 ns 2, 3

TH Input Hold Time from PCI_PCLK 0 0 ns 3

TRST Reset Active Time 1 1 ms 4

TRST-CLK Reset Active Time after PCI_PCLK stable 100 100 µs 4

TRST-OFF RST# active to output float delay 40 40 ns 4,5

TRRSU REQ64# to RST# setup time 10 10 clocks

TRRH RST# to REQ64# hold time 0 50 0 50 ns

TRHFA RST# high to first Configuration access 225 225 clocks

TRHFF RST# high to first FRAME# assertion 5 5 clocks

TPVRH Power valid to RST# high 100 100 ms

TRLCX Delay from RST# low to PCI_PCLK frequency change ns
774 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: PCI Interface
5. All output drivers must be floated when RST# is active.
6. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is

defined to be when the total current delivered through the component pin is less
than or equal to the leakage current specification.

7. Setup time applies only when the device is not driving the pin. Devices cannot
drive and receive signals at the same time.

8. Maximum value is also limited by delay to the first transaction (TRHFF).

Figure 23–1 PCI Signal Output Timing Diagram

TOFF

TVAL(falling)

PCI_PCLK

Tri-state
Output

Output
Delay

Output
Delay

TVAL(rising)

TON

Figure 23–2 PCI Signal Input Timing Diagram

TSU TH

PCI_PCLK

Input Inputs Valid

Figure 23–3 PCI Reset Timing Diagram

REQ64#

PCI_PCLK

PCI
Signals

RST#

REQ64#

TRHFA

TRRSU

TRST-off

TRRH

TRHFF

TRST-clk

TRST

tri-state
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 775

 AC Characteristics: DDR2 SDRAM Interface
23.3 DDR2 SDRAM Interface

The SDRAM controller implements a subset of the operations allowed by the JEDEC
DDR-SDRAM specification. CN50XX only implements and uses the READ with
autoprecharge, WRITE with autoprecharge, and AUTOREFRESH operations and
associated bus cycles. CN50XX also implements the complete initialization sequence
required by DDR2 SDRAM parts.

23.3.1 DDR2 SDRAM Bus-Cycle Commands

Tables 23–3 and 23–4 list CN50XX’s DDR2 SDRAM bus-cycle commands.

NOTE: The DDR2 SDRAM controller only uses a burst size of 4 or 8. The
DDR2 SDRAM parts used must be programmed to this value.

Table 23–3 DDR SDRAM Bus Cycle Commands1

1. CKE is high for all commands shown.

Parameter RAS# CAS# WE#

NOP - no operation H H H

ACT - active (select bank and activate row) L H H

READ (select bank and column, and start read burst) H L H

WRITE (select bank and column, and start write burst) H L L

PRE - precharge (deactivate row in bank or banks) 2

2. CN50XX does not perform explicit precharge. It performs the latest possible autoprecharge from
a prior Read-with-Precharge or Write-with-Precharge.

L H L

AR - autorefresh L L H

LMR - load mode register L L L

Table 23–4 DDR2 SDRAM Bus Cycle Commands

Parameter

CKE

CS# RAS# CAS# WE#

BA0
BA1
BA2 [A15:A11] [A10] [A9:A0]

Previous
Cycle

Current
Cycle

(Extended) mode register set 1,2 H H L L L L BA Op code

Refresh (REF)1 H H L L L H X3 X X X

Bank activate1,2 H H L L H H BA Row address

Write1,2,4 H H L H L L BA Column L Column

Write with auto precharge1,2,4 H H L H L L BA Column H Column

Read1,2,4 L L L H L H BA Column L Column

Read with autoprecharge1,2,4 L L L L L H BA Column H Column

NOP1 H X L H H H X X X X

Device deselect1 H X H X X X X X X X

1. All DDR2 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE#, AND CKE at the rising edge of the clock.
2. Bank addresses BA0, BA1, and BA2 (BA) determine which bank is to be operated upon. For (e)MRS, BA selects an (extended)

mode register.
3. X means “H or L (but a defined logic level)“.
4. Burst reads or writes at BL=4 cannot be terminated or interrupted.
776 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: DDR2 SDRAM Interface
Table 23–5 lists CN50XX’s DDR2 SDRAM I/O signal timing.

Notes for Table 23–5:

● All timing measured from 50% transition of signal to its reference signal.
● Edge rates and output delays are specified for a standard load on all output pins.

Table 23–5 DDR2 SDRAM I/O Signal Timing

Parameter Description Min Typical Max Units

533 MHz
TCK Clock cycle time 3.551 3.760 3.969 ns

TCH Clock high-level width 1.74 1.88 2.024 ns

TCL Clock low-level width 1.74 1.88 2.024 ns

TA A output delay from CK# −127 0.0 127 ps

TBA BA output delay from CK# −127 0.0 127 ps

TCMD RAS#N, CAS#N, WE#N output delay from CK# −127 0.0 127 ps

TDQSH DQS high-level width 1.74 1.88 2.024 ns

TDQSL DQS low-level width 1.74 1.88 2.024 ns

TDS DQ setup time relative to DQS −770 0.0 N/A ps

TDH DQ hold time relative to DQS 1.13 1.88 N/A ns

TDQS DQS output delay from CK −127 0.0 127 ps

TDQ
1 DQ output delay from DQS .763 .940 1.117 ns

CASLAT 2 Effective CAS latency 2.0 — 5.5 TCK

THZ
3 DQ/DQS high-impedance window from CK/CK# −500 — 500 ps

TLZ
3 DQ/DQS low-impedance window from CK/CK# −500 — 500 ps

TRP Precharge command period 15 — ns

TRFC
Refresh-to-Active or Refresh-to-Refresh command
interval

? — 70,000 ns

667 MHz
TCK Clock cycle time 2.810 3.000 3.190 ns

TCH Clock high-level width 1.377 1.500 1.627 ns

TCL Clock low-level width 1.377 1.500 1.627 ns

TA A output delay from CK# −105 0.0 105 ps

TBA BA output delay from CK# −105 0.0 105 ps

TCMD RAS#N, CAS#N, WE#N output delay from CK# −105 0.0 105 ps

TDQSH DQS high-level width 1.377 1.500 1.627 ns

TDQSL DQS low-level width 1.377 1.500 1.627 ns

TDS DQ setup time relative to DQS −580 0.0 N/A ps

TDH DQ hold time relative to DQS 0.940 1.500 N/A ns

TDQS DQS output delay from CK −105 0.0 105 ps

TDQ
1 DQ output delay from DQS 605 750 895 ps

CASLAT 2 Effective CAS latency 2.0 — 5.5 TCK

THZ
3 DQ/DQS high-impedance window from CK/CK# −500 — 500 ps

TLZ
3 DQ/DQS low-impedance window from CK/CK# −500 — 500 ps

TRP Precharge command period 15 — ns
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 777

 AC Characteristics: DDR2 SDRAM Interface
23.3.2 DDR2 SDRAM Read Operations

CN50XX always performs burst = (4 or 8) reads with final read being a read-with-
precharge. Figure 23–4 demonstrates two back-to-back READ commands of BURST
= 4 and CASLAT = 3.0

TRFC
Refresh-to-Active or Refresh-to-Refresh command
interval

? — 70,000 ns

1. Relative to DQS. This signal is logically driven TCK/4 before the corresponding DQS.
2. CASLAT is a CN50XX setting that sets the effective CAS latency seen by CN50XX. CASLAT must have an integer value between

3.0 and 6.0. CASLAT must be chosen such that the first DQS latching transition falls within the allowed range.
3. Measured from the closest CK/CK#. The absolute transition time is dependent on the CASLAT parameter.

Table 23–5 DDR2 SDRAM I/O Signal Timing (Continued)

Parameter Description Min Typical Max Units

Figure 23–4 Read with Autoprecharge Timing Diagram

D0 D1 D2 D3

BANKx BANKx

TCK

TCH TCL

TDQSS

TDQSH TDQSL

ACT. NOPREAD NOP READNOP NOP

RA COL m COL n

TCMD

CASLAT = 3.0

default driver

default driver

TLZ(min)

TLZ(max)

TDH

TDS

TA

TA

TBA

BANKx

D4 D5 D6 D7

RA

CK

CK#

CMD

A

A10

DQS

DQ

BA

CN50XX is the default driver, DQS = Vss

CN50XX is the default driver
778 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: DDR2 SDRAM Interface
23.3.3 SDRAM Write Operations

CN50XX always performs burst = (4 or 8) writes with final write being a write-with-
precharge. Burst = 4 is shown in Figure 23–5.

Figure 23–5 Write with Auto Precharge Timing Diagram

D0 D1 D2 D3

BANKx BANKx

RA

CK

CK#

CMD ACT. NOPWRITE NOP WRITENOP NOP

RA COLm COLnA

A10

DQS

DQ

BA

TDQ

TDQPW

TCH

TCK

TCL

TCMD

TA

TA

TBA

BANKx

D4 D5 D6 D7

CN50XX is the default driver

CN50XX is the default driver

TDQS
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 779

 AC Characteristics: DDR2 SDRAM Interface
23.3.4 SDRAM Autorefresh Operations

Automatic refresh timing is shown in Figure 23–6. The following parameters are
shown:

● PRE* - CN50XX does not do explicit precharges. PRE* specifies the latest
possible autoprecharge from a prior read with precharge or write with precharge.

● ACT*, RA*, BANK* - Earliest possible subsequent activation for a read or a
write.

● TRP - Precharge command period; configuration-specific.

● TRFC - Active to Active/Auto Refresh command period; configuration-specific.

● The TA and the TBA parameters are all relative to the CK falling edge nearest
them.

Figure 23–6 Auto Refresh Timing Diagram

RA*

RA*

PRE* NOPAR NOP ACT*NOP NOP

TCK

TCH TCL

CK

CMD

RA*A

A10

DQS

DQ

BA

CN38XX is the default driver

CN38XX is the default driver

TRP TRFC
TCMD

TA

TA

TBA
780 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: DDR2 SDRAM Interface
23.3.5 SDRAM Initialize and Mode Register Operations

Initialize and mode register timing is shown in Figure 23–7. The following
parameters are shown:

● CN50XX starts driving all outputs after (hardware) reset deasserts.

● Software assertion of TPU (via power-up complete bit in the CMC register) causes
CKE to assert and the init sequence to take place. CKE remains asserted from
this point forward.

● ACT*, RA*, BA* - earliest possible activate from a subsequent write.

● TRP - Precharge command period; configuration-specific.

● TRFC - Active to Active/Auto Refresh command period; configuration-specific.

● TMRD - Load Mode Register command cycle time; configuration-specific.

● The TA and the TBA are all relative to the CK falling edge nearest them.

Figure 23–7 Initialize and Mode Register Timing Diagram

CODECODE RA*CODE

L, LL, H BA*L, L

CK

CMD

A

A10

DQS

DQ

BA

CKE

NOP PRE NOP EMRS NOP MRS NOP PRE NOP AR NOP AR NOP MRS NOP ACT*

TCMD
TRP TMRD TRP TMRDTMRD TRFC TRFC

CODECODE RA*CODE

Note 1 Note 2

Note 3

TCK

TCLTCH

TA

TBA

TA

CN50XX is the default driver

CN50XX is the default driver

Note 1: = Extended register mode set
Note 2: = Load Mode Register, Reset DLL (with A8 = H)
Note 3: = Load mode register (with A8 = L)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 781

 AC Characteristics: RGMII Interface
23.4 RGMII Interface

Timing for this interface will be such that the clock and data are generated
simultaneously by the source of the signals and therefore skew between the clock and
data is critical to proper operation.

● TTXC adds skew between TXC and TXD/TX_CTL based on the value of
ASX0_TX_CLK_SET*[SETTING].

● TRXC adds skew between RXC and RXD/RX_CTL based on the value of
ASX0_RX_CLK_SET*[SETTING].

Each CSR setting can select from 0 to 31 delay settings with each setting
representing 65ps. This gives a range of 0 to 2.015ns.

Table 23–6 lists CN50XX’s timing parameters for RGMII, Figure 23–8 shows transmit timing,
and Figure 23–9 shows receive timing.

Table 23–6 RGMII Timing Parameters

Parameter Description Min Typical Max Units

TTXC Programmable delay on TXC 0 1.7 2.0 ns

TRXC Programmable delay on RXC 0 1.7 2.0 ns

TSKEWT Data to clock output skew (at transmitter)1 TTXC − 0.2 TTXC TTXC + 0.2 ns

TSETUPR Data to clock input setup 0.5 − TRXC 2.0 — ns

THOLDR Data to clock input setup 0.5 2.0 — ns

TCYC Clock cycle duration2 7.2 8 8.8 ns

Duty G Duty cycle for Gigabit3 45 50 55 %

Duty T Duty cycle for 10/100T3 40 50 60 %

TR/TF Rise/fall time (20-80%) — 0.75 — ns

1. This implies that the PC board design will require clocks to be routed such that an additional trace delay of greater than
1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100T, the max value is unspecified. TTXC and
TRXC are programmable delays that can be used to lessen or negate the need for board trace delay.

2. For 10Mbps and 100 Mbps, TCYC scales to 400 ns + (−40 ns) and 40 ns + (−4 ns) respectively.
3. Duty cycle may be stretched/shrunk during speed changes or while transmitting to a received packet’s clock domain, as

long as minimum duty cycle is not violated and stretching occurs for no more than three TCYC of the lowest speed transi-
tioned between.
782 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: RGMII Interface

Figure 23–8 RGMII Transmit Multiplexing and Timing Diagram

Figure 23–9 RGMII Receive Multiplexing and Timing Diagram

TXD[8:5]

TSKEWT

TXD[7:4]

TXC (without TTXC)

TXD[8:5][3:0]
TXD[7:4][3:0]

TX_CTL

TXC (with TTXC)

TXD[3:0]

TXD[4]
TXEN

TXD[9]
TXERR

TTXC

TSKEWT

RXD[8:5]
RXD[7:4]

RXD[3:0]

RXD[4]
RXDV

RXD[9]
RXERR

RXD[8:5][3:0]
RXD[7:4][3:0]

RX_CTL

RXC (at Receiver)

TSETUPR THOLDR TSETUPR THOLDR
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 783

 AC Characteristics: GMII Interface
23.5 GMII Interface

Timing for this interface will be such that the clock and data are generated
simultaneously by the source of the signals and therefore skew between the clock and
data is critical to proper operation.

Table 23–7 lists CN50XX’s timing parameters for GMII, Figure 23–10 shows
transmit timing, and Figure 23–11 shows receive timing.

Table 23–7 GMII Timing Parameters

Parameter Description Min Typical Max Units

TPERIOD GMI_GTXCLK period 7.50 8.0 8.50 ns

TPERIOD GMI_RXCLK period 7.50 — — ns

THIGH GMI_GTXCLK, GMI_RXCLK time high 2.50 — — ns

TLOW GMI_GTXCLK, GMI_RXCLK time low 2.50 — — ns

TSETUP GMI_RXD, GMI_DV, and GMI_RXERR setup to GMI_RXCLK 2 — — ns

THOLD GMI_RXD, GMI_DV, and GMI_RXERR hold from GMI_RXCLK 0 — — ns

TCQ GMI_TXD, GMI_TXERR, and GMI_TXEN output delay from GMI_GTXCLK 3.5 — 4.5 ns

Figure 23–10 GMII Transmit Timing Diagram

Figure 23–11 GMII Receive Timing Diagram

GMI_GTXCLK

GMI_TXD
GMI_TXERR

GMI_TXEN

TCQ

GMI_RXCLK

GMI_RXD
GMI_RXERR

GMI_DV

TSETUP THOLD
784 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: MII Interface
23.6 MII Interface

Timing for this interface will be such that the clock and data are generated
simultaneously by the source of the signals and therefore skew between the clock and
data is critical to proper operation.

Table 23–8 lists CN50XX’s timing parameters for MII, Figure 23–12 shows transmit
timing, and Figure 23–13 shows receive timing.

Table 23–8 MII Timing Parameters

Parameter Description Min Typical Max Units

TPERIOD MIn_TXCLK period @ 10Mbps 400 ns

TPERIOD MIn_RXCLK period @ 10Mbps 400 ns

TPERIOD MIn_TXCLK period @ 100Mbps 40 ns

TPERIOD MIn_RXCLK period @ 100Mbps 40 ns

TSETUP MIn_RXD, MIn_DV, and MIn_RXERR setup to MIn_RXCLK 10 — — ns

THOLD MIn_RXD, MIn_DV, and MIn_RXERR hold from MIn_RXCLK 10 — — ns

TCQ MIn_TXD, MIn_TXERR, and MIn_TXEN output delay from MIn_TXCLK 0 — 25 ns

Figure 23–12 MII Transmit Timing Diagram

Figure 23–13 MII Receive Timing Diagram

MIn_TXCLK

MIn_TXD
MIn_TXERR

MIn_TXEN

TCQ

MIn_RXCLK

MIn_RXD
MIn_RXERR

MIn_DV

TSETUP THOLD
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 785

 AC Characteristics: EEPROM Interface
23.7 EEPROM Interface

The CN50XX EEPROM interface is a serial interface to an external EEPROM, which
can be used to initialize configuration data. At power-on, the PCI controller can load
its read-only configuration registers from a 64 × 16 bit serial EEPROM (e.g. a
standard 93C46 EEPROM).

23.7.1 EEPROM Read Cycle

Table 23–9 lists CN50XX’s EEPROM read-cycle timing, and Figures 23–14 and
23–15 provide the timing diagrams.

NOTE: Only 64 × 16 bit EEPROMs are supported.

Table 23–9 EEPROM Read-Cycle Timing

Parameter Description Min Max Units

TDRV Drive Time(w.r.t selected delay offset) 0 10 ns

TSU Setup Time(w.r.t selected delay offset) — 10 ns

THD Hold Time(w.r.t selected delay offset) 10 — ns

Figure 23–14 Initialize and Mode Register Timing Diagram

Figure 23–15 EEPROM AC Timing

TCS

A5 A4 A3 A2 A1 A0

D15 D1 D0

EPR_CS

EPR_SK

EPR_DI

EPR_DO

SB

1 1 0

PCLK

EPR_SK

EPR_DI

EPR_DO

EPR_CS

5 PCI Clock Cycles

68 PCI Clock Cycles
TDRV

TDRV

TDRV

THDTSU
786 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: EEPROM Interface
23.7.2 EEPROM Signal I/O Timing

The EEPROM clock output signal, sourced by CN50XX, is derived from the PCI clock
input (PCLK). PCLK can operate at 33MHz or 66MHz for PCI. The PCI system bus
controller uses the power-on/reset state of the PCI bus signals PCIXCAP and M66EN
to generate the PCI bus clock for all devices on the bus.

The CN50XX PCI logic is configured according to the timing of the PCLK signal. This
automatic configuration of the PCI clock is reflected for the EEPROM clock. The
EEPROM clock and associated timing is shown below.

ESK runs continually from the time the hard reset sequence terminates, until
EEPROM data loading is complete (refer to Table 23–10). The EEPROM controller
then stops ESK, in order to save power, since it will not be accessed again until
another reset.

See Table 23–11 and Table 23–12. The ESK duty cycle is 50%. All EEPROM control
signals are generated and sampled from the falling edge of ESK, plus a delay. This
automatically configured delay (see Table 23–11) determines the number of
PCI_PCLK cycles to wait, from the falling edge of ESK, before sampling and driving
the EEPROM data/control pins. This delay helps facilitate adjustments of EEPROM
control/data setup, hold and output delay times, allowing users to select various
EEPROMs for different operating conditions. The control signal delay is based on
PCI_PCLK.

Table 23–10 EEPROM ESK Signal Timing

Mode of Operation
ESK Period,

‘N’ (PCLK Cycles)
EEPROM Clock

Frequency (Max)

PCI 66 MHZ 68 0.98 MHz [1/(68 × 15ns)]

PCI 33 MHZ 68 0.49 MHz [1/(68 × 30ns)]

Table 23–11 Delay Timing for Control Signals

Mode of Operation
EEPROM Delay
(PCLK Cycles)

EEPROM Delay
(ns)

PCI 66 MHZ 5 75ns (5×15ns)

PCI 33 MHZ 5 150ns (5×30ns)

Table 23–12 EEPROM Signal I/O Timing

Parameter Description Min Max Units

TDRV Drive time (w.r.t selected delay offset) 0 10 ns

TSU Setup time (w.r.t selected delay offset) — 10 ns

THD Hold time (w.r.t selected delay offset) 10 — ns
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 787

 AC Characteristics: Boot Bus Interface

23.8 Boot Bus Interface

For timing diagrams, refer to Section 12.4 in the Boot Bus chapter.

Figure 23–16 EEPROM Signal I/O Timing Diagram

PCI_PCLK

EPR_SK

EPR_DI

EPR_DO

EPR_CS

“M” PCI Clock Cycles

“N” PCI Clock Cycles
TDRV

TDRV

TDRV

THDTSU

NOTE: For designs not using the PCI interface, the PCI clock must be tied to ground. In this case,
the EEPROM interface cannot be used.
788 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: JTAG Interface
23.9 JTAG Interface

Table 23–13 lists CN50XX’s JTAG signals I/O timing parameters.

Table 23–13 JTAG Signal I/O Timing Parameters

Parameter Description Min Max Units

TJCYC TCK cycle time 100 — ns

TJCH TCK clock HIGH 40 — ns

TJCL TCK clock LOW 40 — ns

TJR
1 TCK rise time — 5 ns

TJF 1

1. Guaranteed by design and characterization.

TCK fall time — 5 ns

TJRST 2

2. RST is an asynchronous level sensitive signal. Setup time for test purpose only.

TRST# assert time 50 — ns

TJRSR TRST# recovery time 50

TJCD 3

3. Output = All device outputs including TDO.

TCK to output data valid 5 50 ns

TJDC 1, 3 TCK to output data hold 5 — ns

TJS 4

4. Input = All device inputs include TDI and TMS.

TCK to input setup time 50 — ns

TJH 5

5. Input = All device inputs include TDI and TMS.

TCK to input hold time 50 — ns

Figure 23–17 JTAG Signal I/O Timing Diagram

1. Device inputs = All device inputs except TDI, TMS, and TRST#.
2. Device outputs = All device outputs except TDO.

TJS TJH
TJDC

TJCD

TCK

Device Inputs1

TDI/TMS

Device Outputs2

TDO

TRST#

TJRSR

TJRST

TCYC
TJRTJF

TJCL
TJCH
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 789

 AC Characteristics: MPI/SPI Interface
23.10 MPI/SPI Interface

Table 23–13 lists CN50XX’s MPI/SPI signals I/O timing parameters and Figure 23–
18 shows the signal timing.

Table 23–14 MPI/SPI Signal I/O Timing Parameters

Parameter Description Min Max Units

TCYC MPI_CLK period 10 8191 ECLK cycles

TCYC MPI_CLK period 20 — ns

TDV MPI_TX data valid −1 1 ns

TZD MPI_TX turn-on delay −1 1 ns

TDZ MPI_TX turn-off delay −1 1 ns

TIS MPI_RX/MPI_TX input setup 7 — ns

TIH MPI_RX/MPI_TX input hold 0 — ns

Figure 23–18 MPI/SPI Signal I/O Timing Diagram

TDV

MPI_CLK

MPI_CS
(CSLATE=1)

MPI_CS
(CSLATE=0)

MPI_TX

(IDLELO=0)

MPI_RX

TDV

TDV TDV

TIS TIH

TCYC

TDZ

(WIREOR=0)

MPI_TX

TZD TDV

(WIREOR=1)
790 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

AC Characteristics: TWSI Interface
23.11 TWSI Interface

Table 23–15 lists CN50XX’s TWSI signals I/O timing parameters.

23.12 SMI/MDIO Interface

For timing diagrams, refer to Figures 18–2 and 18–3 in the SMI chapter.

Table 23–15 TWSI Signal Parameters

Parameter Description

Standard Mode Fast Mode Units

Min Max Min Max

FSCL SCL clock frequency 0 100 0 400 kHz

THD;STA
1 Hold time (repeated) START condition 4.0 — 0.6 — µs

TLOW Low period of the SCL clock 4.7 — 1.3 — µs

THIGN High period of the SCL clock 4.0 — 0.6 — µs

TSU;STA Set-up time for a repeated START condition 4.7 — 0.6 — µs

THD;DAT Data hold time 0 — 0 — µs

TSU;DAT Data set-up time 250 — 100 — ns

TR Rise time of both SDA and SCL signals — 1000 20 + 0.1Cb 2 300 ns

TF Fall time of both SDA and SCL signals — 300 20 + 0.1Cb 2 300 ns

TSU;STO Set-up time for STOP condition 4.0 — 0.6 — µs

TBUF Bus free time between a STOP and START condition 4.7 — 1.3 — µs

1. After this period, the first clock pulse is generated.
2. Cb is the capacitance of one bus line in pF.

Figure 23–19 TWSI Signal Parameters

TF

THD;STA

TR

TLOW

THD;DAT

THIGH

TSU;DAT

TF

S

TSU;STA

THD;STA

Sr

TSU;STO

TBUFF

Tr

P S

SDA

SCL

S = start condition
Sr = repeated start condition
P = stop condition
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 791

 AC Characteristics: SMI/MDIO Interface
792 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 24

Mechanical Specifications
This chapter contains the following subjects:

● Overview

● Ball Grid Array Package Diagram

● Package Thermal Specifications

● Package Thermal Management Requirements

● Thermal Definitions

● Heat Sink Selection for CN50XX-BG564
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 793

 Mechanical Specifications: Ball Grid Array Package Diagram
Overview
This chapter contains the CN50XX package dimensions and ball grid array.

24.1 Ball Grid Array Package Diagram

Figure 24–1 564L-HSBGA Package Diagram (Top View)

24.00

A
B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y
AA

AB

AC
AD

AE

AF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Pin A1 corner 1.00º (3×) Ref.

24.00

4.00 (4×) Ref. Heat Slug
794 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Mechanical Specifications: Ball Grid Array Package Diagram

Figure 24–2 564-HSBGA Package Diagram (Bottom and Side Views)

30°
1.17

0.560 0.5 ± 0.1 2.23 ± 0.13

R0.25 TYP.

Seating Plane

1234567891011121314151617181920212223242526

A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y

AA
AB
AC
AD
AE
AF

25.00

27.00

25.00

27.00

0.60 ± 0.05

1.00
± 0.05

1.00 ± 0.05
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 795

 Mechanical Specifications: Package Thermal Specifications
24.2 Package Thermal Specifications

Table 24–1 lists CN50XX’s thermal packaging specifications.

24.3 Package Thermal Management Requirements

The management of thermal energy due to a microelectronic device’s power
dissipation is important to receive the best possible performance. The temperature at
which a microelectronic device operates determines, among other things, the speed
and reliability of the product. Therefore careful consideration of the factors affecting
the device’s operating temperature is recommended to achieve the best possible
results.

The most important factors affecting device-operating temperature are power
dissipation, air temperature, package construction, and cooling mechanisms. The
combinations of these factors determine the temperature at which the product will
operate.

Table 24–1 Thermal Package Specification for CN50XX

Parameter Description Max Units

θJA0 Thermal resistance – junction to ambient at 0 m/s or 0 LFM 13.0 °C/W

θJA1 Thermal resistance – junction to ambient at 1 m/s or 200 LFM 11.1 °C/W

θJA2 Thermal resistance – junction to ambient at 2 m/s or 400 LFM 10.2 °C/W

θJC Thermal resistance – junction to case 4.8 °C/W

θJB Thermal resistance – junction to board 7.3 °C/W

NOTE: This device requires the use of a heat sink. Please read Section
24.5, “Heat Sink Selection for CN50XX-BG564,” on page 797 for
further details.
796 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Mechanical Specifications: Thermal Definitions
24.4 Thermal Definitions

● TA: Ambient temperature (°C). Temperature of the ambient air around the
device.

TA = TJ − P × θJA

TA = TC − P × (θJA − θJC)

● TC: Case temperature (°C). Temperature of the case of the device package. The
measurement is made by help of thermocouples placed on the warmest point of
the package (in the middle of the upper cover).

TC = TA + P × (θJA − θJC)

● TJ: Junction temperature (°C). Average junction temperature of the die
within the package.

TJ = P × θJA + TA

TJ = P × θJC + TC

● P: Total power dissipation of the device (W). The sum of power dissipation
from all device power supplies.

● θJA: Thermal resistance from the junction to the environment (°C/W)

● θJC: Thermal resistance from the junction to the case (°C/W)

● θCA: Thermal resistance from the surface of the cover to the environment (°C/W)

● θSA: Thermal resistance from the heat sink to the ambient air (°C/W)

θSA = θCA − θCS

● θCS: Thermal resistance of the gluing compound between the case and the heat
sink (e.g. thermal compound) (°C/W)

24.5 Heat Sink Selection for CN50XX-BG564

To satisfy the TJ requirement with the given TA, the θJA of the device package must
be:

Using CN50XX power consumption as an example, to meet the typical temperature
requirements, the thermal resistance should be

TJ − TA
PθJA =

θJA = θJC + θCA

TJ − TC
PθJC =

TC − TA
PθCA = [1]

TJ − TA
PθJA =

TJ − TA
P

θJA = = = 13.75 °C/
110 − 55

4 [1]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 797

 Mechanical Specifications: Heat Sink Selection for CN50XX-BG564
For the BGA package, θJA0 as specified in Table 24–1 is lower than what is calculated
in Equation [1]. Without a cooling solution this is not going to satisfy the maximum
junction temperature requirement. Using the simplified concept of thermal
resistance, heat flows serially from the junction to the case then across the interface
into the heat sink and is finally dissipated from the heat sink to the air stream.
798 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 25

Signal Descriptions
This chapter provides descriptions of the OCTEON Plus CN50XX I/O signals. The
signals are grouped into 14 groups, corresponding to the I/O interfaces, as shown in
Table 25–1.

Table 25–1 CN50XX Interfaces

Interface

Number
of

Signals Table

DDR memory interface signals 90 Table 25–3 on page 801
PCI interface signals 73 Table 25–4 on page 802
Packet Interface signals

GMII interface signals
RGMII interface signals
MII interface signals

46 Table 25–5 on page 803
Table 25–6 on page 804
Table 25–8 on page 805
Table 25–7 on page 804

GPIO interface signals
PCM/TDM interface signals
MPI/SPI interface signals

24 Table 25–9 on page 806
Table 25–10 on page 806
Table 25–11 on page 806

Boot signals 40 Table 25–12 on page 807
MDIO interface signals 2 Table 25–13 on page 807
TWSI signals 2 Table 25–14 on page 807
Clock signals 5 Table 25–15 on page 808
UART interface signals 8 Table 25–16 on page 808
EEPROM interface signals 4 Table 25–17 on page 809
JTAG interface signals 7 Table 25–18 on page 809
USB interface signals 5 Table 25–19 on page 809
Miscellaneous signals 4 Table 25–20 on page 810
Power/ground/no connect signals 254 Table 25–21 on page 810
Total number of signals 564
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 799

 Signal Descriptions:
Overview

The CN50XX I/O signals are grouped by interface and described in tables with the
following column headings:

Signal Ball Types

Table 25–2 describes the connections of the I/O types used in the Type column of the
signals list:

Pin Name: Provides the name of the field or signal.

Reset: Indicates the value of the field or signal at reset.

If Not Used: Indicates what should be done with the balls if the field or
signal is not used.

Dir: Indicates the direction of the field or signal: input, output,
or input/output.

Type: Indicates what type of signal. Refer to Table 25–2

Up/Down: Indicates the direction of CN50XX’s weak internal pullup/
pulldown for the signal. If blank, CN50XX does not have a
weak internal pullup/pulldown on the signal.

Description: Describes the function of the signal or field.

Table 25–2 CN50XX Pin Types

I/O Type Description

ANALOG_D 1.8/2.5V tolerant Analog Input

ANALOG_P 3.3V tolerant Analog Input

ANALOG_R 1.8V tolerant Analog Input

CMOS33B 3.3V I/O

CMOS33I 3.3V Input

CMOS25I 2.5V Input

CMOS18I 1.8V Input

CMOS33I/CMOS25I 3.3V/2.5V Input

LVDSI LVDS Input

LVDSI/CMOS33I LVDS Input/3.3V input

LVDSI/CMOS25I LVDS Input/2.5V input

LVDSO LVDS Output

LVDSO/CMOS33O LVDS Output/3.3V Output

LVDSO/CMOS25O LVDS Output/2.5V Output

NTDIFFI 3.3V Differential Input

SSTL18 1.8V SSTL I/O

SSTL18R 1.8V SSTL I/O

SUPPLY Power Supply
800 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Signal Descriptions: DRAM Interface Signals
25.1 DRAM Interface Signals

The DRAM interface communicates with up to two DDR2 DIMMs across a 32-bit
data bus. Some of the interface signals may be unused:
● The DRAM interface can be in 32-bit or 16-bit mode (LMC_CTL[MODE32b]).
● The DRAM interface can be used with or without ECC. To enable/disable ECC

mode, refer to LMC_MEM_CFG0[ECC_ENA].

Table 25–3 describes the signals associated with DRAM interface.

Table 25–3 DDR DRAM Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

DDR_DIMM<0>_CS0_L
DDR_DIMM<0>_CS1_L
DDR_DIMM<1>_CS0_L
DDR_DIMM<1>_CS1_L

NC O SSTL18 DDR2 DIMM chip select, where <1:0> represents:
<0> = enable DIMM0, bits <31:0>
<1> = enable DIMM1, bits <31:0>

CS0 indicates DIMM rank 0 and CS1 indicates DIMM rank 1.

Example: DDR_DIMM<0>_CS0_L enables DIMM0, rank 0.
DDR_DIMM<1>_CS1_L enables DIMM1, rank 1.

DDR_CAS_L NC O SSTL18 DDR2 column address select.

DDR_RAS_L NC O SSTL18 DDR2 row address select

DDR_A<14:0> NC O SSTL18 DDR2 address lines.

DDR_BA<2:0> NC O SSTL18 DDR2 bank address lines.

DDR_DQ<31:0> NC I/O SSTL18 DDR2 data bits.

Note: For data bits used in 16-bit mode, refer to
LMC_CTL1[DATA_LAYOUT].

DDR_CB<1:0>

DDR_CB<3:2>1

 NC I/O SSTL18 DDR2 ECC bits.

Note: For ECC bits used in 16-bit mode, refer to
LMC_CTL1[DATA_LAYOUT].

DDR_CBS_0_P
DDR_CBS_0_N

 NC I/O SSTL18 Differential data strobe for ECC bits (positive and negative).

Note: For data strobes used in 16-bit mode, refer to
LMC_CTL1[DATA_LAYOUT].

DDR_CK_<3:0>_P
DDR_CK_<3:0>_N

 NC O SSTL18 DDR2 differential address clocks (positive and negative).

DDR_CKE NC O SSTL18 DDR2 clock enable.

DDR_DQS_<3:0>_P
DDR_DQS_<3:0>_N

 NC I/O SSTL18 Differential data strobes (positive and negative).
DDR_DQS_0 for byte 0,..., DDR_DQS_3 for byte 3.

Note: For data strobes used in 16-bit mode, refer to
LMC_CTL1[DATA_LAYOUT].

DDR_VREF GND AI ANALOG_D DDR2 Vref pin, hook to VDD_DDR/2

DDR_WE_L NC O SSTL18 DDR2 write enable

DDR_PLL_VDD33 GND I SUPPLY DDR2 PLL connection to a low-noise 3.3V supply. This pin also
powers the core PLL.

DDR_REF_CLK_P
DDR_REF_CLK_N

 GND I NTDIFFI DDR2 clocks are generated internally in the CN50XX. These pins
should be NC on new designs using this chip.

Note: CN3010/CN3020 required external DDR2 reference clock
that must be left unconnected on the CN50XX.

DDR_DIMM<0>_ODT<1:0>
DDR_DIMM<1>_ODT<1:0>

 NC O SSTL18 DDR2 DIMM on-die termination enable, where
DDR_DIMMn_ODTm enables ODT for DIMMn, rank m.
Example: DDR_DIMM1_ODT0 enables ODT for DIMM1 rank 0.

DDR_COMP_DN NC O SSTL18 DDR2 down compensation. Pull up to program the low drive
strength

DDR_COMP_UP NC O SSTL18 DDR up compensation. Pull down to program the high drive
strength

Total = 90

1. Not used in 16-bit mode.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 801

 Signal Descriptions: PCI Interface Signals
25.2 PCI Interface Signals

Table 25–4 describes the signals associated with the PCI interface.

Table 25–4 PCI Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

PCI_AD<31:0> NC I/O CMOS33B Lower PCI address lines

PCI_BOOT NC I CMOS33B DN PCI boot select. 1 = boot from PCI bus, 0 = boot from boot
bus.

PCI_CBE_<3:0>_L NC I/O CMOS33B PCI command/byte enables

PCI_CLK_OUT<2:0> NC O CMOS33B PCI out clock for device use in host mode (three copies).
Enabled by DIAG_CLKOUT_ENABLE.

PCI_COMP_DN NC O CMOS33BD PCI down compensation. Pull up to program the low drive
strength.

PCI_COMP_UP NC O CMOS33BU PCI up compensation. Pull down to program the high drive
strength.

PCI_DEV_GNT_<2:0>_L NC O CMOS33B PCI device grants in host mode.

PCI_DEV_GNT_3_L/REQ_L NC I CMOS33B PCI device grant in host mode/ PCI request in target mode.

PCI_DEV_REQ_<2:0>_L NC I CMOS33B UP PCI device requests in host mode.

PCI_DEV_REQ_3_L/GNT_L NC O CMOS33B UP PCI device requests in host mode/PCI grant in target mode.

PCI_DEVSEL_L NC I/O CMOS33B PCI device select

PCI_DLL_VDD33 GND I SUPPLY PCI connection to a low-noise 3.3V supply.

PCI_ENABLE GND I CMOS33B UP Enables the PCI interface.

PCI_FRAME_L NC I/O CMOS33B PCI Frame

PCI_HOST_MODE PU I CMOS33B DN Enable host mode. 1 = host mode, 0= target mode

PCI_IDSEL GND I CMOS33B PCI IDSEL in target mode. Connect to GND in host mode.

PCI_INTA_L1 PU I/O (OD) CMOS33B Output interrupt request in target mode. INTA input in
host mode.

PCI_INTB_L1 NC I CMOS33B UP Input interrupt request in host mode.

PCI_INTC_L1 NC I CMOS33B UP Input interrupt request in host mode.

PCI_INTD_L1 NC I CMOS33B UP Input interrupt request in host mode.

PCI_IRDY_L NC I/O CMOS33B PCI IRDY

PCI_LOCK_L NC I CMOS33B UP PCI lock.

PCI_M66EN NC I CMOS33B DN PCI M66 enable.
0 (low) = 33MHz enabled, 1 (high) = 66MHz enabled.

PCI_PAR NC I/O CMOS33B PCI parity bit for PCI_AD<31:0>.

PCI_PCI100 NC I CMOS33B DN Reserved. Should be NC.

PCI_PCIXCAP GND I ANALOG_P Reserved. Should be tied to ground.

PCI_PCLK GND I CMOS33B Input PCI clock signal (33 and 66 MHz)

PCI_PERR_L NC I/O CMOS33B PCI parity error.

PCI_REF_CLKIN GND I CMOS33B 133-MHz reference input clock in host mode, used by
CN50XX to produces PCI_CLK_OUT_*.

When PCI_REF_CLKIN is 133 MHz, CN50XX produces
either 66- or 33-MHz PCI_CLK_OUT_*, depending on the
M66EN input pin, as per the PCI specification.

In device mode (i.e. when the pin PCI_HOST_MODE=0),
PCI_REF_CLKIN can be grounded.

PCI_RST_L GND I/O CMOS33B PCI reset output in host mode. Main chip reset in target
mode. Minimum of 1000 core-clock cycles.

PCI_SERR_L NC I/O CMOS33B PCI system error.
802 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Signal Descriptions: Packet Interface Signals
25.3 Packet Interface Signals

The CN50XX packet interface can be configured for the following formats:
● Gigabit Media Independent (GMII)
● Reduced Gigabit Media Independent (RGMII)
● Media Independent (MII)

The CN50XX packet interface can be configured with the following ports:
● Three RGMII ports, or
● One GMII port and either one RGMII port or one MII port, or
● Two MII ports, or
● One MII port and either one or two RGMII ports
● disabled.

The interface has four signal configuration pins (needed with all formats) and 42
interface pins that can be described as either GMII, RGMII, or MII signals.
● the GMII interface uses 24 of the 42 interface pins
● the RGMII interface uses 36 of the 42 interface pins.
● the MII interface uses 32 of the 42 interface pins.

The interface signals are described in the GMII, RGMII, and MII subsections.

PCI_STOP_L NC I/O CMOS33B PCI stop.

PCI_TRDY_L NC I/O CMOS33B PCI TRDY

Total = 73

1. The primary purpose of the PCI_INT*_L pins is to provide interrupt inputs when CN50XX is a PCI host (PCI_HOST_MODE = 1)
and to provide a PCI interrupt output pin (PCI_INTA_L) when CN50XX is a PCI device.

When CN50XX is not a PCI host (PCI_HOST_MODE = 0), PCI_INTA_L is driven by CN50XX to request interrupts of the remote
host. Since PCI_INT{B,C,D}_L are not used by the PCI-interface logic, they are available to use as input interrupt-request pins
from other sources.

When the PCI interface is not connected, the PCI_INT*_L pins can be used as general-purpose input interrupt-request pins if the
following requirements are met:

PCI_HOST_MODE must be set to 1.

PCI_ENABLE must be asserted.

PCI_PCLK must be supplied with a clock signal.

PCI_REF_CLKIN can be grounded.

PCI_DLL_VDD33 must be supplied with a voltage signal.

Software should keep CIU_SOFT_PRST[SOFT_RESET] set so CN50XX’s PCI logic remains in reset.

