
ROCTEON
Programmer’s Guide

The Fundamentals

www.caviumnetworks.com

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

OCTEON®
Programmer’s Guide

The Fundamentals

Contents of this document are subject to change without notice.

Part Number: CN_OCTEON_PRG_GUIDE_Vol1A

Cavium Networks Proprietary and Confidential DO NOT COPY

June 2009

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

OCTEON Programmer’s Guide

OCTEON®
Programmer’s Guide

The Fundamentals

June Curtis

Published by Cavium Networks
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

PUBLISHED BY
Cavium Networks
805 East Middlefield Road
Mountain View, CA 94043
Phone: 650-623-7000
Fax: 650-625-9751
Email: sales@caviumnetworks.com
Web: http://www.caviumnetworks.com/
© 2005-2009 by Cavium Networks
All rights reserved.

No part of this manual may be reproduced in any form, or transmitted by any means, without the written permission of
Cavium Networks.

Cavium Networks makes no warranty about the use of its products, and reserves the right to change this document at
any time, without notice. Whereas great care has been taken in the preparation of this manual, Cavium Networks, the
publisher, and the author assumes no responsibility for errors or omissions.

The data and illustrations found in this document are not binding. We reserve the right to modify our products in line
with our policy of continuous product improvement. The information in this document is subject to change without
notice and should not be construed as a commitment by Cavium Networks, Inc.

OCTEON® and NITROX® are registered trademarks of Cavium Networks. MIPS®, MIPS64®, and MIPS32® are
registered trademarks of MIPS Technologies. cnMIPS® is a registered trademark of MIPS Technologies; Cavium
Networks is a licensee of cnMIPS. CompactFlash™ is a registered trademark of SanDisk Corporation in the United
States. RLDRAM® II is a registered trademark of Micron Technology, Inc. PCI Express®, PCIe®, and PCI-X® are
registered trademarks of PCI-SIG. Linux® is a registered trademark of Linus Torvalds. RapidIO® is a registered
trademark of the RapidIO Trade Association. All other trademarks or service marks referred to in this manual are the
property of their respective owners.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

OCTEON Programmer’s Guide

Preface

About This Book
This volume of the OCTEON® Programmer’s Guide provides fundamental information needed by
software engineers to develop code to run on the OCTEON processor.

This volume contains the following chapters:

1. Introduction
2. Packet Flow
3. Software Overview
4. SDK Tutorial
5. Software Debugging Tutorial
6. OCTEON Application Performance Tuning Whitepaper
7. Glossary

The appendices relevant to a chapter are not collected at the end of the book, but instead are
included with the corresponding chapter.

The chapters should be read in order, except for the appendices. Each chapter builds on
information provided in the previous chapter.

If you have any suggestions for improvements or amendments, or believe you have found errors in
this publication, please notify us at oct-prog-guide@caviumnetworks.com.

The following sections briefly introduce the contents of the OCTEON Programmer’s Guide,
Volume 1.

Chapter 1: Introduction
This chapter provides an overview of Cavium Network’s OCTEON® processor family, and
introduces key features provided by its members.

This chapter also provides a brief discussion of the advantages of some of the OCTEON
processor’s key features:

• Integrated hardware accelerators
• Per-core Security Coprocessors
• On-chip interconnects
• Special Cavium Networks-specific instructions
• Cache hierarchy

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY v

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

mailto:oct-prog-guide@caviumnetworks.com

 OCTEON Programmer’s Guide

Chapter 2: Packet Flow
This chapter provides a detailed description of how the packet-management units offload and
cooperate with the cores to accelerate packet flow through the OCTEON processor. This chapter
includes details on how the Scheduling/Synchronization/and Order (SSO) Unit off loads the cores.

This chapter is divided the following sections:

• Packet Flow Overview: A typical packet flow (packet received, processed, transmitted)
will be discussed, showing how the different functional blocks work together to create
reliable, fast packet processing.

• Special Hardware Features to Accelerate Packet Processing: The key packet-management
hardware acceleration features are discussed:
1. management of packet classification and priority
2. buffer management
3. packet-linked locks
4. management of packet order

• The Schedule / Synchronization / Order (SSO) Unit: The Schedule / Synchronization /
Order Unit (SSO) is introduced. The SSO provides essential capabilities which are unique
to the OCTEON processor; the SSO is the “heart” of OCTEON. Because of the SSO’s
importance, the rest of this chapter introduces its hardware acceleration features, and
describes how software may take advantage of them.

 Chapter 3: Software Overview
This chapter provides an overview of the OCTEON processor’s software-related topics, including
software architecture, multicore issues, scaling, and memory management.

The chapter introduces the following topics:

• cnMIPS® cores
• Simple Executive API (HAL)
• Different runtime environment choices
• Software architecture issues
• Application Binary Interfaces (ABIs) supported
• Tools: Cross-Development and Native Toolchains
• Physical Address Map and Caching on the OCTEON processor
• Virtual Memory
• Bootmem Global Memory
• Shared memory
• Bootloader
• Software Development Kit (SDK) code conventions

Throughout the chapter relevant SDK documents are referenced to help the reader find more
detailed information.

vi Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

OCTEON Programmer’s Guide

Chapter 4: SDK Tutorial
This chapter introduces the Software Development Kit (SDK) from a hands-on perspective,
provides a tour of the installed SDK, and also contains useful information for users new to
embedded software development or new to Linux®.

This chapter is designed to augment the SDK documentation by providing a high-level view of the
SDK and step-by-step instructions from installing the SDK to running example code on an
evaluation board.

The hands-on sections in this tutorial are:

• System Administration Tasks
• Connect the Development Target
• Viewing the Target Board Console Output
• Gather Key Hardware Information
• Install the SDK
• Tour the Installed SDK
• Build and Run a SE-S Application (hello)
• Run hello on Multiple Cores
• Build and Run Linux
• Run a SE-UM Example (named-block)
• Run linux-filter as a SE-S Application (Hybrid System)
• Run linux-filter as a Linux SE-UM Application
• Run linux-filter as a SE-UM Application on Multiple Cores
• Creating a Custom Application

Chapter 5: Software Debugging Tutorial
This chapter provides information and hands-on steps to help users get started with embedded
software debugging using GDB, including:

• hardware configuration
• debugging both standalone and PCI development targets
• multicore debugging

The hands-on sections in this tutorial are:

• Debug a SE-S Application: hello
• Debug the Linux Kernel
• Debug a SE-UM Application: named-block
• Debugging a SE-S Application on the OCTEON Simulator
• Debugging Linux on the OCTEON Simulator
• Building vmlinux to Run on the Simulator
• Running Linux User-Mode Applications on the Simulator

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY vii

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

About OCTEON Application Performance Tuning Whitepaper
This whitepaper provides information on how to optimize software performance by taking
advantage of the OCTEON processor’s unique features.

This whitepaper describes common areas where changes can bring big performance improvements.
Many of the performance improvement techniques presented in this document are industry-
standard; others take advantage of Cavium Networks-specific hardware acceleration.

This whitepaper addresses both designing for high performance, and post-development
performance tuning. Both single core and multiple-core (scaling) issues are discussed.

Performance tuning issues are separated into four sections:
1. Software Architecture for High Performance
2. Tuning the Minimum Set of Cores
3. Tuning Multicore Applications (Scaling)
4. Linux-Specific Tuning

Within each section, performance tuning choices are presented from the easiest to most difficult to
implement.

Information is also provided on performance evaluation tools.

Performance tuning is both an art and a science. This whitepaper does not attempt to cover all the
possibilities, only some of the more common ones.

Glossary
The glossary contains terms defined in this volume. Some common industry terms are also
provided for convenience.

Softcopy of Chapters
OCTEON Programmer’s Guide chapters are also available at the Cavium Networks support site at
https:/support.caviumnetworks.com/.

Where to Get More Information
Other resources include the extensive documentation supplied with the SDK, the Hardware
Reference Manual (HRM), whitepapers and application notes. All of these are available at the
support site at https://support.caviumnetworks.com/. As new OCTEON Programmer’s Guide
chapters are published, they are made available at the support site.

MIPS® Architecture manuals are available from: http://www.mips.com/. The key manuals are:

• MIPS64® Architecture for Programmers Volume I: Introduction to the MIPS64®
Architecture

• MIPS64® Architecture for Programmers Volume II: The MIPS64® Instruction Set
• MIPS64® Architecture for Programmers Volume III: The MIPS64® Privileged Resource

Architecture

There are two excellent MIPS guides written by Dominic Sweetman. See MIPS Run Linux is
currently the newer of the two books.

viii Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

https://support.caviumnetworks.com/
https://support.caviumnetworks.com/
http://www.mips.com/

OCTEON Programmer’s Guide

Sweetman, Dominic, See MIPS Run, ISBN-10: 1558604103; ISBN-13: 978-1558604100
Sweetman, Dominic, See MIPS Run Linux, ISBN-10: 0120884216; ISBN-13: 978-0120884216

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic is used for document names, new terms, special terms such as root, comments

in code, notes in tables and figures, and for emphasis
Constant Width is used for code, commands, contents of files, file names, and directory names
Italic Bold is used for notes in text
Constant Bold is used to indicate what to type on the command line, and for commands used

in figures

System is used for keyboard keys

Acknowledgments
Several key people from the Cavium Networks team contributed to this book, including
representatives from hardware engineering, software engineering, architecture, technical marketing
engineering, applications engineering, marketing, and sales.

Because of their efforts, each chapter provides experience, depth, and perspective which are not
available to one person alone.

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY ix

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

x Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

OCTEON Programmer’s Guide

Summary Table of Contents

Preface ...

Chapter 1: Introduction

... v

1 Introduction ... 1-2
2 Introducing the OCTEON Processor Family .. 1-2
3 Hardware-Acceleration Units ... 1-8
4 Packet-Management Accelerators .. 1-9
5 Per-Core Security Coprocessors ... 1-12
6 On-Chip Interconnects .. 1-12
7 Special Cavium Networks-Specific Instructions .. 1-16
8 Cache Hierarchy
9 Summary ...

Chapter 2: Packet Flow

.. 1-17

.. 1-18

1 Introduction ... 2-4
2 Packet Flow Overview .. 2-4
3 Hardware Features to Accelerate Packet Process
4 The Schedule / Synchronization / Order (SSO) U

Chapter 3: Software Overview

ing .. 2-15
nit .. 2-17

1 Introduction ... 3-8
2 Introducing cnMIPS (Cavium Networks MIPS) .. 3-9
3 Introducing the Simple Executive API ... 3-10
4 Runtime Environment Choices for cnMIPS Cores ... 3-13
5 Combinations of Runtime Environments on One Chip .. 3-21
6 Software Architecture ... 3-36
7 Application Binary Interface (ABI) .. 3-62
8 Tools ... 3-66
9 Physical Address Map and Caching on the OCTEON Processor 3-70
10 Virtual Memory .. 3-76
11 Allocating and Using Bootmem Global Memory ... 3-94
12 Accessing Bootmem Global Memory (Buffers) ... 3-102

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY i

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

13 Accessing I/O Space ... 3-107
14 Simple Executive Standalone (SE-S) Memory Model ... 3-108
15 Linux Memory Model ... 3-117
16 Downloading and Booting the ELF File ... 3-129
17 SDK Code Conventions .. 3-
18 Bootloader Historical Information .. 3-

Chapter 4: Software Development Kit (SDK) Tutorial

140
145

1 Introduction ... 4-8
2 Overview ... 4-11
3 Hardware and Software Requirements ... 4-11
4 Hands-on: System Administration Tasks .. 4-14
5 Hands-on: Connect the Development Target .. 4-15
6 Hands-on: Viewing the Target Board Console Output .. 4-19
7 Hands-on: Gather Key Hardware Information .. 4-24
8 Hands-on: Install the SDK ... 4-25
9 Hands-on: Tour the Installed SDK .. 4-32
10 About Building Example Applications ... 4-49
11 Hands-on: Build and Run a SE-S Application (hello) ... 4-54
12 Hands-on: Run hello on Multiple Cores .. 4-67
13 About the Bootloader .. 4-69
14 About Downloading the Application .. 4-73
15 About Booting SE-S Applications .. 4-76
16 About Building Linux ... 4-77
17 Hands-on: Build and Run Linux .. 4-84
18 Hands-on: Run a SE-UM Example (named-block) ... 4-88
19 About the linux-filter Example ... 4-88
20 Hands-on: Run linux-filter as a SE-S Application (Hybrid System) 4-92
21 Hands-on: Run linux-filter as a Linux SE-UM Application 4-98
22 Hands-on: Run linux-filter as a SE-UM Application on Multiple Cores 4-103
23 Hands-on: Creating a Custom Application .. 4-104
24 The Hardware Simulator ... 4-108
25 Appendix A: Introduction to Available Products .. 4-115
26 Appendix B: Linux Basics ... 4-120
27 Appendix C: About the RPM Utility ... 4-126
28 Appendix D: Other Useful Tools ... 4-130
29 Appendix E: U-Boot Commands Quick Reference Guide .. 4-131
30 Appendix F: ELF File Boot Commands Quick Reference .. 4-133
31 Appendix G: Null Modem Serial Cable Information .. 4-135
32 Appendix H: Query EEPROM to get Board Information ... 4-135
33 Appendix I: Updating U-Boot on a Standalone Board .. 4-137
34 Appendix J: TFTP Boot Assistance (tftpboot) .. 4-144
35 Appendix K: Downloading Using the Serial Connection .. 4-148
36 Appendix L: Simple Executive Configuration .. 4-149

ii Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

OCTEON Programmer’s Guide

37 Appendix M: Changing the ABI Used for Linux .. 4-150
38 Appendix N: Contents of the Embedded Root Filesystem .. 4-150
39 Appendix O: Getting Ready to Use a Flash Card .. 4-152
40 Appendix P: Booting an ELF File From a Flash Card .. 4-154
41 Appendix Q: Using the Debian Root Filesystem .. 4-155
42 Appendix R: About oct-pci-console ... 4-157
43 Appendix S: About oct-pci-reset and oct-pci-csr
44 Appendix T: Multiple Embedded Root Filesystem Builds
45 Appendix U: How to Find the Process’s Core Number

Chapter 5: Software Debugging Tutorial

................................ 4-158

................................ 4-159

................................ 4-161

1 Introduction ... 5-6
2 Getting Started Debugging ... 5-7
3 Building Applications and the Linux Kernel for Debugging ... 5-18
4 Debugging Applications in the Embedded Root Filesystem .. 5-20
5 Hands-On: Debug a SE-S Application: hello .. 5-22
6 About Debugging SE-S Applications or the Linux Kernel .. 5-29
7 Hands-On: Debug the Linux Kernel .. 5-48
8 About Debugging the Linux Kernel ... 5-58
9 Hands-On: Debug a SE-UM Application: named-block ... 5-59
10 About Linux User-Mode Application Debugging .. 5-66
11 EJTAG (Run-Control) Tools .. 5-71
12 About Debugging on the OCTEON Simulator ... 5-72
13 Appendix A: Common GDB Commands .. 5-84
14 Appendix B: Connecting Using a Terminal Server ... 5-86
15 Appendix C: How to Simplify the Command Lines ... 5-88
16 Appendix D: Graphical Debugger ... 5-89
17 Appendix E: Core Files ... 5-90
18 Appendix F: The oct-debug Script ... 5
19 Appendix G: Debian and the Cavium Networks Ethernet Driver 5

Chapter 6: OCTEON Application Performance Tuning
Whitepaper

-94
-95

1 Introduction ... 6-5
2 Performance Tuning Overview ... 6-6
3 Performance Tuning Checklist ... 6-18
4 Hardware Architecture Overview ... 6-20
5 Software Architecture for High Performance ... 6-22
6 Tuning the Minimum Set of Cores ... 6-26
7 Tuning Multi-core Applications (Scaling) .. 6-51
8 Linux-specific Tuning .. 6-56

Glossary ... 7-1

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY iii

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

iv Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-1

Introduction

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF FIGURES .. 1
1 ... 2 Introduction
2 .. 2 Introducing the OCTEON Processor Family

2.1 .. 3 Target Applications
2.2 ... 3 Key Features

3 ... 8 Hardware-Acceleration Units
4 .. 9 Packet-Management Accelerators

4.1 .. 9 Packet Flow, Summarized
4.2 .. 10 The Scheduling/Synchronization and Order Unit (SSO)
4.3 .. 11 Architectural Advantages of Work Groups

5 ... 12 Per-Core Security Coprocessors
6 .. 12 On-Chip Interconnects

6.1 ... 13 The Coherent Memory Bus Interconnect
6.2 .. 14 I/O Interconnect

7 .. 16 Special Cavium Networks-Specific Instructions
8 ... 17 Cache Hierarchy
9 ... 18 Summary

LIST OF FIGURES
Figure 1: The OCTEON and OCTEON Plus Processor Overview ... 7
Figure 2: Packet Data Movement Over I/O Buses .. 15

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

1 Introduction
This chapter provides an overview of Cavium Network’s OCTEON® processor family, and
introduces key features provided by its members.

This chapter also provides a brief discussion of the advantages of some of the OCTEON
processor’s key features:

• Integrated hardware accelerators
• Per-core Security Coprocessors
• On-chip interconnects
• Special Cavium Networks-specific instructions
• Cache hierarchy

Note: Throughout this chapter, OCTEON model-specific hardware components are marked with
an asterisk (*). See the Hardware Reference Manual (HRM) for your specific part number for
more details.

2 Introducing the OCTEON Processor Family
The OCTEON family consists of three generations of software-compatible, highly integrated
multicore products: OCTEON®, OCTEON® Plus and OCTEON® II (CN3XXX, CN5XXX, and
CN6XXX, respectively). These processors are optimized to provide high-performance, high-
bandwidth, and low power consumption.

The OCTEON processor can be used for control-plane applications, data-plane applications, or a
hybrid of both. The OCTEON processor is an ideal solution for intelligent networking, wireless,
and storage applications from 100 Mbps to 40 Gbps.

All OCTEON products share the same architecture, which enables software compatibility across
the entire family. Individual OCTEON products vary and scale based on the:

• Number of integrated cnMIPS® cores
• Frequency of the cores and the internal interconnects
• Type and number of integrated I/O interfaces
• Type and number of integrated hardware acceleration units
• Size and associativity of the caches

Each OCTEON product offers a feature set which is optimized for the specific functionality and
performance needs of the target applications. Software written for one OCTEON model will run
on another OCTEON model as long as the required features are available.

Cavium Networks is actively engaged in adding new features and enhancements to the OCTEON
family. For more information on the latest additions and the future roadmap, contact your Cavium
Networks sales representative.