Table 25–4 PCI Interface Signals (Continued)

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

Table 25–5 Packet Interface Compensation Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

RGM_COMP_DN NC I CMOS25ID Down compensation. Pull up to program the low drive strength

RGM_COMP_UP NC I CMOS25IU Up compensation. Pull down to program the high drive strength

GMI_REF_CLK_P I Differential reference clock.

GMI_REF_CLK_N I Differential reference clock.

Total = 4
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 803

 Signal Descriptions: Packet Interface Signals
25.3.1 GMII Interface Signals

The packet interface can be configured for a GMII bus. Table 25–6 describes the
signals associated with the system packet interface.

25.3.2 MII Interface Signals

The packet interface can be configured for one or two MII buses. Table 25–7 describes
the signals associated with the system packet interface.

Table 25–6 GMII Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

GMI_RXD<7:0> GND I LVDSI/CMOS25I GMII RX data.

GMI_RXERR GND I LVDSI/CMOS25I GMII RX error.

GMI_COL GND I LVDSI/CMOS25I GMII collision.

GMI_DV GND I LVDSI/CMOS25I GMII data valid.

GMI_CRS GND I LVDSI/CMOS25I GMII carrier sense.

GMI_RXCLK I GMII RX clock.

GMI_TXD<7:0> NC O LVDSO/CMOS25O GMII TX data

GMI_TXERR NC O LVDSO/CMOS25O GMII TX error.

GMI_TXEN NC O LVDSO/CMOS25O GMII TX enable.

GMI_GTXCLK NC O LVDSO/CMOS25O GMII TX clock.

Total = 24

Table 25–7 MII Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

MI0_RXD[3:0] I LVDSI/CMOS25I MII0 RX data.

MI0_RXCLK I LVDSI/CMOS25I MII0 RX clock.

MI0_RXERR I LVDSI/CMOS25I MII0 RX error.

MI0_RXDV MII0 RX data valid.

MI0_COL MII0 collision.

MI0_CRS MII0 carrier sense.

MI0_TXD[3:0] O LVDSO/CMOS25O MII0 TX data.

MI0_TXCLK I LVDSO/CMOS25O MII0 TX clock.

MI0_TXERR O LVDSO/CMOS25O MII0 TX error.

MI0_TXEN O LVDSO/CMOS25O MII0 TX enable.

MI1_RXD[3:0] I LVDSI/CMOS25I MII1 RX data.

MI1_RXCLK I LVDSI/CMOS25I MII1 RX clock.

MI1_RXERR I LVDSI/CMOS25I MII1 RX error.

MI1_RXDV MII1 RX data valid.

MI1_COL MI1 collision.

MI1_CRS MI1 carrier sense.

MI1_TXD[3:0] O LVDSO/CMOS25O MII1 TX data.

MI1_TXCLK I LVDSO/CMOS25O MII1 TX clock.

MI1_TXERR O LVDSO/CMOS25O MII1 TX error.

MI1_TXEN O LVDSO/CMOS25O MII1 TX enable.

Total = 32
804 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Signal Descriptions: Packet Interface Signals
25.3.3 RGMII Interface Signals

The packet interface can be configured for three RGMII ports. Table 25–8 describes
the signals associated with the RGMII interface.

Table 25–8 RGMII Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

RGMII Interface 0

RGM0_RXD[3:0] GND I LVDSI/CMOS25I RGMII Port 0 RX data.

RGM0_RXCTL GND I LVDSI/CMOS25I RGMII Port 0 RX control.

RGM0_RXC GND I LVDSI/CMOS25I RGMII Port 0 RX clock.

RGM0_TXD[3:0] NC O LVDSO/CMOS25O RGMII Port 0 TX data.

RGM0_TXCTL NC O LVDSO/CMOS25O RGMII Port 0 TX control.

RGM0_TXC NC O LVDSO/CMOS25O RGMII Port 0 TX clock.

RGM1_RXD[3:0] GND I LVDSI/CMOS25I RGMII Port 1 RX data.

RGM1_RXCTL GND I LVDSI/CMOS25I RGMII Port 1 RX control.

RGM1_RXC GND I LVDSI/CMOS25I RGMII Port 1 RX clock.

RGM1_TXD[3:0] NC O LVDSO/CMOS25O RGMII Port 1 TX data.

RGM1_TXCTL NC O LVDSO/CMOS25O RGMII Port 1 TX control.

RGM1_TXC NC O LVDSO/CMOS25O RGMII Port 1 TX clock.

RGM2_RXD[3:0] GND I LVDSI/CMOS25I RGMII Port 2 RX data.

RGM2_RXCTL GND I LVDSI/CMOS25I RGMII Port 2 RX control.

RGM2_RXC GND I LVDSI/CMOS25I RGMII Port 2 RX clock.

RGM2_TXD[3:0] NC O LVDSO/CMOS25O RGMII Port 2 TX data.

RGM2_TXCTL NC O LVDSO/CMOS25O RGMII Port 2 TX control.

RGM2_TXC NC O LVDSO/CMOS25O RGMII Port 2 TX clock.

Total = 36
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 805

 Signal Descriptions: General Purpose I/O (GPIO) Interface Signals
25.4 General Purpose I/O (GPIO) Interface Signals

The GPIO interface has 24 signals available for I/O. Some of these signals are shared
with the boot bus, the MPI/SPI interface, and the PCM/TDM interface:

bits<7:0> are strictly GPIO bits
bits<11:8> can be used as boot-bus chip-select signals, or as GPIO bits
bits <19:12> can be used with the PCM/TDM interface, or as GPIO bits
bits <23:20> can be used with the MPI/SPI interface, or as GPIO bits

Table 25–9 describes the GPIO interface signals.

25.4.1 PCM/TDM Interface Signals

Table 25–10 describes the signals available to the PCM/TDM interface.

25.4.2 MPI/SPI Signals

Table 25–20 describes the signals available to the MPI/SPI interface.

Table 25–9 GPIO Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

GPI_GPIO_<11>/BOOT_CE_7_L NC I/O CMOS33B DN General purpose I/O/Boot-bus chip enable

GPI_GPIO_<10>/BOOT_CE_6_L NC I/O CMOS33B DN General purpose I/O/Boot-bus chip enable

GPI_GPIO_<9>/BOOT_CE_5_L NC I/O CMOS33B DN General purpose I/O/Boot-bus chip enable

GPI_GPIO_<8>/BOOT_CE_4_L NC I/O CMOS33B DN General purpose I/O/Boot-bus chip enable

GPI_GPIO_<7:0> NC I/O CMOS33B DN General purpose I/O.

Total = 12

Table 25–10 PCM/TDM Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

GPIO_19/PCM_BCLK0 NC I/O CMOS33B General purpose I/O/PCM bit clock for clock pair 0

GPIO_18/PCM_FSYNC0 NC I/O CMOS33B General purpose I/O/PCM sync clock for clock pair 0

GPIO_<17:16>/PCM_DATA<1:0> NC I/O CMOS33B General purpose I/O/TDM engine data bits

GPIO_15/PCM_BCLK1 NC I/O CMOS33B General purpose I/O/PCM bit clock for clock pair 1

GPIO_14/PCM_FSYNC1 NC I/O CMOS33B General purpose I/O/PCM sync clock for clock pair 1

GPIO_<13:12>/PCM_DATA<3:2> NC I/O CMOS33B General purpose I/O/TDM engine data bits

Total = 8

Table 25–11 MPI/SPI Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

GPIO20/MPI_RX NC I CMOS33B General purpose I/O/MPI/SPI receive data

GPIO21/MPI_TX NC O CMOS33B General purpose I/O/MPI/SPI transmit data

GPIO22/MPI_CS NC O CMOS33B General purpose I/O/MPI/SPI chip select

GPIO23/MPI_CLK NC O CMOS33B General purpose I/O/MPI/SPI clock

Total = 4
806 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Signal Descriptions: Boot-Bus Signals
25.5 Boot-Bus Signals

Table 25–12 describes the signals associated with the boot bus.

25.6 MDIO Interface Signals

Table 25–13 describes the signals associated with the MDIO interface.

25.7 Two-Wire Serial Interface (TWSI) Signals

Table 25–14 describes the TWSI signals.

Table 25–12 Boot-Bus Signals1

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

BOOT_AD<31:0> NC I/O CMOS33B Boot-bus address/data.

BOOT_CE_<3:0>_L NC O CMOS33B Boot-bus chip enable/Hook to boot device (bit <0> only).

BOOT_ALE NC O CMOS33B DN Boot-bus address latch enable.

BOOT_OE_L NC O CMOS33B Boot-bus output enable.

BOOT_WAIT_L NC I CMOS33B UP Compact flash wait/busy signal.

BOOT_WE_L NC O CMOS33B Boot-bus write enable

Total = 40

1. If needed, there are four additional chip-enable signals that can be taken from the GPIO signals. See Table 25–9.

Table 25–13 MDIO Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

MDI_MDC NC O CMOS33B RGMII MDIO clock.

MDI_MDIO NC I/O CMOS33B RGMII MDIO serial data.

Total = 2

Table 25–14 TWSI Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

TWS_SCL PU I/O (OD) CMOS33B TWSI serial clock.

TWS_SDA PU I/O (OD) CMOS33B TWSI serial data.

Total = 2
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 807

 Signal Descriptions: Clock Signals
25.8 Clock Signals

Table 25–15 describes the CN50XX clock signals.

25.9 UART Interface Signals

Table 25–16 describes the UART interface signals.

Table 25–15 Clock Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

PLL_MUL_<2:0> NC I CMOS33B Core-clock PLL frequency selectors. Multiplier times
PLL_REF_CLK:

000 = ×8 (400MHz) 100 = ×14 (700 MHz)
001 = Reserved 101 = Reserved
010 = ×10 (500 MHz) 110 = ×6 (300 MHz)
011 = ×12 (600 MHz) 111 = ×7 (350 MHz)

These signals are internally pulled down. To specify a 0, leave
unconnected or externally pull to ground through a 100Ω resistor.
To specify a 1, externally pull up to VDD33 through a 10KΩ
resistor.

PLL_VDD33 I SUPPLY Core PLL connection to a low-noise 3.3V supply. This pin is
unused and is supplied just for compatibility with the CN30XX
chip. The core PLL is powered by DDR_PLL_VDD33.

PLL_REF_CLK I Core input clock signal, which must be 50MHz.

Total = 5

Table 25–16 UART Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

Universal Asynchronous Receive/Transmit Interface (UART) 0

UART0_CTS_L NC I CMOS33B UP UART0 clear to send.

UART0_RTS_L NC O CMOS33B UART0 request to send.

UART0_SIN NC I CMOS33B DN UART0 serial data in.

UART0_SOUT NC O CMOS33B UART0 serial data out.

Universal Asynchronous Receive/Transmit Interface (UART) 1

UART1_CTS_L NC I CMOS33B UP UART1 clear to send.

UART1_RTS_L NC O CMOS33B UART1 request to send.

UART1_SIN NC I CMOS33B DN UART1 serial data in.

UART1_SOUT NC O CMOS33B UART1 serial data out.

Total = 8
808 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Signal Descriptions: EEPROM Signals
25.10 EEPROM Signals

Table 25–20 describes the EEPROM interface signals.

25.11 eJTAG/JTAG Signals

Table 25–18 describes the eJTAG/JTAG signals.

25.12 USB Signals

Table 25–19 describes the USB signals.

Table 25–17 EEPROM Interface Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

EPR_CS NC O CMOS33B PCI configuration EEPROM chip select.

EPR_DI NC O CMOS33B PCI configuration EEPROM data in to EEPROM.

EPR_DO NC I CMOS33B UP PCI configuration EEPROM data out from EEPROM.

EPR_SK NC O CMOS33B PCI configuration EEPROM chip clock.

Total = 4

Table 25–18 eJTAG/JTAG Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

EJTG_TDO NC O CMOS33B E- JTAG data out.

EJTG_TRST_L NC I CMOS33B DN E- JTAG reset.

JTG_TCK NC I CMOS33B UP JTAG clock.

JTG_TDI NC I CMOS33B UP JTAG test data in.

JTG_TDO NC O CMOS33B JTAG test data out.

JTG_TMS NC I CMOS33B UP JTAG TMS.

JTG_TRST_L NC I CMOS33B DN JTAG reset.

Total = 7

Table 25–19 USB Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

USB_DP NC I/O USB Analog I/O N/A D+ analog signal from the USB cable.

USB_DM NC I/O USB Analog I/O N/A D– analog signal from the USB cable.

USB_REXT 3.3V I/O USB Analog I/O N/A External resistor connect (43.2 Ω ±1%). If there
is no intent to use the USB interface, tie this pin
to any 3.3V supply available on the board.

USB_XO NC I USB Analog I/O N/A Crystal oscillator xo pin. For usage information,
refer to Section 21.7.4. Either a crystal or a board
clock can be used for this pin. If a board clock is
used, the signal swing must be 2.5V ± 7%.

USB_XI NC I USB Analog I/O N/A Crystal oscillator xi pin. For usage information,
refer to Section 21.7.4. Either a crystal or a board
clock can be used. If a board clock is used, this
signal should be tied to ground.

Total = 5
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 809

 Signal Descriptions: Miscellaneous Signals
25.13 Miscellaneous Signals

Table 25–20 describes the miscellaneous signals.

25.14 Power/Ground/No Connect Signals

Table 25–21 lists the power/ground/reserved/no connect signals.

Table 25–20 Miscellaneous Signals

Pin Name Reset
If Not
Used Dir Type

Up/
Down Description

CHIP_RESET_L I CMOS33B Global chip reset in host mode. Unused in target mode. Must
assert for a minimum of 1000 core-clock cycles.

PLL_DCOK I CMOS33I Power OK. Assert this signal after all the power supplies and
clocks are stable.

DIAG_CLKOUT O CMOS33B Diagnostic clock out, running at core-clock speed

DIAG_CLKOUT_ENABLE I CMOS33B Enable the DIAG_CLKOUT and PCI_CLK_OUT<2:0> signals.

Total = 4

Table 25–21 Power/Ground/No Connect Signals

Pin Name Numbers
If Not
Used Dir Type

Up/
Down Description

GND 163 Supply Ground supply.

VDD 28 Supply Core supply voltage

VDD18_DDR 20 Supply DDR supply voltage

VDD25_RGM 6 Supply Packet interface supply voltage (2.5V)

VDD33 30 Supply PCI supply voltage (3.3V)

USB_VDDA33 1 3.3V Supply USB supply voltage (3.3V). If there is no intent
to use the USB interface, tie this pin to any 3.3V
supply available on the board.

USB_GND 1 Supply USB ground supply

RSVD 5 — N/A Reserved, not connected.

NC 0 — N/A Not connected.

Total = 254
810 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Chapter 26

Ball Assignments
This chapter contains the following subjects:

● Overview

● CN50XX Ball Grid Array

● CN50XX Signal Mapping

● CN50XX Signals Sorted in Alphabetical Order

● CN50XX Balls Sorted in Numerical Order
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 811

 Ball Assignments: CN50XX Ball Grid Array
Overview

This chapter provides the signal/ball assignments (pinouts) for the CN50XX Secure
Communications Processor.

26.1 CN50XX Ball Grid Array

Figure 26–1 shows the CN50XX ball grid array.

Figure 26–1 HSBGA Ball Assignment Diagram (Bottom View)

1234567891011121314151617181920212223242526

A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y

AA
AB
AC
AD
AE
AF

25.00

27.00

25.00

27.00

0.60 ± 0.05

1.00
± 0.05

1.00 ± 0.05
812 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Ball Assignments: CN50XX Signal Mapping
26.2 CN50XX Signal Mapping

Figure 26–2 shows the CN50XX signal map.

Figure 26–2 BGA Signal Map (Top View)

Legend
Group A: Power Supplies & Ground Group B: I/Os

Ground

VDD_Core

VDD_33

VDD18_DDR

VDD25_RGM

DDR

RGMII/GMII/MII

GPIO/PCM

UART

GPIO

MISC/NC PCI

BOOT_BUS

JTAG
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 813

Ball Assignments: CN50XX Signals Sorted in Alphabetical Order
26.3 CN50XX Signals Sorted in Alphabetical Order
Pin Name Ball

BOOT_AD<0> AD9
BOOT_AD<1> AF8
BOOT_AD<10> AD6
BOOT_AD<11> AE6
BOOT_AD<12> AF5
BOOT_AD<13> AC6
BOOT_AD<14> AE5
BOOT_AD<15> AD5
BOOT_AD<16> AF4
BOOT_AD<17> AC5
BOOT_AD<18> AE4
BOOT_AD<19> AD4
BOOT_AD<2> AC9
BOOT_AD<20> AF3
BOOT_AD<21> AE3
BOOT_AD<22> AF2
BOOT_AD<23> AE1
BOOT_AD<24> AD2
BOOT_AD<25> AD1
BOOT_AD<26> AB4
BOOT_AD<27> AC3
BOOT_AD<28> AC2
BOOT_AD<29> AC1
BOOT_AD<3> AE8
BOOT_AD<30> AB3
BOOT_AD<31> AB2
BOOT_AD<4> AD8
BOOT_AD<5> AC8
BOOT_AD<6> AF7
BOOT_AD<7> AE7
BOOT_AD<8> AD7
BOOT_AD<9> AC7
BOOT_ALE AD11
BOOT_CE_0_L AC11
BOOT_CE_1_L AF10
BOOT_CE_2_L AD10
BOOT_CE_3_L AC10
BOOT_OE_L AF9
BOOT_WAIT_L AE9
BOOT_WE_L AE10
CHIP_RESET_L C4
DDR_A<0> R23
DDR_A<1> P24
DDR_A<10> R24
DDR_A<11> M23
DDR_A<12> L26
DDR_A<13> T23
DDR_A<14> L24
DDR_A<2> P23
DDR_A<3> N24
DDR_A<4> N23
DDR_A<5> N26
814 Cavium
DDR_A<6> N25
DDR_A<7> M25
DDR_A<8> M26
DDR_A<9> M24
DDR_BA<0> R25
DDR_BA<1> R26
DDR_BA<2> L25
DDR_CAS_L T24
DDR_CB<0> H24
DDR_CB<1> J23
DDR_CB<2> K23
DDR_CB<3> J24
DDR_CBS_0_N K26
DDR_CBS_0_P K25
DDR_CK_0_N H26
DDR_CK_0_P H25
DDR_CK_1_N J26
DDR_CK_1_P J25
DDR_CK_2_N AD23
DDR_CK_2_P AE24
DDR_CK_3_N AF24
DDR_CK_3_P AF25
DDR_CKE L23
DDR_COMP_DN AE23
DDR_COMP_UP AF23
DDR_DIMM0_CS0_L U26
DDR_DIMM0_CS1_L W26
DDR_DIMM0_ODT_0 V26
DDR_DIMM0_ODT_1 U24
DDR_DIMM1_CS0_L U25
DDR_DIMM1_CS1_L U23
DDR_DIMM1_ODT_0 W25
DDR_DIMM1_ODT_1 V24
DDR_DQ<0> B24
DDR_DQ<1> C23
DDR_DQ<10> G23
DDR_DQ<11> F24
DDR_DQ<12> E26
DDR_DQ<13> H23
DDR_DQ<14> G24
DDR_DQ<15> F25
DDR_DQ<16> V23
DDR_DQ<17> W24
DDR_DQ<18> W23
DDR_DQ<19> AA26
DDR_DQ<2> B26
DDR_DQ<20> Y24
DDR_DQ<21> Y23
DDR_DQ<22> AA25
DDR_DQ<23> AA24
DDR_DQ<24> AA23
DDR_DQ<25> AB25

Pin Name Ball
 Networks Proprietary and Confidential DO NOT CO
DDR_DQ<26> AB24
DDR_DQ<27> AB23
DDR_DQ<28> AC25
DDR_DQ<29> AC24
DDR_DQ<3> C25
DDR_DQ<30> AD25
DDR_DQ<31> AE26
DDR_DQ<4> E23
DDR_DQ<5> D24
DDR_DQ<6> D25
DDR_DQ<7> E24
DDR_DQ<8> F23
DDR_DQ<9> E25
DDR_DQS_0_N D26
DDR_DQS_0_P C26
DDR_DQS_1_N G26
DDR_DQS_1_P G25
DDR_DQS_2_N Y25
DDR_DQS_2_P Y26
DDR_DQS_3_N AD26
DDR_DQS_3_P AC26
DDR_PLL_VDD33 B23
DDR_RAS_L T26
DDR_VREF P25
DDR_WE_L T25
DIAG_CLKOUT D3
DIAG_CLKOUT_ENABLE C5
EJTG_TDO AC21
EJTG_TRST_L AF22
EPR_CS AA2
EPR_DI Y2
EPR_DO Y3
EPR_SK AA3
GMI_REF_CLK_N A8
GMI_REF_CLK_P A9
GMI_RXCLK/MI1_RXCLK B14
GND A1
GND A6
GND A22
GND A26
GND AA1
GND AB5
GND AB7
GND AB9
GND AB11
GND AB13
GND AB14
GND AB16
GND AB18
GND AB20
GND AB22
GND AB26

Pin Name Ball
PY CN50XX-HM-0.99E PRELIMINARY

Ball Assignments: CN50XX Signals Sorted in Alphabetical Order
GND AC4
GND AC23
GND AD3
GND AD24
GND AE2
GND AE11
GND AE16
GND AE25
GND AF1
GND AF6
GND AF21
GND AF26
GND B2
GND B8
GND B11
GND B16
GND B25
GND C3
GND C24
GND D4
GND D23
GND E1
GND E5
GND E7
GND E9
GND E11
GND E13
GND E14
GND E16
GND E18
GND E20
GND E22
GND F26
GND G5
GND G22
GND H10
GND H11
GND H13
GND H14
GND H16
GND H17
GND J2
GND J5
GND J10
GND J11
GND J12
GND J13
GND J14
GND J15
GND J16
GND J17
GND J22
GND K10
GND K11
GND K12
GND K13

Pin Name Ball
CN50XX-HM-0.99E PRELIMINARY Cavium
GND K14
GND K15
GND K16
GND K17
GND K24
GND L5
GND L10
GND L11
GND L12
GND L13
GND L14
GND L15
GND L16
GND L17
GND L22
GND M10
GND M11
GND M12
GND M13
GND M14
GND M15
GND M16
GND M17
GND N1
GND N5
GND N10
GND N11
GND N12
GND N13
GND N14
GND N15
GND N16
GND N17
GND N22
GND P5
GND P10
GND P11
GND P12
GND P13
GND P14
GND P15
GND P16
GND P17
GND P22
GND P26
GND R10
GND R11
GND R12
GND R13
GND R14
GND R15
GND R16
GND R17
GND T5
GND T10

Pin Name Ball
 Networks Proprietary and Confidential DO NOT CO
GND T11
GND T12
GND T13
GND T14
GND T15
GND T16
GND T17
GND T22
GND U2
GND U10
GND U11
GND U12
GND U13
GND U14
GND U15
GND U16
GND U17
GND V5
GND V10
GND V11
GND V12
GND V13
GND V14
GND V15
GND V16
GND V17
GND V22
GND V25
GND W10
GND W11
GND W13
GND W14
GND W16
GND W17
GND Y5
GND Y22
GPIO_0 AE14
GPIO_1 AD14
GPIO_10/BOOT_CE_6_L AE17
GPIO_11/BOOT_CE_7_L AD17
GPIO_12/PCM_DATA3 AF18
GPIO_13/PCM_DATA2 AE18
GPIO_14/PCM_FSYNC1 AF19
GPIO_15/PCM_BCLK1 AE19
GPIO_16/PCM_DATA1 AC16
GPIO_17/PCM_DATA0 AD18
GPIO_18/PCM_FSYNC0 AD19
GPIO_19/PCM_BCLK0 AD20
GPIO_2 AC14
GPIO_20/MPI_RX AC17
GPIO_21/MPI_TX AC19
GPIO_22/MPI_CS AC18
GPIO_23/MPI_CLK AE20
GPIO_3 AF15
GPIO_4 AE15

Pin Name Ball
PY 815

Ball Assignments: CN50XX Signals Sorted in Alphabetical Order
GPIO_5 AD15
GPIO_6 AC15
GPIO_7 AF16
GPIO_8/BOOT_CE_4_L AD16
GPIO_9/BOOT_CE_5_L AF17
JTG_TCK AE21
JTG_TDI AF20
JTG_TDO AE22
JTG_TMS AC20
JTG_TRST_L AD21
MDI_MDC AF12
MDI_MDIO AF11
MI0_COL C12
MI0_CRS A12
MI0_RXDV D17
MI0_TXCLK D12
MI1_TXCLK C11
NC A25
NC A24
PCI_AD<0> W3
PCI_AD<1> W1
PCI_AD<10> T1
PCI_AD<11> T3
PCI_AD<12> T2
PCI_AD<13> T4
PCI_AD<14> R1
PCI_AD<15> R3
PCI_AD<16> N4
PCI_AD<17> L2
PCI_AD<18> M3
PCI_AD<19> K1
PCI_AD<2> W4
PCI_AD<20> M4
PCI_AD<21> K2
PCI_AD<22> L3
PCI_AD<23> J1
PCI_AD<24> K3
PCI_AD<25> H2
PCI_AD<26> K4
PCI_AD<27> G1
PCI_AD<28> J3
PCI_AD<29> G2
PCI_AD<3> W2
PCI_AD<30> J4
PCI_AD<31> F1
PCI_AD<4> V3
PCI_AD<5> V1
PCI_AD<6> V4
PCI_AD<7> V2
PCI_AD<8> U1
PCI_AD<9> U4
PCI_BOOT D5
PCI_CBE_0_L U3
PCI_CBE_1_L R2
PCI_CBE_2_L L1
PCI_CBE_3_L H1

Pin Name Ball
816 Cavium
PCI_CLK_OUT<0> B3
PCI_CLK_OUT<1> B4
PCI_CLK_OUT<2> A3
PCI_COMP_DN A4
PCI_COMP_UP A5
PCI_DEV_GNT_0_L H3
PCI_DEV_GNT_1_L H4
PCI_DEV_GNT_2_L F3
PCI_DEV_GNT_3_L/REQ_L E2
PCI_DEV_REQ_0_L G3
PCI_DEV_REQ_1_L G4
PCI_DEV_REQ_2_L E3
PCI_DEV_REQ_3_L/GNT_L F2
PCI_DEVSEL_L M1
PCI_DLL_VDD33 B1
PCI_ENABLE Y1
PCI_FRAME_L N3
PCI_HOST_MODE B6
PCI_IDSEL L4
PCI_INTA_L E4
PCI_INTB_L C1
PCI_INTC_L F4
PCI_INTD_L C2
PCI_IRDY_L M2
PCI_LOCK_L N2
PCI_M66EN B5
PCI_PAR R4
PCI_PCI100 A2
PCI_PCIXCAP D6
PCI_PCLK D1
PCI_PERR_L P2
PCI_REF_CLKIN C6
PCI_RST_L D2
PCI_SERR_L P1
PCI_STOP_L P3
PCI_TRDY_L P4
PLL_DCOK D7
PLL_MUL_0 D8
PLL_MUL_1 C8
PLL_MUL_2 B7
PLL_REF_CLK B9
PLL_VDD33 A7
RGM_COMP_DN A23
RGM_COMP_UP B22
RGM0_RXC/MI0_RXCLK C16
RGM0_RXCTL/MI0_RXERR D16
RGM0_RXD0/MI0_RXD0 C17
RGM0_RXD1/MI0_RXD1 B17
RGM0_RXD2/MI0_RXD2 A17
RGM0_RXD3/MI0_RXD3 A16
RGM0_TXC/MI0_TXEN D21
RGM0_TXCTL/MI0_TXERR C22
RGM0_TXD0/MI0_TXD0 D22
RGM0_TXD1/MI0_TXD1 C21
RGM0_TXD2/MI0_TXD2 B21

Pin Name Ball
 Networks Proprietary and Confidential DO NOT COP
RGM0_TXD3/MI0_TXD3 A21
RGM1_RXC/GMI_COL/
MI1_COL

C15

RGM1_RXCTL/GMI_RXERR/
MI1_RXERR

D15

RGM1_RXD0/GMI_RXD0/
MI1_RXD0

D14

RGM1_RXD1/GMI_RXD1/
MI1_RXD1

B15

RGM1_RXD2/GMI_RXD2/
MI1_RXD2

C14

RGM1_RXD3/GMI_RXD3/
MI1_RXD3

A15

RGM1_TXC/GMI_TXEN/
MI1_TXEN

B20

RGM1_TXCTL/GMI_TXERR/
MI1_TXERR

D20

RGM1_TXD0/GMI_TXD0/
MI1_TXD0

C20

RGM1_TXD1/GMI_TXD1/
MI1_TXD1

D19

RGM1_TXD2/GMI_TXD2/
MI1_TXD2

A20

RGM1_TXD3/GMI_TXD3/
MI1_TXD3

C19

RGM2_RXC/GMI_CRS/
MI1_CRS

B12

RGM2_RXCTL/GMI_RXDV/
MI1_RXDV

D13

RGM2_RXD0/GMI_RXD4 A14
RGM2_RXD1/GMI_RXD5 A13
RGM2_RXD2/GMI_RXD6 C13
RGM2_RXD3/GMI_RXD7 B13
RGM2_TXC/GMI_GTXCLK A19
RGM2_TXCTL D18
RGM2_TXD0/GMI_TXD4 B19
RGM2_TXD1/GMI_TXD5 C18
RGM2_TXD2/GMI_TXD6 B18
RGM2_TXD3/GMI_TXD7 A18
RSVD1 AC22
RSVD2 AD22
RSVD3 D9
RSVD4 C7
RSVD5 AB1
TWS_SCL AA4
TWS_SDA Y4
UART0_CTS_L AC13
UART0_RTS_L AD12
UART0_SIN AE12
UART0_SOUT AC12
UART1_CTS_L AF14
UART1_RTS_L AD13
UART1_SIN AF13
UART1_SOUT AE13
USB_DM A10
USB_DP A11
USB_GND D10
USB_REXT B10

Pin Name Ball
Y CN50XX-HM-0.99E PRELIMINARY

Ball Assignments: CN50XX Signals Sorted in Alphabetical Order
USB_VDDA33 D11
USB_XI C9
USB_XO C10
VDD H9
VDD H12
VDD H15
VDD H18
VDD J9
VDD J18
VDD K9
VDD K18
VDD L9
VDD L18
VDD M9
VDD M18
VDD N9
VDD N18
VDD P9
VDD P18
VDD R9
VDD R18
VDD T9
VDD T18
VDD U9
VDD U18
VDD V9
VDD V18
VDD W9
VDD W12
VDD W15
VDD W18
VDD18_DDR F22
VDD18_DDR H19
VDD18_DDR H22
VDD18_DDR J19
VDD18_DDR K19
VDD18_DDR K22
VDD18_DDR L19
VDD18_DDR M19
VDD18_DDR M22
VDD18_DDR N19
VDD18_DDR P19
VDD18_DDR R19
VDD18_DDR R22
VDD18_DDR T19
VDD18_DDR U19
VDD18_DDR U22
VDD18_DDR V19
VDD18_DDR W22
VDD18_DDR AA22
VDD18_DDR W19
VDD25_RGM E12
VDD25_RGM E15
VDD25_RGM E17
VDD25_RGM E19
VDD25_RGM E21

Pin Name Ball
CN50XX-HM-0.99E PRELIMINARY Cavium
VDD25_RGM E10
VDD33 AA5
VDD33 AB6
VDD33 AB8
VDD33 AB10
VDD33 AB12
VDD33 AB15
VDD33 AB17
VDD33 AB19
VDD33 AB21
VDD33 E6
VDD33 E8
VDD33 F5
VDD33 H5
VDD33 H8
VDD33 J8
VDD33 K5
VDD33 K8
VDD33 L8
VDD33 M5
VDD33 M8
VDD33 N8
VDD33 P8
VDD33 R5
VDD33 R8
VDD33 T8
VDD33 U5
VDD33 U8
VDD33 V8
VDD33 W5
VDD33 W8

Pin Name Ball
 Networks Proprietary and Confidential DO NOT CO
PY 817

Ball Assignments: CN50XX Balls Sorted in Numerical Order
26.4 CN50XX Balls Sorted in Numerical Order
Ball Pin Name

A1 GND
A10 USB_DM
A11 USB_DP
A12 MI0_CRS
A13 RGM2_RXD1/GMI_RXD5
A14 RGM2_RXD0/GMI_RXD4
A15 RGM1_RXD3/GMI_RXD3/

MI1_RXD3
A16 RGM0_RXD3/MI0_RXD3
A17 RGM0_RXD2/MI0_RXD2
A18 RGM2_TXD3/GMI_TXD7
A19 RGM2_TXC/GMI_GTXCLK
A2 PCI_PCI100
A20 RGM1_TXD2/GMI_TXD2/

MI1_TXD2
A21 RGM0_TXD3/MI0_TXD3
A22 GND
A23 RGM_COMP_DN
A24 NC
A25 NC
A26 GND
A3 PCI_CLK_OUT<2>
A4 PCI_COMP_DN
A5 PCI_COMP_UP
A6 GND
A7 PLL_VDD33
A8 GMI_REF_CLK_N
A9 GMI_REF_CLK_P
AA1 GND
AA2 EPR_CS
AA22 VDD18_DDR
AA23 DDR_DQ<24>
AA24 DDR_DQ<23>
AA25 DDR_DQ<22>
AA26 DDR_DQ<19>
AA3 EPR_SK
AA4 TWS_SCL
AA5 VDD33
AB1 RSVD5
AB10 VDD33
AB11 GND
AB12 VDD33
AB13 GND
AB14 GND
AB15 VDD33
AB16 GND
AB17 VDD33
AB18 GND
AB19 VDD33
AB2 BOOT_AD<31>
AB20 GND
AB21 VDD33
818 Cavium
AB22 GND
AB23 DDR_DQ<27>
AB24 DDR_DQ<26>
AB25 DDR_DQ<25>
AB26 GND
AB3 BOOT_AD<30>
AB4 BOOT_AD<26>
AB5 GND
AB6 VDD33
AB7 GND
AB8 VDD33
AB9 GND
AC1 BOOT_AD<29>
AC10 BOOT_CE_3_L
AC11 BOOT_CE_0_L
AC12 UART0_SOUT
AC13 UART0_CTS_L
AC14 GPIO_2
AC15 GPIO_6
AC16 GPIO_16/PCM_DATA1
AC17 GPIO_20/MPI_RX
AC18 GPIO_22/MPI_CS
AC19 GPIO_21/MPI_TX
AC2 BOOT_AD<28>
AC20 JTG_TMS
AC21 EJTG_TDO
AC22 RSVD1
AC23 GND
AC24 DDR_DQ<29>
AC25 DDR_DQ<28>
AC26 DDR_DQS_3_P
AC3 BOOT_AD<27>
AC4 GND
AC5 BOOT_AD<17>
AC6 BOOT_AD<13>
AC7 BOOT_AD<9>
AC8 BOOT_AD<5>
AC9 BOOT_AD<2>
AD1 BOOT_AD<25>
AD10 BOOT_CE_2_L
AD11 BOOT_ALE
AD12 UART0_RTS_L
AD13 UART1_RTS_L
AD14 GPIO_1
AD15 GPIO_5
AD16 GPIO_8/BOOT_CE_4_L
AD17 GPIO_11/BOOT_CE_7_L
AD18 GPIO_17/PCM_DATA0
AD19 GPIO_18/PCM_FSYNC0
AD2 BOOT_AD<24>
AD20 GPIO_19/PCM_BCLK0
AD21 JTG_TRST_L

Ball Pin Name
 Networks Proprietary and Confidential DO NOT CO
AD22 RSVD2
AD23 DDR_CK_2_N
AD24 GND
AD25 DDR_DQ<30>
AD26 DDR_DQS_3_N
AD3 GND
AD4 BOOT_AD<19>
AD5 BOOT_AD<15>
AD6 BOOT_AD<10>
AD7 BOOT_AD<8>
AD8 BOOT_AD<4>
AD9 BOOT_AD<0>
AE1 BOOT_AD<23>
AE10 BOOT_WE_L
AE11 GND
AE12 UART0_SIN
AE13 UART1_SOUT
AE14 GPIO_0
AE15 GPIO_4
AE16 GND
AE17 GPIO_10/BOOT_CE_6_L
AE18 GPIO_13/PCM_DATA2
AE19 GPIO_15/PCM_BCLK1
AE2 GND
AE20 GPIO_23/MPI_CLK
AE21 JTG_TCK
AE22 JTG_TDO
AE23 DDR_COMP_DN
AE24 DDR_CK_2_P
AE25 GND
AE26 DDR_DQ<31>
AE3 BOOT_AD<21>
AE4 BOOT_AD<18>
AE5 BOOT_AD<14>
AE6 BOOT_AD<11>
AE7 BOOT_AD<7>
AE8 BOOT_AD<3>
AE9 BOOT_WAIT_L
AF1 GND
AF10 BOOT_CE_1_L
AF11 MDI_MDIO
AF12 MDI_MDC
AF13 UART1_SIN
AF14 UART1_CTS_L
AF15 GPIO_3
AF16 GPIO_7
AF17 GPIO_9/BOOT_CE_5_L
AF18 GPIO_12/PCM_DATA3
AF19 GPIO_14/PCM_FSYNC1
AF2 BOOT_AD<22>
AF20 JTG_TDI
AF21 GND

Ball Pin Name
PY CN50XX-HM-0.99E PRELIMINARY

Ball Assignments: CN50XX Balls Sorted in Numerical Order
AF22 EJTG_TRST_L
AF23 DDR_COMP_UP
AF24 DDR_CK_3_N
AF25 DDR_CK_3_P
AF26 GND
AF3 BOOT_AD<20>
AF4 BOOT_AD<16>
AF5 BOOT_AD<12>
AF6 GND
AF7 BOOT_AD<6>
AF8 BOOT_AD<1>
AF9 BOOT_OE_L
B1 PCI_DLL_VDD33
B10 USB_REXT
B11 GND
B12 RGM2_RXC/GMI_CRS/

MI1_CRS
B13 RGM2_RXD3/GMI_RXD7
B14 GMI_RXCLK/MI1_RXCLK
B15 RGM1_RXD1/GMI_RXD1/

MI1_RXD1
B16 GND
B17 RGM0_RXD1/MI0_RXD1
B18 RGM2_TXD2/GMI_TXD6
B19 RGM2_TXD0/GMI_TXD4
B2 GND
B20 RGM1_TXC/GMI_TXEN/

MI1_TXEN
B21 RGM0_TXD2/MI0_TXD2
B22 RGM_COMP_UP
B23 DDR_PLL_VDD33
B24 DDR_DQ<0>
B25 GND
B26 DDR_DQ<2>
B3 PCI_CLK_OUT<0>
B4 PCI_CLK_OUT<1>
B5 PCI_M66EN
B6 PCI_HOST_MODE
B7 PLL_MUL_2
B8 GND
B9 PLL_REF_CLK
C1 PCI_INTB_L
C10 USB_XO
C11 MI1_TXCLK
C12 MI0_COL
C13 RGM2_RXD2/GMI_RXD6
C14 RGM1_RXD2/GMI_RXD2/

MI1_RXD2
C15 RGM1_RXC/GMI_COL/

MI1_COL
C16 RGM0_RXC/MI0_RXCLK
C17 RGM0_RXD0/MI0_RXD0
C18 RGM2_TXD1/GMI_TXD5
C19 RGM1_TXD3/GMI_TXD3/

MI1_TXD3
C2 PCI_INTD_L

Ball Pin Name
CN50XX-HM-0.99E PRELIMINARY Cavium
C20 RGM1_TXD0/GMI_TXD0/
MI1_TXD0

C21 RGM0_TXD1/MI0_TXD1
C22 RGM0_TXCTL/MI0_TXERR
C23 DDR_DQ<1>
C24 GND
C25 DDR_DQ<3>
C26 DDR_DQS_0_P
C3 GND
C4 CHIP_RESET_L
C5 DIAG_CLKOUT_ENABLE
C6 PCI_REF_CLKIN
C7 RSVD4
C8 PLL_MUL_1
C9 USB_XI
D1 PCI_PCLK
D10 USB_GND
D11 USB_VDDA33
D12 MI0_TXCLK
D13 RGM2_RXCTL/GMI_RXDV/

MI1_RXDV
D14 RGM1_RXD0/GMI_RXD0/

MI1_RXD0
D15 RGM1_RXCTL/GMI_RXERR/

MI1_RXERR
D16 RGM0_RXCTL/MI0_RXERR
D17 MI0_RXDV
D18 RGM2_TXCTL
D19 RGM1_TXD1/GMI_TXD1/

MI1_TXD1
D2 PCI_RST_L
D20 RGM1_TXCTL/GMI_TXERR/

MI1_TXERR
D21 RGM0_TXC/MI0_TXEN
D22 RGM0_TXD0/MI0_TXD0
D23 GND
D24 DDR_DQ<5>
D25 DDR_DQ<6>
D26 DDR_DQS_0_N
D3 DIAG_CLKOUT
D4 GND
D5 PCI_BOOT
D6 PCI_PCIXCAP
D7 PLL_DCOK
D8 PLL_MUL_0
D9 RSVD3
E1 GND
E10 VDD25_RGM
E11 GND
E12 VDD25_RGM
E13 GND
E14 GND
E15 VDD25_RGM
E16 GND
E17 VDD25_RGM
E18 GND