1-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-3

2.1 Target Applications
The OCTEON processors are used in a wide variety of OEM equipment. Some examples include
routers, switches, unified threat management (UTM) appliances, content-aware switches,
application-aware gateways, triple-play broadband gateways, WLAN access and aggregation
devices, 3G, WiMAX and LTE basestation and core network equipments, storage networking
equipment, storage systems, servers, and intelligent network adapters.

2.2 Key Features
This section provides a brief overview of key OCTEON features. Because the OCTEON II models
are in development as this chapter is being written, some of the features listed are subject to
change.

Note: Features which are optional are marked with an asterisk (*).

Up to 32 cores, up to 1.5 GHz: The OCTEON family of multicore processors supports up to 32
cnMIPS cores with speeds ranging from 300 MHz to 1.5 GHz.

• The OCTEON and OCTEON Plus models have from 1 to 16 cores, at speeds ranging from
300 MHz to 800 MHz.

• The OCTEON II models have up to 32 cores, with speeds up to 1.5 GHz.

Hardware Acceleration Units: Multiple hardware acceleration units are integrated into each
OCTEON processor. These hardware acceleration units offload the cores, reducing software
overhead and complexity. These acceleration units include:

• Packet-management accelerators
• Security accelerators
• Application accelerators
• Specialized accelerators

Dedicated DMA Engines: Dedicated DMA Engines are provided for each hardware unit which
accesses memory. Additional memory-to-PCI PCIe®/PCI/PCI-X DMA Engines are present in
some models.

High-Speed Interconnects: The hardware units and the cores are connected by high-speed
interconnects. These interconnects run at the same frequency as the cores. Each interconnect is a
collection of multiple buses with extensive pipelining and sophisticated hardware arbitration logic.
The width and placement of the buses are optimized to streamline packet data flow, eliminating
potential bottlenecks. Some of the OCTEON II models include a cross-bar hyper-connect to scale
up to 32 cores and higher.

Industry-Standard Toolchains and Operating Systems: Industry-standard toolchains (GCC, GDB)
and operating systems (including SMP Linux) have been modified to utilize the OCTEON
processor’s multiple cores, hardware acceleration units, and special Cavium Networks-specific
instructions. Users can easily write C/C++ code, and can re-use legacy software. Programs written
for MIPS64 and MIPS32 ISA are inherently supported.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

Flexible Software Architecture: The hardware architecture allows flexible software architecture
design, including the ability to group cores as desired to add more performance where it is needed.
A common configuration is data-plane plus control-plane. In this configuration, one group of cores
runs a data-plane application; another group of cores runs SMP Linux or another general-purpose
operating system to provide the control-plane functionality. If needed, cores can be added to the
data-plane, resulting in linear performance scaling.

Streamlined Software Development: Software development complexity is minimized by hardware
acceleration units, flexible software architecture, standard MIPS64 ISA, and industry-standard
toolchains and operating systems. A Cavium Networks Software Development Kit (SDK) is
provided. The SDK includes the GNU C/C++ compiler and other development tools, C-language
Application Programmer’s Interfaces (APIs) to the hardware units, a simple executive which can
run code on the cores without any operating system, and Cavium Networks SMP Linux. Optional
software packages are available to support more complex features.

Packet-management Acceleration: Packet receive/transmit is automated by software-configurable
packet-management accelerators. Accelerations include:

• Packet data buffers are automatically allocated and freed
• Layer-2 through layer-4 packet header parsing, exception checks and checksum calculation
• Up to 7-tuple flow classification with VLAN stacking support
• Packet data is automatically stored in L2/DRAM on ingress
• Packet ordering and scheduling is automatically managed by hardware without requiring

explicit software locking
• Packet data transmission is managed by a hardware accelerator

TCP/UDP Acceleration: TCP/UDP acceleration features include:

• Packet-management accelerations
• Automated packet header checking on receive
• Automated TCP/UDP checksum generation on transmit
• Timer Unit supports efficient implementation of TCP retransmission

1-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-5

Per-Core Security Hardware Acceleration*: Common security algorithms are accelerated by
optional per-core Security Engines. (See the HRM for a complete list of hardware accelerated
algorithms.) In the following list, a double asterisk (**) denotes security algorithms which are not
present in all Security Engines. The hardware accelerated algorithms include:

• Large multiply-and-accumulate unit for fast modular exponentiation needed for RSA and
Diffie-Hellman operations

• Security hash algorithms:
o MD5, SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512, AES XCBC HMAC

• Symmetric cryptographic algorithms:
o 3DES and DES in ECB and CBC modes
o AES in CBC, ECB, CTR, LRW, ICM, XTS, GCM, and CCM modes
o RC4
o KASUMI** (OCTEON Plus, OCTEON II)
o SNOW 3G** (OCTEON II)
o SMS4** (OCTEON II)

• Asymmetric key operations:
o RSA, DSA, DH

• TKIP Operations: TKIP
• Galois field multiplication (used in both security, such as SNOW 3G, and RAID

calculations)

Per-Core CRC Engines: CRC generation is accelerated by the per-core CRC Engines:

• Hardware CRC calculation (up to 32 bits): For example, CRC10 accelerates AAL2 and
CRC32 accelerates AAL5 protocol processing.

• CRC hardware also accelerates ROHC (Robust Header Compression) protocol processing
and iSCSI checksum calculation/verification.

FIPS Certification Support: Other features which facilitate high-level FIPS (Federal Information
Processing Standards) certification include:

• NIST-certified algorithms
• A cryptographically secure Random Number Generator (RNG) hardware unit. This unit

has been designed to handle upcoming FIPS standards.
• Secure on-chip memory* for security keys which cannot be accessed through I/O interfaces
• A pin for zeroing out all the stored keys
• Restricted PCI host access

Storage Application Acceleration: Storage applications are accelerated by:

• RAID Engine*: RAID/XOR Acceleration for RAID 5 and RAID 6
• Per-core Security Engines*
• Galois field multiplication (per-core security acceleration) can also be used for RAID

calculations.
• De-duplication acceleration

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

Other architectural features include the following list (optional features are marked with an asterisk
(*)):

• MIPS64 release 2 integer Instruction Set Architecture (ISA)
• Additional Cavium Networks-specific instructions, enhancing the MIPS core to create the

cnMIPS core. Most of these instructions are automatically generated by the C/C++
compiler.

• Dual-issue ALU with additional security acceleration coprocessor units. Combining two
instruction issues together with additional security units, it is possible for more than two
operations to be simultaneously executing in a given cycle.

• A cache hierarchy including:
o L2 cache with ECC protection, ranging from 256 KB to 2 MB (OCTEON II: up to 4

MB), shared by the cores and I/O subsystem
o L1 instruction cache (Icache) with parity protection, 32 KB (OCTEON II: up to 37

KB), per core
o L1 data cache (Dcache) with parity protection, 8 KB to 16 KB (OCTEON II: up to

32 KB), per core
• A 32-entry to 64-entry TLB (OCTEON II: up to 128-entry) which supports:

o variable page sizes from 4K to 256 MB
o read and execute inhibit per-page options (used to protect against overflow attacks

and malicious code)
• Memory options include:

o DDR2 from DDR2-400 up to DDR2-800 for OCTEON and OCTEON Plus
o DDR3 up to DDR3-1600 for OCTEON II

• Per-core Write Buffer with aggressive write combining, reducing unnecessary traffic on the
buses by limiting the number of writes to memory

• Industry-standard I/O Interfaces: XAUI*, SPI-4.2*, PCIe*, PCI/PCI-X*, SGMII*,
RGMII*, GMII*, MII*, (OCTEON II: serial RapidIO®* (sRIO), and Interlaken*)

• Support for NOR and NAND* flash
• Boot from NOR flash (CN52XX supports boot from NAND)
• Misc I/O Including: UARTs, USB 2.0* (including PHY), TDM/PCM*, TWSI,

SMI/MDIO, MII*, Boot Bus, GPIOs, LEDs
• PCIe/PCI/PCI-X DMA Engines* to DMA to/from PCI host memory or from memory to

memory
• Pattern Memory Controller*: used to connect pattern memory to the cores and to the

Pattern Matching and Regular Expression Engine.

The following figure shows the OCTEON processor’s on-chip hardware units in an idealized way
because it shows all of the model-specific hardware components in one superset. The OCTEON II
processor features are not included in this diagram. The OCTEON II processors will contain many
of the features shown in the figure below, and will also contain new and enhanced features.

1-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-7

Figure 1: The OCTEON and OCTEON Plus Processor Overview
OCTEON® and OCTEON® Plus Architecture Superset

On-Chip Hardware Units

TCP/IP Acceleration
Block

Up to 16 Cores

Simplified Packet
Interface Block
(XAUI*, SPI-4.2*,

PCIe*, PCI/PCI-X*,
SGMII*, RGMII*,

GMII*, MII*)

PKI: Packet Input
Block

FPA: Free Pool
Allocator: Buffer

management

SSO: Schedule/
Synchronization

/Order

IPD:
Input

Packet
Data

PIP:
Packet
Input

Processor

PKO: Packet Output
Unit

IOB:
I/O Bridge

Interface
RX Port

Interface
TX Port

DRAM

Bus KEY
Buses without
arrows are full
duplex.
Buses with only
one arrow are
uni-directional.

Packet Input
(Packet-
Management Accel.)

Schedule /
Synchronization /
Order (Packet-
Management Accel.)

Core Processing

Packet Output
(Packet-
Management Accel.)

Memory

Pseudo blocks

Controllers

L2 Cache Controller
(L2C)

L2
CACHE

DRAM
Controller

(LMC)

Pattern Matching and Regular
Expression Engine* (DFA): Pattern

matching, content inspection, regular
expressions

RNG: Random
Number Generator

KEY*: Key Memory
(Secure Vault)

TIM: Timer Unit

ZIP*: Compression /
Decompression Unit

FAU: Fetch and
Add Unit

PCI DMA Engines*

IOBI and
IOBO

CORE

L1 Dcache

L1 Icache

Write Buffers

Security Co-
processor*

MIO: UARTs, USB*,
TDM/PCM*, TWSI,
SMI/MDIO, MII*,
Boot Bus, GPIOs,

LEDs

Pattern
Memory

Application
Accelerators

Security
Accelerators

Specialized
Accelerators

CMB

Miscellaneous I/O

PCI DMA (DMA to/
from PCI host
memory)

Note: OCTEON model-specific hardware components are marked with an asterisk (*).

IP
D

B

P
K

O
B

POB

Receive

Transmit

Pattern
Memory

Controller*

Color/Pattern KEY

MIPS64r2
integer

RAID Engine*

I/O Bridge

FPA (Packet
Management,
Application Accel.)

CRC Engine

PCIe / PCI /PCI-X
CTL*

IOBI /
IOBO

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

3 Hardware-Acceleration Units
Hardware-acceleration units are divided into groups for this discussion:

• Packet-management accelerators
• Security accelerators
• Application accelerators
• Specialized accelerators

Packet-Management Accelerators:

• SSO Unit – Schedule/Synchronization and Order Unit: This unit manages packet
scheduling and ordering.

• FPA Unit – Free Pool Allocator Unit: This unit manages pools of free buffers, including
Packet Data buffers.

• PIP Unit – Packet Input Processor Unit: This unit works with IPD to manage packet input.
• IPD Unit – Input Packet Data Unit: This unit works with PIP to manage packet input.
• PKO Unit – Packet Output Unit: This unit manages packet output.

Security Accelerators:

• RNG Unit – Random Number Generator
• KEY* Unit: This unit provides and manages secure on-chip memory which can be used to

store a hardware key, and can be reset using an external pin.
• Per-Core Security Coprocessor* (Security Engine): This unit is a special coprocessor used

to accelerate security algorithms. There is one Security Coprocessor per core.

Application Accelerators:

• Pattern Matching and Regular Expression Engine*: This unit is used to perform string
matching. The unit has different names on different OCTEON models, for example
Deterministic Finite Automata (DFA). Users store rules in the attached pattern memory. In
the OCTEON II and the NITROX® deep packet inspection (dpi) products, the pattern
matching accelerators have been enhanced to include non-deterministic finite automata
(NFA) functionality. Using NFA results in up to 4 times higher performance, support for
very complex expressions, and significantly lower pattern memory requirements.

• ZIP Engine*: This unit is a compression/decompression engine which provides DEFLATE
compression/decompression as defined in RFC 1951, ALDER32 checksum for ZLIB as
defined in RFC 1950, CRC32 checksum for GZIP as defined in RFC 1952.

• RAID Engine*: This unit provides RAID/XOR Acceleration for RAID 5 and RAID 6.
• Per-Core CRC Engine: This unit is used to accelerate CRC generation.
• FPA Unit – Free Pool Allocator Unit: This unit manages pools of free buffers, including

Packet Data buffers. It can be used as a general buffer manager, not only as a Packet Data
buffer manager.

Specialized Accelerators:

• FAU – Fetch and Add Unit: This unit is used to add a number to a memory location, and
can be used to manage counters.

• TIM – Timer Unit: This unit provides timers, which can be used for TCP timeouts as well
as other more general purposes.

1-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-9

All of these hardware units offload work, freeing the cores to focus on essential packet processing.

Note: Hardware versus software CRC and hashing are discussed in more detail in the OCTEON
Application Performance Tuning Whitepaper.

4 Packet-Management Accelerators
The packet-management accelerators automatically handle an enormous amount of packet
processing, offloading the cores from many time-consuming responsibilities. These hardware units
are responsible for packet receive, buffering, buffer management, flow classification, QoS (Quality
of Service), and transmit processing. All of these functions are highly configurable (at per virtual
port granularity), and can be customized using software to access the configuration registers.

Packet-management accelerators manage the following functions, without assistance from the
cores.

• Manage list of free packet data and other buffers. (FPA)
• Packet receive and transmit through networking or PCI type interfaces
• Automatic packet data buffer allocation and freeing, and buffer management
• Layer-2 through layer-4 packet header parsing, exception checks and checksum calculation
• Up to 7-tuple flow classification with VLAN stacking support
• Congestion avoidance option, based on multi-priority RED algorithm
• Packet ordering and scheduling is automatically managed by hardware without requiring

explicit software locking
• Traffic management with strict priority and/or weighted round-robin scheduling for packet

transmit
• 8 levels of hardware-managed QoS for the input ports
• Up to 16 levels of hardware-managed QoS for each output port

4.1 Packet Flow, Summarized
The PIP and IPD units work together to receive a packet and perform early processing on it. Each
packet is represented as “work” for the cores to do, and is represented by a Work Queue Entry
(WQE) data structure.

The PIP and IPD are responsible for many layer-2 through layer-7 processing requirements such as
exception checks and TCP/UDP checksum verification.

The PIP/IPD hardware units:

1. Verify the IPV4 checksum and payload checksums for TCP and UDP (if applicable).
2. Classify the flow. The QoS and group values are set.
3. Obtain packet data buffers and WQE buffers from the FPA.
4. DMA the packet data into memory using a dedicated bus.
5. Send the WQE to the correct QoS queue in the SSO. The WQE includes the first 96 bytes

of the packet, so the core can begin to work on it immediately after receiving the WQE.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

The PIP/IPD hardware also implements a per-QoS-queue random early discard (RED) algorithm,
and a per-port threshold algorithm. These algorithms allow the PIP/IPD to discard input packets if
necessary.

The SSO is responsible for scheduling the work to cores, and for maintaining the packet ingress
order.

Cores may request work from the SSO either asynchronously (the core continues to do other work
while the instruction completes), or synchronously (the core waits for the instruction to complete).
Typically, cores minimize idle time by requesting the work before it is actually needed.

The PKO is responsible for packet transmission. When packet processing is complete, the core
notifies the PKO that the packet is ready for transmission. The PKO manages transmission
priority.

The PKO:

1. DMAs the packet data from memory into its internal memory over a dedicated bus.
2. Optionally computes TCP and UDP payload checksum and inserts it into the packet’s

header on egress.
3. When the packet is ready to transmit, the PKO sends the packet data from its internal

memory to the output port over a dedicated bus.
4. Optionally frees the packet data buffer back to the FPA after the transmission is complete.

Details on the packet-management accelerators are provided in the Packet Flow chapter, including
a discussion of how they work together to offload the cores.

4.2 The Scheduling/Synchronization and Order Unit (SSO)
The SSO unit enables scalable use of the multiple cores, maximizing parallel processing. It
schedules work for the cores to do based on QoS priority, and work group. The cores are
completely freed of this responsibility. In addition to scheduling, the SSO maintains packet order.
The SSO also provides a locking mechanism to protect critical regions. The principal advantage of
this locking mechanism over spin locks is that the cores continue to work while the SSO manages
locking constraints. It would take considerable software coding and runtime cycles to implement
the SSO’s sophisticated scheduling mechanism in software.

The SSO’s design supports the goal of flexible software architecture. The SSO’s features work
effectively with pipelining, modified pipelining, and run-to-completion software architectures.

Scheduling:

• When cores are ready for more work (packets to process), they request work from the SSO.
The SSO is responsible for scheduling the highest priority work to each core.

• The scheduling algorithm is highly flexible and software tunable, allowing the user to
customize scheduling to optimize application performance.

1-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-11

Synchronization:
• Packets can either be processed in parallel or one at a time. In typical packet processing,

many operations may be done in parallel, increasing application throughput.
• When packet processing requires obtaining a shared resource (for example, a “critical

region” in the code), locked access is needed. The SSO manages this access, offloading
software. After the critical processing completes, the packet is processed in parallel again.
These locks are referred to as packet-linked locks, and are discussed in detail in the Packet
Flow chapter.

• The SSO manages the synchronization of the packets as they move through these
processing phases.

Order:

• Whether the packet is processed in parallel or one at a time, the SSO maintains the packet’s
ingress order so that it may be transmitted in order.

4.3 Architectural Advantages of Work Groups
Each group can have from 0 to all of the cores. Cores can be in more than one group. The number
of cores in each group can easily be changed by software, allowing the application to dynamically
adapt to varying workload requirements. When a core requests more work to do, the SSO will only
schedule work from an appropriate group to the core.

Work groups are used to balance the processing load among the different cores, providing
architectural flexibility. Work groups can be used, for example, to assign a set of cores to run the
data-plane application, and another set of cores to run the control-plane application. The work
group value of a packet is set automatically on ingress, and can be changed by software. If the
data-plane application needs to route a packet to the control-plane application, it simply changes
the packet’s work group value, and sends the work back to the SSO to be rescheduled.

The exact number of work groups depends on the OCTEON model. For example, in CN58XX,
there are up to 16 groups, and there are 16 cores.