Ball Pin Name
 Networks Proprietary and Confidential DO NOT CO
E19 VDD25_RGM
E2 PCI_DEV_GNT_3_L/REQ_L
E20 GND
E21 VDD25_RGM
E22 GND
E23 DDR_DQ<4>
E24 DDR_DQ<7>
E25 DDR_DQ<9>
E26 DDR_DQ<12>
E3 PCI_DEV_REQ_2_L
E4 PCI_INTA_L
E5 GND
E6 VDD33
E7 GND
E8 VDD33
E9 GND
F1 PCI_AD<31>
F2 PCI_DEV_REQ_3_L/GNT_L
F22 VDD18_DDR
F23 DDR_DQ<8>
F24 DDR_DQ<11>
F25 DDR_DQ<15>
F26 GND
F3 PCI_DEV_GNT_2_L
F4 PCI_INTC_L
F5 VDD33
G1 PCI_AD<27>
G2 PCI_AD<29>
G22 GND
G23 DDR_DQ<10>
G24 DDR_DQ<14>
G25 DDR_DQS_1_P
G26 DDR_DQS_1_N
G3 PCI_DEV_REQ_0_L
G4 PCI_DEV_REQ_1_L
G5 GND
H1 PCI_CBE_3_L
H10 GND
H11 GND
H12 VDD
H13 GND
H14 GND
H15 VDD
H16 GND
H17 GND
H18 VDD
H19 VDD18_DDR
H2 PCI_AD<25>
H22 VDD18_DDR
H23 DDR_DQ<13>
H24 DDR_CB<0>
H25 DDR_CK_0_P
H26 DDR_CK_0_N
H3 PCI_DEV_GNT_0_L
H4 PCI_DEV_GNT_1_L

Ball Pin Name
PY 819

Ball Assignments: CN50XX Balls Sorted in Numerical Order
H5 VDD33
H8 VDD33
H9 VDD
J1 PCI_AD<23>
J10 GND
J11 GND
J12 GND
J13 GND
J14 GND
J15 GND
J16 GND
J17 GND
J18 VDD
J19 VDD18_DDR
J2 GND
J22 GND
J23 DDR_CB<1>
J24 DDR_CB<3>
J25 DDR_CK_1_P
J26 DDR_CK_1_N
J3 PCI_AD<28>
J4 PCI_AD<30>
J5 GND
J8 VDD33
J9 VDD
K1 PCI_AD<19>
K10 GND
K11 GND
K12 GND
K13 GND
K14 GND
K15 GND
K16 GND
K17 GND
K18 VDD
K19 VDD18_DDR
K2 PCI_AD<21>
K22 VDD18_DDR
K23 DDR_CB<2>
K24 GND
K25 DDR_CBS_0_P
K26 DDR_CBS_0_N
K3 PCI_AD<24>
K4 PCI_AD<26>
K5 VDD33
K8 VDD33
K9 VDD
L1 PCI_CBE_2_L
L10 GND
L11 GND
L12 GND
L13 GND
L14 GND
L15 GND
L16 GND
L17 GND

Ball Pin Name
820 Cavium
L18 VDD
L19 VDD18_DDR
L2 PCI_AD<17>
L22 GND
L23 DDR_CKE
L24 DDR_A<14>
L25 DDR_BA<2>
L26 DDR_A<12>
L3 PCI_AD<22>
L4 PCI_IDSEL
L5 GND
L8 VDD33
L9 VDD
M1 PCI_DEVSEL_L
M10 GND
M11 GND
M12 GND
M13 GND
M14 GND
M15 GND
M16 GND
M17 GND
M18 VDD
M19 VDD18_DDR
M2 PCI_IRDY_L
M22 VDD18_DDR
M23 DDR_A<11>
M24 DDR_A<9>
M25 DDR_A<7>
M26 DDR_A<8>
M3 PCI_AD<18>
M4 PCI_AD<20>
M5 VDD33
M8 VDD33
M9 VDD
N1 GND
N10 GND
N11 GND
N12 GND
N13 GND
N14 GND
N15 GND
N16 GND
N17 GND
N18 VDD
N19 VDD18_DDR
N2 PCI_LOCK_L
N22 GND
N23 DDR_A<4>
N24 DDR_A<3>
N25 DDR_A<6>
N26 DDR_A<5>
N3 PCI_FRAME_L
N4 PCI_AD<16>
N5 GND

Ball Pin Name
 Networks Proprietary and Confidential DO NOT COP
N8 VDD33
N9 VDD
P1 PCI_SERR_L
P10 GND
P11 GND
P12 GND
P13 GND
P14 GND
P15 GND
P16 GND
P17 GND
P18 VDD
P19 VDD18_DDR
P2 PCI_PERR_L
P22 GND
P23 DDR_A<2>
P24 DDR_A<1>
P25 DDR_VREF
P26 GND
P3 PCI_STOP_L
P4 PCI_TRDY_L
P5 GND
P8 VDD33
P9 VDD
R1 PCI_AD<14>
R10 GND
R11 GND
R12 GND
R13 GND
R14 GND
R15 GND
R16 GND
R17 GND
R18 VDD
R19 VDD18_DDR
R2 PCI_CBE_1_L
R22 VDD18_DDR
R23 DDR_A<0>
R24 DDR_A<10>
R25 DDR_BA<0>
R26 DDR_BA<1>
R3 PCI_AD<15>
R4 PCI_PAR
R5 VDD33
R8 VDD33
R9 VDD
T1 PCI_AD<10>
T10 GND
T11 GND
T12 GND
T13 GND
T14 GND
T15 GND
T16 GND
T17 GND

Ball Pin Name
Y CN50XX-HM-0.99E PRELIMINARY

Ball Assignments: CN50XX Balls Sorted in Numerical Order
T18 VDD
T19 VDD18_DDR
T2 PCI_AD<12>
T22 GND
T23 DDR_A<13>
T24 DDR_CAS_L
T25 DDR_WE_L
T26 DDR_RAS_L
T3 PCI_AD<11>
T4 PCI_AD<13>
T5 GND
T8 VDD33
T9 VDD
U1 PCI_AD<8>
U10 GND
U11 GND
U12 GND
U13 GND
U14 GND
U15 GND
U16 GND
U17 GND
U18 VDD
U19 VDD18_DDR
U2 GND
U22 VDD18_DDR
U23 DDR_DIMM1_CS1_L
U24 DDR_DIMM0_ODT_1
U25 DDR_DIMM1_CS0_L
U26 DDR_DIMM0_CS0_L
U3 PCI_CBE_0_L
U4 PCI_AD<9>
U5 VDD33
U8 VDD33
U9 VDD
V1 PCI_AD<5>
V10 GND
V11 GND
V12 GND
V13 GND
V14 GND
V15 GND
V16 GND
V17 GND
V18 VDD
V19 VDD18_DDR
V2 PCI_AD<7>
V22 GND
V23 DDR_DQ<16>
V24 DDR_DIMM1_ODT_1
V25 GND
V26 DDR_DIMM0_ODT_0
V3 PCI_AD<4>
V4 PCI_AD<6>
V5 GND
V8 VDD33

Ball Pin Name
CN50XX-HM-0.99E PRELIMINARY Cavium
V9 VDD
W1 PCI_AD<1>
W10 GND
W11 GND
W12 VDD
W13 GND
W14 GND
W15 VDD
W16 GND
W17 GND
W18 VDD
W19 VDD18_DDR
W2 PCI_AD<3>
W22 VDD18_DDR
W23 DDR_DQ<18>
W24 DDR_DQ<17>
W25 DDR_DIMM1_ODT_0
W26 DDR_DIMM0_CS1_L
W3 PCI_AD<0>
W4 PCI_AD<2>
W5 VDD33
W8 VDD33
W9 VDD
Y1 PCI_ENABLE
Y2 EPR_DI
Y22 GND
Y23 DDR_DQ<21>
Y24 DDR_DQ<20>
Y25 DDR_DQS_2_N
Y26 DDR_DQS_2_P
Y3 EPR_DO
Y4 TWS_SDA
Y5 GND

Ball Pin Name
 Networks Proprietary and Confidential DO NOT CO
PY 821

 Ball Assignments: CN50XX Balls Sorted in Numerical Order
822 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Appendix A

Cavium Networks-Specific Core Instructions
This appendix contains the following subjects:

● Cavium Networks-Specific Instruction Descriptions

4.1 Core Instructions

Instruction Detailed Description

BADDU See page 826

BBIT0 See page 827

BBIT032 See page 828

BBIT1 See page 829

BBIT132 See page 830

CACHE See page 831

CINS See page 833

CINS32 See page 834

CVM_MF_3DES_IV See page 835

CVM_MF_3DES_KEY
CVM_MF_KAS_KEY

See page 836

CVM_MF_3DES_RESULT
CVM_MF_KAS_RESULT

See page 837

CVM_MF_AES_INP0 See page 838

CVM_MF_AES_IV See page 839

CVM_MF_AES_KEY See page 840

CVM_MF_AES_KEYLENGTH See page 841

CVM_MF_AES_RESINP See page 842

CVM_MF_CRC_IV See page 843

CVM_MF_CRC_IV_REFLECT See page 844

CVM_MF_CRC_LEN See page 845

CVM_MF_CRC_POLYNOMIAL See page 846

CVM_MF_GFM_MUL See page 847

CVM_MF_GFM_POLY See page 848

CVM_MF_GFM_RESINP See page 849

CVM_MF_HSH_DAT See page 850

CVM_MF_HSH_DATW See page 852

CVM_MF_HSH_IV See page 854

CVM_MF_HSH_IVW See page 855

CVM_MT_3DES_DEC See page 857
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 823

: Core Instructions
CVM_MT_3DES_DEC_CBC See page 858

CVM_MT_3DES_ENC See page 859

CVM_MT_3DES_ENC_CBC See page 860

CVM_MT_3DES_IV See page 861

CVM_MT_3DES_KEY
CVM_MT_KAS_KEY

See page 862

CVM_MT_3DES_RESULT
CVM_MT_KAS_RESULT

See page 863

CVM_MT_AES_DEC_CBC0 See page 864

CVM_MT_AES_DEC_CBC1 See page 865

CVM_MT_AES_DEC0 See page 867

CVM_MT_AES_DEC1 See page 868

CVM_MT_AES_ENC_CBC0 See page 869

CVM_MT_AES_ENC_CBC1 See page 870

CVM_MT_AES_ENC0 See page 872

CVM_MT_AES_ENC1 See page 873

CVM_MT_AES_IV See page 875

CVM_MT_AES_KEY See page 876

CVM_MT_AES_KEYLENGTH See page 877

CVM_MT_AES_RESINP See page 878

CVM_MT_CRC_BYTE See page 879

CVM_MT_CRC_BYTE_REFLECT See page 880

CVM_MT_CRC_DWORD See page 881

CVM_MT_CRC_DWORD_REFLECT See page 882

CVM_MT_CRC_HALF See page 883

CVM_MT_CRC_HALF_REFLECT See page 884

CVM_MT_CRC_IV See page 885

CVM_MT_CRC_IV_REFLECT See page 886

CVM_MT_CRC_LEN See page 887

CVM_MT_CRC_POLYNOMIAL See page 888

CVM_MT_CRC_POLYNOMIAL_REFLECT See page 889

CVM_MT_CRC_VAR See page 890

CVM_MT_CRC_VAR_REFLECT See page 891

CVM_MT_CRC_WORD See page 892

CVM_MT_CRC_WORD_REFLECT See page 893

CVM_MT_GFM_MUL See page 894

CVM_MT_GFM_POLY See page 895

CVM_MT_GFM_RESINP See page 896

CVM_MT_GFM_XOR0 See page 897

CVM_MT_GFM_XORMUL1 See page 898

CVM_MT_HSH_DAT See page 900

CVM_MT_HSH_DATW See page 902

CVM_MT_HSH_IV See page 904

CVM_MT_HSH_IVW See page 905

CVM_MT_HSH_STARTMD5 See page 907

CVM_MT_HSH_STARTSHA See page 909

CVM_MT_HSH_STARTSHA256 See page 911

Instruction Detailed Description
824 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Core Instructions
CVM_MT_HSH_STARTSHA512 See page 913

CVM_MT_KAS_ENC See page 914

CVM_MT_KAS_ENC_CBC See page 915

DMUL See page 916

DPOP See page 917

EXTS See page 918

EXTS32 See page 919

MTM0 See page 920

MTM1 See page 921

MTM2 See page 922

MTP0 See page 923

MTP1 See page 924

MTP2 See page 925

POP See page 926

PREF See page 927

RDHWR See page 929

SAA See page 931

SAAD See page 933

SEQ See page 935

SEQI See page 936

SNE See page 937

SNEI See page 938

SYNCIOBDMA See page 939

SYNCS See page 940

SYNCW See page 942

SYNCWS See page 944

ULD See page 946

ULW See page 949

USD See page 952

USW See page 955

V3MULU See page 958

VMM0 See page 959

VMULU See page 961

Instruction Detailed Description
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 825

: Cavium Networks-Specific Instruction Descriptions
A.1 Cavium Networks-Specific Instruction Descriptions

Format: BADDU rd, rs, rt CVM

Purpose:
To do an unsigned byte (8-bit) add.

Description: The 8-bit byte value in GPR rt is added to the 8-bit byte value in GPR
rs producing an 8-bit result that is zero- extended.

No integer overflow or any other exception occurs under any circumstance.

Operation:

GPR[rd] = (GPR[rs] + GPR[rt]) & 0xFF

Exceptions:

None.

Unsigned Byte Add BADDU

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd 000 00
BADDU
10 1000

6 5 5 5 5 6
826 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: BBIT0 rs, p, offset CVM

Purpose:

To do a PC-relative conditional branch if one of the lower 32-bits is clear

Description: if !rs<p> then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2-bits) is added to the
address of the instruction following the branch (not the branch itself), in the branch
delay slot, to form a PC-relative effective target address.

If bit rs<p> is clear, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is unpredictable if a branch, jump, ERET, DERET, or WAIT
instruction is placed in the delay slot of a branch or jump.

Operation:

I: target_offset <- sign_extend(offset || 00)
 condition <- !GPR[rs]<p>
I+1: if condition then
 PC <- PC + target_offset

 endif

Exceptions:

None.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB.
Use jump (J) or jump register (JR) instructions to branch to addresses outside this
range.

BBIT0 consumes the major opcode of the MIPS LWC2 instruction. BBIT0 is not
considered a COP2 instruction so does not take an exception when COP2 is not
enabled.

Branch on Bit Clear BBIT0

31 26 25 21 20 16 15 0

BBIT0
1100 10

rs p offset

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 827

: Cavium Networks-Specific Instruction Descriptions

Format: BBIT032 rs, p, offset CVM

Purpose:

To do a PC-relative conditional branch if one of the upper 32 bits is clear

Description: if !rs<p+32> then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2-bits) is added to the
address of the instruction following the branch (not the branch itself), in the branch
delay slot, to form a PC-relative effective target address.

If bit rs<p+32> is clear, branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation is unpredictable if a branch, jump, ERET, DERET, or WAIT
instruction is placed in the delay slot of a branch or jump.

Operation:

I: target_offset <- sign_extend(offset || 00)
 condition <- !GPR[rs]<p+32>
I+1: if condition then
 PC <- PC + target_offset

 endif

Exceptions:

None.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB.
Use jump (J) or jump register (JR) instructions to branch to addresses outside this
range.

BBIT032 consumes the major opcode of the MIPS LDC2 instruction. BBIT032 is not
considered a COP2 instruction so does not take an exception when COP2 is not
enabled.

Branch on Bit Clear Plus 32 BBIT032

31 26 25 21 20 16 15 0

BBIT032
1101 10

rs p offset

6 5 5 16
828 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: BBIT1 rs, p, offset CVM

Purpose:

To do a PC-relative conditional branch if one of the lower 32 bits is set

Description: if rs<p> then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2-bits) is added to the
address of the instruction following the branch (not the branch itself), in the branch
delay slot, to form a PC-relative effective target address.

If-bit rs<p> is set, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is unpredictable if a branch, jump, ERET, DERET, or WAIT
instruction is placed in the delay slot of a branch or jump.

Operation:

I: target_offset <- sign_extend(offset || 00)
 condition <- GPR[rs]<p>
I+1: if condition then
 PC <- PC + target_offset

 endif

Exceptions:

None.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB.
Use jump (J) or jump register (JR) instructions to branch to addresses outside this
range.

BBIT1 consumes the major opcode of the MIPS SWC2 instruction. BBIT1 is not
considered a COP2 instruction so does not take an exception when COP2 is not
enabled.

Branch on Bit Set BBIT1

31 26 25 21 20 16 15 0

BBIT1
1110 10

rs p offset

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 829

: Cavium Networks-Specific Instruction Descriptions

Format: BBIT132 rs, p, offset CVM

Purpose:

To do a PC-relative conditional branch if one of the upper 32 bits is set

Description: if rs<p+32> then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2-bits) is added to the
address of the instruction following the branch (not the branch itself), in the branch
delay slot, to form a PC-relative effective target address.

If bit rs<p+32> is set, branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation is unpredictable if a branch, jump, ERET, DERET, or WAIT
instruction is placed in the delay slot of a branch or jump.

Operation:

I: target_offset <- sign_extend(offset || 00)
 condition <- GPR[rs]<p+32>
I+1: if condition then
 PC <- PC + target_offset

 endif

Exceptions:

None.

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KB.
Use jump (J) or jump register (JR) instructions to branch to addresses outside this
range.

BBIT132 consumes the major opcode of the MIPS SDC2 instruction. BBIT132 is not
considered a COP2 instruction so does not take an exception when COP2 is not
enabled.

Branch on Bit Set Plus 32 BBIT132

31 26 25 21 20 16 15 0

BBIT132
1111 10

rs p offset

6 5 5 16
830 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: CACHE op, offset(base) MIPS32/CVM

Purpose:

To perform the cache operation specified by op.

Description:

The operation depends on the value of the op field. The possible values are shown in
the table below.

NOTE: This is a standard MIPS32 instruction for which OCTEON chips implement
all the functionality defined in the MIPS standard instruction set, as well as
additional, cnMIPS-specific operations.

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0

CACHE
1011 11

base op offset

6 5 5 16

Op Value Name Description

0, 8,
16, 20

L1 Icache
Invalidate

All blocks in the entire L1 Icache become invalid.

1, 9 L1 Dcache
Invalidate

All blocks in the entire L1 Dcache become invalid.

2-3, 5-7,
10-11, 13-15,
18-19, 22-31

No operation.

4 Icache Index
Load Tag

The 16-bit signed offset is added to the contents of the base register to
form an effective address.

● Bits<12:7> of the effective address select the set.
● Bits<14:13> select the way of the cache block involved in the

operation.
● Bits<6:3> of the effective address select a 64-bit word within the

cache block.

The HW loads the virtual tag for the Icache block into the Icache TagLo
register and 66-bits of raw Icache data into the Icache DataLo and
DataHi registers. The raw data is prior to the repair algorithm indicated
by CacheErr[badcol]. If the instruction cache is perfect (i.e. if no repair
is required), then:

● bits<63:0> of the raw Icache data contain the two instructions in
the word in big-endian format

● bit<64> is the parity bit for the instructions
● <65> is unused.

This operation does not cause a cache error exception.
5 Dcache

Index Load
Tag

The 16-bit signed offset is added to the contents of the base register to
form an effective address.

● Bits<13:8> of the effective address select the particular cache block
involved in the operation (i.e. the way)

● Bit<7> selects the set.

● Bits<6:3> selects a 64-bit word within the cache block.

The HW loads the virtual and physical tags for the Dcache block into
the Dcache TagLo and TagHi registers and the 64-bit data word and
corresponding parity bits into the Dcache DataLo and DataHi registers.
This operation does not cause a cache error exception.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 831

: Cavium Networks-Specific Instruction Descriptions
Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is
signaled.

Operation:

 if IsCoprocessorEnabled(0) then
 vAddr = GPR[base] + sign_extend(offset)
 CacheOp(op, vAddr)
 else
 SignalException(CoprocessorUnusable, 0)

 endif

Exceptions:

Coprocessor Unusable Exception

CACHE instructions never match watches/breakpoints on OCTEON.

12 Icache
Bitmap
Store

The 16-bit signed offset is added to the contents of the base register to
form an effective address.

● Bits<12:7> of the effective address selects the set.
● Bits<14:13> selects the way of the cache block involved in the

operation.
● Bits<6:3> of the effective address selects a 64-bit word within the

cache block.

The HW fills the virtual tag for the Icache block with the contents of the
Icache TagLo register and fills 66-bits into the selected Icache word as
raw data. The 66 bits written are 33 duplicates of DataLo<1:0>, so only
values 0x00000000000000000, 0x15555555555555555,
0x2AAAAAAAAAAAAAAAA, and 0x3FFFFFFFFFFFFFFFF are
possible.

The raw data is independent of the repair algorithm indicated by
CacheErr[badcol]. If the instruction cache is perfect (i.e. if no repair is
required), then:

● bits<63:0> of the 66-bits written correspond to the the two
instructions of the word in big-endian format

● bit<64> is the parity bit
● bit<65> is not used.

17, 21 L1 Dcache
Virtual Tag
Invalidate

All valid bits for all virtual tags in the entire L1 Dcache become invalid.
The valid bits for the physical tags in the Dcache remain unchanged.

Op Value Name Description
832 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: CINS rt, rs, p, lenm1 CVM

Purpose:

To insert a bit field that starts in the lower 32 bits of a register and clear the rest of
the register.

Description: rt = rs<lenm1:0> << p
The contents of general-purpose register rt from bit location p + lenm1 to bit location
p are filled with the contents of general-purpose register rs from bit location lenm1 to
bit location 0. The remaining bits in rt are zeroed by this instruction.

Restrictions:

The p and lenm1 fields are only 5-bits, so the widest allowed bit field is 32-bits.

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 GPR[rt] <- GPR[rs]<lenm1:0> << p
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction.

Clear and Insert a Bit Field CINS

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt lenm1 p
CINS

11 0010

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 833

: Cavium Networks-Specific Instruction Descriptions

Format: CINS32 rt, rs, p, lenm1 CVM

Purpose:

To insert a bit field that starts in the upper 32 bits of a register and clear the rest of
the register.

Description: rt = rs<lenm1:0> << (p + 32)

The contents of general-purpose register rt from bit location p + 32 + lenm1 to bit
location p + 32 are filled with the contents of general-purpose register rs from bit
location lenm1 to bit location 0. The remaining bits in rt are zeroed by this
instruction.

Restrictions:

The p and lenm1 fields are only 5-bits, so the widest allowed bit field is 32-bits.

The result register GPR[rt] is unpredictable when p+32+lenm1 is larger than 63.

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 GPR[rt] <- GPR[rs]<lenm1:0> << (p + 32)
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction.

Clear and Insert a Bit Field Plus 32 CINS32

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt lenm1 p
CINS32
11 0011

6 5 5 5 5 6
834 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0084 CVM

Purpose:

To read 3DESIV from the 3DES coprocessor.

Description: rt = 3DESIV<63:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CVMCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = 3DESIV<63:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)

 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV from 3DES Unit CVM_MF_3DES_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0000 1000 0100

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 835

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0080 CVM

DMFC2 rt, 0x0081

DMFC2 rt, 0x0082

Purpose:

To read 3DESKEY values from the 3DES and KASUMI coprocessors. 3DESKEY[2:0]
are used by the 3DES unit, 3DESKEY[1:0] are used by the KASUMI unit.

Description: rt = 3DESKEY[0] // DMFC2 rt, 0x0080
rt = 3DESKEY[1] // DMFC2 rt, 0x0081
rt = 3DESKEY[2] // DMFC2 rt, 0x0082

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0080: GPR[rt] = 3DES_KEY[0]
 case 0x0081: GPR[rt] = 3DES_KEY[1]
 case 0x0082: GPR[rt] = 3DES_KEY[2]
 endif
 else
 SignalException(CoprocessorUnusable, 2)

 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Key from 3DES Unit CVM_MF_3DES_KEY
Load Key from KASUMI Unit CVM_MF_KAS_KEY

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt

impl
0000 0000 1000 0000
0000 0000 1000 0001
0000 0000 1000 0010

6 5 5 16
836 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0088 CVM

Purpose:

To read 3DESRESULT from the 3DES and KASUMI coprocessors.

Description: rt = 3DESRESULT<63:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = 3DESRESULT<63:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2) endif

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Result from 3DES Unit CVM_MF_3DES_RESULT
Load Result from KASUMI Unit CVM_MF_KAS_RESULT

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0000 1000 1000

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 837

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0111 CVM

Purpose:

To read AES input from the AES coprocessor.

Description: rt = AESRESINP[0]

CVM_MF_AES_RESINP0 should be used instead of this instruction. This operation
is deprecated, and is present only for backward compatibility with earlier revisions
of the architecture.

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = AESRESINP[0]
 endif
 else
 SignalException(CoprocessorUnusable, 2)

 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load INP0 from AES Unit CVM_MF_AES_INP0

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0001 0001 0001

6 5 5 16
838 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0102 CVM

DMFC2 rt, 0x0103

Purpose:

To read AESIV from the AES coprocessor.

Description: rt = AESIV[0] // DMFC2 rt, 0x0102
rt = AESIV[1] // DMFC2 rt, 0x0103

Restrictions:

CVM_MF_AES_IV1 (i.e. “DMFC2 rt, 0x0103”) must not be the first AES-related
instruction that immediately follows a prior CVM_MT_AES_ENC_CBC1,
CVM_MT_AES_ENC1, CVM_MT_AES_DEC1, or CVM_MT_AES_DEC1 instruction.
CVM_MF_AES_IV1 should always follow CVM_MF_AES_IV0.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0102: GPR[rt] = AESIV[0]
 case 0x0103: GPR[rt] = AESIV[1]
 endif
 else
 SignalException(CoprocessorUnusable, 2)

 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV from AES Unit CVM_MF_AES_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0001 0000 0010
0000 0001 0000 0011

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 839

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0104 CVM

DMFC2 rt, 0x0105

DMFC2 rt, 0x0106

DMFC2 rt, 0x0107

Purpose:

To read AESKEY from the AES coprocessor.

Description: rt = AESKEY[0] // DMFC2 rt, 0x0104
rt = AESKEY[1] // DMFC2 rt, 0x0105
rt = AESKEY[2] // DMFC2 rt, 0x0106
rt = AESKEY[3] // DMFC2 rt, 0x0107

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0104: GPR[rt] = AESKEY[0]
 case 0x0105: GPR[rt] = AESKEY[1]
 case 0x0106: GPR[rt] = AESKEY[2]
 case 0x0107: GPR[rt] = AESKEY[3]
 endif
 else
 SignalException(CoprocessorUnusable, 2)

 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Key from AES Unit CVM_MF_AES_KEY

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt

impl
0000 0001 0000 0100
0000 0001 0000 0101
0000 0001 0000 0110
0000 0001 0000 0111

6 5 5 16
840 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0110 CVM

Purpose:

To read AESKEYLEN from the AES coprocessor.

Description: rt = AESKEYLEN<1:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = 062 || AESKEYLEN<1:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Keylength from AES Unit CVM_MF_AES_KEYLENGTH

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0001 0001 0000

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 841

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0100 CVM

DMFC2 rt, 0x0101

Purpose:

To read AESRESINP from the AES coprocessor.

Description: rt = AESRESINP[0] // DMFC2 rt, 0x0100
rt = AESRESINP[1] // DMFC2 rt, 0x0101

Restrictions:

CVM_MF_AES_RESINP1 (i.e. “DMFC2 rt, 0x0101”) must not be the first AES-
related instruction that immediately follows a prior CVM_MT_AES_ENC_CBC1,
CVM_MT_AES_ENC1, CVM_MT_AES_DEC1, or CVM_MT_AES_DEC1
instruction. CVM_MF_AES_RESINP1 should always follow
CVM_MF_AES_RESINP0.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0100: GPR[rt] = AESRESINP[0]
 case 0x0101: GPR[rt] = AESRESINP[1]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Result/Input from AES Unit CVM_MF_AES_RESINP

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0001 0000 0000
0000 0001 0000 0001

6 5 5 16
842 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0201 CVM

Purpose:

To read CRCIV from the CRC coprocessor.

Description: rt = sign_extend(CRCIV<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = sign_extend(CRCIV<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV from CRC Unit CVM_MF_CRC_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0000 0001

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 843

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0203 CVM

Purpose:

To read CRCIV from the CRC coprocessor. The bits within the entire CRCIV word are
reflected.

Description: rt = sign_extend(word_bit_reflect(CRCIV<31:0>))

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = sign_extend(word_bit_reflect(CRCIV<31:0>))
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV from CRC Unit Reflected CVM_MF_CRC_IV_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0000 0011

6 5 5 16
844 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0202 CVM

Purpose:

To read CRCLEN from the CRC coprocessor.

Description: rt = CRCLEN<3:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = 060 || CRCLEN<3:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Length from CRC Unit CVM_MF_CRC_LEN

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0000 0010

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 845

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0200 CVM

Purpose:

To read CRCPOLY from the CRC coprocessor.

Description: rt = sign_extend(CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) then
 SignalException(ReservedInstruction)
 else
 GPR[rt] = sign_extend(CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Polynomial from CRC Unit CVM_MF_CRC_POLYNOMIAL

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0000 0000

6 5 5 16
846 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0258 CVM

DMFC2 rt, 0x0259

Purpose:

To read GFMMUL from the GFM coprocessor.

Description: rt = GFMMUL[0] // DMFC2 rt, 0x0258
rt = GFMMUL[1] // DMFC2 rt, 0x0259

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0258: GPR[rt]<63:0> = GFMMUL[0]<63:0>)
 case 0x0259: GPR[rt]<63:0> = GFMMUL[1]<63:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Multiplier from GFM Unit CVM_MF_GFM_MUL

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0101 1000
0000 0010 0101 1001

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 847

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x025E CVM

Purpose:

To read GFMPOLY from the GFM coprocessor.

Description: rt = GFMPOLY<15:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GPR[rt]<63:0> = 048 || GFMPOLY<15:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Polynomial from GFM Unit CVM_MF_GFM_POLY

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0101 1110

6 5 5 16
848 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x025A CVM

DMFC2 rt, 0x025B

Purpose:

To read GFMMUL from the GFM coprocessor.

Description: rt = GFMRESINP[0] // DMFC2 rt, 0x025A
rt = GFMRESINP[1] // DMFC2 rt, 0x025B

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x025A: GPR[rt]<63:0> = GFMRESINP[0]<63:0>
 case 0x025B: GPR[rt]<63:0> = GFMRESINP[1]<63:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Result/Input from GFM Unit CVM_MF_GFM_RESINP

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt
impl

0000 0010 0101 1010
0000 0010 0101 1011

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 849

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0040 CVM

DMFC2 rt, 0x0041

DMFC2 rt, 0x0042

DMFC2 rt, 0x0043

DMFC2 rt, 0x0044

DMFC2 rt, 0x0045

DMFC2 rt, 0x0046

Purpose:

To read HASHDAT from the HSH coprocessor in narrow mode. MD5, SHA-1, and
SHA-256 use the narrow mode. The most-significant and least-significant 32 bits of
rt are written with the least-significant 32 bits of separate 64-bit HASHDAT double-
words.

Description: rt = HASHDAT[0]<31:0> || HASHDAT[1]<31:0> // DMFC2 rt, 0x0040
rt = HASHDAT[2]<31:0> || HASHDAT[3]<31:0> // DMFC2 rt, 0x0041
rt = HASHDAT[4]<31:0> || HASHDAT[5]<31:0> // DMFC2 rt, 0x0042
rt = HASHDAT[6]<31:0> || HASHDAT[7]<31:0> // DMFC2 rt, 0x0043
rt = HASHDAT[8]<31:0> || HASHDAT[9]<31:0> // DMFC2 rt, 0x0044
rt = HASHDAT[10]<31:0> || HASHDAT[11]<31:0> // DMFC2 rt, 0x0045
rt = HASHDAT[12]<31:0> || HASHDAT[13]<31:0> // DMFC2 rt, 0x0046

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0040: GPR[rt]<63:32> = HASHDAT[0]<31:0>
 GPR[rt]<31:0> = HASHDAT[1]<31:0>
 case 0x0041: GPR[rt]<63:32> = HASHDAT[2]<31:0>
 GPR[rt]<31:0> = HASHDAT[3]<31:0>
 case 0x0042: GPR[rt]<63:32> = HASHDAT[4]<31:0>
 GPR[rt]<31:0> = HASHDAT[5]<31:0>

Load Data from HSH Unit (narrow mode) CVM_MF_HSH_DAT

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt

impl
0000 0000 0100 0000
0000 0000 0100 0001
0000 0000 0100 0010
0000 0000 0100 0011
0000 0000 0100 0100
0000 0000 0100 0101
0000 0000 0100 0110

6 5 5 16
850 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
 case 0x0043: GPR[rt]<63:32> = HASHDAT[6]<31:0>
 GPR[rt]<31:0> = HASHDAT[7]<31:0>
 case 0x0044: GPR[rt]<63:32> = HASHDAT[8]<31:0>
 GPR[rt]<31:0> = HASHDAT[9]<31:0>
 case 0x0045: GPR[rt]<63:32> = HASHDAT[10]<31:0>
 GPR[rt]<31:0> = HASHDAT[11]<31:0>
 case 0x0046: GPR[rt]<63:32> = HASHDAT[12]<31:0>
 GPR[rt]<31:0> = HASHDAT[13]<31:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 851

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0240 CVM

DMFC2 rt, 0x0241

DMFC2 rt, 0x0242

DMFC2 rt, 0x0243

DMFC2 rt, 0x0244

DMFC2 rt, 0x0245

DMFC2 rt, 0x0246

DMFC2 rt, 0x0247

DMFC2 rt, 0x0248

DMFC2 rt, 0x0249

DMFC2 rt, 0x024A

DMFC2 rt, 0x024B

DMFC2 rt, 0x024C

DMFC2 rt, 0x024D

DMFC2 rt, 0x024E

Purpose:

To read HASHDAT from the HSH coprocessor in wide mode. SHA-512 uses the wide
mode.

Description: rt = HASHDAT[0] // DMFC2 rt, 0x0240
rt = HASHDAT[1] // DMFC2 rt, 0x0241
rt = HASHDAT[2] // DMFC2 rt, 0x0242
rt = HASHDAT[3] // DMFC2 rt, 0x0243
rt = HASHDAT[4] // DMFC2 rt, 0x0244
rt = HASHDAT[5] // DMFC2 rt, 0x0245
rt = HASHDAT[6] // DMFC2 rt, 0x0246
rt = HASHDAT[7] // DMFC2 rt, 0x0247
rt = HASHDAT[8] // DMFC2 rt, 0x0248
rt = HASHDAT[9] // DMFC2 rt, 0x0249
rt = HASHDAT[10] // DMFC2 rt, 0x024A
rt = HASHDAT[11] // DMFC2 rt, 0x024B
rt = HASHDAT[12] // DMFC2 rt, 0x024C
rt = HASHDAT[13] // DMFC2 rt, 0x024D
rt = HASHDAT[14] // DMFC2 rt, 0x024E

Load Data from HSH Unit (wide mode) CVM_MF_HSH_DATW

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt

impl
0000 0010 0100 0000
0000 0010 0100 0001
0000 0010 0100 0010
0000 0010 0100 0011
0000 0010 0100 0100
0000 0010 0100 0101
0000 0010 0100 0110
0000 0010 0100 0111
0000 0010 0100 1000
0000 0010 0100 1001
0000 0010 0100 1010
0000 0010 0100 1011
0000 0010 0100 1100
0000 0010 0100 1101
0000 0010 0100 1110

6 5 5 16
852 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0040: GPR[rt] = HASHDAT[0]
 case 0x0041: GPR[rt] = HASHDAT[1]
 case 0x0042: GPR[rt] = HASHDAT[2]
 case 0x0043: GPR[rt] = HASHDAT[3]
 case 0x0044: GPR[rt] = HASHDAT[4]
 case 0x0045: GPR[rt] = HASHDAT[5]
 case 0x0046: GPR[rt] = HASHDAT[6]
 case 0x0047: GPR[rt] = HASHDAT[7]
 case 0x0048: GPR[rt] = HASHDAT[8]
 case 0x0049: GPR[rt] = HASHDAT[9]
 case 0x004A: GPR[rt] = HASHDAT[10]
 case 0x004B: GPR[rt] = HASHDAT[11]
 case 0x004C: GPR[rt] = HASHDAT[12]
 case 0x004D: GPR[rt] = HASHDAT[13]
 case 0x004E: GPR[rt] = HASHDAT[14]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 853

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0048 CVM

DMFC2 rt, 0x0049

DMFC2 rt, 0x004A

DMFC2 rt, 0x004B

Purpose:

To read HASHIV from the HSH coprocessor in narrow mode. MD5, SHA-1, and
SHA-256 use the narrow mode. The most-significant and least-significant 32 bits of
rt are written with the least-significant 32 bits of separate 64-bit HASHIV double-
words.

Description: rt = HASHIV[0]<31:0> || HASHIV[1]<31:0> // DMFC2 rt, 0x0048
rt = HASHIV[2]<31:0> || HASHIV[3]<31:0> // DMFC2 rt, 0x0049
rt = HASHIV[4]<31:0> || HASHIV[5]<31:0> // DMFC2 rt, 0x004A
rt = HASHIV[6]<31:0> || HASHIV[7]<31:0> // DMFC2 rt, 0x004B

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0048: GPR[rt]<63:32> = HASHIV[0]<31:0>
 GPR[rt]<31:0> = HASHIV[1]<31:0>
 case 0x0049: GPR[rt]<63:32> = HASHIV[2]<31:0>
 GPR[rt]<31:0> = HASHIV[3]<31:0>
 case 0x004A: GPR[rt]<63:32> = HASHIV[4]<31:0>
 GPR[rt]<31:0> = HASHIV[5]<31:0>
 case 0x004B: GPR[rt]<63:32> = HASHIV[6]<31:0>
 GPR[rt]<31:0> = HASHIV[7]<31:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

Load IV from HSH Unit (narrow mode) CVM_MF_HSH_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt

impl
0000 0000 0100 1000
0000 0000 0100 1001
0000 0000 0100 1010
0000 0000 0100 1011

6 5 5 16
854 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMFC2 rt, 0x0250 CVM

DMFC2 rt, 0x0251

DMFC2 rt, 0x0252

DMFC2 rt, 0x0253

DMFC2 rt, 0x0254

DMFC2 rt, 0x0255

DMFC2 rt, 0x0256

DMFC2 rt, 0x0257

Purpose:

To read HASHIV from the HSH coprocessor in wide mode. SHA-512 use the wide
mode.

Description: rt = HASHIV[0] // DMFC2 rt, 0x0250
rt = HASHIV[1] // DMFC2 rt, 0x0251
rt = HASHIV[2] // DMFC2 rt, 0x0252
rt = HASHIV[3] // DMFC2 rt, 0x0253
rt = HASHIV[4] // DMFC2 rt, 0x0254
rt = HASHIV[5] // DMFC2 rt, 0x0255
rt = HASHIV[6] // DMFC2 rt, 0x0256
rt = HASHIV[7] // DMFC2 rt, 0x0257

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0250: GPR[rt] = HASHIV[0]
 case 0x0251: GPR[rt] = HASHIV[1]
 case 0x0252: GPR[rt] = HASHIV[2]
 case 0x0253: GPR[rt] = HASHIV[3]
 case 0x0254: GPR[rt] = HASHIV[4]
 case 0x0255: GPR[rt] = HASHIV[5]

Load IV from HSH Unit (wide mode) CVM_MF_HSH_IVW

31 26 25 21 20 16 15 0

COP2
0100 10

DMF
00 001

rt

impl
0000 0010 0101 0000
0000 0010 0101 0001
0000 0010 0101 0010
0000 0010 0101 0011
0000 0010 0101 0100
0000 0010 0101 0101
0000 0010 0101 0110
0000 0010 0101 0111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 855

: Cavium Networks-Specific Instruction Descriptions
 case 0x0256: GPR[rt] = HASHIV[6]
 case 0x0257: GPR[rt] = HASHIV[7]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
856 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x408E CVM

Purpose:

To do a 3DES EDE decrypt. GPR[rt] is the input to a 3DES EDE decrypt (using
3DESKEY). 3DESRESULT is set to the result of the decrypt, and 3DESIV is
unpredictable.

Description: 3DESRESULT<63:0> = 3DES_EDE_DEC(rt, 3DESKEY[2:0])

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 3DESRESULT<63:0> = 3DES_EDE_DEC(GPR[rt], 3DESKEY[2:0])
 3DESIV<63:0> = unpredictable
 KASUMIRESULT<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

3DES Decrypt CVM_MT_3DES_DEC

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 1000 1110

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 857

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x408C CVM

Purpose:

To do a 3DES EDE CBC decrypt. GPR[rt] is the input to a 3DES EDE decrypt (using
3DESKEY). 3DESRESULT is set to the result of the decrypt XOR 3DESIV, and
3DESIV is set to GPR[rt].

Description: 3DESRESULT<63:0> = 3DES_EDE_DEC(rt, 3DESKEY[2:0]) ⊕ 3DESIV<63:0>
3DESIV<63:0> = rt

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 3DESRESULT<63:0> = 3DES_EDE_DEC(GPR[rt], 3DESKEY[2..0]) ⊕ 3DESIV<63:0>
 3DESIV<63:0> = GPR[rt]
 KASUMIRESULT<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

3DES CBC Decrypt CVM_MT_3DES_DEC_CBC

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 1000 1100

6 5 5 16
858 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x408A CVM

Purpose:

To do a 3DES EDE encrypt. GPR[rt] is the input to a 3DES EDE encrypt (using
3DESKEY). 3DESRESULT is set to the result of the encrypt and 3DESIV is
unpredictable.

Description: 3DESRESULT<63:0> = 3DES_EDE_ENC(rt, 3DESKEY[2:0])

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 3DESRESULT<63:0> = 3DES_EDE_ENC(GPR[rt], 3DESKEY[2:0])
 3DESIV<63:0> = unpredictable
 KASUMIRESULT<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

3DES Encrypt CVM_MT_3DES_ENC

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 1000 1010

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 859

: Cavium Networks-Specific Instruction Descriptions

Format: Format: DMTC2 rt, 0x4088 CVM

Purpose:

To do a 3DES EDE CBC encrypt. The XOR of GPR[rt] and 3DESIV is the input to a
3DES EDE encrypt (using 3DESKEY). 3DESRESULT and 3DESIV are set to the
result of the encrypt.

Description: 3DESRESULT<63:0> = 3DESIV<63:0> =
3DES_EDE_ENC(rt ⊕ 3DESIV<63:0>, 3DESKEY[2:0])

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 3DESRESULT<63:0> = 3DESIV<63:0> =

3DES_EDE_ENC(GPR[rt] ⊕ 3DESIV<63:0>, 3DESKEY[2:0])
 KASUMIRESULT<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

3DES CBC Encrypt CVM_MT_3DES_ENC_CBC

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 1000 1000

6 5 5 16
860 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2, rt, 0x0084 CVM

Purpose:

To load a value into 3DESIV.

Description: 3DESIV<63:0> = rt

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 3DESIV<63:0> = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV into 3DES Unit CVM_MT_3DES_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0000 1000 0100

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 861

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0080 CVM

DMTC2 rt, 0x0081

DMTC2 rt, 0x0082

Purpose:

To load values into 3DESKEY. 3DESKEY[2:0] are used by the 3DES unit,
3DESKEY[1:0] are used by the KASUMI unit.

Description: 3DESKEY[0] = rt // DMTC2 rt,0x0080
3DESKEY[1] = rt // DMTC2 rt,0x0081
3DESKEY[2] = rt // DMTC2 rt,0x0082

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0080: 3DESKEY[0] = GPR[rt]
 case 0x0081: 3DESKEY[1] = GPR[rt]
 case 0x0082: 3DESKEY[2] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Key into 3DES Unit CVM_MT_3DES_KEY
Load Key into KASUMI Unit CVM_MT_KAS_KEY

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt

impl
0000 0000 1000 0000
0000 0000 1000 0001
0000 0000 1000 0010

6 5 5 16
862 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0098 CVM

Purpose:

To load a value into 3DESRESULT.

Description: 3DESRESULT<63:0> = rt

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 3DESRESULT<63:0> = GPR[rt]
 KASUMIRESULT<63:0> = 3DESRESULT<63:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Result into 3DES Unit CVM_MT_3DES_RESULT
Load Result into KASUMI Unit CVM_MT_KAS_RESULT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0000 1001 1000

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 863

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x010C CVM

Purpose:

To load AESRESINP[0] in preparation for a subsequent
CVM_MT_AES_DEC_CBC1.

Description: AESRESINP[0] = rt

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 AESRESINP[0] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

AES CBC Decrypt (part 1) CVM_MT_AES_DEC_CBC0

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0000 1100

6 5 5 16
864 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x310D CVM

Purpose:

To perform an AES CBC decrypt operation. GPR[rt] and AESRESINP[0] are the
inputs to an AES decryption operation (using AESKEY and AESKEYLEN).
AESRESINP is updated with the result of the decryption XORed with AESIV. AESIV
is set to the inputs of the decryption. Unused AESKEY locations become
unpredictable.

Description: TIN[1:0] = rt || AESRESINP[0]
AESRESINP[1:0] = AES_DEC(TIN, AESKEY[3:0], AESKEYLEN<1:0>) ⊕

AESIV[1:0]
AESIV[1:0] = TIN[1:0]

Restrictions:

CVM_MT_AES_DEC_CBC0 (or CVM_MT_AES_RESINP0 in the save/restore case)
must be executed between the execution of this CVM_MT_AES_DEC_CBC1 and the
immediately preceding CVM_MT_AES_ENC_CBC1, CVM_MT_AES_ENC1,
CVM_MT_AES_DEC_CBC1, or CVM_MT_AES_DEC1 instruction.

AESIV[1:0] must be predictable prior to this CVM_MT_AES_DEC_CBC1
instruction. This means that AESIV[1..0] must be written (with CVM_MT_AES_IV*
instructions) between execution of this CVM_MT_AES_DEC_CBC1 and the
execution of the immediately preceding CVM_MT_AES_ENC1 or
CVM_MT_AES_DEC1.

AESKEY[AESKEYLEN<1:0>..0] must be loaded (with CVM_MT_AES_KEY*
instructions) between this CVM_MT_AES_DEC_CBC1 and any prior
CVM_MT_AES_ENC_CBC1 or CVM_MT_AES_ENC1 instruction.

AESKEY[AESKEYLEN<1:0>..0] must be predictable prior to this
CVM_MT_AES_DEC_CBC1 instruction. This means that when AESKEYLEN<1:0>
increases, AESKEY[AESKEYLEN<1:0>..X] must be written (with
CVM_MT_AES_KEY* instructions) between the execution of this
CVM_MT_AES_DEC_CBC1 and any immediately preceding
CVM_MT_AES_DEC_CBC1 or CVM_MT_AES_DEC1 instruction that used the
smaller AESKEYLEN<1:0> value of X.

Results are unpredictable when AESKEYLEN<1:0> is zero with the
CVM_MT_AES_DEC_CBC1 instruction.
If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

AES CBC Decrypt (part 2) CVM_MT_AES_DEC_CBC1

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0011 0001 0000 1101

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 865

: Cavium Networks-Specific Instruction Descriptions
This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 TIN[1:0]<63:0> = GPR[rt] || AESRESINP[0]
 AESRESINP[1:0] = AES_DEC(TIN[1:0], AESKEY[3:0], AESKEYLEN<1:0>) ⊕

AESIV[1:0]
 AESIV[1:0] = TIN[1:0]
 for(i = AESKEYLEN<1:0>+1; i < 4; i++)
 AESKEY[i] = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
866 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x010E CVM

Purpose:

To load AESRESINP[0] in preparation for a subsequent CVM_MT_AES_DEC1.

Description: AESRESINP[0] = rt

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 AESRESINP[0] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

AES Decrypt (part 1) CVM_MT_AES_DEC0

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0000 1110

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 867

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x310F CVM

Purpose:

To perform an AES decrypt operation. GPR[rt] and AESRESINP[0] are the inputs to
an AES decryption operation (using AESKEY and AESKEYLEN). AESRESINP is
updated with the result of the decryption. AESIV and unused AESKEY locations
become unpredictable.

Description: AESRESINP[1:0] = AES_DEC((rt || AESRESINP[0]), AESKEY[3:0],
AESKEYLEN<1:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 AESRESINP[1..0] = AES_DEC((GPR[rt] || AESRESINP[0]), AESKEY[3..0],

AESKEYLEN<1:0>)
 AESIV[1..0] = unpredictable
 for(i = AESKEYLEN<1:0>+1; i < 4; i++)
 AESKEY[i] = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

AES Decrypt (part 2) CVM_MT_AES_DEC1

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0011 0001 0000 1111

6 5 5 16
868 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0108 CVM

Purpose:

To load AESRESINP[0] in preparation for a subsequent CVM_MT_AES_ENC_CBC1
instruction. The implementation may either deposit (rt XOR AESIV[0]) or rt into
AESRESINP[0].

Description: AESRESINP[0] = rt ⊕ AESIV[0], or AESRESINP[0] = rt

Restrictions:

AESIV[0] must be predictable prior to the CVM_MT_AES_ENC_CBC0 instruction.
This means that AESIV[0] must be written between execution of this
CVM_MT_AES_ENC_CBC0 and the execution of the immediately preceding
CVM_MT_AES_ENC1 or CVM_MT_AES_DEC1.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 AESRESINP[0] = GPR[rt] ⊕ AESIV[0], or
 AESRESINP[0] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

AES CBC Encrypt (part 1) CVM_MT_AES_ENC_CBC0

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0000 1000

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 869

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x3109 CVM

Purpose:

To perform an AES CBC encrypt operation. GPR[rt] XOR AESIV[1] is the second 64-
bit input to an AES CBC encryption operation (using AESKEY and AESKEYLEN).
Either AESRESINP[0] or (AESRESINP[0] XOR AESIV[0]) is the first 64-bit input to
the AES operation, depending on whether the CVM_MT_AES_ENC_CBC0
implementation pre-XORed AESIV[0] or not, respectively. AESRESINP and AESIV
are updated with the result. Unused AESKEY locations become unpredictable.

Description: AESRESINP[1:0] = AESIV[1..0] =
AES_ENC((rt ⊕ AESIV[1]) || AESRESINP[0], AESKEY[3:0],
AESKEYLEN<1:0>), or

AESRESINP[1:0] = AESIV[1..0] =
AES_ENC((rt || AESRESINP[0]) ⊕ AESIV[1:0], AESKEY[3..0],
AESKEYLEN<1:0>)

Restrictions:

CVM_MT_AES_ENC_CBC0 (or CVM_MT_AES_RESINP0 in the save/restore case)
must be executed between the execution of this CVM_MT_AES_ENC_CBC1 and the
immediately preceding CVM_MT_AES_ENC_CBC1, CVM_MT_AES_ENC1,
CVM_MT_AES_DEC_CBC1, or CVM_MT_AES_DEC1 instruction.

AESIV[1:0] must be predictable prior to this CVM_MT_AES_ENC_CBC1
instruction. This means that AESIV[1..0] must be written (with CVM_MT_AES_IV*
instructions) between execution of this CVM_MT_AES_ENC_CBC1 and the
execution of the immediately preceding CVM_MT_AES_ENC1 or
CVM_MT_AES_DEC1.

AESKEY[AESKEYLEN<1:0>..0] must be loaded (with CVM_MT_AES_KEY*
instructions) between this CVM_MT_AES_ENC_CBC1 and any prior
CVM_MT_AES_DEC_CBC1 or CVM_MT_AES_DEC1 instruction.

AESKEY[AESKEYLEN<1:0>..0] must be predictable prior to this
CVM_MT_AES_ENC_CBC1 instruction. This means that when AESKEYLEN<1:0>
increases, AESKEY[AESKEYLEN<1:0>..X] (at least) must be written (with
CVM_MT_AES_KEY* instructions) between the execution of this
CVM_MT_AES_ENC_CBC1 and any immediately preceding
CVM_MT_AES_ENC_CBC1 or CVM_MT_AES_ENC1 instruction that used the
smaller AESKEYLEN<1:0> value of X.

Results are unpredictable when AESKEYLEN<1:0> is zero with the
CVM_MT_AES_ENC_CBC1 instruction.

AES CBC Encrypt (part 2) CVM_MT_AES_ENC_CBC1

31 26 25 21 20 16 15 0

COP2
01 0010

DMT
00 101

rt
impl

0011 0001 0000 1001

6 5 5 16
870 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 TIN[1..0]<63:0> = (GPR[rt] ⊕ AESIV[1]) || AESRESINP[0], or
 TIN[1..0]<63:0> = (GPR[rt] || AESRESINP[0]) ⊕ AESIV[1:0]
 AESRESINP[1:0] = AES_ENC(TIN[1:0], AESKEY[3:0], AESKEYLEN<1:0>)
 AESIV[1:0] = AESRESINP[1:0]
 for(i = AESKEYLEN<1:0>+1; i < 4; i++)
 AESKEY[i] = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 871

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x010A CVM

Purpose:

To load AESRESINP[0] in preparation for a subsequent CVM_MT_AES_ENC1.

Description: AESRESINP[0] = rt

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 AESRESINP[0] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

AES Encrypt (part 1) CVM_MT_AES_ENC0

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0000 1010

6 5 5 16
872 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x310B CVM

Purpose:

To perform an AES encrypt operation. GPR[rt] and AESRESINP[0] are the inputs to
an AES encryption operation (using AESKEY and AESKEYLEN). AESRESINP is
updated with the result. AESIV and unused AESKEY locations become
unpredictable.

Description: AESRESINP[1:0] =
AES_ENC((rt || AESRESINP[0]), AESKEY[3:0], AESKEYLEN<1:0>)

Restrictions:

CVM_MT_AES_ENC0 (or CVM_MT_AES_RESINP0 in the save/restore case) must
be executed between the execution of this CVM_MT_AES_ENC1 and the
immediately preceding CVM_MT_AES_ENC_CBC1, CVM_MT_AES_ENC1,
CVM_MT_AES_DEC_CBC1, or CVM_MT_AES_DEC1 instruction.

AESKEY[AESKEYLEN<1:0>..0] must be loaded (with CVM_MT_AES_KEY*
instructions) between this CVM_MT_AES_ENC1 and any prior
CVM_MT_AES_DEC_CBC1 or CVM_MT_AES_DEC1 instruction.

AESKEY[AESKEYLEN<1:0>..0] must be predictable prior to this
CVM_MT_AES_ENC1 instruction. This means that when AESKEYLEN<1:0>
increases, AESKEY[AESKEYLEN<1:0>..X] must be written (with
CVM_MT_AES_KEY* instructions) between the execution of this
CVM_MT_AES_ENC_CBC1 and any immediately preceding
CVM_MT_AES_ENC_CBC1 or CVM_MT_AES_ENC1 instruction that used the
smaller AESKEYLEN<1:0> value of X.

Results are unpredictable when AESKEYLEN<1:0> is zero with the
CVM_MT_AES_ENC1 instruction.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else

AES Encrypt (part 2) CVM_MT_AES_ENC1

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0011 0001 0000 1011

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 873

: Cavium Networks-Specific Instruction Descriptions
 AESRESINP[1:0] = AES_ENC((GPR[rt] || AESRESINP[0]), AESKEY[3:0],
AESKEYLEN<1:0>)

 AESIV[1..0] = unpredictable
 for(i = AESKEYLEN<1:0>+1; i < 4; i++)
 AESKEY[i] = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
874 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0102 CVM

DMTC2 rt, 0x0103

Purpose:

To load AESIV.

Description: AESIV[0] = rt // DMTC2 rt, 0x0102
AESIV[1] = rt // DMTC2 rt, 0x0103

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0102: AESIV[0] = GPR[rt]
 case 0x0103: AESIV[1] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV into AES Unit CVM_MT_AES_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0000 0010
0000 0001 0000 0011

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 875

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0104 CVM

DMTC2 rt, 0x0105

DMTC2 rt, 0x0106

DMTC2 rt, 0x0107

Purpose:

To load AESKEY.

Description: AESKEY[0] = rt // DMTC2 rt, 0x0104
AESKEY[1] = rt // DMTC2 rt, 0x0105
AESKEY[2] = rt // DMTC2 rt, 0x0106
AESKEY[3] = rt // DMTC2 rt, 0x0107

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0104: AESKEY[0] = GPR[rt];

AESKEYLEN<2:0> = 0 // 0 is illegal key length
 case 0x0105: AESKEY[1] = GPR[rt];

AESKEYLEN<2:0> = 1 // 1 is 128-bit key
 case 0x0106: AESKEY[2] = GPR[rt];

AESKEYLEN<2:0> = 2 // 2 is 192-bit key
 case 0x0107: AESKEY[3] = GPR[rt];

AESKEYLEN<2:0> = 3 // 3 is 256-bit key
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Key into AES Unit CVM_MT_AES_KEY

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt

impl
0000 0001 0000 0100
0000 0001 0000 0101
0000 0001 0000 0110
0000 0001 0000 0111

6 5 5 16
876 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0110 CVM

Purpose:

To load AESKEYLEN.

Description: AESLEYLEN<1:0> = rt<1:0>

Restrictions:

Results are unpredictable when an AESKEYLEN value of 0 is used.

Results are unpredictable when GPR[rt]<63:2> are not zero.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 AESLEYLEN<1:0> = GPR[rt]<1:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Key Length into AES Unit CVM_MT_AES_KEYLENGTH

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0001 0000

6 5 5 16

AESKEYLEN Length of AES key

00 unpredictable

01 128 bits

10 192 bits

11 256 bits
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 877

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0100 CVM

DMTC2 rt, 0x0101

Purpose:

To load AESRESINP.

Description: AESRESINP[0] = rt // DMTC2 rt, 0x0100
AESRESINP[1] = rt // DMTC2 rt, 0x0101

Restrictions:

Either CVM_MF_AES_RESINP0 or CVM_MF_AES_RESINP1 must execute
between this CVM_MT_AES_RESINP* instruction and the last
CVM_MT_AES_ENC_CBC1, CVM_MT_AES_ENC1, CVM_MT_AES_DEC1, or
CVM_MT_AES_DEC1 instruction.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0102: AESRESINP[0] = GPR[rt]
 case 0x0103: AESRESINP[1] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Result/Input into AES Unit CVM_MT_AES_RESINP

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0001 0000 0000
0000 0001 0000 0001

6 5 5 16
878 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0204 CVM

Purpose:

To calculate CRC for a byte. The least-significant byte of rt is the input to the CRC
engine (using CRCIV and CRCPOLY). CRCIV is updated with the CRC result for
the given CRCPOLY.

Description: CRCIV<31:0> = CRC(rt<7:0>, CRCIV<31:0>, CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCIV<31:0> = CRC_BYTE(GPR[rt]<7:0>, CRCIV<31:0>, CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Byte CVM_MT_CRC_BYTE

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0000 0100

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 879

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0214 CVM

Purpose:

To calculate CRC for a byte. The bits the byte are reflected. The least-significant
byte of rt is the input to the CRC engine (using CRCIV and CRCPOLY) after bit
reflection. CRCIV is updated with the CRC result for the given CRCPOLY.

Description: CRCIV<31:0> = CRC(byte_bit_reflect(rt<7:0>), CRCIV<31:0>,
CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCIV<31:0> = CRC_BYTE(byte_bit_reflect(GPR[rt]<7:0>),

CRCIV<31:0>, CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Byte Reflected CVM_MT_CRC_BYTE_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0001 0100

6 5 5 16
880 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x1207 CVM

Purpose:

To calculate CRC for a double-word. The eight bytes of rt is the input to the CRC
engine (using CRCIV and CRCPOLY). CRCIV is updated with the CRC result for the
given CRCPOLY.

Description: CRCIV<31:0> = CRC(rt<63:0>, CRCIV<31:0>, CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 8; i++)
 CRCIV<31:0> = CRC_BYTE(GPR[rt]<63-i*8:56-i*8>, CRCIV<31:0>,

CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Double-word CVM_MT_CRC_DWORD

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0001 0010 0000 0111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 881

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x1217 CVM

Purpose:

To calculate CRC for a double-word. The bits in each byte are reflected. The eight
bytes of rt is the input to the CRC engine (using CRCIV and CRCPOLY) after bit
reflection. CRCIV is updated with the CRC result for the given CRCPOLY.

Description: CRCIV<31:0> = CRC(byte_bit_reflect(rt<63:0>), CRCIV<31:0>,
CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 8; i++)
 CRCIV<31:0> = CRC_BYTE(byte_bit_reflect(GPR[rt]<63-i*8:56-i*8>),

CRCIV<31:0>, CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Double-word Reflected CVM_MT_CRC_DWORD_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0001 0010 0001 0111

6 5 5 16
882 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0205 CVM

Purpose:

To calculate CRC for a halfword. The least-significant two bytes of rt is the input to
the CRC engine (using CRCIV and CRCPOLY). CRCIV is updated with the CRC
result for the given CRCPOLY.

Description: CRCIV<31:0> = CRC(rt<15:0>, CRCIV<31:0>, CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 2; i++)
 CRCIV<31:0> = CRC_BYTE(GPR[rt]<15-i*8:8-i*8>, CRCIV<31:0>,

CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Halfword CVM_MT_CRC_HALF

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0000 0101

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 883

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0215 CVM

Purpose:

To calculate CRC for a halfword. The bits in each byte are reflected. The least-
significant two bytes of rt is the input to the CRC engine (using CRCIV and
CRCPOLY) after bit reflection. CRCIV is updated with the CRC result for the given
CRCPOLY.

Description: CRCIV<31:0> = CRC(byte_bit_reflect(rt<15:0>), CRCIV<31:0>,
CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 2; i++)
 CRCIV<31:0> = CRC_BYTE(byte_bit_reflect(GPR[rt]<15-i*8:8-i*8>),

CRCIV<31:0>, CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Halfword Reflected CVM_MT_CRC_HALF_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0001 0101

6 5 5 16
884 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0201 CVM

Purpose:

To load a value into CRCIV.

Description: CRCIV<31:0> = rt<31:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCIV<31:0> = GPR[rt]<31:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

CRC polynomials smaller than 32-bits should be supported by placing the IV in the
most-significant CRCIV bits. For example, the IV with a 16-bit polynomial should
reside in CRCIV<31:16>, and CRCIV<15:0> should be zero.

Load IV into CRC Unit CVM_MT_CRC_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0000 0001

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 885

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0211 CVM

Purpose:

To load a value into CRCIV. The bits in each byte are reflected.

Description: CRCIV<31:0> = byte_bit_reflect(rt<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCIV<31:0> = byte_bit_reflect(GPR[rt]<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

CRC polynomials smaller than 32-bits should be supported by placing the IV in the
most-significant CRCIV bits. For example, the IV with a 16-bit polynomial should
reside in CRCIV<31:16>, and CRCIV<15:0> should be zero.

Load IV into CRC Unit Reflected CVM_MT_CRC_IV_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0001 0001

6 5 5 16
886 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x1202 CVM

Purpose:

To load a value into CRCLEN.

Description: CRCLEN<3:0> = rt<3:0>

Restrictions:

The results of CVM_MT_CRC_LEN are unpredictable when GPR[rt]<63:4> is not
zero.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCLEN<3:0> = GPR[rt]<3:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load Length into CRC Unit CVM_MT_CRC_LEN

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0001 0010 0000 0010

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 887

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x4200 CVM

Purpose:

To load a value into CRCPOLY.

Description: CRCPOLY<31:0> = rt<31:0>

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCPOLY<31:0> = GPR[rt]<31:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

CRC polynomials smaller than 32-bits should be supported by placing the
polynomial in the most-significant CRCPOLY bits. For example, a 16-bit polynomial
should reside in CRCPOLY<31:16>, and CRCPOLY<15:0> should be zero.

Load Polynomial into CRC Unit CVM_MT_CRC_POLYNOMIAL

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0010 0000 0000

6 5 5 16
888 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x4210 CVM

Purpose:

To load a value into CRCPOLY. The bits in each byte are reflected.

Description: CRCPOLY<31:0> = byte_bit_reflect(rt<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 CRCPOLY<31:0> = byte_bit_reflect(GPR[rt]<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

CRC polynomials smaller than 32-bits should be supported by placing the polynomial
in the most-significant CRCPOLY bits. For example, a 16-bit polynomial should
reside in CRCPOLY<31:16>, and CRCPOLY<15:0> should be zero.

Load Polynomial CVM_MT_CRC_POLYNOMIAL_REFLECT
into CRC Unit Reflected

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0010 0001 0000

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 889

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x1208 CVM

Purpose:

To calculate CRC for CRCLEN bytes. The CRCLEN most-significant bytes of rt is
the input to the CRC engine (using CRCIV and CRCPOLY). CRCIV is updated with
the CRC result for the given CRCPOLY.

Description: CRCIV<31:0> = CRC(rt<63:0>, CRCLEN<3:0>, CRCIV<31:0>,
CRCPOLY<31:0>)

Restrictions:

The results of CVM_MT_CRC_VAR are unpredictable when CRCLEN<3:0> is larger
than eight.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 len = CRCLEN<3:0>;
 for(i = 0; i < len; i++)
 CRCIV<31:0> = CRC_BYTE(GPR[rt]<63-i*8:56-i*8>, CRCIV<31:0>,

CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for Variable Length CVM_MT_CRC_VAR

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0001 0010 0000 1000

6 5 5 16
890 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x1218 CVM

Purpose:

To calculate CRC for length bytes. The bits in each byte are reflected. The CRCLEN
most-significant bytes of rt is the input to the CRC engine (using CRCIV and
CRCPOLY) after bit reflection. CRCIV is updated with the CRC result for the given
CRCPOLY.

Description: CRCIV<31:0> = CRC(byte_bit_reflect(rt<63:0>), CRCLEN<3:0>,
CRCIV<31:0>, CRCPOLY<31:0>)

Restrictions:

The results of CVM_MT_CRC_VAR_REFLECT are unpredictable when
CRCLEN<3:0> is larger than eight.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 len = CRCLEN<3:0>;
 for(i = 0; i < len; i++)
 CRCIV<31:0> = CRC_BYTE(byte_bit_reflect(GPR[rt]<63-i*8:56-i*8>),

CRCIV<31:0>, CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for Variable Length Reflected CVM_MT_CRC_VAR_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0001 0010 0001 1000

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 891

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0206 CVM

Purpose:

To calculate CRC for a word. The least-significant four bytes of rt is the input to the
CRC engine (using CRCIV and CRCPOLY). CRCIV is updated with the CRC result
for the given CRCPOLY.

Description: CRCIV<31:0> = CRC(rt<31:0>, CRCIV<31:0>, CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 4; i++)
 CRCIV<31:0> = CRC_BYTE(GPR[rt]<31-i*8:24-i*8>, CRCIV<31:0>,

CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Word CVM_MT_CRC_WORD

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0000 0110

6 5 5 16
892 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0216 CVM

Purpose:

To calculate CRC for a word. The bits in each byte are reflected. The least-
significant four bytes of rt is the input to the CRC engine (using CRCIV and
CRCPOLY) after bit reflection. CRCIV is updated with the CRC result for the given
CRCPOLY.

Description: CRCIV<31:0> = CRC(byte_bit_reflect(rt<31:0>), CRCIV<31:0>,
CRCPOLY<31:0>)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled())) then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 4; i++)
 CRCIV<31:0> = CRC_BYTE(byte_bit_reflect(GPR[rt]<31-i*8:24-i*8>),

CRCIV<31:0>, CRCPOLY<31:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

CRC for a Word Reflected CVM_MT_CRC_WORD_REFLECT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0001 0110

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 893

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0258 CVM

DMTC2 rt, 0x0259

Purpose:

To load GFMMUL.

Description: GFMMUL[0] = rt // DMTC2 rt, 0x0258
GFMMUL[1] = rt // DMTC2 rt, 0x0259

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x258: GFMMUL[0] = GPR[rt]
 case 0x259: GFMMUL[1] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

For GF(264) multiplication, GFMMUL[1] should be set to zero and GFMMUL[0]
should contain the 64-bit multiplier.

Load Multiplier into GFM Unit CVM_MT_GFM_MUL

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0101 1000
0000 0010 0101 1001

6 5 5 16
894 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x025E CVM

Purpose:

To load GFMPOLY.

Description: GFMPOLY<15:0> = rt<15:0>

Restrictions:

Results are unpredictable when GPR[rt]<63:16> are not zero.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GFMPOLY<15:0> = GPR[rt]<15:0>
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

There are at least two interesting GFMPOLY values, corresponding to the two
polynomials covered in “The Galois/Counter Mode of Operation” by McGrew and
Viega:

 GFMPOLY = 0xE100 for 1 + α + α2 + α7 + α128 in GF(2128)

 GFMPOLY = 0x00D8 for 1 + α + α3 + α4 + α64 in GF(264)

Load Polynomial into GFM Unit CVM_MT_GFM_POLY

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0101 1110

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 895

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x025A CVM

DMTC2 rt, 0x025B

Purpose:

To load GFMRESINP.

Description: GFMRESINP[0] = rt // DMFC2 rt, 0x025A
GFMRESINP[1] = rt // DMFC2 rt, 0x025B

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x25A: GFMRESINP[0] = GPR[rt]
 case 0x25B: GFMRESINP[1] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

For GF(264) multiplication, GFMRESINP[0] should be set to zero and
GFMRESINP[1] should contain the 64-bit value.

Load Result/Input into GFM Unit CVM_MT_GFM_RESINP

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 001

rt
impl

0000 0010 0101 1010
0000 0010 0101 1011

6 5 5 16
896 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x025C CVM

Purpose:

To XOR the contents of GFMRESINP[0] with rt.

Description: GFMRESINP[0] = GFMRESINP[0] ⊕ rt

Restrictions:

Results are unpredictable when GPR[rt]<63:16> are not zero.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 GFMPRESINP[0] = GFMPRESINP[0] ⊕ GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

CVM_MT_GFM_XOR0 should not be used for GF(264) multiplications.
(GFMRESINP[0] should be zero.)

XOR into GFM Unit CVM_MT_GFM_XOR0

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0000 0010 0101 1100

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 897

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x425D CVM

Purpose:

To XOR the contents of GFMRESINP[1] with rt and perform a GF(2128)
multiplication of GFMRESINP and GFMMUL (using the polynomial selected by
GFMPOLY), depositing the result in GFMRESINP.

Description: GFMRESINP[1] = GFMRESINP[1] ⊕ rt
GFMRESINP[1:0] = GFMMULT(GFMRESINP, GFMMUL, GFMPOLY)

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to Coprocessor 2 is enabled but access to 64-bit operations is not
enabled, a Reserved Instruction Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 Z[1:0]<63:0> = 0
 V[0]<63:0> = doubleword_bit_reflect(GFMRESINP[0]<63:0>)
 V[1]<63:0> = doubleword_bit_reflect(GFMRESINP[1]<63:0>)
 Y[0]<63:0> = doubleword_bit_reflect(GFMMUL[0]<63:0>)
 Y[1]<63:0> = doubleword_bit_reflect(GFMMUL[1]<63:0>)
 T<15:0> = halfword_bit_reflect(GFMPOLY<15:0>);
 POLY[0]<63:0> = 056 || T<7:0>
 POLY[1]<63:0> = 056 || T<15:8>
 for(i = 0; i < 128; i++) {
 if(Y[i >> 6]<i & 0x3F>)
 Z[1:0] = Z[1:0] ⊕ V[1:0]
 R[1:0]<63:0> = V[1]<63> ? POLY[1:0]<63:0> : 0128

 V[1]<63:0> || V[0]<63:0> = V[1]<62:0> || V[0]<63:0> || 01

 V[1:0] = V[1:0] ⊕ R[1:0]
 }
 GFMRESINP[0]<63:0> = doubleword_bit_reflect(Z[0]<63:0>)
 GFMRESINP[1]<63:0> = doubleword_bit_reflect(Z[1]<63:0>)
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

XOR and GF Multiply CVM_MT_GFM_XORMUL1

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0010 0101 1101

6 5 5 16
898 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

CVM_MT_GFM_XORMUL1 should be used to initiate GF(264) multiplications, as
well as GF(2128). GPR[rt] is XORed with GFMRESINP[1] to create the actual 64-bit
input for the GF(264) multiplication. Assuming that GFMRESINP[0] and
GFMMUL[1] are zero, GFMRESINP[1] will contain the GF(264) multiplication
result:

GFMRESINP[1] = (GPR[rt] ⊕ GFMRESINP[1]) × GFMMUL[0]
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 899

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0040 CVM

DMTC2 rt, 0x0041

DMTC2 rt, 0x0042

DMTC2 rt, 0x0043

DMTC2 rt, 0x0044

DMTC2 rt, 0x0045

DMTC2 rt, 0x0046

Purpose:

To load values into HASHDAT via the narrow mechanism. The MD5, SHA-1, and
SHA-256 algorithms use the narrow HASHDAT format. The most-significant and
least-significant 32 bits of rt are written into the least-significant 32 bits of separate
64-bit double-words HASHDAT.

Description: HASHDAT[0]<31:0> || HASHDAT[1]<31:0> = rt // DMTC2 rt,0x0040
HASHDAT[2]<31:0> || HASHDAT[3]<31:0> = rt // DMTC2 rt,0x0041
HASHDAT[4]<31:0> || HASHDAT[5]<31:0> = rt // DMTC2 rt,0x0042
HASHDAT[6]<31:0> || HASHDAT[7]<31:0> = rt // DMTC2 rt,0x0043
HASHDAT[8]<31:0> || HASHDAT[9]<31:0> = rt // DMTC2 rt,0x0044
HASHDAT[10]<31:0> || HASHDAT[11]<31:0> = rt // DMTC2 rt,0x0045
HASHDAT[12]<31:0> || HASHDAT[13]<31:0> = rt // DMTC2 rt,0x0046

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0040: HASHDAT[0]<31:0> = GPR[rt]<63:32>
 HASHDAT[1]<31:0> = GPR[rt]<31:0>
 HASHDAT[0..1]<63:32> = unpredictable
 case 0x0041: HASHDAT[2]<31:0> = GPR[rt]<63:32>
 HASHDAT[3]<31:0> = GPR[rt]<31:0>
 HASHDAT[2..3]<63:32> = unpredictable

Load Data into HSH Unit (narrow mode) CVM_MT_HSH_DAT

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt

impl
0000 0000 0100 0000
0000 0000 0100 0001
0000 0000 0100 0010
0000 0000 0100 0011
0000 0000 0100 0100
0000 0000 0100 0101
0000 0000 0100 0110

6 5 5 16
900 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
 case 0x0042: HASHDAT[4]<31:0> = GPR[rt]<63:32>
 HASHDAT[5]<31:0> = GPR[rt]<31:0>
 HASHDAT[4..5]<63:32> = unpredictable
 case 0x0043: HASHDAT[6]<31:0> = GPR[rt]<63:32>
 HASHDAT[7]<31:0> = GPR[rt]<31:0>
 HASHDAT[6..7]<63:32> = unpredictable
 case 0x0044: HASHDAT[8]<31:0> = GPR[rt]<63:32>
 HASHDAT[9]<31:0> = GPR[rt]<31:0>
 HASHDAT[8..9]<63:32> = unpredictable
 case 0x0045: HASHDAT[10]<31:0> = GPR[rt]<63:32>
 HASHDAT[11]<31:0> = GPR[rt]<31:0>
 HASHDAT[10..11]<63:32> = unpredictable
 case 0x0046: HASHDAT[12]<31:0> = GPR[rt]<63:32>
 HASHDAT[13]<31:0> = GPR[rt]<31:0>
 HASHDAT[12..13]<63:32> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 901

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0240 CVM
DMTC2 rt, 0x0241
DMTC2 rt, 0x0242
DMTC2 rt, 0x0243
DMTC2 rt, 0x0244
DMTC2 rt, 0x0245
DMTC2 rt, 0x0246
DMTC2 rt, 0x0247
DMTC2 rt, 0x0248
DMTC2 rt, 0x0249
DMTC2 rt, 0x024A
DMTC2 rt, 0x024B
DMTC2 rt, 0x024C
DMTC2 rt, 0x024D
DMTC2 rt, 0x024E

Purpose:

To load values into HASHDAT via the wide mechanism. The SHA-512 algorithm
uses the wide HASHDAT format.

Description: HASHDAT[0] = rt // DMTC2 rt,0x0240
HASHDAT[1] = rt // DMTC2 rt,0x0241
HASHDAT[2] = rt // DMTC2 rt,0x0242
HASHDAT[3] = rt // DMTC2 rt,0x0243
HASHDAT[4] = rt // DMTC2 rt,0x0244
HASHDAT[5] = rt // DMTC2 rt,0x0245
HASHDAT[6] = rt // DMTC2 rt,0x0246
HASHDAT[7] = rt // DMTC2 rt,0x0247
HASHDAT[8] = rt // DMTC2 rt,0x0248
HASHDAT[9] = rt // DMTC2 rt,0x0249
HASHDAT[10] = rt // DMTC2 rt,0x024A
HASHDAT[11] = rt // DMTC2 rt,0x024B
HASHDAT[12] = rt // DMTC2 rt,0x024C
HASHDAT[13] = rt // DMTC2 rt,0x024D
HASHDAT[14] = rt // DMTC2 rt,0x024E

Load Data into HSH Unit (wide mode) CVM_MT_HSH_DATW

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt

impl
0000 0010 0100 0000
0000 0010 0100 0001
0000 0010 0100 0010
0000 0010 0100 0011
0000 0010 0100 0100
0000 0010 0100 0101
0000 0010 0100 0110
0000 0010 0100 0111
0000 0010 0100 1000
0000 0010 0100 1001
0000 0010 0100 1010
0000 0010 0100 1011
0000 0010 0100 1100
0000 0010 0100 1101
0000 0010 0100 1110

6 5 5 16
902 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0240: HASHDAT[0] = GPR[rt]
 case 0x0241: HASHDAT[1] = GPR[rt]
 case 0x0242: HASHDAT[2] = GPR[rt]
 case 0x0243: HASHDAT[3] = GPR[rt]
 case 0x0243: HASHDAT[4] = GPR[rt]
 case 0x0245: HASHDAT[5] = GPR[rt]
 case 0x0246: HASHDAT[6] = GPR[rt]
 case 0x0247: HASHDAT[7] = GPR[rt]
 case 0x0248: HASHDAT[8] = GPR[rt]
 case 0x0249: HASHDAT[9] = GPR[rt]
 case 0x024a: HASHDAT[10] = GPR[rt]
 case 0x024b: HASHDAT[11] = GPR[rt]
 case 0x024c: HASHDAT[12] = GPR[rt]
 case 0x024d: HASHDAT[13] = GPR[rt]
 case 0x024e: HASHDAT[14] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 903

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0048 CVM

DMTC2 rt, 0x0049

DMTC2 rt, 0x004A

DMTC2 rt, 0x004B

Purpose:

To load values into HASHIV in the narrow mode. MD5, SHA-1, and SHA-256 use
the narrow mode. The least-significant 32 bits of separate 64-bit HASHDAT double-
words are written with the most-significant and least-significant 32 bits of rt.

Description: HASHDAT[0]<31:0> || HASHDAT[1]<31:0> = rt // DMTC2 rt,0x0048
HASHDAT[2]<31:0> || HASHDAT[3]<31:0> = rt // DMTC2 rt,0x0049
HASHDAT[4]<31:0> || HASHDAT[5]<31:0> = rt // DMTC2 rt,0x004A
HASHDAT[6]<31:0> || HASHDAT[7]<31:0> = rt // DMTC2 rt,0x004B

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0048: HASHIV[0]<31:0> = GPR[rt]<63:32>
 HASHIV[1]<31:0> = GPR[rt]<31:0>
 HASHIV[1..0]<63:32> = unpredictable
 case 0x0049: HASHIV[2]<31:0> = GPR[rt]<63:32>
 HASHIV[3]<31:0> = GPR[rt]<31:0>
 HASHIV[3..2]<63:32> = unpredictable
 case 0x004a: HASHIV[4]<31:0> = GPR[rt]<63:32>
 HASHIV[5]<31:0> = GPR[rt]<31:0>
 HASHIV[5..4]<63:32> = unpredictable
 case 0x004a: HASHIV[6]<31:0> = GPR[rt]<63:32>
 HASHIV[7]<31:0> = GPR[rt]<31:0>
 HASHIV[7..6]<63:32> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Load IV into HSH Unit (narrow mode) CVM_MT_HSH_IV

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt

impl
0000 0000 0100 1000
0000 0000 0100 1001
0000 0000 0100 1010
0000 0000 0100 1011

6 5 5 16
904 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x0250 CVM

DMTC2 rt, 0x0251

DMTC2 rt, 0x0252

DMTC2 rt, 0x0253

DMTC2 rt, 0x0254

DMTC2 rt, 0x0255

DMTC2 rt, 0x0256

DMTC2 rt, 0x0257

Purpose:

To load values into HASHIV in the wide mode. SHA-512 uses the wide mode.

Description: HASHIV[0] = rt // DMTC2 rt,0x0250
HASHIV[1] = rt // DMTC2 rt,0x0251
HASHIV[2] = rt // DMTC2 rt,0x0252
HASHIV[3] = rt // DMTC2 rt,0x0253
HASHIV[4] = rt // DMTC2 rt,0x0254
HASHIV[5] = rt // DMTC2 rt,0x0255
HASHIV[6] = rt // DMTC2 rt,0x0256
HASHIV[7] = rt // DMTC2 rt,0x0257

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 case 0x0250: HASHIV[0] = GPR[rt]
 case 0x0251: HASHIV[1] = GPR[rt]
 case 0x0252: HASHIV[2] = GPR[rt]
 case 0x0253: HASHIV[3] = GPR[rt]

Load IV into HSH Unit (wide mode) CVM_MT_HSH_IVW

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt

impl
0000 0010 0101 0000
0000 0010 0101 0001
0000 0010 0101 0010
0000 0010 0101 0011
0000 0010 0101 0100
0000 0010 0101 0101
0000 0010 0101 0110
0000 0010 0101 0111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 905

: Cavium Networks-Specific Instruction Descriptions
 case 0x0254: HASHIV[4] = GPR[rt]
 case 0x0255: HASHIV[5] = GPR[rt]
 case 0x0256: HASHIV[6] = GPR[rt]
 case 0x0257: HASHIV[7] = GPR[rt]
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
906 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x4047 CVM

Purpose:

To start an MD5 hash. The least-significant 32 bits of the first 14 HASHDAT words
together with rt is hashed using the IV from the least-significant 32 bits of the first
four HASHIV words. The least-significant 32 bits of the first four HASHIV words
are updated with the result (in narrow mode).

Description: HASHIV[3:0]<31:0> = MD5(rt || HASHDAT[13:0]<31:0>,
HASHIV[3:0]<31:0>)

Restrictions:

HASHDAT[0..13]<31:0> must be predictable. This means that
HASHDAT[0..13]<31:0> must be written between execution of this
CVM_MT_HSH_STARTMD5 and the execution of the immediately preceding
CVM_MT_HSH_STARTMD5, CVM_MT_HSH_STARTSHA,
CVM_MT_HSH_STARTSHA256, or CVM_MT_HSH_STARTSHA512.

All of HASHIV[3:0]<31:0> must be predictable prior to this
CVM_MT_HSH_STARTMD5.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 2; i++)
 TIV[i]<63:0> = HASHIV[2*i]<31:0> || HASHIV[2*i+1]<31:0>
 for(i = 0; i < 7; i++)
 TDAT[i]<63:0> = HASHDAT[2*i]<31:0> || HASHDAT[2*i+1]<31:0>
 TDAT[7]<63:0> = GPR[rt]
 TIV = MD5(TDAT, TIV)
 for(i = 0; i < 2; i++) {
 HASHIV[2*i]<31:0> = TIV[i]<63:32>
 HASHIV[2*i+1]<31:0> = TIV[i]<31:0>
 }
 HASHIV[3..0]<63:32> = unpredictable
 HASHDAT[14..0]<63:0> = unpredictable
 endif

MD5 Hash CVM_MT_HSH_STARTMD5

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 0100 0111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 907

: Cavium Networks-Specific Instruction Descriptions
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Notes:

The MD5 algorithm is little-endian and the HASHIV and HASHDAT data are big-
endian, so both HASHIV and HASHDAT are byte-swapped in and out of the MD5()
function above.
908 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x4057 CVM

Purpose:

To start a SHA-1 hash. The least-significant 32 bits of the first 14 HASHDAT words
together with rt is hashed using the IV from the least-significant 32 bits of the first
five HASHIV words. The least-significant 32 bits of the first five HASHIV words are
updated with the result (in narrow mode).