This feature provides the following benefits:

• Divide Data Plane and Control Plane Responsibilities: Groups can be used to divide cores
into belonging to either the data plane or the control plane. The packet can be routed from
the control plane to the data plane by changing the group value.

• Scaling: Applications can be easily modified to meet different performance targets by
using OCTEON models with different numbers of cores. Cores are simply added to or
removed from existing work groups.

• Reduce Latency: Tasks that are latency sensitive (must complete quickly) can be assigned
to dedicated cores. Tasks which take longer to complete can be assigned to different cores,
so they cannot cause head-of-line blocking.

• Partition Responsibilities: Users can dedicate certain cores for handling hardware
interrupts, and avoid scheduling long latency tasks on these cores. As a result, interrupt
response latency can be minimized.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

5 Per-Core Security Coprocessors
Each core has a dedicated Security Coprocessor which can be used to accelerate security
applications and hash generation. Once the core issues an instruction to the coprocessor, the core
can continue to do other work while the coprocessor completes the instruction, or the core can wait
for the coprocessor to complete the task.

Because each Security Coprocessor is dedicated to the core, there is no contention for this resource,
increasing the determinism in performing security operations.

There are three primary advantages for integrating these Security Engines into each cnMIPS core:

• Current Industry Trends: Security processing technology is becoming an integral part of all
networking applications and all kinds of networking devices. Every element in a network,
end to end, will become security aware and capable. As a result, cnMIPS cores, with
integrated security acceleration, offer the most flexible and scalable solution for
implementing networking applications.

• Performance: The per-core Security Coprocessors provide optimal performance: there is
no overhead or additional latency required to transfer data to and from the security
acceleration hardware for processing. This is especially critical for smaller packets.

• Flexibility: The OCTEON security acceleration architecture can easily support novel
modes for existing cryptographic algorithms, even modes that have not been defined today.
This support can be added via a software upgrade without any hardware change. For
example, suppose a new mode were invented for using the AES cryptographic algorithm,
that used a different feedback algorithm, or that used a different operation to create the
cyphertext. Such a mode could be easily supported with minor software changes.

6 On-Chip Interconnects
The on-chip interconnects join the different integrated units together. There are two key
interconnects on the OCTEON and OCTEON Plus processors:

1. Coherent Memory Bus (CMB): The CMB connect all of the cnMIPS cores, the L2 cache
controller, and the I/O Bridge. (Note: Although the CMB contains the word “bus”, it is
actually an interconnect which contains several buses, with sophisticated hardware
arbitration.)

2. I/O Interconnect (IOI): The I/O Interconnect connects the remaining on-chip functional
units: the I/O Bridge, hardware acceleration units, miscellaneous units such as the PCI
DMA Engine, and the I/O interfaces.

The I/O Bridge is used to join the two interconnects.

The bulk of the data traveling on the interconnects is packet data, so the interconnects are
optimized to handle packet data efficiently.

1-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-13

The interconnects are designed to:
• Maximize performance
• Support linear scaling when cores are added
• Deliver low-latency, high-determinism data transfers
• Minimize power consumption

Key features of the interconnect architecture include:

• The topology of the buses is carefully designed to align with packet processing flow,
optimizing the movement of packet data among the various on-chip units.

• The split transaction and highly pipelined buses optimize bandwidth utilization, and avoid
unnecessary over-provisioning.

• The data transfer latency is minimized and data transfer latency determinism is maximized
as a result of focused connection of only the relevant data producers and consumers on each
interconnect. (In some instances there are direct connections between the producer and
consumer.)

• The bandwidth provisioning for each of the buses in the CMB or I/O interconnect is
optimized based on the type of data transfers that the bus is responsible for in the packet
processing flow.

• The interconnect architecture is scaled to best serve the number of cores on each OCTEON
model.

The overall power consumption is minimized because:

• The optimized topology of the overall interconnect structure minimizes the paths and
distance that data travels.

• The focused bandwidth provisioning avoids unnecessary over-provisioning of bandwidth.

See the HRM for details.

6.1 The Coherent Memory Bus Interconnect
The CMB interconnect is a collection of buses which connect all the cnMIPS cores, the L2 cache
controller (L2C), and the I/O Bridge (IOB). (Note: The information in this section is for the
OCTEON, OCTEON Plus, and some of the OCTEON II models. Some of the higher core count
OCTEON II models will have a different interconnect architecture, which includes a cross-bar
hyper-connect to scale up to 32 cores and higher.)

The CMB consists of several split-transaction, and highly pipelined buses. The data buses in the
CMB are designed to meet the needs of the most demanding applications, and are over-provisioned
for scalability to 16-cores and higher. The details of the CMB vary with the OCTEON model.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

6.2 I/O Interconnect
The I/O interconnect connects the various on-chip functional units: the I/O Bridge, hardware
acceleration units, miscellaneous units such as the PCI DMA Engine, and the I/O interfaces.

The I/O subsystem is connected together through a number of split-transaction and highly
pipelined buses that run at core frequency. These buses together comprise a vast amount of
bandwidth provisioned for internal data transfer. The exact buses and width vary depending on the
OCTEON model.

The following figure shows an example of packet input and output using buses in the I/O
interconnect. The following buses are used to transfer packet data:
Receive:

• IOBI – I/O Bus for Input: The IOBI carries the packet data from the input port to the IPD.
• IPDB – IPD Bus: Dedicated for DMA transfers from the IPD to L2 cache/DRAM.

Transmit:
• PKOB – PKO Bus: Dedicated for DMA transfers from L2 cache/DRAM to the PKO’s

internal memory.
• POB – Packet Output Bus: Dedicated for transfers from the PKO’s internal memory to the

output port(s).

1-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-15

Figure 2: Packet Data Movement Over I/O Buses
Packet Data Movement Over I/O Buses

Simplified Packet
Interface Block

(XAUI, PCIe, SPI-4.2,
PCI/PCI-X, SGMII,
RGMII, GMII, MII,

sRIO)

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

PKO – Packet Output
Unit

IOB – I/O Bridge

Interface
RX Port

Interface
TX Port

POB

IOBI
IOBO

1

IP
D

B

P
K

O
B

3

2

4

Most of the data traffic on the I/O interconnects is packet data. The I/O interconnect
topology is carefully designed to optimize the flow of packet data:
Receive:
1. Receive packet data goes directly from the input interface to the IPD on the IOBI
(the IPD is a second sink on the bus).
2. The IPD DMAs the packet data to L2 Cache/Memory via a dedicated IPDB.

Transmit:
3. The PKO DMAs the packet data from L2Cache/Memory to its internal memory on
the dedicated PKOB.
4. The PKO sends the packet data from its internal memory to the output port on the
dedicated POB.

DRAM

L2 Cache Controller
(L2C)

L2
CACHE

DRAM
Controller

(LMC)

CMB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide IN
T

R
O

D
U

C
T

IO
N

7 Special Cavium Networks-Specific Instructions
Cavium Networks has added to the MIPS64 release 2 instruction set. The following list highlights
some of the added instructions, but is not meant to be a complete list. For a complete list, see the
HRM.

Note that the GNU C/C++ compilers supplied with the Cavium Networks SDK automatically
generate most of these instructions. By re-compiling existing applications, users can automatically
take advantage of these special instructions. Many instructions are also available through provided
APIs.

Added instructions include:

• Bit field processing, extraction, and bit test branch instructions: MIPS64 release 2 provides
a few bit-granularity instructions. Cavium Networks provides additional bit-granularity
instructions. These instructions are used extensively in packet processing.

• Multiple instructions for controlling memory order: The MIPS64 ISA has a SYNC
instruction for controlling memory order. Cavium Networks added several variations
which provide finer memory order control for higher performance.

• Prefetch: The MIPS64 ISA provides a prefetch instruction which is used to load data to
both L2 and L1 cache before it is actually needed. When the data is needed, it is already
present, preventing the core from stalling while the data is fetched. Cavium Networks
added prefetch instructions which allow the cores to:

o prefetch data to L1 cache, bypassing the L2 cache (used to save space in the L2
cache, preventing eviction of cache blocks which are still needed)

o prefetch to L2 cache without prefetching to L1 cache (used to prefetch data which
will be needed by a different core than the requesting core)

• True unaligned loads and stores: The cnMIPS architecture processes unaligned data
accesses without software intervention. In a traditional RISC processor core, unaligned
data accesses result in an exception that the operating system needs to handle, significantly
impacting system performance. The ability to process unaligned data also eases software
reuse from legacy systems where unaligned data is allowed, saving the time and effort
finding and fixing unaligned accesses.

• Atomic add to memory locations*: This instruction is used to atomically add a value to the
value stored in a memory location. This instruction can be used to implement of large
number of statistics counters in memory without explicit software locking. This instruction
is not implemented in all OCTEON models.

• 32-bit, 64-bit population count: Population count instructions are used to determine
number of bits that are set in a 32-bit or 64-bit piece of data. Population counts are useful
in networking applications. For example, packet queues are typically managed as bit-masks
with a set bit indicating that the corresponding queue is non-empty. Population count
instructions can then determine the number of non-empty queues with a single instruction.

1-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

IN
T

R
O

D
U

C
T

IO
N

 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 1-17

8 Cache Hierarchy
The OCTEON processor architecture offers the optimal caching policy for multi-core solutions,
where efficient and low latency data sharing is critical to the overall performance.

The OCTEON processor cache hierarchy includes:

• Per-core L1 data cache
• Per-core L1 instruction cache
• Shared L2 cache (shared by all cnMIPS cores and the I/O sub-system)

The L1 data cache implements a hybrid write-through, write-back policy (using a write-buffer
mechanism). The L2 cache implements a write-back policy.

The OCTEON processor architecture also offers many innovative cache-related features, including:

• Don’t Write Back (DWB): The OCTEON processor provides the option not to write back
selective data to L2/DRAM, to avoid unnecessary L2 data writes to memory. For example,
the packet data in L2 cache can be discarded after the packet is transmitted; there is no need
to store the data to L2/DRAM. In a conventional L2 cache design, all dirty data is written
back to memory. This feature allows the user to tune the system to conserve memory
bandwidth and power.

• L2 Cache Way Partitioning: The L2 cache ways can be partitioned among the cnMIPS
cores and the I/O sub-system. This OCTEON feature enables intelligent management of
the L2 cache to minimize cache pollution and the resulting loss of performance.

• Flexible Control of Data Movement: The OCTEON processor provides flexible control of
moving data among the L2 cache, main memory, application acceleration engines, and I/O
sub-system. For example, the OCTEON processor can be configured to automatically send:

o the received packet header to the L2 cache
o the packet data to main memory, bypassing the L2 cache

• Data Prefetch Instructions: The OCTEON processor provides multiple prefetch instructions
to move data into L1 and/or L2 caches prior to the application needing the data. These
instructions are used to avoid cache misses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

1-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

IN
T

R
O

C
T

IO
N

D

U 9 Summary
The OCTEON family of processors is highly optimized to achieve the highest performance per
dollar and per Watt for a wide variety of networking, security, wireless, and storage applications.
The OCTEON processor can be used for control-plane applications, data-plane applications, or a
hybrid of both.

The OCTEON and OCTEON Plus processors have been designed into products from a significant
majority of tier-1 OEM customers. They have delivered market-leading performance, along with
low cost points and dramatically reduced power consumption.

Key features of the OCTEON family include:

• Custom-designed dual issue MIPS64 release 2 cores, with additional innovative Cavium
Networks instructions added for improved performance.

• Linear scalability from 1 to 32 cores to provide the widest range of performance, power,
and price options, while providing full software compatibility.

• Extensive integrated hardware acceleration units to dramatically improve overall
application performance and automatically load-balance and synchronize processing.

• High-speed interconnects along with powerful DMA Engines, which are designed to
optimize the flow of packet data through the OCTEON processor.

• Integrated I/O interfaces and memory controllers, which enable reduced bill of materials
(BOM) cost and smaller form-factor designs.

• Simple software architecture based on standard C/C++ code, GNU toolchains, industry-
standard operating systems, and optimized software stacks.

Software development complexity is minimized by hardware acceleration units, flexible software
architecture, standard MIPS64, industry-standard toolchains and operating systems, packet-linked
locks, and built-in scaling support.

OCTEON processors provide a proven, industry-leading solution for embedded developers looking
to achieve fastest time-to-market with leading product performance and features.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-1

Packet Flow

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 3
LIST OF FIGURES .. 3
1 Introduction ... 4
2 Packet Flow Overview .. 4
3 Hardware Features to Accelerate Packet Processing .. 15

3.1 Hardware Management of Packet Classification and Priority .. 15
3.2 Hardware Management of Buffer Pools: The Free Pool Allocator (FPA) Unit 15

3.2.1 Allocating a Buffer ... 16
3.2.2 Freeing a Buffer .. 16

3.3 Hardware Management of Packet-Linked Locks ... 16
3.4 Hardware Management of Packet Order .. 17

4 The Schedule / Synchronization / Order (SSO) Unit .. 17
4.1 Phase 1: Packet Input ... 18

4.1.1 Ingress Order .. 18
4.1.2 Packet Data Buffer .. 18
4.1.3 5-Tuple .. 18
4.1.4 Flow .. 20
4.1.5 Tuple Hash Value ... 20
4.1.6 Tag Value, First Tag Value .. 20
4.1.7 Tag Type (TT), First Tag Type ... 20
4.1.8 Tag Tuple .. 20
4.1.9 ORDERED Tag Type: Parallel Processing ... 20
4.1.10 ATOMIC Tag Type: Serialized Processing: Accessing Critical Regions 21
4.1.11 NULL Tag Type: Unordered, Not Serialized, Not Synchronized 21
4.1.12 Quality of Service (QoS) Value .. 22
4.1.13 Group (Grp) .. 22
4.1.14 Work Queue Entry (WQE) ... 22
4.1.15 The add_work Operation ... 23
4.1.16 QoS Input Queues ... 23
4.1.17 Phase 1 Summary: .. 24

4.2 Phase 2: SSO Schedules New Work to the Core ... 24
4.2.1 SSO Work Descriptors ... 25
4.2.2 Cached Input Queues and Overflow Input Queues .. 25
4.2.3 The get_work Operation ... 26

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.2.4 Core State Descriptor .. 27
4.2.5 Scheduled .. 28
4.2.6 Descheduled .. 30
4.2.7 In-Flight .. 30
4.2.8 Tag Tuple .. 30
4.2.9 In-Flight Queues ... 30
4.2.10 ORDERED Tag Type: Parallel Processing ... 33
4.2.11 ATOMIC Tag Type: Locking Critical Regions ... 33
4.2.12 NULL Tag Type: Unordered ... 33
4.2.13 Choosing the Next WD to Schedule; Skipping Un-schedulable WD 34
4.2.14 Phase 2 Summary ... 35

4.3 Phase 3: Lock Critical Region: One-at-a-time Access .. 36
4.3.1 The switch_tag Operation (Tag Switch) .. 36
4.3.2 Switch Tag Sequence .. 36
4.3.3 Core’s Switch Complete Bit ... 37
4.3.4 Initial In-Flight Queue .. 38
4.3.5 Target In-Flight Queue ... 38
4.3.6 Tag Switch Processing .. 38

4.3.6.1 Tag Switch Processing Steps .. 38
4.3.6.2 Tag Switch from ORDERED to ATOMIC .. 40
4.3.6.3 Tag Switch from ATOMIC to ORDERED .. 42
4.3.6.4 Tag Switch from ORDERED to ORDERED ... 42

4.3.7 Phase 3 Summary ... 43
4.4 Phase 4: Unlock Critical Region and Resume Parallel Processing 44
4.5 Phase 5: Packet Output .. 44

4.5.1 PKO Output Ports ... 44
4.5.2 PKO Output Queues ... 44
4.5.3 PKO Output Queue to Port Mapping .. 45
4.5.4 Selecting the PKO Output Queue ... 45
4.5.5 Freeing the WQE Buffer ... 45
4.5.6 Locking the PKO Output Queue ... 46
4.5.7 Transmitting Packets in Ingress Order ... 46
4.5.8 Writing to the Output Queue, then Freeing the Lock ... 46
4.5.9 Freeing the Work Descriptor and Releasing the Lock .. 46
4.5.10 PKO DMAs the packet to the TX Port ... 46
4.5.11 Freeing the Packet Data Buffer ... 46
4.5.12 Phase 5 Summary ... 47

4.6 Workflow Model: One Flow ... 47
4.7 Workflow Model: Multiple Flows ... 48
4.8 Summary ... 48

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-3

LIST OF TABLES
Table 1: ORDERED, ATOMIC, and NULL Tag Types: Example Use .. 22
Table 2: Example Packet Processing Phases ... 51

LIST OF FIGURES
Figure 1: Packet Flow Diagram Part 1: PACKET INPUT ... 6
Figure 2: Packet Flow Diagram Part 2: SSO AND CORE PROCESSING 7
Figure 3: Packet Flow Diagram Part 3: PACKET OUTPUT ... 8
Figure 4: Steps 1 and 2 Shown in Detail ... 9
Figure 5: Steps 3 and 4 Shown in Detail ... 10
Figure 6: Steps 5 and 6 Shown in Detail ... 11
Figure 7: Steps 7 and 8 Shown in Detail ... 12
Figure 8: Steps 9 and 10 Shown in Detail ... 13
Figure 9: Steps 11 and 12 Shown in Detail ... 14
Figure 10: The 5-Tuple Fields in IPv4 TCP/IP Header ... 19
Figure 11: The First Two Words of the Work Queue Entry .. 22
Figure 12: The add_work Operation .. 23
Figure 13: Simplified View of SSO Input Queues .. 24
Figure 14: Simplified View of the Work Descriptor Data Structure ... 25
Figure 15: Simplified View of Cached Input Queues and Overflow Input Queues 26
Figure 16: The get_work Operation .. 27
Figure 17: Simplified View of the Core State Descriptor Data Structure 28
Figure 18: Core State Descriptors Shown as Scheduled and Unscheduled 29
Figure 19: Data Structures After a Successful get_work Operation ... 29
Figure 20: In-Flight Queues ... 31
Figure 21: Core State Descriptor: Scheduled ... 32
Figure 22: ORDERED Tag Types Execute in Parallel, ATOMIC Tag Types Wait for the Lock .. 34
Figure 23: Un-Schedulable Work Descriptors: ORDERED versus ATOMIC Tag Types 35
Figure 24: The Core’s Switch Complete Bit ... 38
Figure 25: Tag Switch from ORDERED to ATOMIC .. 41
Figure 26: Tag Switch from ORDERED to ORDERED ... 43
Figure 27: PKO Output Queues and Output Ports... 45
Figure 28: ATOMIC Tag Used to Guarantee Transmission in Ingress Order 47
Figure 29: Packet Processing Phases and Sequential Tag Switch Operations 50

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

1 Introduction
The OCTEON processor contains several functional blocks which work together to manage packet
flow through the processor. In this document, the word processor refers to the entire chip, with all
of the different functional hardware blocks including all of the cores on the chip.