Description: HASHIV[4:0]<31:0> = SHA-1(rt || HASHDAT[13:0]<31:0>,
HASHIV[4:0]<31:0>)

Restrictions:

HASHDAT[13:0]<31:0> must be predictable. This means that
HASHDAT[13:0]<31:0> must be written between execution of this
CVM_MT_HSH_STARTSHA and the execution of the immediately preceding
CVM_MT_HSH_STARTMD5, CVM_MT_HSH_STARTSHA,
CVM_MT_HSH_STARTSHA256, or CVM_MT_HSH_STARTSHA512.

All of HASHIV[4:0]<31:0> must be predictable prior to this
CVM_MT_HSH_STARTSHA.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 2; i++)
 TIV[i]<63:0> = HASHIV[2*i]<31:0> || HASHIV[2*i+1]<31:0>
 TIV[2]<63:0> = TIV[4]<31:0> || 0^32
 for(i = 0; i < 7; i++)
 TDAT[i]<63:0> = HASHDAT[2*i]<31:0> || HASHDAT[2*i+1]<31:0>
 TDAT[7]<63:0> = GPR[rt]
 TIV = SHA-1(TDAT, TIV)
 for(i = 0; i < 2; i++) {
 HASHIV[2*i]<31:0> = TIV[i]<63:32>
 HASHIV[2*i+1]<31:0> = TIV[i]<31:0>
 }
 HASHIV[4]<31:0> = TIV[2]<63:32>
 HASHIV[4..0]<63:32> = unpredictable
 HASHDAT[14..0]<63:0> = unpredictable

SHA-1 Hash CVM_MT_HSH_STARTSHA

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 0101 0111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 909

: Cavium Networks-Specific Instruction Descriptions
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
910 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x404F CVM

Purpose:

To start a SHA-256 hash. The least-significant 32 bits of the first 14 HASHDAT
words together with rt is hashed using the IV from the least-significant 32 bits of
the first five HASHIV words. The least-significant 32 bits of the first five HASHIV
words are updated with the result (in narrow mode).

Description: HASHIV[7:0]<31:0> = SHA-256(rt || HASHDAT[13:0]<31:0>,
HASHIV[7:0]<31:0>)

Restrictions:

HASHDAT[13:0]<31:0> must be predictable. This means that
HASHDAT[13:0]<31:0> must be written between execution of this
CVM_MT_HSH_STARTSHA256 and the execution of the immediately preceding
CVM_MT_HSH_STARTMD5, CVM_MT_HSH_STARTSHA,
CVM_MT_HSH_STARTSHA256, or CVM_MT_HSH_STARTSHA512.

All of HASHIV[7:0]<31:0> must be predictable prior to this
CVM_MT_HSH_STARTSHA256.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 for(i = 0; i < 4; i++)
 TIV[i]<63:0> = HASHIV[2*i]<31:0> || HASHIV[2*i+1]<31:0>
 for(i = 0; i < 7; i++)
 TDAT[i]<63:0> = HASHDAT[2*i]<31:0> || HASHDAT[2*i+1]<31:0>
 TDAT[7]<63:0> = GPR[rt]
 TIV = SHA-256(TDAT, TIV)
 for(i = 0; i < 4; i++) {
 HASHIV[2*i]<31:0> = TIV[i]<63:32>
 HASHIV[2*i+1]<31:0> = TIV[i]<31:0>
 }
 HASHIV[7..0]<63:32> = unpredictable
 HASHDAT[14..0]<63:0> = unpredictable
 endif
 else

SHA-256 Hash CVM_MT_HSH_STARTSHA256

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 0100 1111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 911

: Cavium Networks-Specific Instruction Descriptions
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction
912 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x424F CVM

Purpose:

To start a SHA-512 hash. The HASHDAT words together with rt are hashed using
HASHIV. HASHIV is updated with the result in wide mode.

Description: HASHIV[7:0] = SHA-512(rt || HASHDAT[14:0], HASHIV[7:0])

Restrictions:

HASHDAT[14:0]<63:0> must be predictable. This means that HASHDAT[14:0] must
be written between execution of this CVM_MT_HSH_STARTSHA512 and the
execution of the immediately preceding CVM_MT_HSH_STARTMD5,
CVM_MT_HSH_STARTSHA, CVM_MT_HSH_STARTSHA256, or
CVM_MT_HSH_STARTSHA512.

All of HASHIV[7..0]<31:0> must be predictable prior to this
CVM_MT_HSH_STARTSHA512. This means that HASHIV[7:0] must have been
written since the last CVM_MT_HSH_STARTMD5, CVM_MT_HSH_STARTSHA, or
CVM_MT_HSH_STARTSHA256.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or CvmCtl[NOCRYPTO] then
 SignalException(ReservedInstruction)
 else
 HASHIV[7:0] = SHA-512(rt || HASHDAT[14:0], HASHIV[7:0])
 HASHDAT[14:0]<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

SHA-512 Hash CVM_MT_HSH_STARTSHA512

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0010 0100 1111

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 913

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x408B CVM

Purpose:

To do a KASUMI encrypt. GPR[rt] is the input to a KASUMI encrypt (using
3DESKEY[1:0]). 3DESRESULT is set to the result of the encrypt.

Description: KASUMIRESULT<63:0> = 3DESRESULT<63:0> = KASUMI(rt, 3DESKEY[1:0])

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or (not CvmCtl[KASUMI]) then
 SignalException(ReservedInstruction)
 else
 KASUMIRESULT<63:0> = KASUMI(GPR[rt]<63:0>, 3DESKEY[1:0])
 3DESRESULT<63:0> = KASUMIRESULT<63:0>
 3DESKEY[2]<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Notes:

The CVM_MT_KAS_ENC instruction first appeared on the OCTEON Plus CN5XXX
series parts. The behavior of the CVM_MT_KAS_ENC instruction is not predictable
on the earlier OCTEON CN3XXX series parts. CvmCtl[KASUMI] is always 0 on
CN3XXX parts, so accurately portrays the lack of a KASUMI unit. However, there is
no guarantee of a Reserved Instruction exception when CVM_MT_KAS_ENC is
executed. KASUMI code that is portable to both CN5XXX (and successors) and
CN3XXX must not execute CVM_MT_KAS_ENC when CvmCtl[KASUMI] is clear.

KASUMI Encrypt CVM_MT_KAS_ENC

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 1000 1011

6 5 5 16
914 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DMTC2 rt, 0x4089 CVM

Purpose:

To do a KASUMI CBC encrypt. GPR[rt] XOR KASUMIRESULT is the input to a
KASUMI encrypt (using 3DESKEY[1:0]). 3DESRESULT is set to the result of the
encrypt.

Description: KASUMIRESULT<63:0> = 3DESRESULT<63:0> = KASUMI(rt ⊕ KASUMIRESULT,
3DESKEY[1:0])

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is
signaled. If access to 64-bit operations is not enabled, a Reserved Instruction
Exception is signaled.

This instruction is not available for OCTEON family parts that do not provide
encryption functionality, such as OCTEON EXP and OCTEON CP family members.
Such parts signal a Reserved Instruction exception when issued this instruction.

Operation:

 if IsCoprocessorEnabled(2) then
 if (not Are64bitOperationsEnabled()) or (not CvmCtl[KASUMI]) then
 SignalException(ReservedInstruction)
 else
 KASUMIRESULT<63:0> = KASUMI(GPR[rt]<63:0> ⊕ KASUMIRESULT<63:0>, 3DESKEY[1:0])
 3DESRESULT<63:0> = KASUMIRESULT<63:0>
 3DESKEY[2]<63:0> = unpredictable
 endif
 else
 SignalException(CoprocessorUnusable, 2)
 endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Notes:

The CVM_MT_KAS_ENC_CBC instruction first appeared on the OCTEON Plus
CN5XXX series parts. The behavior of the CVM_MT_KAS_ENC_CBC instruction is
not predictable on the earlier OCTEON CN3XXX series parts. CvmCtl[KASUMI] is
always 0 on CN3XXX parts, so accurately portrays the lack of a KASUMI unit.
However, there is no guarantee of a Reserved Instruction exception when
CVM_MT_KAS_ENC_CBC is executed. KASUMI code that is portable to both
CN5XXX (and successors) and CN3XXX must not execute
CVM_MT_KAS_ENC_CBC when CvmCtl[KASUMI] is clear.

KASUMI CBC Encrypt CVM_MT_KAS_ENC_CBC

31 26 25 21 20 16 15 0

COP2
0100 10

DMT
00 101

rt
impl

0100 0000 1000 1001

6 5 5 16
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 915

: Cavium Networks-Specific Instruction Descriptions

Format: DMUL rd, rs, rt CVM

Purpose:

To multiply 64-bit signed integers and write the result to a GPR.

Description: rd = rs × rt

The 64-bit double-word value in GPR rt is multiplied by the 64-bit value in GPR rs,
treating both operands as signed values, to produce a 128-bit result. The low-order
64-bit double word of the result is written to GPR rd. The contents of HI, LO, P0, P1,
and P2 are unpredictable after the operation.

No arithmetic exception occurs under any circumstances.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 prod = GPR[rs] * GPR[rt]
 GPR[rd] = prod<63:0>
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

The integer multiply operation proceeds asynchronously and other CPU instructions
can execute before it is complete. An attempt to read GPR rd before the results are
written interlocks until the results are ready. Asynchronous execution does not affect
the program result, but offers an opportunity for performance improvement by
scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Multiply Doubleword to GPR DMUL

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd
0

000 00
DMUL

00 0011

6 5 5 5 5 6
916 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: DPOP rd, rs CVM

Purpose

Count the number of ones in a double word

Description: rd = count_ones(rs)

Bits 63..0 of GPR rs are scanned. The number of ones is counted and the result is
written to GPR rd.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 temp = 0
 for i in 63 .. 0
 if GPR[rs]<i> = 1 then
 temp++
 endif
 endfor
 GPR[rd] = temp
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction.

Count Ones in a Doubleword DPOP

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs
0

0 0000
rd

0
000 00

DPOP
10 1101

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 917

: Cavium Networks-Specific Instruction Descriptions

Format: EXTS rt, rs, p, lenm1 CVM

Purpose:

To extract and sign-extend a bit field that starts from the lower 32 bits of a register.

Description: rt = sign-extend(rs<p+lenm1:p>, lenm1)

Bit locations p + lenm1 to p are extracted from rs and the result is written into the
lowest bits of destination register rt. The remaining bits in rt are a sign-extension of
the most-significant bit of the bit field (i.e. rt<63:lenm1> are all duplicates of the
source-register bit rs<p+lenm1>).

Restrictions:

The p and lenm1 fields are only 5-bits, so the widest allowed bit field is 32-bits.

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 GPR[rt] <- sign-extend(GPR[rs]<p+lenm1:p>, lenm1)
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction.

Extract a Signed Bit Field EXTS

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt lenm1 p
EXTS

11 1010

6 5 5 5 5 6
918 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: EXTS32 rt, rs, p, lenm1 CVM

Purpose:

To extract and sign-extend a bit field that starts from the upper 32 bits of a register.

Description: rt = sign-extend(rs<p+32+lenm1:p+32>, lenm1)

Bit locations p + 32 + lenm1 to p + 32 are extracted from rs and the result is written
into the lowest bits of destination register rt. The remaining bits in rt are a sign-
extension of the most-significant bit of the bit field (i.e. rt<63:lenm1> are all
duplicates of the source-register bit rs<p+32+lenm1>).

Restrictions:

The p and lenm1 fields are only 5-bits, so the widest allowed bit field is 32-bits.

The result register GPR[rt] is unpredictable when p+32+lenm1 is larger than 63.

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 GPR[rt] <- sign-extend(GPR[rs]<p+32+lenm1:p+32>, lenm1)
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction.

Extract a Signed Bit Field Plus 32 EXTS32

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt lenm1 p
EXTS32
111011

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 919

: Cavium Networks-Specific Instruction Descriptions

Format: MTM0 rs CVM

Purpose:

To load the multiplier register MPL0 (and zero P0, P1, P2).

Description: MPL0 = rs; P0, P1, P2 = 0

The 64-bit double-word value in GPR rs is loaded into the multiplier register MPL0
and P0-P2 are zeroed.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 MPL0<63:0> = GPR[rs]
 P0 = 0
 P1 = 0
 P2 = 0
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

See “Special MUL Topics” on page 194 for a method to read out the MPL0 value.

Load Multiplier Register MPL0 MTM0

31 26 25 21 20 6 5 0

Special2
0111 00

rs
0

0 0000 0000 0000 00
MTM0

00 1000

6 5 15 6
920 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
Format: MTM1 rs CVM

Purpose:

To load the multiplier register MPL1 (and zero P0, P1, P2).

Description: MPL1 = rs; P0, P1, P2 = 0

The 64-bit doubleword value in GPR rs is loaded into the multiplier register MPL1
and P0-P2 are zeroed.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 MPL1<63:0> = GPR[rs]
 P0 = 0
 P1 = 0
 P2 = 0
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

See “Special MUL Topics” on page 194 for a method to read out the MPL1 value.

Load Multiplier Register MPL1 MTM1

31 26 25 21 20 6 5 0

Special2
0111 00

rs
0

0 0000 0000 0000 00
MTM

00 1100

6 5 15 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 921

: Cavium Networks-Specific Instruction Descriptions

Format: MTM2 rs CVM

Purpose:

To load the multiplier register MPL2 (and zero P0, P1, P2).

Description: MPL2 = rs; P0, P1, P2 = 0

The 64-bit doubleword value in GPR rs is loaded into the multiplier register MPL2
and P0-P2 are zeroed.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 MPL2<63:0> = GPR[rs]
 P0 = 0
 P1 = 0
 P2 = 0
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

See “Special MUL Topics” on page 194 for a method to read out the MPL2 value.

Load Multiplier Register MPL2 MTM2

31 26 25 21 20 6 5 0

Special2
0111 00

rs
0

0 0000 0000 0000 00
MTM2

00 1101

6 5 15 6
922 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: MTP0 rs CVM

Purpose:

To load the product register P0.

Description: P0 = rs

The 64-bit doubleword value in GPR rs is loaded into the product register P0.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 P0 = GPR[rs]
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

See “Special MUL Topics” on page 194 for a method to read out the P0 value.

Load Multiplier Register P0 MTP0

31 26 25 21 20 6 5 0

Special2
0111 00

rs
0

0 0000 0000 0000 00
MTP0

00 1001

6 5 15 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 923

: Cavium Networks-Specific Instruction Descriptions

Format: MTP1 rs CVM

Purpose:

To load the product register P1.

Description: P1 = rs

The 64-bit doubleword value in GPR rs is loaded into the product register P1.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 P1 = GPR[rs]
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

See “Special MUL Topics” on page 194 for a method to read out the P1 value.

Load Multiplier Register P1 MTP1

31 26 25 21 20 6 5 0

Special2
0111 00

rs
0

0 0000 0000 0000 00
MTP1

00 1010

6 5 15 6
924 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: MTP2 rs CVM

Purpose:

To load the product register P2.

Description: P2 = rs

The 64-bit doubleword value in GPR rs is loaded into the product register P2.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 P2 = GPR[rs]
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

Programming Notes:

See “Special MUL Topics” on page 194 for a method to read out the P2 value.

Load Multiplier Register P2 MTP2

31 26 25 21 20 6 5 0

Special2
0111 00

rs
0

0 0000 0000 0000 00
MTP2

00 1011

6 5 15 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 925

: Cavium Networks-Specific Instruction Descriptions

Format: POP rd, rs CVM

Purpose

Count the number of ones in a word

Description: rd = count_ones(rs)

Bits 31..0 of GPR rs are scanned. The number of ones is counted and the result is
written to GPR rd.

Restrictions:

None.

Operation:

 temp = 0
 for i in 31 .. 0
 if GPR[rs]<i> = 1 then
 temp++
 endif
 endfor
 GPR[rd] = temp

Exceptions:

None.

Count Ones in a Word POP

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs
0

0 0000
rd

0
000 00

POP
10 1100

6 5 5 5 5 6
926 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: PREF hint, offset(base) MIPS32/CVM

Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective
byte address. PREF operate on the surrounding naturally-aligned cache block,
typically prefetching it into a cache. The cache block size is 128 bytes on CN50XX.
With the exception of the Prepare-For-Store and Don’t-Write-Back hints, PREF
instruction execution does not change architectural state. The hint field selects the
particular operation.

PREF does not cause addressing-related exceptions. If the address specified would
cause an addressing exception, the exception condition is ignored and no data
movement occurs.

PREF never generates a memory operation for I/O memory locations, DSEG
locations, and CVMSEG locations.

Possible values of the hint field for the PREF Instruction are listed in the table below.

NOTE: This is a standard MIPS32 instruction for which OCTEON chips implement
all the functionality defined in the MIPS standard instruction set, as well as
additional, cnMIPS-specific operations. The hint field is cnMIPS-specific.

Prefetch PREF

31 26 25 21 20 16 15 0

PREF
1100 11

base hint offset

6 5 5 16

Hint
Value Name Data Use and Desired Prefetch Action

0-1, 6-7,
25, 31

Normal The block will be prefetched into the L1 cache and the L2 cache.

2-3, 8-24,
26-27

Reserved Results are unpredictable.

4,
5

L1 only The block will be prefetched into the L1 cache but will not be put into the L2
cache.

28 L2 only The block will be prefetched into the L2 cache without putting it into the L1
cache.

29 Don’t-
Write-
Back

The block will not be written back to memory (i.e. the cache dirty bit is
cleared). The value of the bytes in the cache block are unpredictable and may
change value unpredictably until they are later stored to. The Don’t-Write-
Back operation can be used to avoid unnecessary write backs from the L2
cache (to DRAM) for memory locations that are not being used.

30 Prepare-
For-
Store

A write buffer entry is created. If the write buffer entry misses in the L2 cache,
OCTEON will not read the prior block from DRAM into the L2 cache. The
value of the bytes in the cache block are unpredictable and may change value
unpredictably until they are later stored to. The Prepare-For-Store operations
can be used to avoid unnecessary DRAM reads for memory locations whose
current value does not matter.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 927

: Cavium Networks-Specific Instruction Descriptions
Restrictions:

None.

Operation:

 vAddr , GPR[base] + sign_extend(offset)
 (pAddr, CCA) , AddressTranslation(vAddr, DATA, LOAD)
 Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Cache Error, Watch, Breakpoint

Prefetch does not take any TLB-related or address-related exceptions under any
circumstances.

OCTEON Core watchpoints and (EJTAG) breakpoints match against the PREF 29
and PREF 30 instructions as if they were stores to every byte in the surrounding
cache block. These PREFs always match a value compare.

None of the PREF 0-28, 31 instruction ever match against watchpoints/breakpoints.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that
location is present in the TLB. Locations in memory pages that have not been
accessed recently may not have translations in the TLB, so prefetch may not be
effective for such locations.

Prefetch does not cause addressing exceptions, so a legal PREF instruction can have
any effective address.
928 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: RDHWR rt, rd MIPS32 Release 2/CVM

Purpose:

To move the contents of a hardware register to a general purpose register (GPR) if
that operation is enabled by privileged software.

Description: rt= HWR[rd]

If access is allowed to the specified hardware register, the contents of the register
specified by rd is sign-extended and loaded into general register rt. Access control for
each register is selected by the bits in the coprocessor 0 HWREna register.

The available hardware registers, and the encoding of the rd field for each, is as
shown in the table below.

NOTE: This is a standard MIPS32 instruction for which OCTEON chips implement
all the functionality defined in the MIPS standard instruction set, as well as
additional, cnMIPS-specific operations. The register numbers 30 and 31 are
cnMIPS-specific. <31:30> are present in the HWREna register on OCTEON
chips.

Read Hardware Register RDHWR

31 26 25 21 20 16 15 11 10 6 5 0

Special3
0111 11

0
00 000

rt rd
0

000 00
RDHWR
11 1011

6 5 5 5 5 6

Register
Number
(rd Value)

Register
Name

Contents

0 CPUNum Number of the Core on which the program is currently running. This
comes directly from the coprocessor 0 EBaseCPUNum field.

1 SYNCI_Step Address step size to be used with the SYNCI instruction. See that
instruction's description for the use of this value. A SYNCI flushes the
entire instruction cache on OCTEON, so OCTEON's SYNCI_Step is
4096.

2 CC High-resolution cycle counter. This comes directly from the
coprocessor 0 Count register. This is one for OCTEON.

3 CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register.

30 ChOrd The current value of the pending tag switch bit local to this core:

1 = the local bit indicates that there is no pending POW tag
switch

0 = the local bit indicates that there is a pending POW tag switch

See “Core and Fetch-and-Add Pending Switch Bits” on page 241 for a
discussion of the pending tag switch bit that is local to each core. Note
that the local pending switch bit is NOT the actual POW state, but
should match in normal circumstances.

31 CvmCount The current value of the 64-bit Cavium-specific coprocessor 0
CvmCount register. Note that the full 64-bit CvmCount value is
provided when 64-bit operations are enabled, and only the lower 32
bits of CvmCount are provided (sign-extended) when 64-bit operations
are not enabled.

All others Access results in a Reserved Instruction Exception
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 929

: Cavium Networks-Specific Instruction Descriptions
Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a
Reserved Instruction Exception.

Operation:

if ((HWREna(rd) = 1) or IsCoprocessorEnabled(0)) then
 case rd
 16#00: temp = EBase[CPUNum]
 16#01: temp = 4096
 16#02: temp = sign_extend(Count)
 16#03: temp = 1
 16#1e: temp = local pending switch bit

16#1f: if Are64bitOperationsEnabled() then
 temp = CvmCount<63:0>
 else
 temp = sign_extend(CvmCount<31:0>)
 otherwise: SignalException(ReservedInstruction)
 endcase
 GPR[rt] = temp
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction
930 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: SAA rt, (base) CVM

Purpose:

To atomically add a word to a memory location.

Description: memory[base] = memory[base] + rt

The least-significant 32-bit word of register rt is added to the memory at the aligned
address specified by register base.

The memory read, add, and memory store are not interrupted by any other
instructions on this or any other processor. No Integer Overflow exception occurs
under any circumstance.

Restrictions:

The address in the base register must be naturally-aligned. If either of the two least-
significant bits of the address are set, an Address Error Exception occurs. SAA only
works on cacheable memory locations. When the resultant physical address is a non-
cacheable / IO address, the behavior is generally unpredictable.

Operation:

 vAddr = GPR[base]
 if (vAddr<1:0> != 0) or
 (vAddr is CVMSEG IO or CVMSEG LM and CVMSEG is enabled) then
 SignalException(AddressError)
 else
 pAddr = AddressTranslation(vAddr, DATA, STORE)
 if (pAddr is IO) or (vAddr is DSEG and DSEG is enabled) then
 unpredictable
 else
 memdoubleword = LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
 byte = vAddr<2:0> XOR (BigEndianCPU || 0<1:0>)
 resultdoubleword = memdoubleword + (GPR[rt]<63:0> << (byte * 8))
 StoreMemory (CCA, WORD, resultdoubleword, pAddr, vAddr, DATA)
 endif
 endif

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Breakpoint

Store Atomic Add Word SAA

31 26 25 21 20 16 15 6 5 0

Special2
0111 00

base rt
0

0000 0000 00
SAA

01 1000

6 5 5 10 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 931

: Cavium Networks-Specific Instruction Descriptions
Programming Notes:

The SAA instruction is performance-optimized for memory locations that are present
in L2/DRAM, not the level-one data cache. The cache block that contains the memory
location is removed from the level-one data cache (if present) during execution of the
SAA instruction on the CN5XXX series.

TLB accesses, watchess, and breakpoints treat SAA instructions as an SW
instruction. The value comparison of value breakpoints compares against the
contents of the least-significant word of GPR[rt], not the old contents of the memory
location, nor the contents of the memory location after the SAA.
932 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: SAAD rt, (base) CVM

Purpose:

To atomically add a double word to a memory location.

Description: memory[base] = memory[base] + rt

The 64-bit register rt is added to the memory at the aligned address specified by
register base.

The memory read, add, and memory store are not interrupted by any other
instructions on this or any other processor. No Integer Overflow exception occurs
under any circumstance.

Restrictions:

The address in the base register must be naturally-aligned. If either of the three
least-significant bits of the address are set, an Address Error Exception occurs.
SAAD only works on cacheable memory locations. When the resultant physical
address is a noncacheable / IO address, the behavior is generally unpredictable.

A Reserved Instruction Exception is signalled if access to 64-bit operations is not
enabled.

Operation:

 if Are64bitOperationsEnabled() then
 vAddr = GPR[base]
 if (vAddr<2:0> != 0) or
 (vAddr is CVMSEG IO or CVMSEG LM and CVMSEG is enabled) then
 SignalException(AddressError)
 else
 pAddr = AddressTranslation(vAddr, DATA, STORE)
 if (pAddr is IO) or (vAddr is DSEG and DSEG is enabled) then
 unpredictable
 else
 memdoubleword = LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
 StoreMemory (CCA, DOUBLEWORD, memdoubleword + GPR[rt]<63:0>, pAddr, vAddr, DATA)
 endif
 endif
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address
Error, Watch, Breakpoint

Store Atomic Add Double Word SAAD

31 26 25 21 20 16 15 6 5 0

Special2
0111 00

base rt
0

0000 0000 00
SAA

01 1001

6 5 5 10 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 933

: Cavium Networks-Specific Instruction Descriptions
Programming Notes:

The SAAD instruction is performance-optimized for memory locations that are
present in L2/DRAM, not the level-one data cache. The cache block that contains the
memory location is removed from the level-one data cache (if present) during
execution of the SAAD instruction on the 5XXX series.

TLB accesses, watches, and breakpoints treat SAAD instructions as an SD
instruction. The value comparison of value breakpoints compares against the
GPR[rt] contents, not the old contents of the memory location, nor the contents of the
memory location after the SAAD.
934 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: SEQ rd, rs, rt CVM

Purpose:

To record the result of an equals comparison

Description: rd = (rs == rt)

Compare the contents of GPR rs and GPR rt and record the Boolean result of the
comparison in GPR rd. If GPR rs equals GPR rt, the result is 1 (true); otherwise, it is
0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None.

Operation:

 if GPR[rs] == GPR[rt] then
 GPR[rd] = 063 || 1
 else
 GPR[rd] = 064

 endif

Exceptions:

None.

Set on Equal SEQ

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd
0

000 00
SEQ

10 1010

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 935

: Cavium Networks-Specific Instruction Descriptions

Format: SEQI rt, rs, immediate CVM

The immediate is a 10-bit sign-extended value contained in <15:6> of the instruction.

Purpose: To record the result of an equals comparison with a constant

Description: rt = (rs == immediate)

Compare the contents of GPR rs and the 10-bit signed immediate and record the
Boolean result of the comparison in GPR rt. If GPR rs equals immediate, the result is
1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None.

Operation:

 if GPR[rs] == sign_extend(immediate) then
 GPR[rt] = 063 || 1
 else
 GPR[rt] = 064

 endif

Exceptions:

None.

Set on Equal Immediate SEQI

31 26 25 21 20 16 15 6 5 0

Special2
0111 00

rs rt immediate
SEQI

10 1110

6 5 5 10 6
936 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: SNE rd, rs, rt CVM

Purpose:

To record the result of a not equals comparison

Description: rd = (rs != rt)

Compare the contents of GPR rs and GPR rt and record the Boolean result of the
comparison in GPR rd. If GPR rs equals GPR rt, the result is 0 (false); otherwise, it is
1 (true).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None.

Operation:

 if GPR[rs] != GPR[rt] then
 GPR[rd] = 063 || 1
 else
 GPR[rd] = 064

 endif

Exceptions:

None.

Set on Not Equal SNE

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd
0

000 00
SNE

10 1011

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 937

: Cavium Networks-Specific Instruction Descriptions

Format: SNEI rt, rs, immediate CVM

The immediate is a 10-bit sign-extended value contained in <15:6> of the instruction.

Purpose:

To record the result of a not equals comparison with a constant

Description: rt = (rs != immediate)

Compare the contents of GPR rs and the 10-bit signed immediate and record the
Boolean result of the comparison in GPR rt. If GPR rs equals immediate, the result is
0 (false); otherwise, it is 1 (true).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None.

Operation:

 if GPR[rs] != sign_extend(immediate) then
 GPR[rt] = 063 || 1
 else
 GPR[rt] = 064

 endif

Exceptions:

None.

Set on Not Equal Immediate SNEI

31 26 25 21 20 16 15 6 5 0

Special2
0111 00

rs rt immediate
SNEI

10 1111

6 5 5 10 16
938 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: SYNCIOBDMA CVM

Purpose:

To complete IOBDMA operations

Description:

SYNCIOBDMA execution guarantees that there are no in-flight IOBDMA
operations; a subsequent CVMSEG LM load will get results updated for all
outstanding IOBDMAs.

Restrictions:

None.

Operation:

SyncOperation(stype)

Exceptions:

None.

Programming Notes:

IOBDMA operations (see Section 4.7 on page 160) can be initiated without waiting
for their CVMSEG LM result. SYNCIOBDMA operations are necessary to complete
them. (SYNC/SYNCS instructions also guarantee that in-flight IOBDMA operations
complete, but are more costly than SYNCIOBDMA operations.)

Synchronize IOBDMAs SYNCIOBDMA

31 26 25 11 10 6 5 0

Special
0000 00

0
00 0000 0000 0000 0

Stype
000 10

SYNC
00 1111

6 15 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 939

: Cavium Networks-Specific Instruction Descriptions

Format: SYNCS CVM

Purpose:

To order unmarked L2/DRAM and I/O load/store operations and IOBDMAs. SYNCS
is identical to SYNC, except that SYNCS does not order marked L2/DRAM load/store
operations.

Description:

● SYNCS affects the ordering of all unmarked L2/DRAM load/store operations, I/O
load/store operations, and IOBDMA operations. The unmarked L2/DRAM load/
store operations, I/O load/store operations, and IOBDMA operations that occur
before the SYNCS are completed before any unmarked L2/DRAM load/store
operations, I/O load/store operations, or IOBDMA operations after the SYNCS
are allowed to start.

● SYNCS does not affect the order of marked L2/DRAM load/store operations.
Marked L2/DRAM load/store operations are those L2/DRAM load/store
operations whose cache coherency attribute equals 7.

● Loads are complete when the destination register is written.

● L2/DRAM stores are complete when the stored value is visible to every other core
and all OCTEON IO units.

● I/O stores are posted on OCTEON, and are “complete” when they reach the
coherent memory bus.

● SYNCS execution guarantees that there are no in-flight IOBDMA operations; a
subsequent CVMSEG LM load gets results updated for all outstanding IOBDMA
operations.

● SYNCS does not guarantee the order in which instruction fetches are performed.

● SYNCS is identical to SYNC when CvmMemCtl[DISSYNCWS] is set.

● Refer to the cnMIPS™ Cores chapter (“cnMIPS™ Cores” on page 143) for more
discussion of ordering.

Restrictions:

None.

Operation:

SyncOperation(stype)

Exceptions:

None.

Synchronize Special SYNCS

31 26 25 11 10 6 5 0

Special
0000 00

0
00 0000 0000 0000 0

Stype
001 10

SYNC
00 1111

6 15 5 6
940 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
Programming Notes:

On OCTEON, SYNCW and SYNCWS are much faster than SYNC or SYNCS, so
should be used when possible.

A processor executing load and store instructions observes the order in which loads
and stores occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously
on different processors. In OCTEON, the order in which the effects of loads and
stores are observed by other processors - the global order of the loads and stores -
determines the actions necessary to reliably share data in parallel programs.

In OCTEON, the effects of store instructions executed by one processor may be
observed out of program order by other processors, so parallel programs must take
explicit actions to reliably share data. At critical points in the program, the effects of
stores from an instruction stream must occur in the same order for all processors.
SYNCS separates the unmarked L2/DRAM and I/O load/store operations executed on
the processor into two groups, and the effect of all references in one group is seen by
all processors before the effect of any reference in the subsequent group.

IOBDMA operations (see Section 4.7 on page 160) can be initiated without waiting
for their CVMSEG LM result. SYNCS operations complete them. (SYNCIOBDMA
instructions also guarantee that in-flight IOBDMA operations complete, and are less
costly than SYNC/SYNCS operations.)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 941

: Cavium Networks-Specific Instruction Descriptions

Format: SYNCW CVM

Purpose:

To order stores. SYNCW is similar to SYNCWS, but SYNCW orders more stores.

Description:

● SYNCW affects only stores. All the stores that occur before the SYNCW are
completed before any of the stores after the SYNC are allowed to start.

● L2/DRAM stores are complete when the stored value is visible to every other core
and all OCTEON units.

● I/O stores are posted on OCTEON, and are “complete” when they reach the
coherent memory bus.

● SYNCW does not affect any ordering between load/IOBDMA operations and
stores. Furthermore, SYNCW operations are queued and complete out of order
with respect to load/IOBDMA’s.

● Refer to the cnMIPS™ Cores chapter (“cnMIPS™ Cores” on page 143) for more
discussion of ordering.

Restrictions:

None.

Operation:

SyncOperation(stype)

Exceptions:

None.

Programming Notes:

On OCTEON, SYNCW and SYNCWS are much faster than SYNC or SYNCS, so
should be used whenever possible. SYNCWS can produce substantially better system
performance than SYNCW, as it orders fewer stores.

A processor executing load and store instructions observes the order in which loads
and stores occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously
on different processors. In OCTEON, the order in which the effects of loads and
stores are observed by other processors - the global order of the loads and stores -
determines the actions necessary to reliably share data in parallel programs.

Synchronize Stores SYNCW

31 26 25 11 10 6 5 0

Special
0000 00

0
00 0000 0000 0000 0

Stype
001 00

SYNC
00 1111

6 15 5 6
942 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
In OCTEON, the effects of store instructions executed by one processor may be
observed out of program order by other processors, so parallel programs must take
explicit actions to reliably share data. At critical points in the program, the effects of
stores from an instruction stream must occur in the same order for all processors.
SYNCW separates the load operations and store operations executed on the
processor into two groups, and the effect of all stores in one group is seen by all
processors before the effect of any store operation in the subsequent group. In effect,
SYNCW causes OCTEON to be strongly ordered for the Core at the instant that the
SYNCW is executed.

Conditions at entry: The value 0 has been stored in FLAG and that value is
observable by core B

Core A (writer)

SW R1, DATA # change shared DATA value
LI R2, 1
SYNCW # (or SYNCWS) Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid
SYNCW # (or SYNCWS) Force the FLAG store soon (OCTEON-specific)

Core B (reader)

 LI R2, 1
1: LW R1, FLAG # Get FLAG
 BNE R2, R1, 1B # if it says that DATA is not valid, poll again
 NOP
 LW R1, DATA # Read (valid) shared DATA value

The code fragments above show how SYNCW can be used to coordinate the use of
shared data between separate writer and reader instruction streams in OCTEON.
The FLAG location is used by the instruction streams to determine whether the
shared data item DATA is valid. The first SYNCW instruction executed by core A
forces the store of DATA to be performed globally before the store to FLAG is
performed. This is necessary for correct behavior on OCTEON.

The second SYNCW instruction executed by core A is not necessary for correctness,
but has very important performance effects on OCTEON. Without it, the store to
FLAG may linger in core A’s write buffer before it becomes visible to other cores. (If
core A is not performing many stores, this may add hundreds of thousands of cycles
to the flag release time since the OCTEON core nominally retains stores to attempt
to merge them before sending the store on the CMB.) Applications should include this
second SYNCW instruction after flag or lock releases.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 943

: Cavium Networks-Specific Instruction Descriptions

Format: SYNCWS CVM

Purpose:

To order unmarked L2/DRAM and I/O stores. SYNCWS is identical to SYNCW,
except that SYNCWS does not order marked L2/DRAM stores.

Description:

● SYNCWS affects the ordering of unmarked L2/DRAM store operations and all I/O
store operations. The unmarked L2/DRAM and I/O store operations that occur
before the SYNCWS are completed before the unmarked L2/DRAM and I/O store
operations after the SYNC are allowed to start.

● SYNCWS does not affect the order of marked L2/DRAM store operations. Marked
L2/DRAM store operations are those L2/DRAM store operations whose cache
coherency attribute equals 7.

● L2/DRAM store operations are completed when the stored value is visible to
every other core and all OCTEON I/O units.

● I/O store operations are posted on OCTEON, and are “complete” when they reach
the coherent memory bus.

● SYNCWS does not affect any ordering between load operations and store
operations, nor between IOBDMA operations and store operations. Furthermore,
SYNCWS operations may execute out of order with respect to load operations and
IOBDMA operations.

● SYNCWS is identical to SYNCW when CvmMemCtl[DISSYNCWS] is set.

● Refer to the cnMIPS™ Cores chapter (“cnMIPS™ Cores” on page 143) for more
discussion of ordering.

Restrictions:

None.

Operation:

SyncOperation(stype)

Exceptions:

None.

Programming Notes:

On OCTEON, SYNCW and SYNCWS are much faster than SYNC or SYNCS, so
should be used whenever possible. SYNCWS can produce substantially better system
performance than SYNCW, as it orders fewer stores.

Synchronize Stores Special SYNCWS

31 26 25 11 10 6 5 0

Special
0000 00

0
00 0000 0000 0000 0

Stype
001 01

SYNC
00 1111

6 15 5 6
944 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
A processor executing load and store instructions observes the order in which loads
and stores occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously
on different processors. In OCTEON, the order in which the effects of loads and
stores are observed by other processors - the global order of the loads and stores -
determines the actions necessary to reliably share data in parallel programs.

In OCTEON, the effects of store instructions executed by one processor may be
observed out of program order by other processors, so parallel programs must take
explicit actions to reliably share data. At critical points in the program, the effects of
stores from an instruction stream must occur in the same order for all processors.
SYNCWS separates the unmarked memory and I/O stores executed on the processor
into two groups, and the effect of all store operations in one group is seen by all
processors before the effect of any store in the subsequent group.

Refer to the SYNCW Programming Notes: section on page 942 for a code fragment of
a writer/reader application and optimization on OCTEON.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 945

: Cavium Networks-Specific Instruction Descriptions

Format: ULD rt, offset(base) CVM

The ULD instruction does not exist when CvmCtl[USEUN] is clear. (The MIPS LDL
and LDR instructions do not exist when CvmCtl[USEUN] is set.)

The ULD instruction (when enabled by CvmCtl[USEUN]) consumes either the MIPS
LDL or LDR major opcodes according to the following table:

When CvmCtl[USEUN] is set, one of MIPS LDL and LDR major opcodes execute as
NOPs, as specified in the table above.

Purpose:

To load a doubleword from a (potentially-unaligned) memory location

Description: rt = memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the
effective address are fetched and placed in GPR rt. The 16-bit signed offset is added
to the contents of GPR base to form the effective address.

Restrictions:

Whenever any of the bytes required to service the unaligned load reside in either I/O
space or DSEG or CVMSEG IO (note NOT normal/cacheable memory space and
CVMSEG LM), the effective address must be naturally-aligned. If any of the three
least-significant bits of the address is non-zero in this case, an Address Error
exception occurs. Note that these alignment address error exceptions are lower-
priority than TLB refill and invalid exceptions, though.

CVMSEG I/O references cause address errors.

CVMSEG LM references by these loads cause an address error when outside the
legal range allowed by CvmMemCtl[LMEMSZ] (assuming CVMSEG LM is enabled
by CvmMemCtl[CVMSEGENA*]).

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

if (Are64bitOperationsEnabled() then
 vAddr = sign_extend(offset) + GPR[base]
 if (vAddr<2:0> != 0) then

Unaligned Load Doubleword ULD

31 26 25 21 20 16 15 0
ULD

0110 10
or

0110 11

base rt offset

6 5 5 16

CvmCtl[USELONLY] BigEndianCPU
(!CvmCtl[LE])

MIPS LDL
opcode is:

MIPS LDR
opcode is:

0 0 NOP ULD
0 1 ULD NOP
1 X ULD NOP
946 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
 if (vAddr is CVMSEG IO and CVMSEG is enabled)
 or (vAddr is CVMSEG LM and CVMSEG is enabled and address is out of range)then
 SignalException(AddressError)
 else
 pAddr = AddressTranslation(vAddr, DATA, LOAD)
 if (pAddr is IO) or (pAddr is DSEG)
 or (vAddr+8 is CVMSEG IO and CVMSEG is enabled)
 or (vAddr+8 is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr2 = AddressTranslation(vAddr+8, DATA, LOAD)
 if (paddr2 is IO) or (paddr2 is DSEG) then
 SignalException(AddressError)
 else
 memdoubleword0 = LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
 memdoubleword1 = LoadMemory (CCA, DOUBLEWORD, pAddr2, vAddr+8, DATA)
 if (BigEndianCPU) then
 memdoubleword = (memdoubleword0 << (vAddr<2:0> * 8)) |
 (memdoubleword1 >> ((8-vAddr<2:0>) * 8));
 else
 memdoubleword = (memdoubleword0 >> (vAddr<2:0> * 8)) |
 (memdoubleword1 << ((8-vAddr<2:0>) * 8));
 endif
 GPR[rt] = memdoubleword
 endif
 endif
 endif
 else
 pAddr = AddressTranslation(vAddr, DATA, LOAD)
 memdoubleword = LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
 GPR[rt] = memdoubleword
 endif
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch,
Breakpoint

Notes:

OCTEON Cores execute naturally-aligned LDs one cycle faster than naturally-
aligned ULDs, so the LD instructions should be used rather than ULD when an
address is known to be naturally-aligned.

ULD is an assembler macro that converts to MIPS LDL/LDR sequences on most
MIPS assemblers.

The following table indicates the byte lanes for 64-bit references in big-endian mode:

VA<2:0> Register File Byte Positions in the two memory double words

0 <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

1 X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8>
< 7: 0> X X X X X X

2 X X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16>
<15: 8> < 7: 0> X X X X X

3 X X X <63:56> <55:48> <47:40> <39:32> <31:24>
<23:16> <15: 8> < 7: 0> X X X X

4 X X X X <63:56> <55:48> <47:40> <39:32>
<31:24> <23:16> <15: 8> < 7: 0> X X X X
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 947

: Cavium Networks-Specific Instruction Descriptions
The following table indicates the byte lanes for 64-bit references in little-endian
mode:

5 X X X X X <63:56> <55:48> <47:40>
<39:32> <31:24> <23:16> <15: 8> < 7: 0> X X X

6 X X X X X X <63:56> <55:48>
<47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X X

7 X X X X X X X <63:56>
<55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X

VA<2:0> Register File Byte Positions in the two memory double words

0 <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

1 <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X
X X X X X X X <63:56>

2 <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X X
X X X X X X <63:56> <55:48>

3

<39:32> <31:24> <23:16> <15: 8> < 7: 0> X X X
X X X X X <63:56> <55:48> <47:40>

4 <31:24> <23:16> <15: 8> < 7: 0> X X X X
X X X X <63:56> <55:48> <47:40> <39:32>

5 <23:16> <15: 8> < 7: 0> X X X X X
X X X <63:56> <55:48> <47:40> <39:32> <31:24>

6 <15: 8> < 7: 0> X X X X X X
X X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16>

7 < 7: 0> X X X X X X X
X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8>

VA<2:0> Register File Byte Positions in the two memory double words
948 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: ULW rt, offset(base) CVM

The ULW instruction does not exist when CvmCtl[USEUN] is clear. (The MIPS LWL
and LWR instructions do not exist when CvmCtl[USEUN] is set.)

The ULW instruction (when enabled by CvmCtl[USEUN]) consumes either the MIPS
LWL or LWR major opcodes according to the following table:

When CvmCtl[USEUN] is set, one of MIPS LWL and LWR major opcodes execute as
NOPs, as specified in the table above.

Purpose:

To load a word from a (potentially-unaligned) memory location

Description: rt = memory[base+offset]

The contents of the 32-bit word at the memory location specified by the effective
address are fetched, sign-extended to 64-bits, and placed in GPR rt. The 16-bit signed
offset is added to the contents of GPR base to form the effective address.

Restrictions:

Whenever any of the bytes required to service the unaligned load reside in either I/O
space or DSEG or CVMSEG IO (note NOT normal/cacheable memory space and
CVMSEG LM), the effective address must be naturally-aligned. If any of the two
least-significant bits of the address is non-zero in this case, an Address Error
exception occurs. Note that these alignment address error exceptions are lower-
priority than TLB refill and invalid exceptions, though.

CVMSEG IO references cause address errors.

CVMSEG LM references by these loads cause an address error when outside the
legal range allowed by CvmMemCtl[LMEMSZ] (assuming CVMSEG LM is enabled
by CvmMemCtl[CVMSEGENA*]).

Unaligned Load Word ULW

31 26 25 21 20 16 15 0
ULW

1000 10
or

1001 10

base rt offset

6 5 5 16

CvmCtl[USEL
ONLY]

BigEndianCPU
(!CvmCtl[LE])

MIPS LWL
opcode is:

MIPS LWR
opcode is:

0 0 NOP ULW
0 1 ULW NOP
1 X ULW NOP
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 949

: Cavium Networks-Specific Instruction Descriptions
Operation:

 vAddr = sign_extend(offset) + GPR[base]
 if (vAddr<1:0> != 0) then
 if (vAddr is CVMSEG IO and CVMSEG is enabled)
 or (vAddr is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr = AddressTranslation(vAddr, DATA, LOAD)
 if (pAddr is IO) or (pAddr is DSEG) then
 SignalException(AddressError)
 else if vAddr<2> then
 // requires two aligned 64 bit fetches
 if (vAddr+8 is CVMSEG IO and CVMSEG is enabled)
 or (vAddr+8 is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr2 = AddressTranslation(vAddr+8, DATA, LOAD)
 if (pAddr2 is IO) or (pAddr2 is DSEG) then
 SignalException(AddressError)
 else
 memdoubleword0 = LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
 memdoubleword1 = LoadMemory (CCA, DOUBLEWORD, pAddr2, vAddr+8, DATA)
 if (BigEndianCPU) then
 memword = (memdoubleword0 << (vAddr<1:0> * 8)) |
 (memdoubleword1 >> ((8-vAddr<1:0>) * 8));
 else
 memword = (memdoubleword0 >> ((4+vAddr<1:0>) * 8)) |
 (memdoubleword1 << ((4-vAddr<1:0>) * 8));
 endif
 GPR[rt] = sign_extend(memword)
 endif
 endif
 else
 // all bytes in one aligned 64 bit fetch
 memdoubleword = LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
 if (BigEndianCPU) then
 memword = memdoubleword >> ((4 - vAddr<1:0>) * 8)
 else
 memword = memdoubleword >> (vAddr<1:0> * 8)
 endif
 GPR[rt] = sign_extend(memword)
 endif
 endif
 else
 pAddr = AddressTranslation(vAddr, DATA, LOAD)
 memword = LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
 GPR[rt] = sign_extend(memword)
 endif

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Breakpoint

Notes:

OCTEON Cores execute naturally-aligned LWs one cycle faster than naturally-
aligned ULWs, so the LW instructions should be used rather than ULW when an
address is known to be naturally-aligned.

ULW is an assembler macro that converts to MIPS LWL/LWR sequences on most
MIPS assemblers.
950 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
The following table indicates the byte lanes for 32-bit references in big-endian mode:

The following table indicates the byte lanes for 32-bit references in little-endian
mode:

VA<2:0> Register File Byte Positions in the two memory double words

0 <31:24> <23:16> <15: 8> < 7: 0> X X X X
X X X X X X X X

1 X <31:24> <23:16> <15: 8> < 7: 0> X X X
X X X X X X X X

2 X X <31:24> <23:16> <15: 8> < 7: 0> X X
X X X X X X X X

3 X X X <31:24> <23:16> <15: 8> < 7: 0> X
X X X X X X X X

4 X X X X <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

5 X X X X X <31:24> <23:16> <15: 8>
< 7: 0> X X X X X X X

6 X X X X X X <31:24> <23:16>
<15: 8> < 7: 0> X X X X X X

7 X X X X X X X <31:24>
<23:16> <15: 8> < 7: 0> X X X X X

VA<2:0> Register File Byte Positions in the two memory double words

0 X X X X <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

1 X X X <31:24> <23:16> <15: 8> < 7: 0> X
X X X X X X X X

2 X X <31:24> <23:16> <15: 8> < 7: 0> X X
X X X X X X X X

3 X <31:24> <23:16> <15: 8> < 7: 0> X X X
X X X X X X X X

4

<31:24> <23:16> <15: 8> < 7: 0> X X X X
X X X X X X X X

5 <23:16> <15: 8> < 7: 0> X X X X X
X X X X X X X <31:24>

6 <15: 8> < 7: 0> X X X X X X
X X X X X X <31:24> <23:16>

7 < 7: 0> X X X X X X X
X X X X X <31:24> <23:16> <15: 8>
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 951

: Cavium Networks-Specific Instruction Descriptions

Format: USD rt, offset(base) CVM

The USD instruction does not exist when CvmCtl[USEUN] is clear. (The MIPS SDL
and SDR instructions do not exist when CvmCtl[USEUN] is set.)

The USD instruction (when enabled by CvmCtl[USEUN]) consumes either the MIPS
SDL or SDR major opcodes according to the following table:

When CvmCtl[USEUN] is set, one of MIPS SDL and SDR major opcodes execute as
NOPs, as specified in the table above.

Purpose:

To store a doubleword to a (potentially-unaligned) memory location

Description: memory[base+offset] = rt

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the
effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

If the effective address is not naturally-aligned and the second of the two memory
stores required to complete the unaligned reference encounters an Address Error,
TLB Refill, TLB Invalid, or TLB Modified exception, the first of the two memory
references will still complete. Effectively, the USD may partially complete.

If the effective address is not naturally-aligned, the two memory stores required to
complete the unaligned reference may complete in any order (as seen by other
OCTEON Cores and I/O devices).

Restrictions:

Whenever any of the bytes required to service the unaligned store reside in either I/O
space or DSEG or CVMSEG IO (note NOT normal/cacheable memory space and
CVMSEG LM), the effective address must be naturally-aligned. If any of the three
least-significant bits of the address is non-zero in this case, an Address Error
exception occurs. Note that these alignment address error exceptions are lower-
priority than TLB refill, invalid, and modified exceptions, though.

CVMSEG IO references cause address errors.

Unaligned Store Doubleword USD

31 26 25 21 20 16 15 0
USD

1011 00
or

1011 01

base rt offset

6 5 5 16

CvmCtl[USELY] BigEndianCPU
(!CvmCtl[LE])

MIPS SDL
opcode is:

MIPS SDR
opcode is:

0 0 NOP USD
0 1 USD NOP
1 X USD NOP
952 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
CVMSEG LM references by these stores cause an address error when outside the
legal range allowed by CvmMemCtl[LMEMSZ] (assuming CVMSEG LM is enabled
by CvmMemCtl[CVMSEGENA*]). Stores causing address errors solely due to this
hardware range check may corrupt cache locations, however.

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

Operation:

 if (Are64bitOperationsEnabled() then
 vAddr = sign_extend(offset) + GPR[base]
 datadoubleword = GPR[rt]
 if (vAddr<2:0> != 0) then
 if (vAddr is CVMSEG IO and CVMSEG is enabled)
 or (vAddr is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr = AddressTranslation(vAddr, DATA, STORE)
 if (pAddr is IO) or (pAddr is DSEG) then
 SignalException(AddressError)
 else
 if (BigEndianCPU) then
 StoreMemory (CCA, DOUBLEWORD-vAddr<2:0>, datadoubleword >> ((vAddr<2:0>) * 8), pAddr, vAddr, DATA)
 else
 StoreMemory (CCA, DOUBLEWORD-vAddr<2:0>, datadoubleword << ((vAddr<2:0>) * 8), pAddr, vAddr, DATA)
 endif
 if (vAddr+8 is CVMSEG IO and CVMSEG is enabled)
 or (vAddr+8 is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr2 = AddressTranslation(vAddr+8, DATA, STORE)
 if (paddr2 is IO) or (paddr2 is DSEG) then
 SignalException(AddressError)
 else
 if (BigEndianCPU) then
 StoreMemory (CCA, DOUBLEWORD-vAddr<2:0>, datadoubleword << ((8-vAddr<2:0>) * 8), pAddr, vAddr, DATA)
 else
 StoreMemory (CCA, DOUBLEWORD-vAddr<2:0>, datadoubleword >> ((8-vAddr<2:0>) * 8), pAddr, vAddr, DATA)
 endif
 endif
 endif
 endif
 endif
 else
 pAddr = AddressTranslation(vAddr, DATA, STORE)
 StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
 endif
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved
Instruction, Watch, Breakpoint

Notes:

OCTEON Cores execute naturally-aligned SDs one cycle faster than naturally-
aligned USDs, so the SD instructions should be used rather than USD when an
address is known to be naturally-aligned.

USD is an assembler macro that converts to MIPS SDL/SDR sequences on most
MIPS assemblers.
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 953

: Cavium Networks-Specific Instruction Descriptions
The following table indicates the byte lanes for 64-bit references in big-endian mode:

The following table indicates the byte lanes for 64-bit references in little-endian
mode:

VA<2:0> Register File Byte Positions in the two memory double words

0

<63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

1 X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8>
< 7: 0> X X X X X X X

2 X X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16>
<15: 8> < 7: 0> X X X X X X

3 X X X <63:56> <55:48> <47:40> <39:32> <31:24>
<23:16> <15: 8> < 7: 0> X X X X X

4 X X X X <63:56> <55:48> <47:40> <39:32>
<31:24> <23:16> <15: 8> < 7: 0> X X X X

5 X X X X X <63:56> <55:48> <47:40>
<39:32> <31:24> <23:16> <15: 8> < 7: 0> X X X

6 X X X X X X <63:56> <55:48>
<47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X X

7 X X X X X X X <63:56>
<55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X

VA<2:0> Register File Byte Positions in the two memory double words

0 <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

1 <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X
X X X X X X X <63:56>

2 <47:40> <39:32> <31:24> <23:16> <15: 8> < 7: 0> X X
 X X X X X X <63:56> <55:48>

3

<39:32> <31:24> <23:16> <15: 8> < 7: 0> X X X
X X X X X <63:56> <55:48> <47:40>

4

<31:24> <23:16> <15: 8> < 7: 0> X X X X
X X X X <63:56> <55:48> <47:40> <39:32>

5 <23:16> <15: 8> < 7: 0> X X X X X
X X X <63:56> <55:48> <47:40> <39:32> <31:24>

6

<15: 8> < 7: 0> X X X X X X
X X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16>

7 < 7: 0> X X X X X X X
X <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15: 8>
954 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: USW rt, offset(base) CVM

The USW instruction does not exist when CvmCtl[USEUN] is clear. (The MIPS SWL
and SWR instructions do not exist when CvmCtl[USEUN] is set.)

The USW instruction (when enabled by CvmCtl[USEUN]) consumes either the MIPS
SWL or SWR major opcodes according to the following table:

When CvmCtl[USEUN] is set, one of MIPS SWL and SWR major opcodes execute as
NOPs, as specified in the table above.

Purpose:

To store a word to a (potentially-unaligned) memory location

Description: memory[base+offset] = rt

The 64-bit word in GPR rt is stored in memory at the location specified by the
effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

If the effective address is not naturally-aligned and two memory stores are required
to complete the unaligned reference and the second of the two memory stores
encounters an Address Error, TLB Refill, TLB Invalid, or TLB Modified exception,
the first of the two memory references will still complete. Effectively, the USW may
partially complete.

If the effective address is not naturally-aligned and two memory stores are required
to complete the unaligned reference, the two memory stores may complete in any
order (as seen by other OCTEON Cores and I/O devices).

Restrictions:

Whenever any of the bytes required to service the unaligned store reside in either I/O
space or DSEG or CVMSEG IO (note NOT normal/cacheable memory space and
CVMSEG LM), the effective address must be naturally-aligned. If any of the two
least-significant bits of the address is non-zero in this case, an Address Error
exception occurs. Note that these alignment address error exceptions are lower-
priority than TLB refill, invalid, and modified exceptions, though.

CVMSEG IO references cause address errors.

Unaligned Store Word USW

31 26 25 21 20 16 15 0
USW

1010 10
or

1011 10

base rt offset

6 5 5 16

CvmCtl[USELY] BigEndianCPU
(!CvmCtl[LE])

MIPS SWL
opcode is:

MIPS SWR
opcode is:

0 0 NOP USW
0 1 USW NOP
1 X USW NOP
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 955

: Cavium Networks-Specific Instruction Descriptions
CVMSEG LM references by these stores cause an address error when outside the
legal range allowed by CvmMemCtl[LMEMSZ] (assuming CVMSEG LM is enabled
by CvmMemCtl[CVMSEGENA*]). Stores causing address errors solely due to this
hardware range check may corrupt cache locations, however.

Operation:

 vAddr = sign_extend(offset) + GPR[base]
 dataword = GPR[rt]<31:0>
 if (vAddr<1:0> != 0) then
 if (vAddr is CVMSEG IO and CVMSEG is enabled)
 or (vAddr is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr = AddressTranslation(vAddr, DATA, STORE)
 if (pAddr is IO) or (pAddr is DSEG) then
 SignalException(AddressError)
 else if (vAddr<2>) then
 if (BigEndianCPU) then
 StoreMemory (CCA, WORD-vAddr<1:0>, dataword >> (vAddr<2:0> * 8), pAddr, vAddr, DATA)
 else
 StoreMemory (CCA, WORD-vAddr<1:0>, dataword << ((4+vAddr<2:0>) * 8), pAddr, vAddr, DATA)
 endif
 if (vAddr+8 is CVMSEG IO and CVMSEG is enabled)
 or (vAddr+8 is CVMSEG LM and CVMSEG is enabled and address is out of range) then
 SignalException(AddressError)
 else
 pAddr2 = AddressTranslation(vAddr+8, DATA, STORE)
 if (paddr2 is IO) or (paddr2 is DSEG) then
 SignalException(AddressError)
 else
 if (BigEndianCPU) then
 StoreMemory (CCA, WORD-vAddr<1:0>, dataword << ((8-vAddr<1:0>) * 8), pAddr, vAddr, DATA)
 else
 StoreMemory (CCA, WORD-vAddr<1:0>, dataword >> ((4-vAddr<1:0>) * 8), pAddr, vAddr, DATA)
 endif
 endif
 endif
 else
 if (BigEndianCPU) then
 StoreMemory (CCA, WORD, dataword << ((4-vAddr<1:0>) * 8), pAddr, vAddr, DATA)
 else
 StoreMemory (CCA, WORD, dataword << (vAddr<1:0> * 8), pAddr, vAddr, DATA)
 endif
 endif
 endif
 else
 pAddr = AddressTranslation(vAddr, DATA, STORE)
 if (BigEndianCPU) then
 StoreMemory (CCA, WORD, dataword << ((1-vAddr<2>) * 8), pAddr, vAddr, DATA)
 else
 StoreMemory (CCA, WORD, dataword << (vAddr<2> * 8), pAddr, vAddr, DATA)
 endif
 endif

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Breakpoint

Notes:

OCTEON Cores execute naturally-aligned SWs one cycle faster than naturally-
aligned USWs, so the SW instructions should be used rather than USW when an
address is known to be naturally-aligned.
956 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions
USW is an assembler macro that converts to MIPS SWL/SWR sequences on most
MIPS assemblers.

The following table indicates the byte lanes for 32-bit references in big-endian mode:

The following table indicates the byte lanes for 32-bit references in little-endian
mode:

VA<2:0> Register File Byte Positions in the two memory double words

0 <31:24> <23:16> <15: 8> < 7: 0> X X X X
X X X X X X X X

1 X <31:24> <23:16> <15: 8> < 7: 0> X X X
X X X X X X X X

2 X X <31:24> <23:16> <15: 8> < 7: 0> X X
X X X X X X X X

3 X X X <31:24> <23:16> <15: 8> < 7: 0> X
X X X X X X X X

4 X X X X <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

5 X X X X X <31:24> <23:16> <15: 8>
< 7: 0> X X X X X X X

6 X X X X X X <31:24> <23:16>
<15: 8> < 7: 0> X X X X X X

7 X X X X X X X <31:24>
<23:16> <15: 8> < 7: 0> X X X X X

VA<2:0> Register File Byte Positions in the two memory double words

0 X X X X <31:24> <23:16> <15: 8> < 7: 0>
X X X X X X X X

1 X X X <31:24> <23:16> <15: 8> < 7: 0> X
X X X X X X X X

2 X X <31:24> <23:16> <15: 8> < 7: 0> X X
X X X X X X X X

3 X <31:24> <23:16> <15: 8> < 7: 0> X X X
X X X X X X X X

4 <31:24> <23:16> <15: 8> < 7: 0> X X X X
X X X X X X X X

5 <23:16> <15: 8> < 7: 0> X X X X X
X X X X X X X <31:24>

6 <15: 8> < 7: 0> X X X X X X
X X X X X X <31:24> <23:16>

7 < 7: 0> X X X X X X X
X X X X X <31:24> <23:16> <15: 8>
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 957

: Cavium Networks-Specific Instruction Descriptions

Format: V3MULU rd, rs, rt CVM

Purpose:

To perform a 192-bit x 64-bit unsigned multiply and add yielding a 256-bit result.

Description: (P2 || P1 || P0 || rd) = (064 || P2 || P1 || P0) + (0192 || rt) + rs
× (MPL2 || MPL1 || MPL0)

The 64-bit doubleword value in GPR rs is multiplied by the 192-bit product registers
MPL0-MPL2, treating both as unsigned values, producing a 256-bit result. The 64-
bit doubleword value in GPR rt and the 64-bit product registers P0-P2 are zero-
extended and added to the 256-bit result. The least-significant 64 bits of the result is
placed in GPR rd. The most-significant 192 bits of the result is placed into the
product registers P0-P2.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

If a V3MULU is preceded by an MTP* instruction (without an intervening MTM*/
VMM0, VMULU/V3MULU instruction), the MTP* instruction must be preceded by
an MTM* or VMM0 instruction (without any intervening VMULU/V3MULU
instructions).

If a V3MULU precedes a VMULU/VMM0, there must be an intervening MTM*/VMM0 between
the two.

No overflow or other arithmetic exception occurs under any circumstances.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 product_register<191:0> = MPL2<63:0> || MPL1<63:0> || MPL0<63:0>
 product<255:0> = GPR[rs]<63:0> * product_register<191:0>
 Pext<255:0> = 064 || P2<63:0> || P1<63:0> || P0<63:0>
 rtext<127:0> = 0192 || GPR[rt]<63:0>
 sum<255:0> = product<255:0> + Pext<255:0> + rtext<255:0>
 GPR[rd] = sum<63:0>
 P2 = sum<255:192>
 P1 = sum<191:128>
 P0 = sum<127:64>
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

192-bit × 64-bit Unsigned Multiply and Add V3MULU

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd
0

000 00
V3MULU
01 0001

6 5 5 5 5 6
958 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: VMM0 rd, rs, rt CVM

Purpose:

To perform a 64-bit × 64-bit unsigned multiply and add yielding a 64-bit result.

Description: rd = P0 + rt + rs × MPL0
MPL0 = rd
P0, P1, P2 = 0

The 64-bit doubleword value in GPR rs is multiplied by the 64-bit product register
MPL0, treating both as unsigned values. The 64-bit doubleword value in GPR rt and
the 64-bit product register P0 are added to the result. The 64-bit result is placed in
GPR rd and the multiplier register MPL0. The product registers P0-P2 are zeroed.

MPL1 and MPL2 are unpredictable after this operation executes.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

If a VMM0 instruction is preceded by an MTP* instruction (without an intervening
MTM*/VMM0, VMULU/V3MULU instruction), the MTP* instruction must be
preceded by an MTM* or VMM0 instruction (without any intervening VMULU/
V3MULU instructions).

If a VMM0 is preceded by a V3MULU, there must be an intervening MTM*/VMM0
between the two.

No overflow or other arithmetic exception occurs under any circumstances.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 product<63:0> = GPR[rs]<63:0> * MPL0<63:0>
 sum<63:0> = product<63:0> + P0<63:0> + GPR[rt]<63:0>
 GPR[rd] = sum<63:0>
 MPL0 = sum<63:0>
 MPL1 = unpredictable
 MPL2 = unpredictable
 P0 = 0
 P1 = 0
 P2 = 0
 else
 SignalException(ReservedInstruction)
 endif

64-bit Unsigned Multiply and Add Move VMM0

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd
0

000 00
VMM0

01 0000

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 959

: Cavium Networks-Specific Instruction Descriptions
Exceptions:

Reserved Instruction

Programming Notes:

VMM0 rd, rs, rt is functionally identical to the two-instruction sequence:

VMULU rd, rs, rt

MTM0 rd
960 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

: Cavium Networks-Specific Instruction Descriptions

Format: VMULU rd, rs, rt CVM

Purpose:

To perform a 64-bit x 64-bit unsigned multiply and add yielding a 128-bit result.

Description: (P0 || rd) = (064 || P0) + (064 || rt) + rs× MPL0

The 64-bit doubleword value in GPR rs is multiplied by the 64-bit product register
MPL0, treating both as unsigned values, producing a 128-bit result. The 64-bit
doubleword value in GPR rt and the 64-bit product register P0 are zero-extended and
added to the 128-bit result. The least-significant 64 bits of the result is placed in GPR
rd. The most-significant 64 bits of the result is placed into the product register P0.

P1, P2, MPL1, and MPL2 are unpredictable after this operation executes.

Restrictions:

A Reserved Instruction Exception is signaled if access to 64-bit operations is not
enabled.

If a VMULU is preceded by an MTP* instruction (without an intervening MTM*/
VMM0, VMULU/V3MULU instruction), the MTP* instruction must be preceded by
an MTM* or VMM0 instruction (without any intervening VMULU/V3MULU
instructions).

If a VMULU is preceded by a V3MULU, there must be an intervening MTM*/VMM0
between the two.

No overflow or other arithmetic exception occurs under any circumstances.

Operation:

 if Are64bitOperationsEnabled() and !CvmCtl[NOMUL] then
 product<127:0> = GPR[rs]<63:0> * MPL0<63:0>
 Pext<127:0> = 064 || P0<63:0>
 rtext<127:0> = 064 || GPR[rt]<63:0>
 sum<127:0> = product<127:0> + Pext<127:0> + rtext<127:0>
 GPR[rd] = sum<63:0>
 P0 = sum<127:64>
 P1 = unpredictable
 P2 = unpredictable
 MPL1 = unpredictable
 MPL2 = unpredictable
 else
 SignalException(ReservedInstruction)
 endif

Exceptions:

Reserved Instruction

64-bit Unsigned Multiply and Add VMULU

31 26 25 21 20 16 15 11 10 6 5 0

Special2
0111 00

rs rt rd
0

000 00
VMULU
00 1111

6 5 5 5 5 6
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 961

: Cavium Networks-Specific Instruction Descriptions
962 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Appendix B

Ordering Information
The following shows the breakdown of the CN50XX family part numbers.

1 Blank No revision suffix is required.
2 Blank No phase suffix is required.
3 SCP Secure Communications Processor includes networking, security, and TCP acceleration.

CP Communications Processor includes networking and TCP acceleration.
4 I I Temp option is available only for 300MHz and 500 MHz parts with the -G RoHS option.

XX
Core

Option

XX
Product

XXX
Frequency

BG564(I)
Package /

XXX
Feature
Option

Blank1

564-pin HSBGA

Pincount Phase

CN50
Processor

Family

X
RoHS
Option

Blank Standard, RoHS 5

RoHS 6G

SCP3

CP3

600 MHz600

400 MHz400

1-core10

500 MHz500

2-core20

700 MHz700

300 MHz300

XX
Product
Revision

564-pin HSBGA Industrial Temp4

Blank2

350 MHz350
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 963

:
964 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Glossary
CMB Coherent Memory Bus - Includes the Address/Command Bus (ADD), the Store Data
Bus (STORE), the Commit/Response Control Bus (COMMIT), and the Fill Data Bus
(FILL).

Dcache L1 Data Cache (16KB 32-way set associative, write-through/no-write allocate policy).

DWB Don't-write-back

DuTag Duplicate Tag Store of the Core L1 Cache used to maintain coherency within the L2
cache controller

FPA Free Page Allocater

I/O Bus I/O Bus: used to describe the bus on the far side of the I/O Bridge which contains mul-
tiple I/O agents that communicate to the Cores and memory.

IOB I/O Bridge

IPD Input Packet Data

KEY Key Memory

L1 1st Level (or Level 1) Cache. For the OCTEON family, the L1 is not a subset of the L2
cache (non-inclusive).

L2 2nd Level (or Level 2) Cache.

LDL Load Lock Instruction (used to support atomicity for semaphores in shared memory.

PWB Core Write Buffer which holds BOTH memory and I/O writes.

Reflection CN50XX reflection occurs in the Level 2 Controller (L2C). It is a technique pro-
grammed into the L2C whereby the L2C receives certain types of data streams and
loops (reflects) them back out over the bus(es) to the sender(s). The effect is Tri-stating
without having to physically Tristate.

RNG Random Number Memory

RSL Register Slave Logic

STC Store Conditional Instruction (used to support atomicity for semaphores in shared
memory.

STDN Write completion

STIN Write invalidate
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Confidential DO NOT COPY 965

Glossary
966 Cavium Networks Proprietary and Confidential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

CBAIndex
A
About This Book ..36
Absolute Maximum Ratings764
AC Characteristics ..773
AC characteristics

Boot bus interface ..788
DDR-DDR2 SDRAM interface776
EEPROM interface786
GMII interface ...784
Input clock ..774
JTAG interface ...789,
790
MII interface ..785
PCI interface ..774
RGMII interface ...782
SMI/MDIO interface791
TWSI interface ...791

ASX Registers ..558
B
Ball Assignments ...811
Ball Grid Array Package Diagram794
Book Chapters ...47
Boot Bus ...479
Boot signals ..807
Boot-Bus Address Matching and Regions481
Boot-Bus Addresses ...481
Boot-Bus Connections499
Boot-Bus Operations ...500

IOBDMA Address Field501
IOBDMA Operations501
IOBDMA Result Field501
Load Address Field500
Load Operations ...500
Load Result Field ...500
Store Address Field502
Store Operations ..502

Boot-Bus Region Timing483
Boot-Bus Request Queuing498
Boot-Bus Reset Configuration and Booting482
Boot-Bus Timing

Dynamic-Timed Read Sequence497
Dynamic-Timed Write Sequence498
Static-Timed Page-Read Sequence (ALE, 8W)
494
Static-Timed Page-Read Sequence (not ALE,
16W) ..495,
496
Static-Timed Page-Read Sequence (not ALE, 8W)
493
Static-Timed Read Sequence (ALE, 16W) ..489
Static-Timed Read Sequence (ALE, 8W)487
Static-Timed Read Sequence (not ALE, 16W)
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and
488
Static-Timed Read Sequence (not ALE, 8W) 485
Static-Timed Write Sequence (ALE, 16W) 492
Static-Timed Write Sequence (ALE, 8W) .. 490
Static-Timed Write Sequence (not ALE, 16W)
492
Static-Timed Write Sequence (not ALE, 8W)
490

C
Cache-Block Flush and Unlocking 65
Cavium Networks Core Instructions 823
Cavium Networks-Specific Coprocessor 0 Registers
179
Cavium Networks-Specific Instructions

BADDU .. 826
BBIT0 ... 827
BBIT032 ... 828
BBIT1 ... 829
BBIT132 ... 830
CACHE .. 831
CINS .. 833
CINS32 .. 834
CVM_MF_3DES_IV 835
CVM_MF_3DES_KEY 836
CVM_MF_3DES_RESULT 837
CVM_MF_AES_INP0 838
CVM_MF_AES_IV 839
CVM_MF_AES_KEY 840
CVM_MF_AES_KEYLENGTH 841
CVM_MF_AES_RESULT 842
CVM_MF_CRC_IV 843
CVM_MF_CRC_IV_REFLECT 844
CVM_MF_CRC_LEN 845
CVM_MF_CRC_POLYNOMIAL 846
CVM_MF_GFM_MUL 847
CVM_MF_GFM_POLY 848
CVM_MF_GFM_RESINP 849
CVM_MF_HSH_DAT 850
CVM_MF_HSH_DATW 852
CVM_MF_HSH_IV 854
CVM_MF_HSH_IVW 855
CVM_MF_KAS_RESULT 837
CVM_MT_3DES_DEC 857
CVM_MT_3DES_DEC_CBC 858
CVM_MT_3DES_ENC 859
CVM_MT_3DES_ENC_CBC 860
CVM_MT_3DES_IV 861
CVM_MT_3DES_KEY 862
CVM_MT_3DES_RESULT 863
CVM_MT_AES_DEC_CBC0 864
CVM_MT_AES_DEC_CBC1 865
CVM_MT_AES_DEC0 867
Confidential DO NOT COPY 967

Index
CVM_MT_AES_DEC1868
CVM_MT_AES_ENC_CBC1870
CVM_MT_AES_ENC1873
CVM_MT_AES_IV875
CVM_MT_AES_KEY876
CVM_MT_AES_KEYLENGTH877
CVM_MT_AES_RESULT878
CVM_MT_CRC_BYTE879
CVM_MT_CRC_BYTE_REFLECT880
CVM_MT_CRC_DWORD881
CVM_MT_CRC_DWORD_REFLECT882
CVM_MT_CRC_HALF883
CVM_MT_CRC_HALF_REFLECT884
CVM_MT_CRC_IV885
CVM_MT_CRC_IV_REFLECT886
CVM_MT_CRC_LEN887
CVM_MT_CRC_POLYNOMIAL888
CVM_MT_CRC_POLYNOMIAL_REFLECT 889
CVM_MT_CRC_VAR890
CVM_MT_CRC_VAR_REFLECT891
CVM_MT_CRC_WORD892
CVM_MT_CRC_WORD_REFLECT893
CVM_MT_GFM_MUL894
CVM_MT_GFM_POLY895
CVM_MT_GFM_RESINP896
CVM_MT_GFM_XOR0897
CVM_MT_GFM_XORMUL1898
CVM_MT_HSH_DAT900
CVM_MT_HSH_DATW902
CVM_MT_HSH_IV904
CVM_MT_HSH_IVW905
CVM_MT_HSH_STARTMD5907
CVM_MT_HSH_STARTSHA909
CVM_MT_HSH_STARTSHA256911
CVM_MT_HSH_STARTSHA512913
CVM_MT_KAS_ENC914
CVM_MT_KAS_ENC_CBC915
CVM_MT_KAS_KEY862
CVM_MT_KAS_RESULT863
DMUL ...916
DPOP ..917
EXTS ...918
EXTS32 ...919
MTM0 ...920
MTM1 ...921
MTM2 ...922
MTP0 ..923
MTP1 ..924
MTP2 ..925
POP ...926
PREF ..927
RDHWR ..929
SAA ...931
SAAD ..933
SEQ ...935
SEQI ...936
SNE ...937
SNEI ...938
SYNCIOBDMA ..939
SYNCS ..940
SYNCW ..942
968 Cavium Networks Proprietary and Conf
SYNCWS .. 944
ULD .. 946
ULW ... 949
USD .. 952
USW ... 955
V3MULU ... 958
VMM0 .. 959
VMULU ... 961

Cavium-Specific Architectural Additions 145
Cavium-Specific Instruction Summary 149
Central Interrupt Unit (CIU) 459
Clock signals ... 808
CMB Buses .. 54
CMB Description ... 54
CMB Examples

FILL Transaction .. 55
Load Reflection From Core 57
Store With Invalidate 56
Store Without Invalidate 55
Store/IOBDMA Reflection 56

CMB Memory Coherence Support 55
CN5010/5020 Balls Sorted in Numerical Order 818
CN5010/5020 Signals Pins Sorted in Alphabetical
Order .. 814
cnMIPS Core Hardware Debug Features 197
Coherent Memory Bus 54
Coherent Memory Bus Transaction Examples 55,
56, 57
Coherent Memory Bus Transactions 58
Coherent Memory Bus, L2 Controller, DRAM
Controller .. 53
Coherent Multi-Core and I/O L2/DRAM Sharing 43
COMMIT and FILL Bus Arbitration 66
Contact Us ... 37
COP2 latencies .. 196
Coprocessor 0 Registers

CacheErr (sel = 0 (icache)) 179
CacheErr (sel = 1 (dcache)) 179
CvmCount .. 185
CvmCtl ... 182
CvmMemCtl .. 184
DataHi (reg = 29, Sel = 1 (icache)) 181
DataHi (reg = 29, Sel = 3 (dcache)) 182
DataLo (reg = 28, Sel = 1 (icache)) 180
DataLo (reg = 28, Sel = 3 (dcache)) 181
Multi-Core Debug .. 186
TagHi ... 181
TagLo (sel = 0 (icache)) 180
TagLo (sel = 2 (dcache)) 180

Coprocessor Accelerators 46
Core and Fetch-and-Add Pending Switch Bits 221
Core Partitioning .. 43
Core Pipelines ... 193
Cores .. 143
CPU Cores ... 43
D
DC Electrical Characteristics

2.5V CMOS Point-to-Point I/O for the RGMII
Interface ... 769
3.3V CMOS Bidirectional and Point-to-Point I/O
for the PCI and Miscellaneous Interfaces .. 771
idential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Index
Reference Clock Differential Input771
Reference Clock Input774
SSTL18 Bidirectional I/O for DDR2 Memory
Interface ...770

DCLK initialization ...80
DDR Clock-Speed Programming Tables83
Debug Support ...46
Don’t-Write-Back Engine130
DPTR formats ..375
DRAM Chip Selects and ODT79
DRAM Controller ...68
DRAM Controller Initialization80

DCLK ..80
DRESET ...81
LMC ..81

DRAM ECC codes ..83
DRAM interface signals801
DRAM Part Addressing71
DRAM Programming ...78
DRAM Refreshes ...78
DRAM Scheduler Performance78
DRAM Transaction Examples72
DRESET initialization81
Dynamic-Timed Sequences497
E
ECC codes ..83

L2C ...67
POW ..239

EEPROM Read Cycle ..786
EEPROM Signal I/O Timing787
EJTAG Hardware Debug Features197
EJTAG TAP Registers190
Electrical Specifications763
Essential Quality of Service (QOS) Functions
Implemented in hardware45
F
FAU

IOBDMA Store Data for FAU Operations ..134
Load Operation Result In Cases Where Tagwait
= 0

 133
Load Operation Result In Cases Where Tagwait
= 1 ...133
Load Physical Address for FAU Operations 132
Store Physical Address for FAU Operations 136

Features ...39
Fetch and Add Unit (FAU)130
Fetch-and-Add Operations132
Flexible Packet/Control Interfacing43
Forward Progress Constraints229
FPA

IOBDMA Operations257
Load Operations ...256
Store Operations ..257

FPA Operations ...256
FPA Registers ..258
Free Pool Unit (FPA) ...253
Full EJTAG version 2.62 support147
Full Privileged Architecture (i.e. Coprocessor 0)
Support ...146
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Conf
G
Glitch filters .. 595
Glossary ... 965
GMII interface signals 804
GPIO interface signals 806
GPIO Unit ... 593
Grp field ... 282
H
Hardware Work Queuing, Scheduling, Ordering,
and Synchronization ... 44
Hardware-Assisted Dynamic Memory Allocation/De-
allocation ... 44
Host Output Queueing Via the PCI DMA Engine
388
I
I/O Bus Flow Examples 127
I/O Bussing, I/O Bridge (IOB) and Fetch and Add
Unit (FAU) .. 125
In this Preface ... 33
Initialization

DCLK ... 80
DRESET .. 81
LMC ... 81

Inline Packet-Processing Hardware Acceleration 44
Input Packet Formats and Pre-IP Parsing 266
Input Ports .. 266
Introduction ... 39

AC Characteristics 49
Ball Assignments .. 50
Boot Bus Unit .. 48
Central Interrupt Unit (CIU) 48
Coherent Memory Bus (CMB), Level-Two Cache
Controller (L2C), and DRAM Controller 47
CPU Cores ... 47
Electrical Specifications 49
Free Pool Unit (FPA) 47
GPIO unit .. 49
I/O Bus and I/O Bridge (IOB) 47
LED unit (LED) ... 49
Mechanical Specifications 49
Packet Input Unit (PIP/IPD) 47
Packet Order / Work Unit (POW) 47
Packet Output Unit (PKO) 48
PCI Unit ... 48
PCM/TDM Unit ... 48
Random Number Generator (RNG) 49
RGMII/GMII/MII Unit (GMX) 48
Signal Descriptions 50
System Management Interface (SMI) 49
Timer Unit (TIM) .. 48
TWSI unit .. 49
UART unit ... 49
USB Unit ... 49

IOB Registers .. 137
J
JTAG signals ... 809
K
Key Memory Unit (KEY) 675
idential DO NOT COPY 969

Index
L
L2 Cache and Data Store60
L2 Cache Block Locking64
L2 Cache Indexing (Set Selection)62
L2 Cache Replacement and Way-Partitioning .63
L2C ECC Codes ...67
L2C Memory Coherence61
L2C Registers ..84
Legal SKIP Values ..276
Level-2 Cache Controller (L2C)60
List of chapters ..33
LMC ..68
LMC initialization ...81
LMC Registers ...105
M
Main Memory DRAM Addressing71
MDIO interface signals807
Mechanical Specifications793
Memory Input Queue Arbitration66
Memory map ..157
Memory Reference Ordering161
MII interface signals ...804
MIPS

Address ...191
BadVAddr Register169
Bypass Register ...192
Cause Register ...171
Compare Register ..170
Config Register ...172
Config1 Register ...173
Config2 Register ...173
Config3 Register ...174
Context Register ..168
Count Register ...169
CvmCount ..186
Data Breakpoint Address (DBA0...3)188
Data Breakpoint Address Mask (DBM0...3) 189
Data Breakpoint ASID (DBASID0...3)189
Data Breakpoint Control (DBC0...3) Register
189
Data Breakpoint Status188
Data Breakpoint Status (DBS) Register188
Data Breakpoint Value (DBV0...3) Register 189
Data Register ...191
DataHi (reg = 29, sel = 3 (dcache))181,
182
DCR Register Field Descriptions187
Debug Exception Program Counter Register 176
Debug Register ...175
DESAVE Register ..178
Device ID Register Format190
EBase Register ...172
EJTAG Boot Indication192
EJTAG Control Register Field Descriptions 191
EJTAG DRSEG Registers186
EntryHi Register ..169
EntryLo0, EntryLo1 Registers167
ErrorEPC Register178
Exception Program Counter Register172
Fastdata Register ..192
HWREna Register ..169
970 Cavium Networks Proprietary and Conf
Implementation Register Format 190
Index Register ... 167
Instruction Breakpoint Address (IBA0...3) 187
Instruction Breakpoint Address Mask (IBM0...3)
187
Instruction Breakpoint ASID (IBASID0...3) 188
Instruction Breakpoint Control 188
Instruction Breakpoint Control (IBC(0..3))
Register .. 188
Instruction Breakpoint Status (IBS) 187
Instruction Breakpoint Status (IBS) Register
187
IntCtl Register ... 171
PageGrain Register 168
PageMask Register 168
PC Sample Register Format 191
Performance Counter Control Register 176
Performance Counter Counter Control Register
178
PRId Register .. 172
Random Register ... 167
SRSCtl Register ... 171
Status Register .. 170
TagHi (reg = 29, sel = 2 (dcache)) 181
TagLo (reg = 28, Sel = 2 (dcache)) 180
WatchHi Register .. 174
WatchLo Register .. 174
Wired Register ... 169
XContext Register 175