This chapter is divided into several parts:

• In Section 2 – “Packet Flow Overvie”, a typical packet flow (packet received,
processed, transmitted) is discussed, showing how the different functional blocks work
together to create reliable, fast packet processing.

• In Section 3 – “Hardware Features to Accelerate Packet Processing”, key hardware
acceleration features are discussed:
1) hardware management of packet classification and priority
2) hardware buffer management
3) hardware packet-linked locks
4) hardware management of packet order

• In Section 4 – “The Schedule / Synchronization / Order (SSO) Unit”, the Schedule /
Synchronization / Order unit (SSO) is introduced. The SSO provides essential
capabilities which are unique to the OCTEON processor: it is the “heart” of OCTEON.
Because of the SSO’s importance, the rest of this chapter introduces its hardware
acceleration features, and describes how software may take advantage of them. The
SSO unit provides the following key functions:
1) Schedule: Schedules packets to be processed based on Quality of Service (QoS)

priority.
2) Synchronization: Provides hardware support for synchronization by providing

packet-linked locks. These locks can be used to protect critical regions, or serialize
packet transmission in ingress order.

3) Order: Maintains ingress order during all packet processing phases. Ordered
packets may be processed in parallel, but the SSO keeps track of their ingress order.
When they switch to a different processing phase, or request a packet-linked lock,
the switch processing is done based on ingress order.

Note: In this document the core means software running on any or all of the multiple cores
available on your processor model.

Note: It is intended that this chapter is read in order, because the information presented
throughout chapter will increase in complexity. The concepts presented in this chapter are
used throughout the book. Understanding the material in this chapter is essential to
understanding other chapters in the book.

2 Packet Flow Overview
This section introduces the key functional blocks on the OCTEON processor as used in packet
processing, and how a packet moves through the processor.

The figures on the following pages illustrate the packet flow through an OCTEON processor.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-5

The first three figures are an overview of the packet flow. After these figure, the packet flow is
detailed in a series of separate figures. Both the overview and detailed views cover the same
material, but the buses involved are easier to see in detailed views.

There are two pseudo blocks shown in these figures: the “Simplified Packet Interface Pseudo
Block” and the “Packet Input (PKI) Pseudo Block”. These two pseudo blocks are included in the
drawing to help the reader understand the various functions on the OCTEON processor.

• The Simplified Packet Interface pseudo block is a generic representation of the receive
(RX) or transmit (TX) functions of any of several interfaces which can be used to
receive packets. A packet interface can be any of: XAUI, PCIe, SPI-4.2, PCI/PCI-X,
SGMII, RGMII, GMII, or MII, etc. All of these interfaces can send packets to the
Packet Input Block. (Note: MII is only used as a packet interface on older OCTEON
processors). The Packet Interface pseudo block has been greatly simplified and
contains only two sub-blocks marked “Interface TX Port” and “Interface RX Port”.

• The Packet Input pseudo block consists of two blocks: the Packet Input Processor
(PIP), and the Input Packet Data (IPD) block. This pseudo block receives and pre-
processes data from the Simplified Packet Interface.

The packet flow is shown in three different parts in the following three figures.

1. Packet Input
2. SSO and Core Processing
3. Packet Output

Note: These drawings show a simplified view of packet flow. In an actual system, many activities
happen in parallel. For instance, the IPD prefetches buffers and the core prefetches packets while
still processing the current packet. There are many special performance features which are not
detailed in this chapter.

Note: These drawings assume the packet is not dropped due to configurable settings for Random
Early Dropping (RED), or packet error. In RED, packets may be dropped at ingress if internal
buffers are approaching full.

Note: The pointers referred to in this document contain physical addresses. Software
Development Kit (SDK) functions such as cvmx_pow_work_request_sync() convert
physical addresses to virtual addresses as needed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 1: Packet Flow Diagram Part 1: PACKET INPUT

I/O Buses
IPDB = IPD Bus, PKOB = PKO Bus, POB = Packet Output Bus
The I/O Bus consists of two buses: IOBI (input) and IOBO (output). Received packet data goes directly
from Interface RX to IPD on IOBI without going through IOB. (IPD is a second sink on the bus.)

Simplified Packet
Interface Block

(XAUI, SPI-4.2, PCIe,
PCI/PCI-X, SGMII,

RGMII, GMII, or MII)

PKI – Packet Input
Block

CORE

FPA – Free
Pool

Allocator
Unit

SSO - Schedule/
Synchronization

/Order

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

PKO – Packet Output
Unit

IOB – I/O Bridge

Interface
RX Port

IOBI /
IOBO

Interface
TX Port

L2/DRAM

6
4

0
-b

it
 C

o
h

e
re

n
t

M
e
m

o
ry

 B
u

s
(C

M
B
) IP
D

B

P
K

O
B

To Other
Devices

1. After the Interface Rx Port receives the packet and checks it for errors, it passes the packet to the
Input Packet Data (IPD) Unit (via the IOBI). The IPD shares the data with the Packet Input Processor
(PIP). These two units work together to process the input packet.
2. After the PIP performs the packet parsing, including any checks configured by software, it computes
the data needed by the IPD for the Work Queue Entry (WQE) Fields (work flow and QoS).

3. If IPD does not drop the packet (RED), it allocates a WQE Buffer and Packet Data Buffer from the
Free Pool Allocator (FPA) Unit. (The FPA manages the free buffers.)

4. The IPD writes the WQE fields to the WQE Buffer, and writes the packet data to the Packet Data
Buffer in L2/DRAM (DMA via IPDB).
5. The IPD performs the add_work operation to add the WQE Pointer to the appropriate QoS queue in
the Schedule Synchronization Order (SSO) Unit.

3
3

4
(v

ia
 IP

D
B)

4
(v

ia
 IP

DB)

5

POB

1 (IOBI directly to IPD)

Packet Input

Color/Pattern KEY

Schedule /
Synchronization
/ Order

Core Processing

Packet Output

FPA

Pseudo-
blocks

I/O Bridge

Memory

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-7

Figure 2: Packet Flow Diagram Part 2: SSO AND CORE PROCESSING

Simplified Packet
Interface Block

(XAUI, SPI-4.2, PCIe,
PCI/PCI-X, SGMII,

RGMII, GMII, or MII)

PKI – Packet Input
Block

CORE

FPA – Free
Pool

Allocator
Unit

SSO - Schedule/
Synchronization

/Order

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

PKO – Packet Output
Unit

IOB – I/O Bridge

Interface
RX Port

IOBI /
IOBO

Interface
TX Port

L2/DRAM

6
4

0
-b

it
 C

o
h

e
re

n
t

M
e
m

o
ry

 B
u

s
(C

M
B
) I P
D

B

P
K

O
B

To Other
Devices

POB

Packet Input

Color/Pattern KEY

Schedule /
Synchronization
/ Order

Core Processing

Packet Output

FPA

Pseudo-
blocks

I/O Bridge

Memory

7

6a

6b

9

8

8. After processing the packet data, the core sends the Packet Data Buffer pointer and the
data offset to the appropriate Packet Output Queue in the Packet Output (PKO) Unit. The
queue’s configuration specifies the output port and packet priority. If needed, the packet is
output in ingress order.

7. The core processes the packet data, reading and writing the packet data in L2/DRAM.

9. The core frees the WQE Buffer back to the FPA.

The SSO schedules the WQE based on QoS priority, ingress order, and current locks for that
flow.

6a,6b. The core performs the get_work operation to get a new WQE pointer from the SSO.
The WQE contains the Packet Data Buffer pointer.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 3: Packet Flow Diagram Part 3: PACKET OUTPUT

6
4

0
-b

it
 C

o
h

e
re

n
t

M
e
m

o
ry

 B
u

s
(C

M
B
) IP
D

B

P
K

O
B

12

The following drawings show the same material as the three above, but display the buses involved
in the transactions. Understanding this information is useful in performance analysis: by
visualizing the exact flow of the data in the processor, it is often possible to anticipate and avoid

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-9

performance problems. Note that the special buses and DMA facilities provided for data transfer
will keep the IOB from becoming overloaded.

Figure 4: Steps 1 and 2 Shown in Detail

Packet
Interface

Block

PKI

CORE

FPA

SSO

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

1. After the Interface Rx Port receives the packet and
checks it for errors, it passes the packet to the Input
Packet Data (IPD) Unit (via the IOBI). The IPD shares
the data with the Packet Input Processor (PIP). These
two units work together to process the input packet.

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

POB

2. After the PIP performs the packet parsing,
including any checks configured by software, it
computes the data needed by the IPD for the Work
Queue Entry (WQE) Fields (work flow and QoS).

PIP sends
data to IPD

IPD

PIP

POB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 5: Steps 3 and 4 Shown in Detail

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

P
K

O
B

To Other
Devices

POB

3. If IPD does not drop the packet (RED), it allocates a
WQE Buffer and Packet Data Buffer from the Free Pool
Allocator Unit (FPA). (The FPA manages the free
buffers.)

4. The IPD writes the WQE fields to the WQE Buffer,
and writes the packet data to the Packet Data Buffer
(DMA via IPDB).

POB

IP
D

B

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-11

Figure 6: Steps 5 and 6 Shown in Detail

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

POB

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

POB

5. The IPD performs the add_work operation add the
WQE Pointer to the appropriate QoS queue in the
Schedule / Synchronization / Order Unit (SSO).

6a,6b. The core performs the get_work operation to
get a new WQE pointer from the SSO. The WQE
contains the Packet Data Buffer pointer.

The SSO schedules the WQE based on QoS priority,
ingress order, and current locks for that flow.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 7: Steps 7 and 8 Shown in Detail

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

POB

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

7. The core processes the packet data, reading and
writing the packet data in L2/DRAM.

8. After processing the packet data, the core sends
the Packet Data Buffer pointer and the data offset to
the appropriate Packet Output Queue in the Packet
Output (PKO) Unit. The queue’s configuration
specifies the output port and packet priority. If
needed, the packet is output in ingress order.

POB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-13

Figure 8: Steps 9 and 10 Shown in Detail

Packet
Interface

Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

I/O Bus

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

POB
Packet

Interface
Block

PKI

CORE

FPA

SSO

IPD

PIP

PKO

IOB

RX
Port

TX
Port

L2/
DRAM

C
M

B

IP
D

B

P
K

O
B

To Other
Devices

10. The PKO DMAs the data from the Packet Data
Buffer in L2/DRAM into its internal memory (via
PKOB).

9. The core frees the WQE Buffer back to the FPA.

POB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 9: Steps 11 and 12 Shown in Detail
C

M
B

IP
D

B

P
K

O
B

C
M

B

IP
D

B

P
K

O
B

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-15

3 Hardware Features to Accelerate Packet Processing
Before going into detail about packet processing, there are several important OCTEON features
which are essential to accelerating packet flow. These are:

1. Hardware management of packet classification and priority
2. Hardware management of buffer pools
3. Hardware management of packet-linked locks
4. Hardware management of packet order

3.1 Hardware Management of Packet Classification and Priority
A key feature of the OCTEON processor is the hardware management of packet classification and
priority.

Hardware classification and prioritization includes:

• Packets entering the processor are classified and given a QoS priority by the PKI, and
then are put into the specified QoS Input Queue in the SSO. The priority of the QoS
Input Queues is highly configurable.

• The core requests a packet from the SSO. The SSO returns the highest priority
schedulable packet available. When the core receives the packet, it is ready to be
processed. The core does not have to inspect packet priority. It also never receives a
packet which is blocked waiting for a lock.

• After packet processing is complete, the core puts the packet on a PKO Output Queue
for transmission. The PKO Output Queues are mapped to specific output ports on the
Packet Interfaces. The priority of the PKO Output Queues is highly configurable.

This hardware processing removes packet flow bottlenecks by allowing cores to immediately work
on packets in parallel, without the need to classify and prioritize the packets first.

This is a simplified view of the hardware management of packet priority. The SSO and other
hardware units provide powerful and flexible scheduling capability. These capabilities are covered
in detail in each hardware unit’s chapter (see OCTEON Programmer’s Guide, Volume 2).

3.2 Hardware Management of Buffer Pools: The Free Pool Allocator
(FPA) Unit

Packet flow is very dependent on memory buffers. The Free Pool Allocator (FPA) unit manages
the memory buffers for the other hardware units on the OCTEON processor.

These buffers are allocated from L2/DRAM at system initialization, and are arranged into up to 8
pools of buffers. Usually each pool contains buffers which are all the same size, and are all used
for the same purpose. For instance, there are separate pools for the two types of buffers which are
introduced below: Packet Data Buffers and Work Queue Entry Buffers.

The size of each pool is limited only by the amount of L2/DRAM allocated for the pool. Ideally,
each pool size is configured carefully so there are always free buffers available.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The FPA chapter (in volume 2) contains details on how the buffers are configured and used, and
provides information which can help prevent common configuration and coding errors.

3.2.1 Allocating a Buffer
A hardware unit, such as the IPD or core, may request buffers from a specific pool in the FPA.
The FPA takes the buffer pointer off the specified pool, and gives the buffer pointer to the
requester. This operation is called allocating a buffer.

Buffers may be pre-allocated from the FPA and stored by the requester until they are needed. This
pre-allocation is used by both the IPD and the core to speed packet processing. The pre-allocation
is asynchronous, leaving the core free to do other processing.

3.2.2 Freeing a Buffer
Many hardware units can return a buffer back to an FPA pool. The FPA takes the buffer pointer
and places it in the specified pool. This FPA operation is called freeing a buffer. Although buffers
may be returned to a pool other than the one from which they came, this is almost always a poor
design. Freeing buffers to the wrong pool is a common software error.

3.3 Hardware Management of Packet-Linked Locks
One of the topics discussed in this chapter is hardware management of locks to protect critical
regions. These locks are not generic locks: they are directly connected to packet processing, so are
referred to as packet-linked locks.

During packet processing, critical regions such as code which reads/modified the TCP/IP control
block, must to be protected with a lock. There is one TCP/IP control block per flow. Access to the
lock must be in packet-ingress-order, not random-order or first-come-first-serve. The hardware
locking facilities are perfect for packet-linked locking.

Hardware packet-linked locking features include:

• Offloads software: Hardware locking improves system efficiency by offloading
software: The SSO is responsible for granting the lock, and figuring out which packet
is next in line for the lock.

• Atomic access: Only one packet at a time is granted the lock.
• Lock is granted in packet ingress order: Often, the critical regions should be locked in

the order packets were received, not the order the lock was requested. The SSO
provides hardware locks which enforce this rule.

• Asynchronous lock acquisition: Another key feature is asynchronous lock acquisition.
The core can request the lock before it is needed, finish up packet processing, and then
check whether the lock has been granted. The core is notified when the lock is granted.

The packet-linked lock is also used to synchronize packet processing.

Note: Because the core can have only one packet assigned to it at a time, it can only hold/request
one packet-linked lock at a time.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-17

The ATOMIC tag type is used to provide packet-linked locks. This type of lock is explained in
detail in Section 4 – “The Schedule / Synchronization / Order (SSO) Unit”.

3.4 Hardware Management of Packet Order
Another key OCTEON feature is hardware management of packet order.

When parallel processing is desired, multiple cores may work simultaneously on multiple packets
from the same flow. When the packets change processing phases, or need access to a hardware
lock, the SSO will force the packets to stay in ingress order. These features are used to maintain
packet order from ingress to egress.

Hardware management of packet order is explained in detail in Section 4 – “The Schedule /
Synchronization / Order (SSO) Unit”.

4 The Schedule / Synchronization / Order (SSO) Unit
The rest of the chapter is an introduction the Schedule / Synchronization / Order (SSO) unit. (Note
that this unit is called “POW (Packet / Order / Work)” in the Hardware Reference Manual.)

The SSO is powerful, flexible, and essential. The information presented in this chapter is
simplified, focusing on those features required to manage packet flow. These key features provide
hardware acceleration to packet processing. Understanding these features is essential to writing
high-performance code. The SSO chapter (in volume 2) will cover the features and SSO
configuration in detail, and depends on this introductory material.

The focus of this discussion is how the SSO’s scheduling functions are used to:

• Prioritize: Guarantee cores work on the highest priority packets available.
• Reduce core stalling: Guarantee the new packet is given to work on is not blocked waiting

for a lock. Support asynchronous operations which allow the cores to stay busy while
hardware manages requests.

• Scale: Allow the cores to work on more than one packet in a flow at the same time
whenever possible. Packets from different flows are always processed in parallel.

• Protect critical regions: only one packet in a flow is allowed to access the critical region at
a time (ATOMIC access).

• Serialize access: Guarantee that critical regions are accessed by all packets in a flow in the
order they were received, not the order the lock was requested, or in random order.

• Maintain ingress order: Guarantee that packets in a flow move through packet processing
phases in the order they were received.

The SSO scheduling functions are implemented by concepts specific to Cavium Networks. The
following simplified example introduces these concepts. This simplified example divides packet
processing into several different phases:

1. Phase 1: Packet Input
2. Phase 2: SSO schedules new work to the core: cores work on packets in parallel
3. Phase 3: Lock critical region: one-at-a-time access
4. Phase 4: Unlock critical region and resume parallel processing

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5. Phase 5: Packet Output

4.1 Phase 1: Packet Input
The PKI block receives the packet from the Packet Interface block, performs header checks and
flow classification, and stores the packet data in L2/DRAM. The PKI block creates a data structure
which contains the information needed by the SSO to manage the scheduling, synchronization, and
ordering of the packet. The PKI block submits the packet information (which includes a pointer to
the data) to the SSO. The SSO will put the packet information onto the selected QoS Input Queue.

The following key concepts and operations are needed to understand this phase of the packet
processing.

4.1.1 Ingress Order
The ingress order is the order that packets from the same flow arrived at the PKI and were
submitted to the SSO.

4.1.2 Packet Data Buffer
The Packet Data Buffer contains the received packet data. The IPD allocates the buffer from the
FPA. (The FPA manages free buffers. The memory for the FPA’s buffer pools is allocated at
system initialization, and the buffers are put into buffer pools at that time.) The IPD then copies
the packet data into the buffer. The buffer is usually freed back to the FPA buffer pool by the PKO
after it reads the packet data into its internal memory.

4.1.3 5-Tuple
5-tuple is a common networking term which refers to classification of a packet by its IP protocol,
IP source address, IP destination address, and (if present) source port and destination port.