MIPS Technologies ... 37
MIPS64 Version 2.0 Implementation 144
Miscellaneous signals 809,
810
MPI/SPI interface signals 806
MPI/SPI Unit .. 663
N
Navigating Within a PDF Document 36
Non-EJTAG Core Hardware Features 197
O
OCTEON Addressing as a PCI Target 367
Octeon and Input Packet Data Unit (IPD) Quality of
Service ... 301
Octeon Core Coprocessor 0 Privileged Registers 165
Octeon Core CSR Ordering 162
Octeon Core EJTAG TAP Registers 190
Octeon Core Exceptions 200
Octeon Core Instruction Set Summary 151
Octeon Core IOBDMAs 160
Octeon Core Load-Linked / Store-Conditional 200
Octeon Core Non-privileged State 148
Octeon Core Write Buffer 163
OCTEON PCI Features 366
OCTEON PCI Internal Arbiter 391
OCTEON PCI MSI Support 391
OCTEON Processor Family 39
Octeon System Debug Characteristics 199
OCTEON Timer Features 450
OCTEON Timer Support 451
Octeon Triggerpoint and Multi-Core Debug Support
198
idential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Index
P
Package Thermal Management Requirements 796
Package Thermal Specifications796
Packet Buffering ..277
Packet Input CRC ..274
Packet Input Processing and Input Packet Data
Unit (PIP/IPD) ...265
Packet Instruction Header268
Packet interface signals803
Packet Order / Work Unit (POW)205
Packet Output Unit (PKO)335
Packet scheduling ..282
Parse Mode and Skip Length Selection271
PCI Bus ..365

IOBDMA Operations394
Load/Store Operations394

PCI Bus Endian Swapping391
PCI Bus Operations ...394
PCI Bus Registers ..415
PCI Configuration Registers403
PCI DMA Engine Access From Core381
PCI DMA Engine Access From Cores381
PCI DMA Engine Don’t-Write-Back Calculation
388
PCI DMA Instruction Fetching386
PCI DMA Instruction Local-Pointer Format ...383
PCI DMA Instruction PCI Components and
Processing ..385
PCI DMA Instruction-Header Format382
PCI I/O Signal Timing774
PCI input packets ..373
PCI instruction formats371
PCI Instruction Input From an External Host 371
PCI Instruction-to-Packet Conversion270
PCI interface signals ...802
PCI Memory Space Loads/Stores to BAR1/2389
PCI Packet Output From OCTEON377
PCM/TDM interface signals806
Physical Addresses ..157
PIP Registers ...306
PIP/IPD L2 Parsing and Is_IP Determination 272
PIP/IPD Per-QOS Admission Control303,
306
PKO Commands ..340
PKO DWB Calculation348
PKO Operations ...349
PKO Output Packet Format and TCP/UDP
Checksum Insertion ..338
PKO Output Ports ...337
PKO Output Queues ..339
PKO Performance ..349
PKO Queue Arbitration Algorithm346
PKO Registers ...351
PKO Store Operations349
PKO_REG_DEBUG1 ...354
PKO_REG_DEBUG2 ...354
PKO_REG_DEBUG3 ...355
PKO_REG_QUEUE_PTRS1355
POW

Defragmentation ..216
GET_WORK IOBDMA Operations238
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Conf
GET_WORK Load Operations 231
IOBDMA Operations 238
IPSEC Decryption 216
IPSEC Encrypt .. 217
Load Operations .. 231
Lookup ... 216
NULL_RD IOBDMA Operations 238
NULL_RD Load Operations 237
Ordering and Synchronization of Work 206
Output Queue .. 217
POW Index/Pointer Load Operations 235
POW Memory Load Operations 234
POW Status Load Operations 231
Process ... 217
Store Operations ... 238
Work queueing .. 206
Work Scheduling / Descheduling 206

POW Debug Visibility 227
POW ECC Codes ... 239
POW Internal Architecture 217
POW Interrupts .. 222
POW Operations ... 211
POW Performance Effects 228
POW QOS Features .. 225
POW Registers .. 240
POW Transaction Details 231
POW Work Flow, Operations, and Ordering ... 207
Power Consumption .. 768
Power Sequencing ... 765
Power/Ground/No Connect signals 810
Preface ... 33
Pre-IP Parsing Summary 272
Principles of Operation 43
Processor I/O Busing .. 126
Processor IOB Architecture 129
Processor System Applications 46
Q
QOS field ... 282
R
Random Number Generator (RNG), Random
Number Memory (RNM) 657
RAWFULL packets ... 282
RAWSCHED packets .. 282
Recommended Operating Conditions 764
Reduced Gigabit Media Independent Interface
(RGMII) ... 509
Referencing Local DRAM With OCTEON as a
Target .. 389
Register Addresses

Boot-Bus Registers 502
CIU Registers .. 469
FPA Registers .. 258
GPIO Registers .. 597
IOB Registers .. 137
IPD Registers .. 323
L2C Registers .. 84
LMC Registers ... 105
PCI Bus Registers 415
PCI Configuration Registers 403
PIP Registers ... 306
idential DO NOT COPY 971

Index
PKO Registers ..351
POW Registers ...240
RGMII Registers ..526
RNM Registers ...662
SMI Registers ...654
SPI/MPI Registers670
TDM/PCM Registers582
Timer Registers ..454
TWSI Registers ..646
UART Registers ...607
USB Registers ..708

Registers
ASX0_GMII_RX_CLK_SET563
ASX0_GMII_RX_DAT_SET563
ASX0_INT_EN ...559
ASX0_INT_REG ...559
ASX0_MII_RX_DAT_SET563
ASX0_PRT_LOOP ..561
ASX0_RX_CLK_SET(0...3)560
ASX0_RX_PRT_EN558
ASX0_TX_CLK_SET(0..2)562
ASX0_TX_COMP_BYP562
ASX0_TX_HI_WATER(0..2)562
ASX0_TX_PRT_EN559
CIU_BIST ...476
CIU_DINT ..476
CIU_FUSE ...476
CIU_GSTOP ...475
CIU_INT(0...32)_EN1471
CIU_INT_EN0_(0...32)471
CIU_INT_SUM0_(0...16)470
CIU_INT_SUM1 ..470
CIU_INT0/1_EN4_0473
CIU_INT0/1_EN4_1473
CIU_INT0/1_SUM4472
CIU_MBOX_CLR(0...15)475
CIU_MBOX_SET(0...15)475
CIU_NMI ..476
CIU_PCI_INTA ..477
CIU_PP_DBG ...475
CIU_PP_POKE(0..15)474
CIU_PP_RST ..475
CIU_SOFT_BIST ...476
CIU_SOFT_PRST ..477
CIU_SOFT_RST ...477
CIU_TIM(0...3) ...474
CIU_WDOG(0...15)474
DBG_DATA ..446
FPA_BIST_STATUS262
FPA_CTL_STATUS261
FPA_INT_ENB ..260
FPA_INT_SUM ..259
FPA_QUE(0..7)_AVAILABLE261
FPA_QUE(0..7)_PAGE_INDEX262
FPA_QUE_ACT ...263
FPA_QUE_EXP ...262
GMX_RX_PRTS ...550
GMX_STAT_BP ...556
GMX0_BAD_REG ..556
GMX0_BIST ...550
GMX0_INF_MODE557
972 Cavium Networks Proprietary and Conf
GMX0_NXA_ADR 556
GMX0_PRT(0..2)_CFG 531
GMX0_RX(0..2)_ADR_CAM(0...5) 542
GMX0_RX(0..2)_ADR_CAM_EN 541
GMX0_RX(0..2)_ADR_CTL 541
GMX0_RX(0..2)_DECISION 535
GMX0_RX(0..2)_FRM_CHK 534
GMX0_RX(0..2)_FRM_CTL 532
GMX0_RX(0..2)_IFG 537
GMX0_RX(0..2)_INT_EN 531
GMX0_RX(0..2)_INT_REG 530
GMX0_RX(0..2)_JABBER 534
GMX0_RX(0..2)_PAUSE_DROP_TIME 537
GMX0_RX(0..2)_RX_INBND 537
GMX0_RX(0..2)_STATS_CTL 536
GMX0_RX(0..2)_STATS_OCTS 538
GMX0_RX(0..2)_STATS_OCTS_CTL 539
GMX0_RX(0..2)_STATS_OCTS_DMAC 539
GMX0_RX(0..2)_STATS_OCTS_DRP 540
GMX0_RX(0..2)_STATS_PKTS 538
GMX0_RX(0..2)_STATS_PKTS_BAD 540
GMX0_RX(0..2)_STATS_PKTS_CTL 538
GMX0_RX(0..2)_STATS_PKTS_DMAC 539
GMX0_RX(0..2)_STATS_PKTS_DRP 540
GMX0_RX(0..2)_UDD_SKP 536
GMX0_RX_BP_DROP(0..2) 550
GMX0_RX_BP_OFF(0..2) 552
GMX0_RX_BP_ON(0..2) 551
GMX0_RX_PRT_INFO 554
GMX0_RX_TX_STATUS 557
GMX0_SMAC(0..2) 543
GMX0_TX(0..2)_APPEND 543
GMX0_TX(0..2)_BURST 543
GMX0_TX(0..2)_CLK 542
GMX0_TX(0..2)_CTL 546
GMX0_TX(0..2)_MIN_PKT 544
GMX0_TX(0..2)_PAUSE_PKT_INTERVAL 545
GMX0_TX(0..2)_PAUSE_PKT_TIME 544
GMX0_TX(0..2)_PAUSE_TOGO 546
GMX0_TX(0..2)_PAUSE_ZERO 546
GMX0_TX(0..2)_SLOT 543
GMX0_TX(0..2)_SOFT_PAUSE 545
GMX0_TX(0..2)_STAT0 547
GMX0_TX(0..2)_STAT1 547
GMX0_TX(0..2)_STAT2 547
GMX0_TX(0..2)_STAT3 548
GMX0_TX(0..2)_STAT4 548
GMX0_TX(0..2)_STAT5 548
GMX0_TX(0..2)_STAT6 549
GMX0_TX(0..2)_STAT7 549
GMX0_TX(0..2)_STAT8 549
GMX0_TX(0..2)_STAT9 550
GMX0_TX(0..2)_STATS_CTL 546
GMX0_TX(0..2)_THRESH 542
GMX0_TX_BP ... 554
GMX0_TX_CLK_MSK0/1 556
GMX0_TX_COL_ATTEMPT 553
GMX0_TX_CORRUPT 554
GMX0_TX_IFG .. 552
GMX0_TX_INT_EN 555
GMX0_TX_INT_REG 555
idential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Index
GMX0_TX_JAM ...552
GMX0_TX_LFSR ...555
GMX0_TX_OVR_BP553
GMX0_TX_PAUSE_PKT_DMAC553
GMX0_TX_PAUSE_PKT_TYPE553
GMX0_TX_PRTS ...552
GPIO_BIT_CFG(0...15)598
GPIO_BOOT_ENA599
GPIO_DBG_ENA ...599
GPIO_INT_CLR ...599
GPIO_RX_DAT ..598
GPIO_TX_CLR ...598
GPIO_TX_SET ...598
GPIO_XBIT_CFG(16..23)599
IOB_BIST_STATUS142
IOB_CTL_STATUS138
IOB_FAU_TIMEOUT138
IOB_INB_CONTROL_MATCH140
IOB_INB_CONTROL_MATCH_ENB140
IOB_INB_DATA_MATCH139
IOB_INB_DATA_MATCH_ENB140
IOB_INT_ENB ...139
IOB_INT_SUM ..138
IOB_OUTB_CONTROL_MATCH141
IOB_OUTB_CONTROL_MATCH_ENB141
IOB_OUTB_DATA_MATCH140
IOB_OUTB_DATA_MATCH_ENB141
IOB_PKT_ERR ..139
IPD_1ST_MBUFF_SKIP324
IPD_1st_NEXT_PTR_BACK327
IPD_2nd_NEXT_PTR_BACK327
IPD_BIST_STATUS333
IPD_BP_PRT_RED_END331
IPD_CLK_COUNT331
IPD_CTL_STATUS325
IPD_INT_ENB ...327
IPD_INT_SUM ...328
IPD_NOT_1ST_MBUFF_SKIP324
IPD_PACKET_MBUFF_SIZE324
IPD_PKT_PTR_VALID332
IPD_PORT(0..2, 32, 33)_BP_PAGE_CNT ...326
IPD_PORT_BP_COUNTERS_PAIR(0..2, 32, 33)
329
IPD_PRC_HOLD_PTR_FIFO_CTL332
IPD_PRC_PORT_PTR_FIFO_CTL332
IPD_PTR_COUNT330
IPD_PWP_PTR_FIFO_CTL331
IPD_QOS(0...7)_RED_MARKS328
IPD_QUE0_FREE_PAGE_CNT331
IPD_RED_PORT_ENABLE329
IPD_RED_QUE(0...7)_PARAM330
IPD_SUB_PORT_BP_PAGE_CNT326
IPD_SUB_PORT_FCS328
IPD_WQE_FPA_QUEUE326
IPD_WQE_PTR_VALID333
L2C_BST0 ..103
L2C_BST1 ..103
L2C_BST2 ..104
L2C_CFG ..85
L2C_DBG ...89
L2C_DUT ...92
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Conf
L2C_LCKBASE ... 93
L2C_LCKOFF .. 94
L2C_LFB(0...2) .. 90
L2C_LFB1 .. 91
L2C_LFB2 .. 91
L2C_PFC(0...3) .. 97
L2C_PFCTL ... 95
L2C_SPAR(0...3) .. 94
L2C_SPAR4 ... 94
L2D_BST0 ... 98
L2D_BST1 ... 98
L2D_BST2 ... 99
L2D_BST3 ... 99
L2D_ERR ... 87
L2D_FADR .. 87
L2D_FSYN(0...1) ... 88
L2D_FUS0 ... 100
L2D_FUS1 ... 100
L2D_FUS2 ... 101
L2D_FUS3 ... 101
L2T_ERR ... 86
LMC_BIST_CTL .. 124
LMC_BIST_RESULT 124
LMC_COMP_CTL 115
LMC_CTL .. 111
LMC_DCLK_CNT_HI 119
LMC_DCLK_CNT_LO 118
LMC_DDR2_CTL .. 113
LMC_DELAY_CFG 119,
120
LMC_DUAL_MEMCFG 121
LMC_ECC_SYND 117
LMC_FADR ... 115
LMC_IFB_CNT_HI 118
LMC_IFB_CNT_LO 117
LMC_MEM_CFG0 106
LMC_MEM_CFG1 109
LMC_OPS_CNT_HI 118
LMC_OPS_CNT_LO 118
LMC_PLL_CTL ... 123
LMC_PLL_STATUS 124
LMC_RODT_COMP_CTL 123
LMC_RODT_CTL .. 119
LMC_WODT_CTL 116
MIO_BOOT_BIST_STAT 508
MIO_BOOT_COMP 508
MIO_BOOT_ERR .. 507
MIO_BOOT_INT ... 507
MIO_BOOT_LOC_ADR 506
MIO_BOOT_LOC_CFG0/1 506
MIO_BOOT_LOC_DAT 506
MIO_BOOT_REG_CFG 503
MIO_BOOT_REG_CFG(1...7) 504
MIO_BOOT_REG_TIM(1...7) 505
MIO_BOOT_REG_TIM0 505
MIO_BOOT_THR .. 507
MIO_TWS_INT ... 649
MIO_TWS_SW_TWSI 647
MIO_TWS_SW_TWSI_EXT 650
MIO_TWS_TWSI_SW 648
MIO_UART(0...1)_IIR 610
idential DO NOT COPY 973

Index
MIO_UART(0...1)_MSR615
MIO_UART(0...1)_SCR615
MIO_UART(0...1)_THR616
MIO_UART0/1)_IER609
MIO_UART0/1_DLH618
MIO_UART0/1_DLL618
MIO_UART0/1_FAR619
MIO_UART0/1_FCR617
MIO_UART0/1_HTX622
MIO_UART0/1_LCR611
MIO_UART0/1_LSR614
MIO_UART0/1_MCR612
MIO_UART0/1_RBR608
MIO_UART0/1_RFL620
MIO_UART0/1_RFW619
MIO_UART0/1_SBCR621
MIO_UART0/1_SFE621
MIO_UART0/1_SRR621
MIO_UART0/1_SRT621
MIO_UART0/1_SRTS621
MIO_UART0/1_STT622
MIO_UART0/1_TFL620
MIO_UART0/1_TFR619
MIO_UART0/1_USR620
MPI_CFG ...672
MPI_DAT(0..8) ...673
MPI_STS ..673
MPI_TX ..673
NPI_BASE_ADDR_INPUT0/1439
NPI_BASE_ADDR_OUTPUT0/1439
NPI_BIST_STATUS448
NPI_BUFF_SIZE_OUTPUT0/1440
NPI_CTL_STATUS434
NPI_DBG_SELECT433
NPI_DMA_CONTROL443
NPI_DMA_HIGHP_COUNTS444
NPI_DMA_HIGHP_NADDR445
NPI_DMA_LOWP_COUNTS444
NPI_DMA_LOWP_NADDR445
NPI_HIGHP_DBELL442
NPI_HIGHP_IBUFF_SADDR441
NPI_INPUT_CONTROL444
NPI_INT_ENB ...436
NPI_INT_SUM ...434
NPI_LOWP_DBELL442
NPI_LOWP_IBUFF_SADDR441
NPI_MEM_ACCESS_SUBID(3..6)438
NPI_MSI_RCV ...422
NPI_NUM_DESC_OUTPUT0/1438
NPI_OUTPUT_CONTROL441
NPI_P0/1_DBPAIR_ADDR445
NPI_P0/1_INSTR_ADDR446
NPI_P0/1_INSTR_CNTS446
NPI_P0/1_PAIR_CNTS445
NPI_PCI_BURST_SIZE440
NPI_PCI_INT_ARB_CFG443
NPI_PCI_READ_CMD438
NPI_PORT_BP_CONTROL447
NPI_PORT32/33_INSTR_HDR447
NPI_RSL_INT_BLOCKS433
NPI_SIZE_INPUT0/1439
974 Cavium Networks Proprietary and Conf
NPI_WIN_READ_TO 446
PCI_BAR1_INDEX(0..31) 417
PCI_CFG00 .. 404
PCI_CFG01 .. 404
PCI_CFG02 .. 405
PCI_CFG03 .. 405
PCI_CFG04 .. 405
PCI_CFG05 .. 405
PCI_CFG06 .. 406
PCI_CFG07 .. 406
PCI_CFG08 .. 406
PCI_CFG09 .. 406
PCI_CFG10 .. 406
PCI_CFG11 .. 407
PCI_CFG12 .. 407
PCI_CFG13 .. 407
PCI_CFG15 .. 407
PCI_CFG16 .. 408
PCI_CFG17 .. 409
PCI_CFG18 .. 409
PCI_CFG19 .. 410
PCI_CFG20 .. 411
PCI_CFG21 .. 411
PCI_CFG22 .. 412
PCI_CFG58 .. 413
PCI_CFG59 .. 413
PCI_CFG60 .. 414
PCI_CFG61 .. 414
PCI_CFG62 .. 414
PCI_CFG63 .. 414
PCI_CTL_STATUS_2 419
PCI_DBELL0/1 .. 430
PCI_DMA_CNT0/1 431
PCI_DMA_INT_LEV0/1 431
PCI_DMA_TIME0/1 431
PCI_INSTR _COUNT0/1 431
PCI_INSTR_COUNT(0...3) 431
PCI_INT_ENB ... 429
PCI_INT_ENB2 ... 423
PCI_INT_SUM .. 427
PCI_INT_SUM2 .. 424
PCI_MIS_RCV ... 431
PCI_PKT_CREDITS0/1 430
PCI_PKTS_SENT_INT_LEV0/1 430
PCI_PKTS_SENT_TIME0/1 430
PCI_PKTS_SENT0/1 429
PCI_READ_CMD_6 417
PCI_READ_CMD_C 418
PCI_READ_CMD_E 418
PCI_READ_TIMEOUT 439
PCI_WIN_RD_ADDR 426
PCI_WIN_RD_DATA 427
PCI_WIN_WR_ADDR 426
PCI_WIN_WR_DATA 427
PCI_WIN_WR_MASK 427
PCM(0..3)_DMA_CFG 586
PCM(0..3)_INT_ENA 586
PCM(0..3)_INT_SUM 587
PCM(0..3)_RXADDR 588
PCM(0..3)_RXCNT 588
PCM(0..3)_RXMSK0 590
idential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

Index
PCM(0..3)_RXMSK1590
PCM(0..3)_RXMSK2590
PCM(0..3)_RXMSK3591
PCM(0..3)_RXMSK4591
PCM(0..3)_RXMSK5591
PCM(0..3)_RXMSK6591
PCM(0..3)_RXMSK7591
PCM(0..3)_RXSTART588
PCM(0..3)_TDM_CFG585
PCM(0..3)_TDM_DBG587
PCM(0..3)_TXADDR588
PCM(0..3)_TXCNT587
PCM(0..3)_TXMSK0588
PCM(0..3)_TXMSK1589
PCM(0..3)_TXMSK2589
PCM(0..3)_TXMSK3589
PCM(0..3)_TXMSK4589
PCM(0..3)_TXMSK5589
PCM(0..3)_TXMSK6590
PCM(0..3)_TXMSK7590
PCM(0..3)_TXSTART587
PCM_CLK0/1_CFG584
PCM_CLK0/1_GEN584
PCM0/1_CLK_DBG587
PIP_BIST_STATUS307
PIP_DEC_IPSEC(0..3)314
PIP_FRM_LEN_CHK0/1315
PIP_GBL_CFG ...311
PIP_GBL_CTL ...310
PIP_INT_EN ..309
PIP_INT_REG ..308
PIP_IP_OFFSET ..313
PIP_PRT_CFG(0..2, 32, 33)316
PIP_PRT_TAG(0..2, 32, 33)317
PIP_PRT_TAG(0..3, 16..19, 32..35)317
PIP_QOS_DIFF(0..63)318
PIP_QOS_VLAN(0..7)315
PIP_QOS_WATCH(0..7)315
PIP_RAW_WORD ..314
PIP_SFT_RST ..312
PIP_STAT_CTL ...309
PIP_STAT_INB_ERRS(0..2, 32, 33)322
PIP_STAT_INB_OCTS(0..2, 32, 33)322
PIP_STAT_INB_PKTS(0..2, 32, 33)322
PIP_STAT0_PRT(0..2, 32, 33)319
PIP_STAT1_PRT(0..2, 32, 33)319
PIP_STAT2_PRT(0..2, 32, 33)319
PIP_STAT3_PRT(0..2, 32, 33)320
PIP_STAT4_PRT(0..2, 32, 33)320
PIP_STAT5_PRT(0..2, 32, 33)320
PIP_STAT6_PRT(0..2, 32, 33)320
PIP_STAT7_PRT(0..2, 32, 33)320
PIP_STAT8_PRT(0..2, 32, 33)321
PIP_STAT9_PRT(0..2, 32, 33)321
PIP_TAG_INC(0..63)318
PIP_TAG_MASK ..314
PIP_TAG_SECRET313
PIP_TODO_ENTRY314
PKO_MEM_COUNT358
PKO_MEM_COUNT0357
PKO_MEM_DEBUG358
CN50XX-HM-0.99E PRELIMINARY Cavium Networks Proprietary and Conf
PKO_MEM_DEBUG0 358
PKO_MEM_DEBUG10 362
PKO_MEM_DEBUG11 362
PKO_MEM_DEBUG12 362
PKO_MEM_DEBUG13 363
PKO_MEM_DEBUG2 359
PKO_MEM_DEBUG3 359
PKO_MEM_DEBUG4 359
PKO_MEM_DEBUG5 360
PKO_MEM_DEBUG6 360
PKO_MEM_DEBUG7 361
PKO_MEM_DEBUG8 361
PKO_MEM_DEBUG9 361
PKO_MEM_QUEUE_PTRS 355
PKO_MEM_QUEUE_QOS 357
PKO_REG_BIST_RESULT 353
PKO_REG_CMD_BUF 352
PKO_REG_DEBUG0 354
PKO_REG_ERROR 354
PKO_REG_FLAGS 352
PKO_REG_GMX_PORT_MODE 353
PKO_REG_INT_MASK 354
PKO_REG_QUEUE_MODE 353
PKO_REG_READ_IDX 352
POW_BIST_STAT 251
POW_DS_PC ... 250
POW_ECC_ERR .. 248
POW_IQ_CNT(0...7) 249
POW_IQ_COM_CNT 250
POW_NOS_CNT ... 249
POW_NW_TIM .. 246
POW_PF_RST_MSK 249
POW_PP_GRP_MSK0/1 241
POW_QOS_RND(0...7) 245
POW_QOS_THR(0...7) 243
POW_TS_PC(0...15) 250
POW_WA_COM_PC 250
POW_WA_PC(0...7) 249
POW_WQ_INT .. 245
POW_WQ_INT_CNT(0...15) 243
POW_WQ_INT_PC 246
POW_WQ_INT_THR(0...15) 241
POW_WS_PC(0...15) 249
RNM_BIST_STATUS 662
RNM_CTL_STATUS 662
SMI_CLK ... 656
SMI_CMD .. 655
SMI_EN ... 656
SMI_RD_DAT .. 655
SMI_WR_DAT ... 655
USBC_DAINT ... 750
USBC_DAINTMSK 750
USBC_DCFG ... 746
USBC_DCTL ... 747
USBC_DIEPCTL(1..4) 752
USBC_DIEPCTL0 751
USBC_DIEPINT(0..4) 754
USBC_DIEPMSK .. 749
USBC_DIEPTSIZ(1..4) 755
USBC_DIEPTSIZ0 755
USBC_DOEPCTL(1..4) 757
idential DO NOT COPY 975

Index
USBC_DOEPCTL0756
USBC_DOEPINT(0..4)759
USBC_DOEPMSK749
USBC_DOEPTSIZ(1..4)760
USBC_DOEPTSIZ0759
USBC_DPTXFSIZ ..737
USBC_DSTS ..748
USBC_DTKNQR(2..4)751
USBC_DTKNQR1 ..750
USBC_GAHBCFG721
USBC_GHWCFG1734
USBC_GHWCFG2734
USBC_GHWCFG3735
USBC_GHWCFG4736
USBC_GINTMSK ..729
USBC_GNPTXFSIZ733
USBC_GNPTXSTS733
USBC_GOTGCTL ..719
USBC_GOTGINT ...720
USBC_GRSTCTL ...724
USBC_GRXFSIZ ..732
USBC_GRXSTSPD732
USBC_GRXSTSPH730
USBC_GRXSTSRD731
USBC_GRXSTSRH730
USBC_GSNPSID ...734
USBC_GUSBCFG ..722
USBC_HAINT ..740
USBC_HAINTMSK740
USBC_HCCHAR(0..7)743
USBC_HCFG ...737
USBC_HCINT(0..7)744
USBC_HCINTMSK(0..7)745
USBC_HCSPLT(0..7)744
USBC_HCTSIZ(0..7)745
USBC_HFIR ...738
USBC_HFNUM ...739
USBC_HPRT ..741
USBC_HPTXFSIZ737
USBC_HPTXSTS ...739
USBC_NPTXDFIFO(0..7)761
USBC_PCGCCTL ..760
USBN_BIST_STATUS715
USBN_CLK_CTL ...712
USBN_CTL_STATUS715
USBN_DMA_TEST716
USBN_DMA0_INB_CHN(0..7)716
USBN_DMA0_OUTB_CHN(0..7)716
USBN_GINTSTS ...726
USBN_INT_ENB ...710
USBN_INT_SUM ...709
USBN_USBP_CTL_STATUS713

Related Documentation35
Revision History ..34
RGMII interface signals805
RNG/RNM Operations660

IOBDMA Address Field661
IOBDMA Operations661
IOBDMA Result Field661
Load Address Field660
Load Operations ...660
976 Cavium Networks Proprietary and Conf
Load Result Field .. 660
S
SDRAM Bus Cycle Commands 776
Security Features .. 45
Signal Ball Types .. 800
Signal Descriptions ... 799

Boot Signals ... 807
Clock Signals ... 808
DRAM Interface .. 801
GMII Interface ... 804
GPIO Interface .. 806
JTAG Signals ... 809
MDIO Interface ... 807
MII Interface ... 804
Miscellaneous Signals 809,
810
MPI/SPI Interface 806
Packet Interface .. 803
PCI Interface ... 802
PCM/TDM Interface 806
Power/Ground/No Connect Signals 810
RGMII Interface .. 805
TWSI Interface .. 807
UART Interface ... 808

Signal Mapping ... 813
Software Architecture Example 213
Special MUL Topics .. 194
Static-Timed Page Read Sequences 493
Static-Timed Read Sequences 485
Static-Timed Write Sequences 490
Summary of Octeon Core Features 144
Supply Voltages for the Chip Core Voltage and
External Interfaces ... 765
Supply Voltages for the On-Chip PLLs and DLLs
765
Symbols Used .. 35
System Management Interface (SMI) 651
T
Tag field ... 283
TDM/PCM Interface ... 569
Timer ... 449

Software Responsibilities 452
Timer Registers ... 454
TT field .. 283
TWSI interface signals 807
U
UART interface signals 808
USBC Registers .. 717
USBN Registers .. 708
User Comments ... 35
Using Electronic Documents 35
V
Virtual Addresses, CVMSEG and IOBDMAs .. 156
W
Work Queue Entry Format 220
Work-Queue Entry .. 284
idential DO NOT COPY CN50XX-HM-0.99E PRELIMINARY

In
sid

e B
ac

k C
ov

er

Cavium Networks
805 East Middlefield Road,
Mountain View, CA 94043
Telephone: +1-650-623-7000
Fax: +1-650-625-9751
Email: info@caviumnetworks.com C

N
50

X
X

-H
M

-0
.9

9E
 P

R
E

LI
M

IN
A

R
Y

 ©
 2

00
5

C
av

iu
m

 N
et

w
or

ks
, I

nc
. A

ll
rig

ht
s

re
se

rv
ed

	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Appendix A
	Appendix B

	List of Figures
	List of Tables
	Preface
	Introduction
	OCTEON Plus CN50XX
	Overview
	1.1 Principles of Operation
	1.1.1 CPU Cores
	1.1.2 Coherent Multicore and I/O L2/DRAM Sharing
	1.1.3 Core Partitioning
	1.1.4 Flexible Packet/Control Interfacing
	1.1.5 In-line Packet-Processing Hardware Acceleration
	1.1.6 Hardware-Assisted Dynamic Memory Allocation/Deallocation
	1.1.7 Hardware Work Queuing, Scheduling, Ordering, and Synchronization
	1.1.8 Essential Quality of Service (QoS) Functions Implemented in Hardware
	1.1.9 Security Features
	1.1.10 Coprocessor Accelerators
	1.1.11 Debug Support

	1.2 CN50XX System Applications
	1.3 Remaining Chapters
	1.3.1 Coherent Memory Bus (CMB), Level-Two Cache Controller (L2C), and DRAM Controller
	1.3.2 I/O Bus and I/O Bridge
	1.3.3 CPU Cores
	1.3.4 Packet Order / Work Unit (POW)
	1.3.5 Free Pool Unit (FPA)
	1.3.6 Packet Input Processing/Input Packet Data Unit (PIP/IPD)
	1.3.7 Packet Output Unit (PKO)
	1.3.8 PCI Unit
	1.3.9 Timer Unit (TIM)
	1.3.10 Central Interrupt Unit (CIU)
	1.3.11 Boot Bus Unit
	1.3.12 RGMII/GMII/MII Unit (GMX)
	1.3.13 TDM/PCM Unit
	1.3.14 GPIO Unit
	1.3.15 UART Unit
	1.3.16 TWSI Unit
	1.3.17 System Management Interface (SMI)
	1.3.18 Random Number Generator (RNG/RNM)
	1.3.19 SPI/MPI Unit
	1.3.20 USB Unit
	1.3.21 Electrical Specifications
	1.3.22 AC Characteristics
	1.3.23 Mechanical Specifications
	1.3.24 Signal Descriptions
	1.3.25 Ball Assignments

	1.4 Configuration and Status Registers (CSRs)
	1.4.1 CSR Field Types

	Coherent Memory Bus, Level-2 Cache Controller, DRAM Controller
	2.1 Coherent Memory Bus (CMB)
	2.1.1 CMB Overview
	2.1.2 CMB Buses
	2.1.3 CMB Description
	2.1.4 CMB Memory Coherence Support
	2.1.5 CMB Transactions

	2.2 Level-2 Cache Controller (L2C)
	2.2.1 L2 Cache and Data Store
	2.2.2 L2C Memory Coherence
	2.2.3 L2 Cache Indexing (Set Selection)
	2.2.4 L2 Cache Replacement and Way-Partitioning
	2.2.5 L2 Cache-Block Locking
	2.2.6 Cache-Block Flush and Unlocking
	2.2.7 Memory Input Queue Arbitration
	2.2.8 COMMIT and FILL Bus Arbitration
	2.2.9 L2C ECC Codes

	2.3 DRAM Controller (LMC)
	2.3.1 Main Memory DRAM Addressing
	2.3.2 DRAM Part Addressing
	2.3.3 DRAM Transaction Examples
	2.3.4 DRAM Programming
	2.3.5 DRAM Refreshes
	2.3.6 DRAM Scheduler Performance
	2.3.7 DRAM Chip Selects and ODT
	2.3.8 DRAM Controller Initialization
	2.3.8.1 DCLK Initialization Sequence
	2.3.8.2 DRESET Initialization Sequence
	2.3.8.3 LMC Initialization Sequence

	2.3.9 DDR Clock-Speed Programming Tables
	2.3.10 DRAM ECC Codes

	2.4 L2C Registers
	L2C_CFG
	L2T_ERR
	L2D_ERR
	L2D_FADR
	L2D_FSYN0
	L2D_FSYN1
	L2C_DBG
	L2C_LFB0
	L2C_LFB1
	L2C_LFB2
	L2C_LFB3
	L2C_DUT
	L2C_LCKBASE
	L2C_LCKOFF
	L2C_SPAR0
	L2C_SPAR4
	L2C_PFCTL
	L2C_PFC(0..3)
	L2D_BST0
	L2D_BST1
	L2D_BST2
	L2D_BST3
	L2D_FUS0
	L2D_FUS1
	L2D_FUS2
	L2D_FUS3
	L2C_BST0
	L2C_BST1
	L2C_BST2

	2.5 LMC Registers
	LMC_MEM_CFG0
	LMC_MEM_CFG1
	LMC_CTL
	LMC_DDR2_CTL
	LMC_FADR
	LMC_COMP_CTL
	LMC_WODT_CTL
	LMC_ECC_SYND
	LMC_IFB_CNT_LO
	LMC_IFB_CNT_HI
	LMC_OPS_CNT_LO
	LMC_OPS_CNT_HI
	LMC_DCLK_CNT_LO
	LMC_DCLK_CNT_HI
	LMC_RODT_CTL
	LMC_DELAY_CFG
	LMC_CTL1
	LMC_DUAL_MEMCFG
	LMC_RODT_COMP_CTL
	LMC_PLL_CTL
	LMC_PLL_STATUS
	LMC_BIST_CTL
	LMC_BIST_RESULT

	I/O Busing, I/O Bridge (IOB) and Fetch and Add Unit (FAU)
	3.1 CN50XX I/O Busing
	3.1.1 I/O Busing Overview
	3.1.2 I/O Bus Flow Examples

	3.2 IOB Architecture
	3.2.1 IOB Architecture Overview

	3.3 Don’t-Write-Back Engine
	3.4 Fetch and Add Unit (FAU)
	3.5 Fetch-and-Add Operations
	3.5.1 Load Operations
	3.5.2 IOBDMA Operations
	3.5.3 Store Operations

	3.6 IOB Registers
	IOB_FAU_TIMEOUT
	IOB_CTL_STATUS
	IOB_INT_SUM
	IOB_INT_ENB
	IOB_PKT_ERR
	IOB_INB_DATA_MATCH
	IOB_INB_CONTROL_MATCH
	IOB_INB_DATA_MATCH_ENB
	IOB_INB_CONTROL_MATCH_ENB
	IOB_OUTB_DATA_MATCH
	IOB_OUTB_CONTROL_MATCH
	IOB_OUTB_DATA_MATCH_ENB
	IOB_OUTB_CONTROL_MATCH_ENB
	IOB_BIST_STATUS

	cnMIPS™ Cores
	Overview
	4.1 Summary of cnMIPS Core Features
	4.1.1 MIPS64 Version 2.0 Implementation
	4.1.2 Cavium-Specific Architectural Additions
	4.1.3 Full Privileged Architecture (i.e. Coprocessor 0) Support
	4.1.4 Full EJTAG Version 3.10 Support

	4.2 cnMIPS Core Non-Privileged State
	4.3 Cavium-Specific Instruction Summary
	4.4 cnMIPS Core Instruction Set Summary
	4.5 cnMIPS Core Virtual Addresses and CVMSEG
	4.6 Physical Addresses
	4.7 IOBDMA Operations
	4.8 cnMIPS Core-Memory Reference Ordering
	4.9 cnMIPS Core CSR Ordering
	4.10 cnMIPS Core Write Buffer
	4.11 cnMIPS Core Coprocessor 0 Privileged Registers
	Index Register
	Random Register
	EntryLo0, EntryLo1 Registers
	Context Register
	PageMask Register
	PageGrain Register
	Wired Register
	HWREna Register
	BadVAddr Register
	Count Register
	EntryHi Register
	Compare Register
	Status Register
	IntCtl Register
	SRSCtl Register
	Cause Register
	Exception Program Counter
	PRId Register
	EBase Register
	Config Register
	Config1 Register
	Config2 Register
	Config3 Register
	WatchLo Register
	WatchHi Register
	XContext Register
	Debug Register
	Debug Exception Program Counter Register
	Performance Counter Control Register
	Performance Counter Counter Register
	ErrorEPC
	DESAVE Register
	4.11.1 Cavium Networks-Specific Coprocessor 0 Registers
	CacheErr (Icache)
	CacheErr (Dcache)
	TagLo Register (Icache)
	TagLo Register (Dcache)
	DataLo Register (Icache)
	DataLo Register (Dcache)
	TagHi Register
	DataHi Register (Icache)
	DataHi Register (Dcache)
	CvmCtl Register
	CvmMemCtl Register
	CvmCount Register
	Multicore Debug Register

	4.12 cnMIPS™ Core EJTAG DRSEG Registers
	Debug Control Register (DCR)
	Instruction Breakpoint Status (IBS) Register
	Instruction Breakpoint Address (IBA0...3) Register
	Instruction Breakpoint Address Mask (IBM0...3) Register
	Instruction Breakpoint ASID (IBASID0...3) Register
	Instruction Breakpoint Control (IBC0...3) Register
	Data Breakpoint Status (DBS) Register
	Data Breakpoint Address (DBA0...3) Register
	Data Breakpoint Address Mask (DBM0...3) Register
	Data Breakpoint ASID (DBASID0...3) Register
	Data Breakpoint Control (DBC0...3) Register
	Data Breakpoint Value (DBV0...3) Register

	4.13 cnMIPS™ Core EJTAG TAP Registers
	Device ID Register Format
	Implementation Register Format (TAP Instruction IMPCODE)
	Data Register (TAP Instruction DATA, ALL, or FASTDATA)
	Address Register (TAP Instruction ADDRESS or ALL)
	EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	PC Sample Register Format (TAP Instruction PCSAMPLE)
	EJTAG Boot Indication
	Bypass Register
	Fastdata Register

	4.14 cnMIPS Core Pipelines
	4.15 Special MUL Topics
	4.16 COP2 Latencies
	4.17 cnMIPS Core Hardware Debug Features
	4.17.1 Multicore Debug Support
	4.17.2 System Debug Characteristics

	4.18 cnMIPS Core Load-Linked / Store-Conditional
	4.19 cnMIPS Core Exceptions

	Packet Order / Work Unit (POW)
	Overview
	5.1 POW Work Flow, Operations, and Ordering
	5.2 Software Architecture Example
	5.2.1 Defragmentation
	5.2.2 IPSEC Decryption
	5.2.3 Lookup
	5.2.4 Process
	5.2.5 IPSEC Encrypt
	5.2.6 Output Queue

	5.3 POW Internal Architecture
	5.4 Work-Queue Entry Format
	5.5 Core and Fetch-and-Add Pending Switch Bits
	5.6 POW Interrupts
	5.7 POW QOS Features
	5.7.1 Thresholds
	5.7.2 Scheduling

	5.8 POW Debug Visibility
	5.9 POW Performance Considerations
	5.10 Forward Progress Constraints
	5.11 POW Operations
	5.11.1 Load Operations
	5.11.2 IOBDMA Operations
	5.11.3 Store Operations

	5.12 POW ECC Codes
	5.13 POW Registers
	POW_PP_GRP_MSK0/1
	POW_WQ_INT_THR(0..15)
	POW_WQ_INT_CNT(0..15)
	POW_QOS_THR(0..7)
	POW_QOS_RND(0...7)
	POW_WQ_INT
	POW_WQ_INT_PC
	POW_NW_TIM
	POW_ECC_ERR
	POW_NOS_CNT
	POW_PF_RST_MSK
	POW_WS_PC(0..15)
	POW_WA_PC(0..7)
	POW_IQ_CNT(0..7)
	POW_WA_COM_PC
	POW_IQ_COM_CNT
	POW_TS_PC
	POW_DS_PC
	POW_BIST_STAT

	Free Pool Unit (FPA)
	Overview
	6.1 Free Pool Unit Operations
	6.1.1 Load Operations
	6.1.2 IOBDMA Operations
	6.1.3 Store Operations

	6.2 FPA Registers
	FPA_INT_SUM
	FPA_INT_ENB
	FPA_CTL_STATUS
	FPA_QUE(0..7)_AVAILABLE
	FPA_BIST_STATUS
	FPA_QUE(0..7)_PAGE_INDEX
	FPA_QUE_EXP
	FPA_QUE_ACT

	Packet Input Processing/Input Packet Data Unit (PIP/IPD)
	Overview
	7.1 Input Ports
	7.2 Input Packet Formats and Pre-IP Parsing
	7.2.1 Packet Instruction Header
	PKT_INST_HDR[R]
	PKT_INST_HDR[PM]
	PKT_INST_HDR[SL]
	PKT_INST_HDR[QOS, GRP,TT,TAG]
	PKT_INST_HDR[RS]
	7.2.2 PCI Instruction-to-Packet Conversion
	7.2.3 Parse Mode and Skip Length Selection
	7.2.4 PIP/IPD L2 Parsing and Is_IP Determination
	7.2.5 Pre-IP Parsing Summary
	7.2.6 Packet Input CRC
	7.2.7 Packet Length Checks
	7.2.8 Legal SKIP Values

	7.3 Packet Buffering
	7.4 Packet Scheduling
	7.4.1 RAWFULL and RAWSCHED Packets
	7.4.2 QOS
	7.4.3 Grp
	7.4.4 TT
	7.4.5 Tag

	7.5 Work-Queue Entry
	WORD0[HW_Chksum]
	WORD0[POW_Next_Ptr]
	WORD1[Len]
	WORD1[iprt]
	WORD1[QOS]
	WORD1[Grp]
	WORD1[TT]
	WORD1[Tag]
	WORD3[Back, Size, Addr]
	WORD2[Bufs]
	WORD2[IP_offset]
	WORD2[VV]
	WORD2[VS]
	WORD2[VC]
	WORD2[VLAN_id]
	WORD2[CO]
	WORD2[TU]
	WORD2[SE]
	WORD2[V6]
	WORD2[LE]
	WORD2[FR]
	WORD2[IE]
	WORD2[B]
	WORD2[M]
	WORD2[NI]
	WORD2[RE]
	WORD2[Opcode]
	WORD2[IR]
	WORD2[IA]

	7.6 Input Packet Data Unit (IPD) Quality of Service
	7.7 PIP/IPD Per-QOS Admission Control
	7.8 PIP Registers
	PIP_BIST_STATUS
	PIP_INT_REG
	PIP_INT_EN
	PIP_STAT_CTL
	PIP_GBL_CTL
	PIP_GBL_CFG
	PIP_SFT_RST
	PIP_IP_OFFSET
	PIP_TAG_SECRET
	PIP_TAG_MASK
	PIP_TODO_ENTRY
	PIP_DEC_IPSEC(0..3)
	PIP_RAW_WORD
	PIP_QOS_VLAN(0..7)
	PIP_QOS_WATCH(0..7)
	PIP_FRM_LEN_CHK0/1
	PIP_PRT_CFG(0..2, 32/33)
	PIP_PRT_TAG(0..2, 32/33)
	PIP_QOS_DIFF(0..63)
	PIP_TAG_INC(0..63)
	7.8.1 PIP Statistics Counters
	PIP_STAT0_PRT(0..2, 32/33)
	PIP_STAT1_PRT(0..2, 32/33)
	PIP_STAT2_PRT(0..2, 32/33)
	PIP_STAT3_PRT(0..2, 32/33)
	PIP_STAT4_PRT(0..2, 32/33)
	PIP_STAT5_PRT(0..2, 32/33)
	PIP_STAT6_PRT(0..2, 32/33)
	PIP_STAT7_PRT(0..2, 32/33)
	PIP_STAT8_PRT(0..2, 32/33)
	PIP_STAT9_PRT(0..2, 32/33)
	7.8.2 PIP Inbound Statistics Registers
	PIP_STAT_INB_PKTS(0..2, 32/33)
	PIP_STAT_INB_OCTS(0..2, 32/33)
	PIP_STAT_INB_ERRS(0..2, 32/33)

	7.9 IPD Registers
	IPD_1ST_MBUFF_SKIP
	IPD_NOT_1ST_MBUFF_SKIP
	IPD_PACKET_MBUFF_SIZE
	IPD_CTL_STATUS
	IPD_WQE_FPA_QUEUE
	IPD_PORT(0..2, 32/33)_BP_PAGE_CNT
	IPD_SUB_PORT_BP_PAGE_CNT
	IPD_1ST_NEXT_PTR_BACK
	IPD_2ND_NEXT_PTR_BACK
	IPD_INT_ENB
	IPD_INT_SUM
	IPD_SUB_PORT_FCS
	IPD_QOS(0..7)_RED_MARKS
	IPD_PORT_BP_COUNTERS_PAIR(0..2, 32/33)
	IPD_RED_PORT_ENABLE
	IPD_RED_QUE(0..7)_PARAM
	IPD_PTR_COUNT
	IPD_BP_PRT_RED_END
	IPD_QUE0_FREE_PAGE_CNT
	IPD_CLK_COUNT
	IPD_PWP_PTR_FIFO_CTL
	IPD_PRC_HOLD_PTR_FIFO_CTL
	IPD_PRC_PORT_PTR_FIFO_CTL
	IPD_PKT_PTR_VALID
	IPD_WQE_PTR_VALID
	IPD_BIST_STATUS

	Packet Output Processing Unit (PKO)
	Overview
	8.1 Output Ports
	8.2 Output Packet Format and TCP/UDP Checksum Insertion
	8.3 PKO Output Queue
	8.4 PKO Commands
	WORD0[SZ1]
	WORD0[SZ0]
	WORD0[S1]
	WORD0[Reg1]
	WORD0[S0]
	WORD0[Reg0]
	WORD0[LE]
	WORD0[N2]
	WORD0[Q]
	WORD0[R]
	WORD0[G]
	WORD0[IPoffp1]
	WORD0[II]
	WORD0[DF]
	WORD0[Segs]
	WORD0[Total Bytes]
	I (WORD1 and all segment pointers)
	Back (WORD1 and all segment pointers)
	Pool (WORD1 and all segment pointers)
	Size (WORD1 and all segment pointers)
	Addr (WORD1 and all segment pointers)
	WORD2[Ptr]

	8.5 PKO Queue Arbitration Algorithm
	8.6 PKO Don’t-Write-Back (DWB) Calculation
	8.7 PKO Performance
	8.8 PKO Operations
	8.8.1 Store Operations
	Doorbell Writes

	8.9 PKO Registers
	PKO_REG_FLAGS
	PKO_REG_READ_IDX
	PKO_REG_CMD_BUF
	PKO_REG_GMX_PORT_MODE
	PKO_REG_QUEUE_MODE
	PKO_REG_BIST_RESULT
	PKO_REG_ERROR
	PKO_REG_INT_MASK
	PKO_REG_DEBUG0
	PKO_REG_DEBUG1
	PKO_REG_DEBUG2
	PKO_REG_DEBUG3
	PKO_REG_QUEUE_PTRS1
	PKO_MEM_QUEUE_PTRS
	PKO_MEM_QUEUE_QOS
	PKO_MEM_COUNT0
	PKO_MEM_COUNT1
	PKO_MEM_DEBUG0
	PKO_MEM_DEBUG1
	PKO_MEM_DEBUG2
	PKO_MEM_DEBUG3
	PKO_MEM_DEBUG4
	PKO_MEM_DEBUG5
	PKO_MEM_DEBUG6
	PKO_MEM_DEBUG7
	PKO_MEM_DEBUG8
	PKO_MEM_DEBUG9
	PKO_MEM_DEBUG10
	PKO_MEM_DEBUG11
	PKO_MEM_DEBUG12
	PKO_MEM_DEBUG13

	PCI Bus
	Overview
	9.1 CN50XX PCI Features
	9.2 CN50XX Addressing as a PCI Target
	9.2.1 BAR0 - Memory-Mapped CSR Region
	9.2.2 BAR1 - 32-Bit Memory-Mapped Region
	9.2.3 BAR2 - 64-bit Memory-Mapped Region
	9.2.4 Expansion ROM

	9.3 PCI Instruction Input From an External Host
	9.3.1 PCI Instruction Format
	9.3.2 PCI Input Packet
	9.3.3 DPTR Formats
	DPTR Format 0
	DPTR Format 1
	DPTR Format 2
	DPTR Format 3

	9.4 PCI Packet Output From CN50XX
	9.4.1 Info-Pointer Mode
	9.4.2 Buffer-Pointer-Only Mode

	9.5 PCI DMA Engine Access From Cores
	9.5.1 PCI DMA Instruction-Header Format
	9.5.2 PCI DMA Instruction Local-Pointer Format
	9.5.3 PCI DMA Instruction PCI Components and Processing
	9.5.4 PCI DMA Instruction Fetching
	9.5.5 PCI DMA Instruction Ordering and Completion
	9.5.6 PCI DMA Engine Don’t-Write-Back Calculation
	9.5.7 Host Output Queueing Via the PCI DMA Engine

	9.6 PCI Memory Space Loads/Stores to BAR1/2
	9.6.1 Referencing L2/DRAM With CN50XX as a PCI Target

	9.7 CN50XX PCI Internal Arbiter
	9.8 CN50XX PCI MSI Support
	9.9 Endian Swapping
	9.9.1 PASS_THRU MODE (== 0)
	9.9.2 64b_BYTE_SWAP Mode (== 1)
	9.9.3 32b_BYTE_SWAP Mode (== 2)
	9.9.4 32b_LW_SWAP Mode (== 3)

	9.10 PC Bus Operations
	9.10.1 Load/Store Operations
	9.10.2 IOBDMA Operations
	9.10.3 RSL Access Space (SubDID == 0)
	9.10.4 PCI Config / IACK / Special Space (SubDID == 1)
	OFFSET Field Format
	9.10.5 PCI I/O Space (SubDID == 2)
	OFFSET Field Format in I/O space
	9.10.6 Memory Space (SubDID == 3, 4, 5, 6)
	9.10.7 PCI-Related, NCB-Direct, PCICONFIG, and PCI_NCB CSR Access (SubDID == 7)

	9.11 PCI Reset Sequence
	9.11.1 PCI Reset Sequence in Host Mode
	9.11.2 PCI Reset Sequence in Non-Host Mode

	9.12 PCI Checklist
	9.13 PCI Configuration Registers
	PCI_CFG00
	PCI_CFG01
	PCI_CFG02
	PCI_CFG03
	PCI_CFG04
	PCI_CFG05
	PCI_CFG06
	PCI_CFG07
	PCI_CFG08
	PCI_CFG09
	PCI_CFG10
	PCI_CFG11
	PCI_CFG12
	PCI_CFG13
	PCI_CFG15
	PCI_CFG16
	PCI_CFG17
	PCI_CFG18
	PCI_CFG19
	PCI_CFG20
	PCI_CFG21
	PCI_CFG22
	PCI_CFG58
	PCI_CFG59
	PCI_CFG60
	PCI_CFG61
	PCI_CFG62
	PCI_CFG63

	9.14 PCI Bus Registers
	9.14.1 PCI_NCB-Type Registers
	PCI_BAR1_INDEX(0...31)
	PCI_READ_CMD_6
	PCI_READ_CMD_C
	PCI_READ_CMD_E
	PCI_CTL_STATUS_2
	NPI_MSI_RCV
	PCI_INT_ENB2
	PCI_INT_SUM2
	9.14.2 PCI-Type Registers
	PCI_WIN_WR_ADDR
	PCI_WIN_RD_ADDR
	PCI_WIN_WR_DATA
	PCI_WIN_WR_MASK
	PCI_WIN_RD_DATA
	PCI_INT_SUM
	PCI_INT_ENB
	PCI_PKTS_SENT0/1
	PCI_PKT_CREDITS0/1
	PCI_PKTS_SENT_INT_LEV0/1
	PCI_PKTS_SENT_TIME0/1
	PCI_DBELL0/1
	PCI_INSTR_COUNT0/1
	PCI_DMA_CNT0/1
	PCI_DMA_INT_LEV0/1
	PCI_DMA_TIME0/1
	PCI_MSI_RCV

	9.15 NPI Registers
	NPI_RSL_INT_BLOCKS
	NPI_DBG_SELECT
	NPI_CTL_STATUS
	NPI_INT_SUM
	NPI_INT_ENB
	NPI_MEM_ACCESS_SUBID(3..6)
	NPI_PCI_READ_CMD
	NPI_NUM_DESC_OUTPUT0/1
	NPI_BASE_ADDR_INPUT0/1
	NPI_SIZE_INPUT0/1
	PCI_READ_TIMEOUT
	NPI_BASE_ADDR_OUTPUT0/1
	NPI_PCI_BURST_SIZE
	NPI_BUFF_SIZE_OUTPUT0/1
	NPI_OUTPUT_CONTROL
	NPI_LOWP_IBUFF_SADDR
	NPI_HIGHP_IBUFF_SADDR
	NPI_LOWP_DBELL
	NPI_HIGHP_DBELL
	NPI_DMA_CONTROL
	NPI_PCI_INT_ARB_CFG
	NPI_INPUT_CONTROL
	NPI_DMA_LOWP_COUNTS
	NPI_DMA_HIGHP_COUNTS
	NPI_DMA_LOWP_NADDR
	NPI_DMA_HIGHP_NADDR
	NPI_P0/1_PAIR_CNTS
	NPI_P0/1_DBPAIR_ADDR
	NPI_P0/1_INSTR_CNTS
	NPI_P0/1_INSTR_ADDR
	NPI_WIN_READ_TO
	DBG_DATA
	NPI_PORT_BP_CONTROL
	NPI_PORT32/33_INSTR_HDR
	NPI_BIST_STATUS

	Timer
	Overview
	10.1 Timer Features
	10.2 Timer Support
	10.3 Software Responsibilities
	10.4 Timer Registers
	TIM_REG_FLAGS
	TIM_REG_READ_IDX
	TIM_REG_BIST_RESULT
	TIM_REG_ERROR
	TIM_REG_INT_MASK
	TIM_MEM_RING0
	TIM_MEM_RING1
	TIM_MEM_DEBUG0
	TIM_MEM_DEBUG1
	TIM_MEM_DEBUG2

	Central Interrupt Unit (CIU)
	Overview
	11.1 Central Interrupt Collection and Distribution
	11.2 Per-Core Mailbox Registers
	11.3 Per-Core Watchdog Timers
	11.4 Four General Timers
	11.5 Core Availability and Reset
	11.6 Core Debug-Mode Observability
	11.7 Core Debug-Interrupt Generation
	11.8 Core Non-Maskable Interrupt Generation
	11.9 Chip Soft-Reset Initiation
	11.10 CIU Registers
	CIU_INT(0..3,32)_SUM0
	CIU_INT_SUM1
	CIU_INT(0..3,32)_EN0
	CIU_INT(0..3,32)_EN1
	CIU_INT0/1_SUM4
	CIU_INT0/1_EN4_0
	CIU_INT0/1_EN4_1
	CIU_TIM(0..3)
	CIU_WDOG0/1
	CIU_PP_POKE0/1
	CIU_MBOX_SET0/1
	CIU_MBOX_CLR0/1
	CIU_PP_RST
	CIU_PP_DBG
	CIU_GSTOP
	CIU_NMI
	CIU_DINT
	CIU_FUSE
	CIU_BIST
	CIU_SOFT_BIST
	CIU_SOFT_RST
	CIU_SOFT_PRST
	CIU_PCI_INTA

	Boot Bus
	Overview
	12.1 Boot-Bus Addresses
	12.2 Boot-Bus Address Matching and Regions
	12.3 Boot-Bus Reset Configuration and Booting
	12.4 Boot-Bus Region Timing
	12.4.1 Static-Timed Read Sequences
	12.4.2 Static-Timed Write Sequences
	12.4.3 Static-Timed Page-Read Sequences
	12.4.4 Dynamic-Timed Sequences

	12.5 Boot-Bus Request Queuing
	12.6 Boot-Bus Connections
	12.7 Boot-Bus Operations
	12.7.1 Load Operations
	12.7.2 IOBDMA Operations
	12.7.3 Store Operations

	12.8 Boot-Bus Registers
	MIO_BOOT_REG_CFG0
	MIO_BOOT_REG_CFG(1..7)
	MIO_BOOT_REG_TIM0
	MIO_BOOT_REG_TIM(1..7)
	MIO_BOOT_LOC_CFG0/1
	MIO_BOOT_LOC_ADR
	MIO_BOOT_LOC_DAT
	MIO_BOOT_ERR
	MIO_BOOT_INT
	MIO_BOOT_THR
	MIO_BOOT_COMP
	MIO_BOOT_BIST_STAT

	CN50XX Packet Interface
	Overview
	13.1 Packet Interface Introduction
	13.2 RGMII Features
	13.2.1 Flow Control
	13.2.2 Receive Preamble
	13.2.3 Receive Packet Dropping
	13.2.4 Receive-Packet Inspection
	13.2.5 Receive Link Status
	13.2.6 Packet Transmission
	13.2.7 Transmit-Packet Options
	13.2.8 Collisions
	13.2.9 Bursts

	13.3 Errors/Exceptions
	13.3.1 Receive Error/Exception Checks
	13.3.2 Transmit Error/Exception Checks
	13.3.3 Transmit Error Propagation

	13.4 Link
	13.4.1 Link Status
	13.4.2 Link Status Changes
	13.4.3 Configuration Based on Mode

	13.5 Statistics
	13.6 Loopback
	13.7 Initialization
	13.8 GMX Registers
	GMX0_RX(0..2)_INT_REG
	GMX0_RX(0..2)_INT_EN
	GMX0_PRT(0..2)_CFG
	GMX0_RX(0..2)_FRM_CTL
	GMX0_RX(0..2)_FRM_CHK
	GMX0_RX(0..2)_JABBER
	GMX0_RX(0..2)_DECISION
	GMX0_RX(0..2)_UDD_SKP
	GMX0_RX(0..2)_STATS_CTL
	GMX0_RX(0..2)_IFG
	GMX0_RX(0..2)_RX_INBND
	GMX0_RX(0..2)_PAUSE_DROP_TIME
	GMX0_RX(0..2)_STATS_PKTS
	GMX0_RX(0..2)_STATS_OCTS
	GMX0_RX(0..2)_STATS_PKTS_CTL
	GMX0_RX(0..2)_STATS_OCTS_CTL
	GMX0_RX(0..2)_STATS_PKTS_DMAC
	GMX0_RX(0..2)_STATS_OCTS_DMAC
	GMX0_RX(0..2)_STATS_PKTS_DRP
	GMX0_RX(0..2)_STATS_OCTS_DRP
	GMX0_RX(0..2)_STATS_PKTS_BAD
	GMX0_RX(0..2)_ADR_CTL
	GMX0_RX(0..2)_ADR_CAM_EN
	GMX0_RX(0..2)_ADR_CAM(0..5)
	GMX0_TX(0..2)_CLK
	GMX0_TX(0..2)_THRESH
	GMX0_TX(0..2)_APPEND
	GMX0_TX(0..2)_SLOT
	GMX0_TX(0..2)_BURST
	GMX0_SMAC(0..2)
	GMX0_TX(0..2)_PAUSE_PKT_TIME
	GMX0_TX(0..2)_MIN_PKT
	GMX0_TX(0..2)_PAUSE_PKT_INTERVAL
	GMX0_TX(0..2)_SOFT_PAUSE
	GMX0_TX(0..2)_PAUSE_TOGO
	GMX0_TX(0..2)_PAUSE_ZERO
	GMX0_TX(0..2)_STATS_CTL
	GMX0_TX(0..2)_CTL
	GMX0_TX(0..2)_STAT0
	GMX0_TX(0..2)_STAT1
	GMX0_TX(0..2)_STAT2
	GMX0_TX(0..2)_STAT3
	GMX0_TX(0..2)_STAT4
	GMX0_TX(0..2)_STAT5
	GMX0_TX(0..2)_STAT6
	GMX0_TX(0..2)_STAT7
	GMX0_TX(0..2)_STAT8
	GMX0_TX(0..2)_STAT9
	GMX0_BIST
	GMX_RX_PRTS
	GMX0_RX_BP_DROP(0..2)
	GMX0_RX_BP_ON(0..2)
	GMX0_RX_BP_OFF(0..2)
	GMX0_TX_PRTS
	GMX0_TX_IFG
	GMX0_TX_JAM
	GMX0_TX_COL_ATTEMPT
	GMX0_TX_PAUSE_PKT_DMAC
	GMX0_TX_PAUSE_PKT_TYPE
	GMX0_TX_OVR_BP
	GMX0_TX_BP
	GMX0_TX_CORRUPT
	GMX0_RX_PRT_INFO
	GMX0_TX_LFSR
	GMX0_TX_INT_REG
	GMX0_TX_INT_EN
	GMX0_NXA_ADR
	GMX_BAD_REG
	GMX_STAT_BP
	GMX0_TX_CLK_MSK0/1
	GMX0_RX_TX_STATUS
	GMX0_INF_MODE

	13.9 ASX Registers
	ASX0_RX_PRT_EN
	ASX0_TX_PRT_EN
	ASX0_INT_REG
	ASX0_INT_EN
	ASX0_RX_CLK_SET(0..2)
	ASX0_PRT_LOOP
	ASX0_TX_CLK_SET(0..2)
	ASX0_TX_COMP_BYP
	ASX0_TX_HI_WATER(0..2)
	ASX0_GMII_RX_CLK_SET
	ASX0_GMII_RX_DAT_SET
	ASX0_MII_RX_DAT_SET

	PCM/TDM Interface
	Overview
	14.1 Signal Usage
	14.2 Clocking
	14.2.1 BCLK Generation
	14.2.2 FSYNC Generation
	14.2.3 BCLK Reception
	14.2.4 FSYNC Reception
	14.2.5 Examples BCLK/FSYNC Waveforms
	14.2.5.1 FSYNC Sampling
	14.2.5.2 Internal BCLK

	14.3 TDM Engines
	14.3.1 TDM Engine Configuration
	14.3.2 DMA Engines
	14.3.2.1 Transmit/Receive Memory Regions
	14.3.2.2 Transmit DMA Engine
	14.3.2.3 Receive DMA Engine

	14.4 Initialization Sequence
	14.5 PCM/TDM Registers
	PCM_CLK0/1_CFG
	PCM_CLK0/1_GEN
	PCM(0..3)_TDM_CFG
	PCM(0..3)_DMA_CFG
	PCM(0..3)_INT_ENA
	PCM(0..3)_INT_SUM
	PCM(0..3)_TDM_DBG
	PCM0/1_CLK_DBG
	PCM(0..3)_TXSTART
	PCM(0..3)_TXCNT
	PCM(0..3)_TXADDR
	PCM(0..3)_RXSTART
	PCM(0..3)_RXCNT
	PCM(0..3)_RXADDR
	PCM(0..3)_TXMSK0
	PCM(0..3)_TXMSK1
	PCM(0..3)_TXMSK2
	PCM(0..3)_TXMSK3
	PCM(0..3)_TXMSK4
	PCM(0..3)_TXMSK5
	PCM(0..3)_TXMSK6
	PCM(0..3)_TXMSK7
	PCM(0..3)_RXMSK0
	PCM(0..3)_RXMSK1
	PCM(0..3)_RXMSK2
	PCM(0..3)_RXMSK3
	PCM(0..3)_RXMSK4
	PCM(0..3)_RXMSK5
	PCM(0..3)_RXMSK6
	PCM(0..3)_RXMSK7

	GPIO Unit
	Overview
	15.1 GPIO Operations
	15.1.1 Reading the GPIO Bus
	15.1.2 Writing the GPIO Bus
	15.1.3 GPIO Interrupts

	15.2 Glitch Filters
	15.3 GPIO Registers
	GPIO_BIT_CFG(0..15)
	GPIO_RX_DAT
	GPIO_TX_SET
	GPIO_TX_CLR
	GPIO_INT_CLR
	GPIO_DBG_ENA
	GPIO_BOOT_ENA
	GPIO_XBIT_CFG(16..23)

	UART Interface
	Overview
	16.1 UART (RS232) Serial Protocol
	16.2 UART Interrupts
	16.3 UART AutoFlow Control
	16.3.1 UART AutoRTS
	16.3.2 UART AutoCTS
	16.3.3 UART Programmable THRE Interrupt

	16.4 UART Registers
	MIO_UART0/1 _RBR
	MIO_UART0/1 _IER
	MIO_UART0/1 _IIR
	MIO_UART0/1 _LCR
	MIO_UART0/1 _MCR
	MIO_UART0/1 _LSR
	MIO_UART0/1 _MSR
	MIO_UART0/1 _SCR
	MIO_UART0/1 _THR
	MIO_UART0/1_FCR
	MIO_UART0/1_DLL
	MIO_UART0/1_DLH
	MIO_UART0/1_FAR
	MIO_UART0/1_TFR
	MIO_UART0/1_RFW
	MIO_UART0/1_USR
	MIO_UART0/1_TFL
	MIO_UART0/1_RFL
	MIO_UART0/1_SRR
	MIO_UART0/1_SRTS
	MIO_UART0/1_SBCR
	MIO_UART0/1_SFE
	MIO_UART0/1_SRT
	MIO_UART0/1_STT
	MIO_UART0/1_HTX

	TWSI Interface
	Overview
	17.1 High-Level Controller as a Master
	17.2 High-Level Controller as a Slave
	17.3 Direct TWSI Core Usage
	17.3.1 Master Transmit Mode
	17.3.2 Master Receive Mode
	17.3.3 Slave Transmit Mode
	17.3.4 Slave Receive Mode
	17.3.5 TWSI Core Flow Diagrams

	17.4 TWSI Control Registers
	17.4.1 TWSI Slave Address Register
	17.4.2 TWSI Slave Extended-Address Register
	17.4.3 TWSI Data Register
	17.4.4 TWSI Control Register
	17.4.5 TWSI Status Register
	17.4.6 TWSI Master Clock Register
	17.4.7 TWSI Clock Control Register
	17.4.8 TWSI Software Reset Register

	17.5 TWSI Registers
	MIO_TWS_SW_TWSI
	MIO_TWS_TWSI_SW
	MIO_TWS_INT
	MIO_TWS_SW_TWSI_EXT

	System Management Interface (SMI)
	Overview
	18.1 SMI/MDIO Interface
	18.2 SMI Registers
	SMI_CMD
	SMI_WR_DAT
	SMI_RD_DAT
	SMI_CLK
	SMI_EN

	Random-Number Generator (RNG), Random-Number Memory (RNM)
	Overview
	19.1 RNG/RNM Operations
	19.1.1 RNG/RNM Load Operation
	19.1.2 IOBDMA Operations

	19.2 RNM Registers
	RNM_BIST_STATUS
	RNM_CTL_STATUS

	MPI/SPI Unit
	Overview
	20.1 Pin Usage
	20.2 MPI/SPI Configuration
	20.2.1 Clock Generation
	20.2.2 Chip Select
	20.2.3 SPI/MPI Style
	20.2.4 Polling/Interrupt-Based Reception
	20.2.5 Other Fields in MPI_CFG

	20.3 MPI/SPI Usage
	20.3.1 MPI_DAT(0..8) Registers
	20.3.2 Using the MPI_TX Register
	20.3.3 Using the MPI_STS Register

	20.4 Examples
	20.4.1 Example 1: Reading a Single Byte From Device Address 0x04
	20.4.2 Example 2: Writing a Single Byte to Register 0x04
	20.4.3 Example 3: Writing Ten Bytes to Registers 0x09-0x00
	20.4.4 Example 4: Reading 17 Bytes From Registers 0x11-0x00

	20.5 MPI/SPI Registers
	MPI_CFG
	MPI_STS
	MPI_TX
	MPI_DAT(0..8)

	USB Unit (USB)
	Overview
	21.1 Architecture
	21.1.1 Host Architecture
	21.1.2 Device Architecture
	21.1.3 Address Map
	21.1.4 USB Protocol and Transaction Handling
	21.1.4.1 USB Transaction Handling
	21.1.4.2 Protocol Handling

	21.1.5 Endian Swapping

	21.2 Initialization
	21.2.1 Power On Reset and PHY Initialization
	21.2.2 USB Core Initialization
	21.2.3 Host Initialization
	21.2.4 Device Initialization

	21.3 Modes of Operation
	21.3.1 Slave Mode
	21.3.1.1 Transaction-Level Operation
	21.3.1.2 Pipelined Transaction-Level Operation

	21.3.2 Speed Mode

	21.4 Interrupt Handler
	21.5 Host-Mode Programming Model
	21.5.1 Channel Initialization
	21.5.2 Halting a Channel
	21.5.3 Ping Protocol
	21.5.4 Sending a Zero-Length Packet
	21.5.5 Selecting the Queue Depth
	21.5.6 Handling Babble Conditions
	21.5.7 Host Mode Slave Transactions
	21.5.7.1 Host Bulk and Control OUT/SETUP in Slave Mode
	21.5.7.2 Host Bulk and Control IN Transactions in Slave Mode

	21.6 Device Programming Model
	21.6.1 Endpoint Initialization
	21.6.1.1 Initialization on USB Reset
	21.6.1.2 Initialization on Enumeration Completion
	21.6.1.3 Initialization on SetAddress Command
	21.6.1.4 Initialization on SetConfiguration/SetInterface Command
	21.6.1.5 Endpoint Activation
	21.6.1.6 Endpoint Deactivation
	21.6.1.7 Device Slave Mode Initialization

	21.7 Miscellaneous Topics
	21.7.1 Data FIFO Allocation
	21.7.1.1 Host Mode Allocation
	21.7.1.2 Device Mode Allocation
	21.7.1.3 FIFO Programming Recommendations

	21.7.2 Dynamic FIFO Allocation
	21.7.3 Power Saving Modes
	21.7.4 Reference Clocks
	21.7.5 Crystal Oscillators

	21.8 USB Registers
	21.8.1 USBN Registers
	USBN_INT_SUM
	USBN_INT_ENB
	USBN_CLK_CTL
	USBN_USBP_CTL_STATUS
	USBN_BIST_STATUS
	USBN_CTL_STATUS
	USBN_DMA_TEST
	USBN_DMA0_INB_CHN(0..7)
	USBN_DMA0_OUTB_CHN(0..7)
	21.8.2 USBC Registers
	USBC_GOTGCTL
	USBC_ GOTGINT
	USBC_ GAHBCFG
	USBC_GUSBCFG
	USBC_GRSTCTL
	USBC_ GINTSTS
	USBC_GINTMSK
	USBC_GRXSTSRH
	USBC_GRXSTSPH
	USBC_GRXSTSRD
	USBC_ GRXSTSPD
	USBC_ GRXFSIZ
	USBC_GNPTXFSIZ
	USBC_GNPTXSTS
	USBC_GSNPSID
	USBC_GHWCFG1
	USBC_GHWCFG2
	USBC_GHWCFG3
	USBC_GHWCFG4
	USBC_HPTXFSIZ
	USBC_DPTXFSIZ(1..4)
	USBC_HCFG
	USBC_HFIR
	USBC_HFNUM
	USBC_HPTXSTS
	USBC_HAINT
	USBC_HAINTMSK
	USBC_HPRT
	USBC_HCCHAR(0..7)
	USBC_HCSPLT(0..7)
	USBC_HCINT(0..7)
	USBC_HCINTMSK(0..7)
	USBC_HCTSIZ(0..7)
	USBC_DCFG
	USBC_DCTL
	USBC_DSTS
	USBC_DIEPMSK
	USBC_DOEPMSK
	USBC_DAINT
	USBC_DAINTMSK
	USBC_DTKNQR1
	USBC_DTKNQR2/3/4
	USBC_DIEPCTL0
	USBC_DIEPCTL(1..4)
	USBC_DIEPINT(0..4)
	USBC_DIEPTSIZ0
	USBC_DIEPTSIZ(1..4)
	USBC_DOEPCTL0
	USBC_DOEPCTL(1..4)
	USBC_DOEPINT(0..4)
	USBC_DOEPTSIZ0
	USBC_DOEPTSIZ(1..4)
	USBC_PCGCCTL
	USBC_NPTXDFIFO(0..7)

	Electrical Specifications
	Overview
	22.1 Absolute Maximum Ratings
	22.1.1 Absolute Maximum Storage Temperatures

	22.2 Recommended Operating Conditions
	22.2.1 Supply Voltages for the Chip Core Voltage and External Interfaces
	22.2.2 Supply Voltages for the On-Chip PLLs and DLLs
	22.2.3 Reference Voltages

	22.3 Power Sequencing
	22.3.1 Power Up
	22.3.2 Power Down

	22.4 Power Consumption
	22.5 DC Electrical Characteristics
	22.5.1 2.5V CMOS Point-to-Point I/O for the RGMII/GMII/MII Interface
	22.5.2 SSTL18 Bidirectional I/O for the DDR2 Memory Interface
	22.5.3 3.3V CMOS Bidirectional and Point-to-Point I/O for the PCI/Miscellaneous Interfaces
	22.5.4 GMII/RGMII Reference-Clock Differential Input

	AC Characteristics
	23.1 Input Clocks
	23.1.1 Reference-Clock Input

	23.2 PCI Interface
	23.2.1 PCI I/O Signal Timing

	23.3 DDR2 SDRAM Interface
	23.3.1 DDR2 SDRAM Bus-Cycle Commands
	23.3.2 DDR2 SDRAM Read Operations
	23.3.3 SDRAM Write Operations
	23.3.4 SDRAM Autorefresh Operations
	23.3.5 SDRAM Initialize and Mode Register Operations

	23.4 RGMII Interface
	23.5 GMII Interface
	23.6 MII Interface
	23.7 EEPROM Interface
	23.7.1 EEPROM Read Cycle
	23.7.2 EEPROM Signal I/O Timing

	23.8 Boot Bus Interface
	23.9 JTAG Interface
	23.10 MPI/SPI Interface
	23.11 TWSI Interface
	23.12 SMI/MDIO Interface

	Mechanical Specifications
	Overview
	24.1 Ball Grid Array Package Diagram
	24.2 Package Thermal Specifications
	24.3 Package Thermal Management Requirements
	24.4 Thermal Definitions
	24.5 Heat Sink Selection for CN50XX-BG564

	Signal Descriptions
	Overview
	25.1 DRAM Interface Signals
	25.2 PCI Interface Signals
	25.3 Packet Interface Signals
	25.3.1 GMII Interface Signals
	25.3.2 MII Interface Signals
	25.3.3 RGMII Interface Signals

	25.4 General Purpose I/O (GPIO) Interface Signals
	25.4.1 PCM/TDM Interface Signals
	25.4.2 MPI/SPI Signals

	25.5 Boot-Bus Signals
	25.6 MDIO Interface Signals
	25.7 Two-Wire Serial Interface (TWSI) Signals
	25.8 Clock Signals
	25.9 UART Interface Signals
	25.10 EEPROM Signals
	25.11 eJTAG/JTAG Signals
	25.12 USB Signals
	25.13 Miscellaneous Signals
	25.14 Power/Ground/No Connect Signals

	Ball Assignments
	Overview
	26.1 CN50XX Ball Grid Array
	26.2 CN50XX Signal Mapping
	26.3 CN50XX Signals Sorted in Alphabetical Order
	26.4 CN50XX Balls Sorted in Numerical Order

	Cavium Networks-Specific Core Instructions
	4.1 Core Instructions
	A.1 Cavium Networks-Specific Instruction Descriptions
	Unsigned Byte Add BADDU
	Branch on Bit Clear BBIT0
	Branch on Bit Clear Plus 32 BBIT032
	Branch on Bit Set BBIT1
	Branch on Bit Set Plus 32 BBIT132
	Perform Cache Operation CACHE
	Clear and Insert a Bit Field CINS
	Clear and Insert a Bit Field Plus 32 CINS32
	Load IV from 3DES Unit CVM_MF_3DES_IV
	Load Key from 3DES Unit CVM_MF_3DES_KEY
	Load Key from KASUMI Unit CVM_MF_KAS_KEY
	Load Result from 3DES Unit CVM_MF_3DES_RESULT
	Load Result from KASUMI Unit CVM_MF_KAS_RESULT
	Load INP0 from AES Unit CVM_MF_AES_INP0
	Load IV from AES Unit CVM_MF_AES_IV
	Load Key from AES Unit CVM_MF_AES_KEY
	Load Keylength from AES Unit CVM_MF_AES_KEYLENGTH
	Load Result/Input from AES Unit CVM_MF_AES_RESINP
	Load IV from CRC Unit CVM_MF_CRC_IV
	Load IV from CRC Unit Reflected CVM_MF_CRC_IV_REFLECT
	Load Length from CRC Unit CVM_MF_CRC_LEN
	Load Polynomial from CRC Unit CVM_MF_CRC_POLYNOMIAL
	Load Multiplier from GFM Unit CVM_MF_GFM_MUL
	Load Polynomial from GFM Unit CVM_MF_GFM_POLY
	Load Result/Input from GFM Unit CVM_MF_GFM_RESINP
	Load Data from HSH Unit (narrow mode) CVM_MF_HSH_DAT
	Load Data from HSH Unit (wide mode) CVM_MF_HSH_DATW
	Load IV from HSH Unit (narrow mode) CVM_MF_HSH_IV
	Load IV from HSH Unit (wide mode) CVM_MF_HSH_IVW
	3DES Decrypt CVM_MT_3DES_DEC
	3DES CBC Decrypt CVM_MT_3DES_DEC_CBC
	3DES Encrypt CVM_MT_3DES_ENC
	3DES CBC Encrypt CVM_MT_3DES_ENC_CBC
	Load IV into 3DES Unit CVM_MT_3DES_IV
	Load Key into 3DES Unit CVM_MT_3DES_KEY
	Load Key into KASUMI Unit CVM_MT_KAS_KEY
	Load Result into 3DES Unit CVM_MT_3DES_RESULT
	Load Result into KASUMI Unit CVM_MT_KAS_RESULT
	AES CBC Decrypt (part 1) CVM_MT_AES_DEC_CBC0
	AES CBC Decrypt (part 2) CVM_MT_AES_DEC_CBC1
	AES Decrypt (part 1) CVM_MT_AES_DEC0
	AES Decrypt (part 2) CVM_MT_AES_DEC1
	AES CBC Encrypt (part 1) CVM_MT_AES_ENC_CBC0
	AES CBC Encrypt (part 2) CVM_MT_AES_ENC_CBC1
	AES Encrypt (part 1) CVM_MT_AES_ENC0
	AES Encrypt (part 2) CVM_MT_AES_ENC1
	Load IV into AES Unit CVM_MT_AES_IV
	Load Key into AES Unit CVM_MT_AES_KEY
	Load Key Length into AES Unit CVM_MT_AES_KEYLENGTH
	Load Result/Input into AES Unit CVM_MT_AES_RESINP
	CRC for a Byte CVM_MT_CRC_BYTE
	CRC for a Byte Reflected CVM_MT_CRC_BYTE_REFLECT
	CRC for a Double-word CVM_MT_CRC_DWORD
	CRC for a Double-word Reflected CVM_MT_CRC_DWORD_REFLECT
	CRC for a Halfword CVM_MT_CRC_HALF
	CRC for a Halfword Reflected CVM_MT_CRC_HALF_REFLECT
	Load IV into CRC Unit CVM_MT_CRC_IV
	Load IV into CRC Unit Reflected CVM_MT_CRC_IV_REFLECT
	Load Length into CRC Unit CVM_MT_CRC_LEN
	Load Polynomial into CRC Unit CVM_MT_CRC_POLYNOMIAL
	Load Polynomial CVM_MT_CRC_POLYNOMIAL_REFLECT into CRC Unit Reflected
	CRC for Variable Length CVM_MT_CRC_VAR
	CRC for Variable Length Reflected CVM_MT_CRC_VAR_REFLECT
	CRC for a Word CVM_MT_CRC_WORD
	CRC for a Word Reflected CVM_MT_CRC_WORD_REFLECT
	Load Multiplier into GFM Unit CVM_MT_GFM_MUL
	Load Polynomial into GFM Unit CVM_MT_GFM_POLY
	Load Result/Input into GFM Unit CVM_MT_GFM_RESINP
	XOR into GFM Unit CVM_MT_GFM_XOR0
	XOR and GF Multiply CVM_MT_GFM_XORMUL1
	Load Data into HSH Unit (narrow mode) CVM_MT_HSH_DAT
	Load Data into HSH Unit (wide mode) CVM_MT_HSH_DATW
	Load IV into HSH Unit (narrow mode) CVM_MT_HSH_IV
	Load IV into HSH Unit (wide mode) CVM_MT_HSH_IVW
	MD5 Hash CVM_MT_HSH_STARTMD5
	SHA-1 Hash CVM_MT_HSH_STARTSHA
	SHA-256 Hash CVM_MT_HSH_STARTSHA256
	SHA-512 Hash CVM_MT_HSH_STARTSHA512
	KASUMI Encrypt CVM_MT_KAS_ENC
	KASUMI CBC Encrypt CVM_MT_KAS_ENC_CBC
	Multiply Doubleword to GPR DMUL
	Count Ones in a Doubleword DPOP
	Extract a Signed Bit Field EXTS
	Extract a Signed Bit Field Plus 32 EXTS32
	Load Multiplier Register MPL0 MTM0
	Load Multiplier Register MPL1 MTM1
	Load Multiplier Register MPL2 MTM2
	Load Multiplier Register P0 MTP0
	Load Multiplier Register P1 MTP1
	Load Multiplier Register P2 MTP2
	Count Ones in a Word POP
	Prefetch PREF
	Read Hardware Register RDHWR
	Store Atomic Add Word SAA
	Store Atomic Add Double Word SAAD
	Set on Equal SEQ
	Set on Equal Immediate SEQI
	Set on Not Equal SNE
	Set on Not Equal Immediate SNEI
	Synchronize IOBDMAs SYNCIOBDMA
	Synchronize Special SYNCS
	Synchronize Stores SYNCW
	Synchronize Stores Special SYNCWS
	Unaligned Load Doubleword ULD
	Unaligned Load Word ULW
	Unaligned Store Doubleword USD
	Unaligned Store Word USW
	192-bit ° 64-bit Unsigned Multiply and Add V3MULU
	64-bit Unsigned Multiply and Add Move VMM0
	64-bit Unsigned Multiply and Add VMULU

	Ordering Information
	Glossary
	Index