For example, Figure 10 – “The 5-Tuple Fields in IPv4 TCP/IP Header” shows the 5-tuple fields for
an IPv4 TCP/IP packet, with the 5-tuple fields highlighted. The sizes of five highlighted fields sum
to 13 bytes of information.

Note: In the following figure, the zero bit is shown on the left. In all other figures in this chapter,
zero is on the right. The figure was drawn this way to match figures in commonly-used networking
reference books.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-19

Figure 10: The 5-Tuple Fields in IPv4 TCP/IP Header

ip_len
total length

ip_v
version

ip_id
identification

ip_ttl
time to live

ip_src
32-bit source IP address

ip_dst
32-bit destination IP address

ip_hl
header
length

ip_tos
type of service

ip_off
flags and fragment offset

ip_p
protocol

ip_sum
IP checksum

options (if any) (if ip_hl >5)

th_dport
16-bit destination port number

th_sport
16-bit source number

th_seq
32-bit sequence number

th_off
4-bit

header
length

th_ack
32-bit acknowlegment number

th_x2
reserved (6 bits)

th_flags
flags

th_win
16-bit window size

th_urp
16-bit urgent offset

th_sum
16-bit TCP checksum

options (if any)

data (if any)

16 310 15

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

OCTEON Programmer’s Guide

2-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

L
O

W

4.1.4 Flow
Flow is a common networking term which refers to a uni-directional collection of packets which
share the same 5-tuple.

4.1.5 Tuple Hash Value
The tuple hash value is commonly used in packet processing. A Cyclic Redundancy Check (CRC)
algorithm is used to reduce the 13-byte 5-tuple to 16 bits. The resultant 16-bit value is referred to
as the tuple hash value. The tuple hash value is used to identify the flow. The PIP is responsible
for reading the packet header and computing the tuple hash value.

4.1.6 Tag Value, First Tag Value
The tag value is a 32-bit number. The first tag value is set by the PIP/IPD when the packet is
received. There are three distinct parts of the first tag value:

• Bits 31-24 are always 0x0
• Bits 23-16 are either the number of the port which received the packet, or all 1s (ones).
• Bits 15-0 are the tuple hash value computed by the PIP.

(In the list above, bit 0 is listed on the right by convention. In the Hardware Reference Manual,
bits 15 to 0 are written as <15:0>.)

In our simplified example, bits 15 to 0 are set to the tuple hash value. The goal is for the first tag
value to uniquely identify a flow. If the first tag value is unique for each flow, the OCTEON
processor can process the different flows in parallel (one flow does not interfere with the other).
All 32 bits of the tag value can be changed by the core to move the packet through different phases
of processing, or to specify the desired Output Queue.

4.1.7 Tag Type (TT), First Tag Type
The tag type is one of: ORDERED, ATOMIC, or NULL. The first tag type is set by the PIP/IPD
when the packet is received. In our example, the first tag type is set to ORDERED, but the first tag
type may be set to any tag type. The ORDERED, ATOMIC, and NULL types are discussed after
the concept of a tag tuple in introduced.

4.1.8 Tag Tuple
The tag tuple is the combination of the tag type and the tag value.

It is very important to know that when software running on the core receives the packet to process,
it can then change the tag tuple to different values to move the packet through processing.

Extensive information is provided later in this chapter about changing tag tuples and how different
tag types affect SSO scheduling.

4.1.9 ORDERED Tag Type: Parallel Processing
Multiple packets from the same flow with an ORDERED tag type may be processed in parallel by
multiple cores. Thus, “ORDERED” does not mean “only one packet at a time”. Allowing multiple

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-21

cores to work on packets from the same flow allows scaling: more cores working on packets in the
same flow results in faster packet throughput.

An example of packets where the ORDERED type is sufficient is UDP packets where ordering is
required, such as streaming media carried over RTP/SRTP. Another example is TCP/IP packets
which are being routed through the processor.

The ORDERED type can also be used during the parts of packet processing which can be done in
parallel.

The special ordering done by ORDERED tag types are explained in more detail later in this
chapter.

4.1.10 ATOMIC Tag Type: Serialized Processing: Accessing Critical
Regions

The ATOMIC tag type is used for locking. Only one packet with the same tag tuple can have the
ATOMIC lock. ATOMIC tag tuple processing is serialized: one-at-a-time in ingress-order.

An example of packets where ATOMIC processing is needed is TCP/IP packets, especially where
this server is the destination. In this case, the tag type is set to ATOMIC on ingress. Since
different flows will have different tag tuples (by definition), the different flows are processed in
parallel. Within the same flow, ATOMIC packets are processed one-at-a-time. New ATOMIC
packets which are waiting for the lock will not be scheduled to cores, so the cores will not be
stalled. The packets are only scheduled to cores when the lock is available.

The core can change the tag type of a packet. If the first tag type is ORDERED (for instance, UDP
packets where ordering is required), the core can request a change in the tag type from ORDERED
to ATOMIC. The SSO will grant the new ATOMIC tag type to requesters one-at-a-time. This
provides the core with a hardware ATOMIC lock to protect critical regions. The new ATOMIC
tag type is granted in ingress-order, not in request-order or random-order. While waiting for the
lock, the packet may remain assigned to the core. The SSO will notify the core when the lock is
granted.

Note: If the first tag type is set to ATOMIC, and the core never switches the tag type to
ORDERED, the packet throughput is slower than for flows with an ORDERED tag type,
since only one packet at a time per flow can be processed. Thus, ATOMIC tag types
should only be used when necessary.

The special ordering done by ATOMIC tag types are explained in more detail later in this chapter.

4.1.11 NULL Tag Type: Unordered, Not Serialized, Not Synchronized
NULL tag types are neither ordered nor serialized: multiple cores can process multiple packets,
and no packet order is maintained by the SSO.

Examples of packets where ordering may not be important include ICMP packets (such as ping
packets), UDP packets where ordering is not required, and non-IP packets.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

This chapter does not go into detail about the NULL tag type. The SSO chapter (in volume 2) will
cover this topic in detail.

Table 1: ORDERED, ATOMIC, and NULL Tag Types: Example Use
Tag Type Example Use

ORDERED Any IP routing: Lookup, Network Address Translation, forward.

UDP packets where ordering is required, such as streaming media
carried over RTP/SRTP.

ATOMIC
TCP/IP packets, especially if this computer is the destination for the
packets.

NULL ICMP packets, for example ping packets.
 UDP packets where ordering is not required.
 Non-IP packets

4.1.12 Quality of Service (QoS) Value
The Quality of Service (QoS) value is a number (0-7) which represents the priority of the packet.
When packets are received, the PIP/IPD computes the QoS number for the packet, and saves the
value in the Work Queue Entry. There is no requirement for 0 or 7 to be the highest priority, and
there is no requirement for the priority to be linear. (In general, priority is configurable. There is
only one exception to this rule: when using the static priority feature for PKO Output Queues, the
lower the queue index, the higher the priority. There is no requirement that the static priority
feature be used.)

4.1.13 Group (Grp)
The group (Grp) field is not used in this simplified example. More detail on this field is provided
in the Software Overview chapter.

4.1.14 Work Queue Entry (WQE)
The Work Queue Entry (WQE) is a data structure which contains the tag type, tag value, QoS
value, group, and a pointer to the Packet Data Buffer. The IPD allocates the WQE Buffer from the
FPA. The PIP/IPD fill in the WQE fields, then sends the WQE pointer to the SSO, using the
add_work operation.

Figure 11: The First Two Words of the Work Queue Entry

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-23

4.1.15 The add_work Operation
The add_work operation is used to send a WQE pointer to the SSO. In this example, the PIP/IPD
calls add_work to add the WQE to the appropriate SSO’s Input Queue.

Figure 12: The add_work Operation

PKI – Packet Input
Block

SSO

IPD

PIP

I / O Bus

4.1.16 QoS Input Queues
The SSO has 8 QoS Input Queues (0-7), one per QoS value. When a new WQE is added to the
SSO, the WQE goes onto the Input Queue which matches its QoS value. When the WQEs are
added to the SSO’s Input Queue, the Next Pointer is used to link them into a list.

Note: This is a simplified view of the SSO’s Input Queues! More detail is provided in
the SSO chapter in Volume 2.

The next figure shows how the WQE field Next Pointer is used to create a linked list of Work
Queue Entries, forming a QoS Input Queue. A SSO QoS Input Queue is also referred to in our
manuals as a work queue.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 13: Simplified View of SSO Input Queues

SSO UNIT

QoS 0 Input Queue

QoS 1 Input Queue

QoS 2 Input Queue

QoS 3 Input Queue

QoS 4 Input Queue

QoS 5 Input Queue

QoS 6 Input Queue

QoS 7 Input Queue

WQE WQE

WQE WQE

WQE

WQE

WQE

WQE

WQE WQE

WQE

WQE WQE

WQE WQE

WQE

WQE

WQE

WQE

add_work(WQE Pointer, QoS=0)

4.1.17 Phase 1 Summary:
In Phase 1, the PIP/IPD:

• receives the packet from the packet interface
• allocates a Packet Data Buffer from the FPA
• stores the data in a Packet Data Buffer
• allocates a Work Queue Entry (WQE) from the FPA
• writes tag value, tag type, QoS, group, and Packet Data Buffer pointer to the WQE
• performs an add_work operation to add the WQE pointer to the SSO, specifying the

target QoS queue

These steps are shown in Figure 1 – “Packet Flow Diagram Part 1: PACKET INPUT”.

4.2 Phase 2: SSO Schedules New Work to the Core
The SSO receives the WQE pointer from the IPD, and adds it to the appropriate QoS queue. The
priorities of the QoS queues are configured at system initialization. When the core requests more
work, the SSO returns a pointer to the highest priority WQE which is schedulable.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-25

The following key concepts and operations are needed to understand this phase of the packet
processing.

4.2.1 SSO Work Descriptors
The SSO contains internal memory. Part of the internal memory has been used to create a limited
number of Work Descriptors. Each Work Descriptor contains the key information needed by the
SSO to schedule the work on a core, and to keep the packets in the correct order. The key fields in
the Work Descriptor are: WQE pointer, tag value, tag type (TT), QoS and group (Grp). (The
group field is not discussed in this example.)

Figure 14: Simplified View of the Work Descriptor Data Structure
WQE Pointer

Next_Descriptor

Prev_Descriptor

Next_TT Next_Tag

Switch Pending

TT

Tag_Value

QoS Grp

Note that software only reads the fields in this data structure when debugging. This internal
information is not usually needed by the programmer.

4.2.2 Cached Input Queues and Overflow Input Queues
The SSO caches the head of each QoS queue in internal memory, one Work Descriptor per WQE.
The portion of the QoS queue which is in internal memory is referred to as the Cached Input
Queue. If there is not enough room in the Cached Input Queues, WQEs are stored in the Overflow
Input Queues, located in DRAM. The Overflow Input Queues consist of WQEs linked together by
their Next Descriptor pointers. Overflow Input Queues only exist if there is not enough room in
the Cached Input Queues. The SSO refills the Cached Input Queues from the Overflow Input
Queues when space becomes available.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 15: Simplified View of Cached Input Queues and Overflow Input
Queues

DRAM

Overflow Input Queues

SSO UNIT

Cached Input Queues

Overflow
Queue 0

Cached
Queue 0

Cached
Queue 1

Cached
Queue 2

Cached
Queue 3

Cached
Queue 4

Cached
Queue 5

Cached
Queue 6

Cached
Queue 7

WQE WQE

Overflow
Queue 1

WQE WQE

Overflow
Queue 2

WQE WQE

Overflow
Queue 3

WQE WQE

Overflow
Queue 4

WQE WQE

Overflow
Queue 5

WQE WQE

Overflow
Queue 6

WQE WQE

Overflow
Queue 7

WQE WQE

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
Next

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

WQP

TT
NULL

Tag Value
QOSGrp

4.2.3 The get_work Operation
The core performs a get_work operation to get another WQE pointer from the SSO. If the
operation is successful, the SSO returns a WQE pointer to the core. The SSO’s scheduler is
responsible for returning the highest priority schedulable WQE to the core.

Note that the Software Development Kit (SDK) provides functions to perform the various
operations. For example, the SDK provides the cvmx_pow_work_request_sync()
function to perform the get_work operation . This function converts the physical address
returned by the get_work operation into a virtual address.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-27

Figure 16: The get_work Operation

4.2.4 Core State Descriptor
Inside the SSO, there is one Core State Descriptor data structure for each core. When the core
performs a successful get_work operation, a Work Descriptor is removed from the Cached Input
Queue and assigned to the core. A pointer to the assigned Work Descriptor is stored in the Core
State Descriptor. The Work Descriptor contains a pointer to the WQE. The get_work operation
returns the WQE pointer to the core.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 17: Simplified View of the Core State Descriptor Data Structure

4.2.5 Scheduled
A Work Descriptor that has been assigned to a core is considered to be scheduled.

In the following figure, the Core State Descriptor is shown in blue. The Work Descriptor is shown
in yellow. When a Work Descriptor has been scheduled to the core, the yellow Work Descriptor is
shown as being inside the blue Core State Descriptor. This image will become useful in a later
figure.

Note: In later figures, the Work Descriptor is shown in different colors; it will not always be
shown in yellow.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-29

Figure 18: Core State Descriptors Shown as Scheduled and Unscheduled
Example:
4 cores

Unscheduled

Scheduled

Scheduled

Scheduled

Figure 19: Data Structures After a Successful get_work Operation

CORE

L2/DRAM

SSO

On In-Flight Queue

Work
Descriptor

Work
Queue
Entry
Buffer
(WQE)

Packet
Data

Buffer

Core State
Descriptor

Core software: WQE
Pointer returned in

response to get_work
operation

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

O
W

OCTEON Programmer’s Guide

2-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

L

4.2.6 Descheduled
The core may perform an operation to deschedule the Work Descriptor, so that the Work
Descriptor is no longer assigned to the core. The SSO will reschedule the work descriptor to the
same or a different core, using the normal scheduling criteria. A descheduled work descriptor
which is runable has a higher priority than a Work Descriptor which has never been scheduled.
Descheduling Work Descriptors can hurt system performance by adding unnecessary processing
steps. Descheduling is not shown in this simplified example. For more information on
descheduling, see the Software Overview chapter and the SSO chapter (in volume 2).

4.2.7 In-Flight
Once a Work Descriptor has been scheduled on a core, it is considered to be in-flight until it is
discarded by a subsequent get_work operation or a switch to the NULL tag type. Descheduled
Work Descriptors are also considered to be in-flight since processing on the associated WQE has
started, but has not completed.

4.2.8 Tag Tuple
The tag tuple was introduced in section 4.1.8.

In Phase 1, the tag type (ORDERED, ATOMIC, or NULL) was defined. The first tag value (a 32-
bit number) was also defined. The first tag value is set by the PKI to the tuple hash value.

The combination of tag type and tag value is a tag tuple.

Software can change the tag tuple values to move packets from the same flow through different
processing phases, including ATOMIC sections when packet-linked locking is needed.

For instance, if the tag type is “ORDERED” and the tag value is “5”, the tag tuple would be
“ORDERED-5”. If the tag type is “ATOMIC” and the tag value is “5”, the tag tuple would be
“ATOMIC-5”. Note that “ORDERED-5” and “ATOMIC-5” are different tag tuples, though in our
simplified example, the packets in both tag tuples belong to the same flow: they have an identical
tag value of “5”.

4.2.9 In-Flight Queues
The In-Flight Queues are internal to the SSO, and maintained by the SSO. They are essential to
maintaining packet order, critical region locks, and packet serialization. (Note: In this discussion,
descheduled in-flight Work Descriptors and in-flight descheduled queues are not discussed.)

When a Work Descriptor is scheduled on a core, it is put onto the In-Flight Queue which
corresponds to its tag tuple. There is one In-Flight Queue per unique tag tuple. Thus, ORDERED-
N and ATOMIC-N (where N is the tag value) are two different In-Flight Queues. Similarly,
ORDERED-N and ORDERED-X are two different In-Flight Queues.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-31

Figure 20: In-Flight Queues

In Flight Queues

Note: The numbers inside the boxes indicate the ingress order of packets in the flow, so “1”
is the first in-flight packet, and “8” is the last in-flight packet from the same flow.

WD 6 is the
head of the

ORDERED-N In-
Flight Queue.

1

Tag Tuple = ORDERED-N
(O-N)6 7 8

WD 1 is the
head of the

ORDERED-X In-
Flight Queue.

Tag Tuple =
ORDERED-X (O-X)

2 3 4

5
WD 5 is the
head of the

ATOMIC-N In-
Flight Queue.

Tag Tuple = ATOMIC-N
(A-N)

The in-flight Work Descriptors are linked together to create the In-Flight Queue: if there are no in-
flight Work Descriptors for a particular tag tuple, there is no In-Flight Queue for that tag tuple.

Packets from the same flow are given the same first tag type and first tag value. As they become
scheduled to cores, they are put onto the same In-Flight Queue. As they move through processing,
the In-Flight Queue they are on may change. The packets from the same flow are kept together,
and in ingress order, as they change In-Flight Queues. The In-Flight Queues correspond to both
the unique flows and the flow’s packet processing phases.

The following figure shows the Core State Descriptors for four cores which have all completed
successful get_work operations.

The scheduled Work Descriptors are now on the appropriate In-Flight Queue. Note that packets
from the same flow are on more than one In-Flight Queue: three packets are on the ORDERED-N
queue and one packet is on the ATOMIC-N queue. (In this simplified example, packets are all in
the same flow if they have the same tag value.)

Also, note that more than one packet from the same flow is in-flight simultaneously. This parallel
processing increases packet throughput.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 21: Core State Descriptor: Scheduled

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-33

4.2.10 ORDERED Tag Type: Parallel Processing
The ORDERED tag type was introduced in section 4.1.9.

In this simplified example, the PIP sets the first tag type to ORDERED. Work Queue Entries with
an ORDERED tag type may be processed in parallel by multiple cores. Thus, “ORDERED” does
not mean “only one packet at a time”. Allowing multiple cores to work on packets from the same
flow allows scaling: more cores working on packets in the same flow results in faster packet
throughput.

The ORDERED tag type means that when a tag switch is requested, the switch will be completed
in ingress order. Tag switches are explained in more detail later in this chapter.

4.2.11 ATOMIC Tag Type: Locking Critical Regions
The ATOMIC tag type was introduced in section 4.1.10.

Only one in-flight packet with the same tag tuple can have the ATOMIC tag type at a time. This is
how packet-linked locks are implemented. The SSO will grant the lock in ingress order, not the
order the request for the ATOMIC tag type was made.

Note: If the first tag type is set to ATOMIC, and the core never switches the tag type to
ORDERED, the packet throughput for an individual flow may be slower than for ORDERED
flows, since only one packet at a time per flow (identical tag tuple) can be processed. The overall
system throughput, however, does not depend on only one flow: if there are 16 ATOMIC flows
and 16 cores, 16 packets are processed simultaneously.

4.2.12 NULL Tag Type: Unordered
The NULL tag type was introduced in section 4.1.11.

A WQE can have a NULL tag type. If it is assigned a NULL tag type on ingress, then the SSO will
assign it on a core, but will not put it in an In-Flight Queue. The NULL tag type means that the
SSO will not keep the packets with the same tag tuple in ingress order. The core may change the
tag type from ORDERED or ATOMIC to NULL.

Examples of packets where ordering may not be important include ping packets and non-IP
packets. The NULL tag type is not used in this example. Switches involving NULL tag types are
discussed in the SSO chapter (in Volume 2).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 22: ORDERED Tag Types Execute in Parallel, ATOMIC Tag Types Wait
for the Lock

4.2.13 Choosing the Next WD to Schedule; Skipping Un-schedulable WD
The SSO’s scheduler is responsible for selecting the next highest priority Work Descriptor which
can run on a core, and scheduling that Work Descriptor on a core which has performed the
get_work operation.

The QoS priorities, combined with other tunable scheduling parameters, work together to set the
priority of a piece of the Work Descriptor.

Regardless of priority, Work Descriptors in the Input Queue which have an ATOMIC tag type may
not be schedulable (are un-schedulable). If earlier packets with the same tag tuple have or want the
ATOMIC lock, the newer packet would have to wait. If this newer packet was assigned to a core,

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-35

the core would be idle waiting for the lock. It is better for the core to stay busy, so the new packet
is un-schedulable at this time.

The un-schedulable Work Descriptors are skipped when the SSO is looking for new Work
Descriptors to assign to the cores. Note that this is a simplified view of the SSO Scheduler. More
details are provided in the SSO chapter (in Volume 2).

Figure 23: Un-Schedulable Work Descriptors: ORDERED versus ATOMIC
Tag Types

4.2.14 Phase 2 Summary
The SSO receives the WQE pointer from the IPD, and adds it to the appropriate QoS queue. The
priorities of the QoS queues are configured at system initialization.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The SSO has internal memory which is used to create Work Descriptors and Core State
Descriptors. The head of each Input Queue is cached in internal memory. The Cached Input
Queue is a linked list of Work Descriptors. If there are not enough Work Descriptors to contain the
entire Input Queue in internal memory, the queue will continue in DRAM as a linked list of WQEs:
the Overflow Input Queue.

When a core performs a successful get_work operation, the SSO scheduling function takes the
highest priority schedulable Work Descriptor off of the highest priority Cached Input Queue and
schedules it to the core. A pointer to the scheduled Work Descriptor is stored in the Core State
Descriptor. The Work Descriptor is put on the appropriate In-Flight Queue. The core receives a
pointer to the WQE.

Work Descriptors which have an ORDERED tag type may be processed in parallel by multiple
cores. Work Descriptors which have an ATOMIC tag type are processed one packet at a time, in
ingress order.

These steps are shown in Figure 2 – “Packet Flow Diagram Part 2: SSO AND CORE
PROCESSING” the step marked “SSO” in the text description, and steps 6a and 6b.

4.3 Phase 3: Lock Critical Region: One-at-a-time Access
Critical regions, such as code which modifies shared data structures, may be protected by using
packet-linked locking, which is implemented by the ATOMIC tag type. When a core needs to
access a critical region, it changes the Work Descriptor’s tag type from ORDERED to ATOMIC.

The following key concepts and operations are needed to understand this part of the packet flow.

4.3.1 The switch_tag Operation (Tag Switch)
A core may perform a switch_tag operation to change the Work Descriptor’s tag type, tag
value, or both. Both may be changed with the same operation. This operation is referred to as a
tag switch.

The core will perform a switch_tag operation from ORDERED to ATOMIC to request a lock
(for instance to lock a critical region). To unlock, the core will perform a switch_tag operation
to a different tag tuple.

The core may also perform a switch_tag operation from ORDERED-N to ORDERED-X, and
other combinations.

4.3.2 Switch Tag Sequence
All the packets from the same flow need to switch tags tuples in the same sequence. For instance,
all packets in the same flow need to switch from ORDERED-5 to ATOMIC-5 to ORDERED-6. If
some packets do not switch tags in the same sequence, the packets may become out of order. If
two steps in packet processing have the same tag tuple, then the packets will become mixed up:
packet processing will not follow distinct processing steps.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-37

Figure 29 – “Packet Processing Phases and Sequential Tag Switch Operations” illustrates the
sequence: one flow moving in order through different processing phases.

4.3.3 Core’s Switch Complete Bit
When the core performs the switch_tag operation, it requests the SSO change the Work
Descriptor’s tag tuple to the new tag tuple. The tag switch does not necessarily complete
immediately. For both the ORDERED and ATOMIC tag types, the packet must become the head
of the initial In-Flight Queue before it can switch. Additionally, when switching to the ATOMIC
tag type, the packet may need to wait for the ATOMIC lock. The switch requirements for
ORDERED and ATOMIC are detailed in the following sections.

The SSO will notify the core when the tag switch is complete.

The Cavium Networks-specific hardware register, 30, contains the status of the switch_tag
request. The RDHWR instruction is used to read this register. Note this register is not the same as
general purpose register 30.

When the core requests a tag switch, the core’s Switch Complete Bit is set to zero. When the tag
switch is complete, the SSO sets the Switch Complete Bit to one.

For example if the core performs a switch_tag operation to an ATOMIC tag type, it must wait
for notification that the switch has completed. When the tag switch has completed, the core has
been granted the ATOMIC lock and may safely access the critical region.

A core can have only one outstanding switch, so only one Switch Complete Bit is required per
core.

The following figure illustrates the Core State Descriptor and the status of the Switch Complete
Bit. In addition to showing the value of the Switch Complete Bit, the color of the scheduled Work
Descriptor has been changed to alert the reader that the switch is incomplete. This illustration is
used in figures later in this chapter. The specific meaning of the Work Descriptor’s color is
explained in the key included with each figure.

In the figure below:

• “X” means that the value is not important: the switch has not yet begun
• “0” means “Switch Pending Completion”, and
• “1” means “Switch Complete”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

OCTEON Programmer’s Guide

2-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 24: The Core’s Switch Complete Bit

O
W

 4.3.4 Initial In-Flight Queue
The initial In-Flight Queue is the In-Flight Queue the Work Descriptor is on when the tag switch
request begins.

4.3.5 Target In-Flight Queue
The target In-Flight Queue is the In-Flight Queue the Work Descriptor is on when the tag switch
request completes. This queue corresponds to the requested tag tuple.

4.3.6 Tag Switch Processing
The tag switch operation has several steps. Each is handled by the SSO. Each step must complete
before the switch is complete.

4.3.6.1 Tag Switch Processing Steps
Between the core’s request to switch tags and the switch completion, there are discrete steps
performed by the SSO. Understanding these steps will provide insight into appropriate use of tag
switches, and the performance benefits and costs.

The tag switch Processing steps are:

1. The core requests a tag switch; the core’s Switch Complete Bit is set to 0 (zero).
2. The Work Descriptor waits to become the head of the initial In-Flight Queue.
3. The Work Descriptor moves to the end of the target In-Flight Queue.
4. The Work Descriptor waits to be granted the target tag type:

A) If the target tag type is ATOMIC: the Work Descriptor waits to become the
head of the target In-Flight Queue.
B) If the target tag type is ORDERED: the switch completes without additional
delay. ORDERED tag types are processed in parallel.

5. After any waits are complete, the tag switch completes. The SSO sets switch complete to 1
(one).

In the following example, the core performs a switch_tag operation on the Work Descriptor
numbered “4” from ORDERED to ATOMIC, without changing the tag value. The numbers inside
the boxes correspond to packet ingress order. Packets 1-4 are all in the same flow. The “N” is a
numeric tag value.

 The steps are:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-39

 Initial State: The Work Descriptor shown with the number “4” has been scheduled to the
core, and is on the In-Flight Queue corresponding to its tag tuple.

In this example, Work Descriptor “4” is on the ORDERED-N (O-N) In-Flight Queue.

Step 1: The core requests a tag switch; the core’s switch complete is set to 0:
The core performs a switch_tag operation. The core’s Switch Complete Bit is set to 0.
Note that the Work Descriptor remains attached to the core during the switch.

0

4

Switch
Pending

Completion

Step 2: The Work Descriptor waits to become the head of the initial In-Flight Queue:
The Work Descriptor requesting the tag switch must wait until it becomes the head of the
initial In-Flight Queue. Once the Work Descriptor is the head of the initial In-Flight
Queue, it can move to the target In-Flight Queue.

In this example, Work Descriptor 4 must wait until it becomes the head of the queue before
moving to the target In-Flight Queue. This process keeps packets in ingress order, and is
part of the Ordering function of the SSO.

Step 3: The Work Descriptor moves to the end of the target In-Flight Queue:
Once the Work Descriptor is the head of the initial In-Flight Queue, the SSO moves it to the
end of the target In-Flight Queue.

In this example, the target In-Flight Queue tag type is ATOMIC, the tag value is N. This is
shown as “A-N”. The Work Descriptor labeled “1” is the head of the “A-N” In-Flight
Queue. This Work Descriptor currently holds the ATOMIC lock. Work Descriptors 2, 3,
and 4 have each performed a switch_tag operation to the new tag tuple “A-N”, and
have, in turn, become the head of the initial In-Flight Queue. They have now successfully
moved to the target In-Flight Queue.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Step 4: The Work Descriptor waits to be granted the target tag type:

A) If the target tag type is ATOMIC: the Work Descriptor waits to become the
head of the target In-Flight Queue.

If the target tag type is ATOMIC, then the Work Descriptor must wait until it is the
head of the target In-Flight Queue. This enforces the rule that each packet accesses
the lock in ingress order. When the Work Descriptor becomes the head of the target
In-Flight Queue, then the SSO grants it the ATOMIC lock and the tag switch is
complete.

B) If the target tag type is ORDERED: the switch completes without
additional delay. ORDERED tag types are processed in parallel.

If the target tag type is ORDERED the tag switch may complete immediately. In
this example, the tag value for the packet four Work Descriptor has been switched
from N to X, where N and X are both numeric tag values. There is no need to wait
to get a lock. ORDERED packets are processed in parallel.

 In this example, the target In-Flight Queue is ORDERED-X (O-X).

Step 5: Switch complete; core’s Switch Complete Bit is set to 1
When the tag switch is complete, the core’s Switch Complete Bit is set to 1 (one). The core
may now access the critical region: it has the lock.

1

Switch
Complete

4

4.3.6.2 Tag Switch from ORDERED to ATOMIC

This operation is used to acquire an ATOMIC lock.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-41

Note that a critical region is usually brief. The amount of time the core will have to wait for the
lock depends on the length of the critical region and the number of waiters. If the wait is 30 cycles
or less, the core can wait for the lock to be granted; there is no performance improvement from
descheduling the work.

The figure below illustrates a tag switch from ORDERED to ATOMIC.

Figure 25: Tag Switch from ORDERED to ATOMIC

Tag Tuple = O-N

WD 2 is the
head of the

initial In-Flight
Queue.

3 4

2. WD 4 is ready for the ATOMIC lock first,
so requests a tag switch from ORDERED
to ATOMIC. WD 4 must wait until it is the
head of the initial In-Flight Queue: 2 and
3 must switch first.

4. WD 2 is ready for the ATOMIC lock, so
requests a tag switch from ORDERED to
ATOMIC. WD 2 is the head of the initial
In-Flight Queue, so may move to the end
of the target In-Flight Queue, but cannot
get the lock because WD 1 has the lock.

5. WD 3 is now able to move to the target
In-Flight Queue, but must wait for the
ATOMIC lock.

2 3 4

3 4

1

1 2

4

1 2 3

1 2 3 4

11

1

Tag Tuple = ORDERED-N
(O-N)2 3 4

1. Work Descriptors (WD) 2,3, and 4 are
all from the same flow. They are being
processed in parallel. WD 1 is in a part of
the processing which requires a lock, so
has an ATOMIC tag. 1

WD 1 is the
head of the

target In-Flight
Queue.

2

31

1

1

1 X

1

Tag Tuple = ATOMIC-N
(A-N)

Tag Tuple = A-N

Tag Tuple = O-N

Tag Tuple = A-N

Tag Tuple = O-N

Tag Tuple = A-N

Tag Tuple = O-N

Tag Tuple = A-N

Tag Tuple = O-N

Tag Tuple = A-N

In-Flight QueuesActions

2 3 4
2

1 X X X

1 X X

1 X

1

1

1

0

0 0

0 0 0

0 0 0

0 0 0

4

4

4

4

3

32

2

2

3

3 4

2

Initial tag tuple

Target tag tuple: ATOMIC

Waiting to become the head of
the ORDERED In-Flight Queue.

KEY

3. WD 3 is ready for the ATOMIC lock
next, so requests a tag switch from
ORDERED to ATOMIC. WD 3 must wait
until it is the head of the initial In-Flight
Queue: 2 must switch first.

6. WD 4 is now able to move to the target
In-Flight Queue, but must wait for the
ATOMIC lock.

Waiting for the ATOMIC lock.

Note: “N” is a numeric tag value. The
numbers in the boxes correspond to

the packet ingress order. Numbers 1-4
are all packets in the same flow.

Note that the figure above does not show the lock being granted. Once the Work Descriptor is on
the target In-Flight Queue, it waits for the ATOMIC lock to be released. The Work Descriptors are
each granted the lock in turn. When the lock is granted, the SSO will set the associated core’s
Switch Complete Bit to “1”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.6.3 Tag Switch from ATOMIC to ORDERED
This operation is used to release an ATOMIC lock. In this case, since only one Work Descriptor
can hold the ATOMIC lock at a time, that descriptor is by definition the head of the initial In-Flight
Queue. When the core performs the switch_tag operation, the Work Descriptor will move
immediately to the target In-Flight Queue. Because the target In-Flight Queue is ORDERED, the
Work Descriptors may be processed in parallel. Thus, the tag switch completes without requiring
the Work Descriptor to be the head of the target In-Flight Queue. The SSO will set the switch
complete bit when the Work Descriptor has completed the tag switch by moving to the target In-
Flight Queue.

Note: If the switch is made from ORDERED to ATOMIC to ORDERED without changing the tag
value, then the packet processing will become mixed up. It is essential that the new tag tuple be
different from the original tag tuple when unlocking the critical region.

4.3.6.4 Tag Switch from ORDERED to ORDERED
This type of tag switch is rarely needed. It would be used, for example, to pipelining packet
processing. Pipelining packet processing is not the highest-performance software design, and is
not required on OCTEON processors. Tag switches are not free: they cost processing cycles,
which can hurt system performance. In addition to the processing cycles, a delay in processing is
introduced when the initial In-Flight Queue is ORDERED because all the prior packets must
switch off the initial In-Flight Queue in order. Unless there is a requirement that all packets
complete processing Phase 2 in order before moving to processing Phase 3, do not use the
ORDERED to ORDERED tag switch.

The tag switch from ORDERED to ORDERED will not wait for a lock on the target In-Flight
Queue, but will require that the Work Descriptor be the head of the initial In-Flight Queue before
the switch may complete. Because of this requirement, the packets will move from one queue to
the next in ingress order, which is part of the Ordering function of the SSO.

The figure below illustrates a tag switch from ORDERED-N to ORDERED-X.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-43

Figure 26: Tag Switch from ORDERED to ORDERED

Tag Tuple = O-N

WD 2 is the
head of the

initial In-Flight
Queue, an
ORDERED

queue.

3 4

2. WD 4 requests a tag switch to Tag
Tuple to O-X. WD 4 must wait until it
becomes the head of the initial In-Flight
Queue (O-N) before it can move to the
target In-Flight Queue (O-X).

3. WD 3 requests a tag switch to tag
tuple to O-X. WD 3 must wait until it
becomes the head of the initial In-Flight
Queue (O-N) before it can move to the
target In-Flight Queue (O-X).

6. WD 4 is now the head of the initial In-
Flight Queue. WD 4 now moves to the
target In-Flight Queue (O-X) without
further delay. Since the new tag type is
ORDERED, the switch completes without
delay.

5. WD 3 is now the head of the initial In-
Flight Queue. WD 3 now moves to the
target In-Flight Queue (O-X) without
further delay. Since the new tag type is
ORDERED, the switch completes
immediately.

2 3 4

3 4

1

1

4

1

1

1

1

Tag Tuple = ORDERED-N (O-N)2 3 4
1. Work Descriptors (WD) 1, 2, 3 and 4,
are all from the same flow. They being
processed in parallel. WD 1 is ready for
the next phase of processing, so
switches tag tuple to ORDERED-X. 1

WD 1 is the
head of the

target In-Flight
Queue: an
ORDERED

queue.

2

31

1 2

1

Y1 X

1

Example: 4 cores

Tag Tuple = ORDERED-X (O-X)

Tag Tuple = O-X

Tag Tuple = O-N

Tag Tuple = O-X

Tag Tuple = O-N

Tag Tuple = O-X

Tag Tuple = O-N

Tag Tuple = O-X

Tag Tuple = O-N

Tag Tuple = O-X

In-Flight QueuesActions

2 3 4
2

1 X X X

1 X X

1 X

1

1

1

0

0 0

1 0 0

1 1 0

1 1 1

4

4

4

4

3

3

2

2 3

2 3 4

2

2

2

3

3 4

4. WD 2 is now the head of the initial In-
Flight Queue. WD 2 now moves to the
target In-Flight Queue (O-X) without
further delay. Since the new tag type is
ATOMIC, the switch completes
immediately.

Initial tag tuple

Target tag tuple

Waiting on initial In-
Flight Queue

Color/Pattern Key Note: “N” and “X” are two different
numeric tag values. The numbers

in the boxes correspond to the
packet ingress order. Numbers 1-4

are all packets in the same flow.

4.3.7 Phase 3 Summary
In order to protect a critical region, the core performs a switch_tag operation from ORDERED
to ATOMIC. The Work Descriptor moves from the initial In-Flight Queue to the target In-Flight
Queue.

Other tag switch types were also discussed in this section, along with the rules for tag switches:

• When the initial In-Flight Queue is ORDERED, the Work Descriptor must become the
head of the queue before it can move.

• When the initial In-Flight Queue is ATOMIC, the work descriptor is already the head.
• The Work Descriptor is moved from head of the initial In-Flight Queue to the tail of the

target In-Flight Queue.
• When the target In-Flight Queue is ORDERED, the switch completes immediately.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

• When the target In-Flight Queue is ATOMIC, the Work Descriptor must become the
head of the queue before the switch can complete.

When the tag switch operation completes, the SSO sets the core’s Switch Complete Bit. The core
then has the ATOMIC lock and may access the critical region.

This phase is not shown or described in Section 2 – “Packet Flow Overvie” because that packet
flow description is simplified.

4.4 Phase 4: Unlock Critical Region and Resume Parallel Processing
To resume parallel processing, the core will perform a switch_tag operation from ATOMIC
back to ORDERED. The tag value must be different than the original ORDERED tag value.
Remember that all packets in the flow must follow the same tag switch sequence or they may not
stay in the correct order.

The information needed to understand this phase was covered in the Phase 3 section.

This phase is not shown or described in Section 2 – “Packet Flow Overvie” because that packet
flow description is simplified.

4.5 Phase 5: Packet Output
When the core is ready to transmit the packet, it sends packet transmission commands to one of the
prioritized PKO Output Queues.

The core uses the SSO’s synchronization and ordering features to select the PKO Output Queue,
lock it, and to guarantee packet transmission commands are sent to the PKO Output Queues in
ingress order. (Note: sending packets to the PKO Output Queues in order is an option, not a
requirement. In this example, packets from the same flow are transmitted in ingress order.)

The PKO will remove the commands from the tail of the PKO Output Queue, read the packet data
from L2/DRAM, and DMA the data to the selected output port. The PKO can optionally notify the
core when the packet is transmitted.

The following information is needed to understand this packet processing phase. More details on
the PKO, including information on its configurable scheduling algorithm, is provided in the PKO
chapter (in Volume 2).

4.5.1 PKO Output Ports
The PKO supports up to 40 PKO Output Ports, depending on the OCTEON model. Different ports
correspond to the different hardware interfaces.

4.5.2 PKO Output Queues
The PKO has up to 256 PKO Output Queues, depending on the OCTEON model. The Output
Queues are mapped to the Output Ports. The Output Queues can have different priorities, which

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-45

are configured at system initialization time. To insure that all packets from the same flow are
transmitted in ingress order, send them all to the same Output Queue.

4.5.3 PKO Output Queue to Port Mapping
Since there are more Output Queues than Output Ports, more than one Output Queue may be
mapped to the same Output Port. The queue-to-port mapping is configured at system initialization
time.

Figure 27: PKO Output Queues and Output Ports
PKO Unit

Up to 256
Output
Queues

Up to 40
Output
Ports

4.5.4 Selecting the PKO Output Queue
Each Output Queue is identified by a unique tag tuple. The tag value which had identified the flow
is now overwritten by a tag value which identifies the selected Output Queue.

4.5.5 Freeing the WQE Buffer
After creating the packet transmission commands, the core may free the WQE Buffer back to the
FPA: it is no longer needed. This may be done before the commands are sent to the Output
Queue.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

OCTEON Programmer’s Guide

2-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

L
O

W

4.5.6 Locking the PKO Output Queue
The core will perform a switch_tag operation to the tag value corresponding to the selected
Output Queue, with tag type set to ATOMIC. This will lock the selected PKO Output Queue.
Each Output Queue is identified by a unique tag value, thus each Output Queue will have its own
lock.

4.5.7 Transmitting Packets in Ingress Order
Packet order is preserved through the packet processing if:

1. only ORDERED or ATOMIC tag types are used during processing (not NULL)
2. all packets in the same flow follow the same tag switch sequence
3. ATOMIC locking is used to guarantee that packets from the same flow are sent to the

Output Queues one-at-a-time
4. all packets from the same flow are sent to the same PKO Output Queue

When the final switch_tag operation to the ATOMIC tag type is performed, the Work
Descriptors are granted the lock in ingress order, thus the packet transmission commands are sent
to the PKO in ingress order.

Note: All packets from the same flow must send their packet transmission commands to the same
Output Queue to guarantee transmission in ingress order. In cases where ingress order is not
important, the packet transmission commands may be sent to multiple Output Queues. In this case,
the destination is responsible for re-assembling the packets into the correct order.

4.5.8 Writing to the Output Queue, then Freeing the Lock
Once the core has been granted the lock, it writes the commands to the Output Queue.

4.5.9 Freeing the Work Descriptor and Releasing the Lock
After the transmission commands have been written to the Output Queue, the core may free the
Work Descriptor and release the packet-linked lock.

The get_work operation will:

1) free the Work Descriptor
2) release the packet-linked lock
3) return a new Work Queue Entry pointer to the core

A switch_tag operation to the NULL tag type will also free the Work Descriptor and release
the packet-linked lock, but will not provide a new WQE pointer.

4.5.10 PKO DMAs the packet to the TX Port
The PKO scheduler will remove the packet transmission commands from the tail of the Output
Queue and DMA the packet data to the selected TX Port.

4.5.11 Freeing the Packet Data Buffer
The PKO will optionally free the Packet Data Buffer back to the FPA.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-47

Figure 28: ATOMIC Tag Used to Guarantee Transmission in Ingress Order

SS
O

 S
ch

ed
u
le

s
p
ac

ke
ts

 b
as

ed
 o

n
 Q

o
S

p
ri

o
ri

ty
,

w
o
rk

 f
lo

w

o
rd

er
,

an
d
 c

u
rr

en
t

lo
ck

s
fo

r
th

at
 f

lo
w

.

4.5.12 Phase 5 Summary
After processing the packet data, the core switches the tag type and tag value. The tag type is set to
ATOMIC; the target tag value corresponds to the selected Output Queue. This operation will lock
the selected Output Queue. When the core has the lock, it sends the packet to the selected PKO
Output Queue, and then releases the lock. The core frees the WQE and Work Descriptor. The
PKO may optionally free the Packet Data Buffer after it reads the packet data into its internal
memory.

If packets must be transmitted in ingress order, they must only be sent to one Output Queue. If
order is not important, they may be sent to multiple Output Queues.

This phase is described in Figure 2 – “Packet Flow Diagram Part 2: SSO AND CORE
PROCESSING” and Figure 3 – “Packet Flow Diagram Part 3: PACKET OUTPUT”.

4.6 Workflow Model: One Flow
Given these tools, it is now possible to control the packet workflow from Receive to Transmit.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In the typical workflow, tag tuples can be used to:
• Separate different flows.
• Keep packets in ingress order.
• Allow packets to be processed in parallel whenever possible.
• Protect critical regions with ATOMIC locks, while maintaining ingress order.
• Select the PKO Output Queue, lock the queue, and send packets to the PKO in ingress

order.

4.7 Workflow Model: Multiple Flows
In this simplified example, only one flow was examined. In the ideal system, each flow has a
unique tag value. Thus, multiple flows are processed in parallel, which is a very high-performance
model. Flows may use independent packet-linked locks (for instance, there is one TCP/IP control
block per flow, each protected by a different lock), or flows may share locks with other flows (for
instance, use a common lock to access a shared PKO Output Queue).

4.8 Summary
The SSO uses tag values and tag types to manage multiple data flows while maintaining packet
ingress order.

Each scheduled WQE has a corresponding Work Descriptor on the SSO’s In-Flight Queue
corresponding to the tag tuple. When the core performs a switch_tag operation, the Work
Descriptor moves in ingress order from the initial In-Flight Queue to the target In-Flight Queue.

By using the ORDERED type, packets may be processed in parallel for high throughput. By using
the ATOMIC type, critical regions are protected by packet-linked locks.

It is critical that all packets in the same flow go through the same tag switch sequence, or the
ingress order will not be maintained.

Tag values and the ATOMIC tag type are used select and lock the PKO Output Queue, and to
ensure the packets in a flow are sent to it in ingress order.

In the simplified example presented in this chapter, the packet processing was divided into five
phases:

Phase 1: Packet Input
The packets in the flow are received in order (ingress order). The PIP/IPD performs header
checks and flow classification. The IPD sets the first tag type and first tag value. In this
example, the first tag type is set to ORDERED. The IPD allocates the needed buffers from
the FPA. The PIP/IPD DMAs the packet data to the Packet Data Buffer in L2/DRAM. The
IPD performs an add_work operation to add the WQE pointer to the SSO’s Input Queue,
based on the QoS value for the Work.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-49

Phase 2: SSO Schedules New Work to the Core
Cores perform a get_work operation to get a Work Queue Entry (WQE) pointer. The
WQE contains a pointer to the packet data. The core works on the packet data until it needs
to lock a critical region, or transmit the packet. Because their first tag type is ORDERED,
the packets can be processed in parallel by multiple cores.

Phase 3: Lock Critical Region: one-at-a-time access
When the core needs to lock a critical region, it performs a switch_tag operation,
changing the tag type to ATOMIC. When the tag switch operation completes, the SSO sets
the core’s Switch Complete Bit. The core then has the ATOMIC lock and may access the
critical region.

Phase 4: Unlock Critical Region and Resume Parallel Processing
When the core needs to unlock a critical region, it performs a switch_tag operation,
changing the tag type to ORDERED, carefully specifying a different tag value than was
used in the original ORDERED tag tuple.

Phase 5: Packet Output
When the packet is ready for transmission, the core performs a switch_tag operation
with tag type set to ATOMIC. The tag value is used to select the target PKO Output
Queue. Once the core has been granted the ATOMIC lock, the core sends packet
transmission commands to the PKO Output Queue. The PKO is responsible for managing
packet priority, and sending the packet to the appropriate port in the packet interface.
Packet order is guaranteed if all packets from the same flow are sent to the same PKO
Output Queue.

The following figure shows an example of packets flowing through packet processing
phases controlled by switch_tag operations. Phase 1 is not shown in this figure.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 29: Packet Processing Phases and Sequential Tag Switch Operations

4

1211

10987

65

sw
it

ch
_t

ag

sw
it

ch
_t

ag

sc
h
ed

u
le

d

Phase 2: ORDERED-N In-Flight
Queue (when work is
scheduled to a core in
response to the core’s
get_work operation.)

Phase 3: ATOMIC-N In-
Flight Queue (core

switches tags to lock a
critical region)

Phase 4: ORDERED-X In-Flight Queue
(unlock critical region: core switches
tags to ORDERED to resume parallel

processing)

321

Phase 5: ATOMIC-Z
In-Flight Queue – core
select and lock PKO
Output Queue: core

switches tags to
ATOMIC with the Tag
Value corresponding
to the selected PKO

output queue

sw
it

ch
_t

ag

T
o
 P

K
O

 O
u
tp

u
t

Q
u
eu

e

ORDERED-N In-Flight Queue

Color/Pattern KEY

ATOMIC-N In-Flight Queue

Waiting for ATOMIC Lock

ORDERED-X In-Flight Queue

ATOMIC-Z In-Flight Queue

In-Flight Queue Head

Pa
ck

et
 P

ro
ce

ss
in

g
 P

h
as

es

Waiting to become the head of the
ORDERED-N In-Flight Queue

Note: The numbers inside the boxes indicate the ingress order of packets in the
flow, so “1” is the first in-flight packet, and “12” is the last in-flight packet from
the same flow. Note that multiple packets from the ORDERED in-flight queue are
being processed by the cores simultaneously. Only one ATOMIC packet from
each ATOMIC in-flight queue (2 packets, in this example) are being processed,
the other packets in the ATOMIC in-flight queues have to wait. N, X, and Z are
different numeric Tag Values.

In the figure below, the simplified example packet processing phases are summarized, and shown
with the associated tag type.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 F

L
O

W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 2-51

Table 2: Example Packet Processing Phases
Phase Description Details Example

Tag Type

Phase 1 Packet Input

The received packet is sent to the PIP/IPD
which allocates needed buffers and DMAs
the data to L2/DRAM. PIP/IPD sets the first
tag type and tag value, and then gives the
work to the SSO to schedule.

ORDERED

Phase 2

SSO schedules new
work to the core:

cores work on packets
from the same flow in

parallel

Cores requests work to do. The SSO
schedules work to the cores. Multiple
packets from the same flow are processed in
parallel; multiple flows are processed in
parallel.

ORDERED

Phase 3 Lock critical region:
one-at-a-time access

Cores perform the switch_tag operation
from ORDERED to ATOMIC to lock a
critical region. The SSO manages the tag
switch. Only one packet may hold the same
ATOMIC lock at a time. Typically different
flows have different locks, so multiple flows
continue to be processed in parallel.

ATOMIC

Phase 4
Unlock critical region
and resume parallel

processing

Cores perform the switch_tag operation
from ATOMIC to ORDERED to unlock a
critical region. The SSO manages the tag
switch. Once the switch is complete,
multiple packets from the same flow are
processed in parallel; multiple flows are
processed in parallel.

ORDERED

Phase 5 Packet Output

Cores perform the switch_tag operation
from ORDERED to ATOMIC to lock the
PKO Output Queues. The tag value is used
to select the PKO Output Queue. The SSO
manages the tag switch. By using the
ATOMIC tag type and sending all packets
from the same flow to the same PKO Output
Queue, packets are transmitted in ingress
order.

ATOMIC

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PA
C

K
E

T
 FL

O
W

OCTEON Programmer’s Guide

2-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-1

Software Overview

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 5
LIST OF FIGURES .. 6
1 Introduction ... 8

1.1 Where to Get More Information ... 8
2 Introducing cnMIPS (Cavium Networks MIPS) .. 9
3 Introducing the Simple Executive API ... 10
4 Runtime Environment Choices for cnMIPS Cores ... 13

4.1 Performance Difference Between Simple Executive and Linux 14
4.2 Simple Executive .. 14
4.3 SMP Linux .. 15

4.3.1 Linux: embedded_rootfs File System .. 16
4.3.2 Linux: Debian File System .. 17
4.3.3 Linux Application Support ... 17
4.3.4 Cavium Networks Ethernet Driver ... 18
4.3.5 Simple Executive API Calls From Linux ... 18
4.3.6 CPU Affinity ... 20
4.3.7 Linux on Small Systems (Limited MBytes of Memory) .. 20
4.3.8 Running Multiple Linux Kernels on the OCTEON Processor 20

4.4 Hybrid Systems: Simple Executive and Linux Co-Existing .. 20
4.5 System Initialization ... 21
4.6 The Hardware Simulator ... 21
4.7 Other Runtime Environments ... 21

5 Combinations of Runtime Environments on One Chip .. 21
5.1 One-Core Runtime Choices .. 22
5.2 Multicore Runtime Choices .. 23

5.2.1 Easiest Configurations to Implement .. 23
5.2.2 Intermediate Configurations ... 23
5.2.3 Advanced Configurations ... 24

5.3 Application Entry Point and Startup Code ... 25
5.4 Booting SE-S or SE-UM Applications ... 27
5.5 Booting One ELF File on Multiple Cores: Load Sets ... 27

5.5.1 Starting SE-S Applications With the bootoct Command ... 28
5.5.2 Starting Linux With the bootoctlinux Command ... 29
5.5.3 Starting SE-UM Applications With the oncpu Command ... 29

5.6 Booting Different ELF Files ... 32

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.7 Synchronizing Multiple Cores .. 32
5.7.1 Synchronizing Cores in the Same Load Set ... 33
5.7.2 Synchronizing Cores in Different Load Sets .. 33
5.7.3 SMP Linux Synchronization ... 34
5.7.4 Multiple SE-S or SE-UM ELF Files (Not Recommended) .. 34

6 Software Architecture ... 36
6.1 Control-Plane Versus Data-Plane Applications .. 36
6.2 Event-driven Loop (Polling) Versus Interrupt-Driven Loop .. 37
6.3 Using Work Groups in Packet Processing .. 38

6.3.1 Work Groups .. 38
6.3.2 Configuring the Per-Core Group Mask in the SSO Scheduler 39

6.4 Pipelined Versus Run-To-Completion Software Architecture ... 45
6.4.1 Comparing Run-To-Completion and Traditional Pipelining .. 45
6.4.2 A Quick Look at Packet Processing Math .. 46
6.4.3 Run-To-Completion .. 49
6.4.4 Traditional Pipelining ... 51
6.4.5 Modified Pipelining .. 52

6.5 Other Software Architecture Issues .. 54
6.5.1 Scaling .. 54
6.5.2 Code Locality: Reducing Icache Misses .. 55
6.5.3 Load-Balancing ... 57

6.6 Example: linux-filter .. 57
7 Application Binary Interface (ABI) .. 62

7.1 ABI Choices .. 62
7.1.1 EABI (OCTEON_TARGET=cvmx_64): SE-S 64-Bit .. 62
7.1.2 N64 (OCTEON_TARGET=linux_64): SE-UM 64-Bit .. 62
7.1.3 N32 (OCTEON_TARGET=cvmx_n32): SE-S 32-Bit .. 62
7.1.4 N32 (OCTEON_TARGET=linux_n32): SE-UM 32-Bit... 63
7.1.5 O32 (linux_o32) (Not Recommended) ... 63
7.1.6 Linux uclibc (linux_uclibc).. 63
7.1.7 Choosing the OCTEON_TARGET .. 63

7.2 64-Bit Porting Issues ... 63
8 Tools ... 66

8.1 GNU Cross-Development Toolchain ... 66
8.1.1 The Cavium Networks-Specific cvmx_shared Section .. 66
8.1.2 Link Addresses ... 68
8.1.3 Simple Executive Development Tools ... 68
8.1.4 Linux Development Tools .. 69

8.2 Native Tools (Run on the Target) ... 69
8.2.1 Native tools and Simple Executive ... 69
8.2.2 Native tools and Linux .. 69

9 Physical Address Map and Caching on the OCTEON Processor ... 70
9.1 Physical Address Map .. 70
9.2 System Memory (DRAM) Addresses ... 72
9.3 I/O Space Addresses ... 72
9.4 Caching ... 74

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-3

9.5 Special L2 Cache Features: Partitioning and Locking .. 76
10 Virtual Memory .. 76

10.1 Virtual Address Translation .. 77
10.1.1 Mapping .. 77
10.1.2 The Translation Look-Aside Buffer (TLB) .. 78
10.1.3 Wired TLB Entries ... 78

10.2 Generic MIPS Virtual Memory Map .. 78
10.3 MIPS Virtual Memory Address Translation ... 79

10.3.1 Segments ... 80
10.3.2 Privilege Level (Mode) and Segments ... 81

10.4 Mapped and Unmapped Segments ... 82
10.4.1 Unmapped Segments .. 82
10.4.2 Mapped Segments ... 85
10.4.3 Addresses Versus Pointers .. 87

10.5 Virtual Memory onCavium Networks MIPS (cnMIPS) ... 88
10.6 Cavium Networks-Specific cvmseg Segment .. 89
10.7 Accessing Application-Private System Memory .. 90
10.8 Summary of Virtual Address Space on cnMIPS .. 90

11 Allocating and Using Bootmem Global Memory ... 94
11.1 Using Global Bootmem .. 94
11.2 The malloc() and free() Functions and FPA Buffers ... 96
11.3 The cvmx_shared Section and FPA Buffers ... 97

11.3.1 The cvmx_shared Section is Not Always Shared ... 97
11.3.2 The cvmx_shared Section Should be Kept Small ... 99

11.4 Using Named Blocks to Share Memory Between Different Load Sets 100
12 Accessing Bootmem Global Memory (Buffers) ... 102

12.1 Accessing Bootmem Global Memory From SE-S Applications 104
12.1.1 SE-S 64-Bit Bootmem Access .. 104
12.1.2 SE-S 32-Bit Bootmem Access .. 104

12.2 Accessing Bootmem Global Memory From Linux Kernel: 64-Bit 104
12.3 Accessing Bootmem Global Memory from SE-UM Applications 105

12.3.1 SE-UM 64-Bit Bootmem Access .. 105
12.3.2 SE-UM 32-Bit Bootmem Access .. 105

12.4 Bootmem Size in Different Access Methods .. 106
12.5 Using cvmx_ptr_to_phys() and cmvx_phys_to_ptr() Functions 107

13 Accessing I/O Space ... 107
13.1 Accessing I/O Space from SE-S Applications .. 107

13.1.1 SE-S 64-Bit I/O Space Access .. 107
13.1.2 SE-S 32-Bit I/O Space Access .. 107

13.2 Accessing I/O Space from Linux Kernel: 64-Bit .. 107
13.3 Accessing I/O Space from SE-UM Applications ... 107

13.3.1 SE-UM 64-Bit I/O Space Access ... 107
13.3.2 SE-UM 32-Bit I/O Space Access ... 108

14 Simple Executive Standalone (SE-S) Memory Model ... 108
14.1 Simple Executive Application Space .. 109
14.2 Simple Executive System Memory Access .. 109

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

14.2.1 Mapping of System Memory .. 109
14.3 Simple Executive I/O Space Access ... 113
14.4 Simple Executive Virtual Memory Configuration Options .. 113

14.4.1 CVMX_USE_1_TO_1_TLB_MAPPINGS .. 113
14.4.2 CVMX_NULL_POINTER_PROTECT ... 114

14.5 SE-S 32-Bit Applications ... 114
15 Linux Memory Model ... 117

15.1 Configuring Linux and the Effect on the Memory Model .. 117
15.1.1 Linux cvmseg (IOBDMA and Scratchpad) Size ... 117
15.1.2 SE-UM 64-Bit: Direct Access to I/O Space Via xkphys .. 118
15.1.3 SE-UM 64-Bit: Direct Access to System Memory Via xkphys 118
15.1.4 SE-UM 32-bit: Reserving a Pool of Free Memory .. 118

15.2 Linux Kernel Space and Simple Executive API Calls .. 120
15.3 Linux Memory Configuration Steps ... 120
15.4 Linux Kernel-Mode Virtual Address Space on the OCTEON Processor 124
15.5 Linux 64-bit User-Mode Virtual Address Space for OCTEON 126
15.6 Linux 32-Bit Virtual Address Space for OCTEON .. 127

16 Downloading and Booting the ELF File ... 129
16.1 Bootloader Memory Model .. 130

16.1.1 The Reserved Download Block .. 131
16.1.2 ELF File Maximum Download Size ... 131
16.1.3 The Reserved Linux Block ... 133

16.2 Booting the Same SE-S ELF File on Multiple Cores ... 135
16.3 Downloading and Booting Multiple ELF Files .. 137

16.3.1 Downloading by Re-using One Reserved Download Block 137
16.3.2 Downloading Using Two Different Reserved Download Blocks 138

16.4 Protection from Booting Multiple Applications on the Same Core 140
17 SDK Code Conventions .. 140

17.1 Register Definitions and Accessing Registers .. 140
17.1.1 Register Definitions .. 140
17.1.2 Register Typedefs ... 141
17.1.3 Accessing Registers Using Register Definitions and Data Structures 142

17.2 The cvmx_sysinfo_t Typedef .. 144
17.3 OCTEON Models ... 145

18 Bootloader Historical Information .. 145
18.1 Backward Compatibility for Linux ELF Files Built Under SDK 1.6 147

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-5

 LIST OF TABLES
Table 1: Types of Cavium Networks-Specific Instructions .. 9
Table 2: OCTEON Hardware Units Overview .. 11
Table 3: Additional Simple Executive Support ... 12
Table 4: SE-S Application Entry Point and Startup .. 26
Table 5: Linux SE-UM Application Entry Point and Startup .. 27
Table 6: Setting the Cores’s Group Mask in the SSO ... 40
Table 7: Key ABI Differences ... 64
Table 8: SE-S ABIs (N32, EABI64), Data Type Lengths, and Toolchain 64
Table 9: SE-UM ABIs (N32, N64), Data Type Lengths, and Toolchain .. 65
Table 10: Other ABI (O32), Data Type Lengths, and Toolchain .. 65
Table 11: Simplified View of I/O Space ... 73
Table 12: The 64-Bit Virtual Address Segments ... 91
Table 13: The 32-Bit Virtual Address Segments ... 92
Table 14: Bootmem Allocator Functions in SDK 1.8 ... 95
Table 15: Summary of Access to System Memory and I/O Space .. 103
Table 16: Configuration Choices and Resultant Global Memory Limits 106
Table 17: Cavium Networks-Specific Linux menuconfig Options .. 120
Table 18: Accessing Register Fields .. 143

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

 LIST OF FIGURES
Figure 1: Simple Executive Hardware Abstraction Layer (HAL) ... 10
Figure 2: Using Simple Executive API from Different Runtime Environments 13
Figure 3: Simple Executive Standalone Application (SE-S) ... 14
Figure 4: Simple Executive calls from Kernel Mode .. 15
Figure 5: Simple Executive User-Mode (SE-UM) Application .. 15
Figure 6: One Core Runtime Choices .. 22
Figure 7: Easiest Multicore Configurations ... 23
Figure 8: Intermediate Multicore Configurations .. 24
Figure 9: Advanced Multicore Configurations .. 25
Figure 10: SE-S Load Set .. 27
Figure 11: SE-UM Load Set .. 28
Figure 12: Booting SE-S Applications With the Bootoct Command .. 29
Figure 13: SE-UM Applications Started With oncpu on Multiple Cores 31
Figure 14: Hybrid Load Sets .. 32
Figure 15: Multiple SE-S ELF Files (Not Recommended) ... 35
Figure 16: Multiple SE-UM ELF Files (Not Recommended) ... 35
Figure 17: SE-S Used for Both Control-Plane and Data-Plane Applications 36
Figure 18: Linux for Control-Plane and SE-S for Data-Plane Applications 37
Figure 19: The First Two Words of the Work Queue Entry .. 38
Figure 20: Each Core May Accept Work from Any and All Groups .. 39
Figure 21: Cores Can Receive Work Based on Their Group Mask .. 41
Figure 22: A Core is Idle if No Suitable Work is Available ... 42
Figure 23: Scheduling Previously Descheduled Work .. 44
Figure 24: Packet Processing Math ... 47
Figure 25: Run-To-Completion Versus Traditional Pipelining ... 49
Figure 26: Simplified Run-To-Completion Architecture .. 50
Figure 27: Scaling Run-To-Completion Architecture ... 51
Figure 28: Traditional Pipelining ... 52
Figure 29: Modified Pipelining ... 53
Figure 30: Modified Pipelining: Using Groups to Load Balance ... 53
Figure 31: Scaling the Data Plane ... 55
Figure 32: Using Code Locality to Reduce Icache Misses .. 56
Figure 33: Example: Linux-filter Drops a Broadcast IP Packet ... 59
Figure 34: Example: Linux-filter Forwards a Non-Broadcast IP Packet 61
Figure 35: Simplified Physical Address Map .. 71
Figure 36: Simplified View of Cache “miss” and “hit” .. 74
Figure 37: Prefetch Commands Used to Bypass Some Caches ... 75
Figure 38: Multiple Programs Have the Same Virtual Addresses ... 77
Figure 39: Generic MIPS Memory Map .. 79
Figure 40: 64-Bit Virtual Address: Segment Selector and SEGBITS ... 80
Figure 41: 32-Bit Virtual Address: Segment Selector and SEGBITS .. 81
Figure 42: The xkphys Window to Physical Address Space ... 83
Figure 43: The Small kseg0 Window to Physical Address Space .. 84
Figure 44: kseg0 and kseg1 Access the Same Memory ... 85

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-7

Figure 45: 64-Bit Virtual Address Translation on MIPS ... 86
Figure 46: 32-Bit Virtual Address Translation on MIPS ... 87
Figure 47: OCTEON 64-Bit Virtual Address Space – Summarized ... 93
Figure 48: OCTEON 32-Bit Virtual Address Space - Summarized .. 94
Figure 49: Named and Unnamed Memory Blocks .. 96
Figure 50: cvmx_shared: Same and Different Load Sets ... 97
Figure 51: cvmx_shared: Inefficient SE-S Configuration .. 98
Figure 52: cvmx_shared: Inefficient SE-UM Configuration .. 99
Figure 53: Sharing Memory Between Different Load Sets ... 101
Figure 54: Simple Executive Size Limitation if 1:1 Mapping is Used .. 111
Figure 55: SE-S 64-Bit Virtual Memory Map ... 112
Figure 56: SE-S 32-Bit Virtual Memory Map ... 116
Figure 57: Linux Kernel Virtual Address Space ... 125
Figure 58: Linux 64-Bit SE-UM Virtual Address Space for OCTEON .. 127
Figure 59: Linux 32-Bit SE-UM Virtual Application Space on OCTEON 129
Figure 60: Creating an In-Memory Image ... 130
Figure 61: Downloading to the Reserved Download Block .. 132
Figure 62: The Bootloader Creates the In-memory Image .. 133
Figure 63: The Reserved Linux Block ... 134
Figure 64: Bootloader Memory Usage in SDK 1.7 and Above ... 135
Figure 65: The Power of One Load Set ... 136
Figure 66: Downloading Multiple ELF Files – Same Download Block 138
Figure 67: Downloading Two ELF Files Using Two Download Blocks 140
Figure 68: Bootloader Memory Usage in SDK 1.6 and Below ... 146

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

1 Introduction
This chapter provides a software overview. Additionally, certain hardware and software
architecture topics are covered in this chapter.

The chapter will introduce the following topics:

• cnMIPS cores
• Simple Executive API (HAL)
• Different runtime environment choices such as standalone or user-mode, and combinations
• Software architecture issues
• Application Binary Interfaces (ABIs) supported
• Tools: cross-development and native toolchains
• Physical address map and caching on the OCTEON processor
• Virtual memory, including different views depending on runtime environment
• Bootmem global memory: how to allocate and access it.
• Shared memory
• Bootloader
• Software Development Kit (SDK) code conventions: registers and typedefs

This information is needed to understand the next chapter: the SDK Tutorial. The SDK Tutorial
chapter provides details on how to boot and run applications. Two examples are run: hello and
linux-filter.

This chapter is not designed to replace the documentation provided with the SDK, but merely to
provide a high-level overview of the software provided with the SDK. Throughout the chapter
relevant SDK documents are referenced to help the reader find more detailed information. See the
SDK Tutorial chapter for information on how to access the SDK documentation. Note that if the
information in the SDK conflicts with information in this chapter, it may be due to the SDK being
more current than this chapter. The information provided with the SDK should be considered to be
more accurate because the SDK documentation is updated with each release.

Before reading this chapter, please read the Packet Flow chapter. This chapter will provide
background information on the basic hardware units and how they interact. This information is
necessary to understand the Simple Executive API.

1.1 Where to Get More Information
The SDK comes with a large amount of documentation in html format. This documentation is
located in the docs directory in the installed SDK. See the SDK Tutorial chapter for
information on how to extract the SDK and locate the documentation.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-9

2 Introducing cnMIPS (Cavium Networks MIPS)
Each OCTEON processor may contain between 1 and N cnMIPS cores, depending on the
OCTEON model. When this chapter was written N = 16. In the future, the number of cores
available may be higher.

The cnMIPS (Cavium Network MIPS) cores use the MIPS64 v2 instruction set, supporting both
32-bit and 64-bit processing.

Cavium Networks has added some custom instructions to accelerate common networking
operations, such as bit test branch instructions or bit-field insert/extract. Because of these added
instructions, only the tools provided with the SDK should be used to build software which will run
on the OCTEON processor. When using the tools provided with the SDK, the optimizer uses these
instructions automatically. The table below briefly describes the added functions. See the
OCTEON Hardware Reference Manual (HRM) for more information. Note: there are about 3
pages of Cavium Networks instructions listed in the HRM.

Hardware floating point instructions are not implemented. Floating point instructions can be
implemented by using the “soft float” option on the compiler (gcc hello.c -msoft-float
–o hello).

Table 1: Types of Cavium Networks-Specific Instructions
Instruction Categories

Unsigned byte add.
Bit-test branches
Cache manipulation instruction
Instructions to use the in-core 3DES coprocessor (must have the Security Engine)
Instructions to use the in-core AES coprocessor
Instructions to use the in-core CRC coprocessor
Instructions to use the Galois Field Multiplier
Instructions to use the in-core HSH coprocessor
Instructions to use the in-core KASUMI coprocessor
Instructions to use the in-core LLM coprocessor
Register-direct 64-bit multiply
Signed-bit field extract and clear/insert instructions
Instructions to move data to/from Cavium Networks-specific multiplier registers
Prefetch, Don't Write Back , Prepare for Store
Count the number of ones in a 32-bit (POP) or 64-bit (DPOP) variable
64-bit cycle counter. Fast SSO Switch access
32-bit and 64-bit store atomic add instructions

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Instruction Categories

Set on equal; set on non-equal instructions
Memory reference ordering instructions (SYNCIOBDMA, SYNCS, SYNCW, SYNCWS)
Unaligned load/store instructions
Large multiply instructions

3 Introducing the Simple Executive API
The Simple Executive provides a Hardware Abstraction Layer (HAL) in the form of an Application
Programming Interface (API) to the underlying hardware units. This API is a very thin layer of
simple functions which access the CPU registers. It also provides some convenience routines for
block initialization. The API can be used from both kernel and user mode.

Figure 1: Simple Executive Hardware Abstraction Layer (HAL)

The Simple Executive API is used to access the hardware units:

• Basic units: FPA, IPD, PIP, SSO, and PKO
• Intermediate units: FAU and TIM
• Advanced units: LLM, ZIP, RNG, DFA, KEY, CIU, etc.

The following table provides an overview of the hardware units. Convenient access to these
hardware units is provided by Simple Executive function calls and macros. Note that different
chips have different features, so not all APIs are supported on all chips. In particular, DFA
(Deterministic Finite Automaton – used in pattern matching) and LLM (Low Latency Memory –
used to support DFA functions) are not provided on all chips.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-11

Table 2: OCTEON Hardware Units Overview
Note that different OCTEON models have different features: some hardware units are not
available on all models.
Basic Hardware Units
FPA The Free Pool Allocator Unit manages up to 8 pools of free buffers which may be

requested by other hardware units. The most common uses of the buffers are for
Packet Data Buffers and Work Queue Entry Buffers.

PIP The Packet Input Processing Unit receives the packet data from the Packet
Interfaces, and perform basic error checking on the data.

IPD The Input Packet Data Unit works together with the PIP to allocate needed buffers,
and process the packet data. The IPD fills in the Work Queue Entry Buffer and the
Packet Data Buffer. It then submits the Work Queue Entry Buffer to the SSO's
QoS Input Queues. Requires FPA Packet Input Buffers and Work Queue Entry
Buffers.

SSO The Schedule/Synchronization/Order Unit maintains the QoS Input Queues, and
manages scheduling work to cores. It also maintains the work order, and provides
the support needed for packet-linked atomic locking.

PKO The PKO manages packet output. Cores submit command words to its Output
Queues. These command words include a pointer to the packet data to be
transmitted. The cores then "ring" a doorbell to notify the PKO how many
command words were written to the Output Queue. The PKO DMAs the packet
data from the Packet Data Buffer to its internal memory, and sends it from there to
the Packet Interfaces. This operation requires an FPA pool of Command Buffers.

Intermediate Hardware Units
FAU Fetch and Add Unit - a 2 KB register file supporting read, write, atomic fetch and

add, and atomic update operations. This unit can be accessed from both the cores
and the PKO. The cores use the FAU for general synchronization purposes.

TIM Timers - requires FPA timer pool.
Advanced Hardware Units
CIU The Central Interrupt Unit controls the routing of interrupt sources to the cores,

including mailbox and watchdog interrupts. Any interrupt source may be routed to
any core.

DFA Deterministic Finite Automata (DFA) unit, used for regular expressing parsing and
acceleration. The chip must have the DFA hardware Unit.

LLM Low Latency Memory - used for storing DFA graphs. The chip must have the DFA
hardware unit, and the user-supplied LLM (Low Latency Memory).

ZIP Compression/decompression unit. The chip must have the ZIP hardware unit.
RNG Random Number Generator
KEY 8K of on-chip memory for holding security keys. This memory can be cleared

using an external hardware pin.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Simple Executive API also includes functions and macros for:

• System memory allocation (bootmem)
• Synchronization between cores
• Spinlocks
• Reader-writer locks
• Atomic set, add, compare and store operations
• Barrier functions

Table 3: Additional Simple Executive Support

Note that different OCTEON models have different features: some functions are not supported
on all models.
Synchronization Support

Packet-linked Locks Packet-linked locks are implemented by the SSO, and provide
ATOMIC access to critical regions.

Basic Spinlocks Non-recursive spinlocks.
Recursive Spinlocks Recursive spinlocks
Atomic Operations Atomic set, add, compare and store operations.

Reader/Writer locks Multiple cores may hold read locks, while write locks are
exclusive.

Barrier Functions
Barrier function which causes each core to wait until all cores
reach the same instruction. (All cores running the same
application.)

Coremask Functions Coremask functions to select the first core to do the application
initialization.

Memory Management Support

Scratchpad access functions Access core-local scratch pad memory (CVMSEG). Scratch pad
used for local variables and for the results of IOBDMAs.

Bootmem functions Used to allocate shared aligned memory. Usually used to allocate
the memory used in FPA pools.

Utility Functions
cvmx_user_app_init() Mandatory function to initialize the Simple Executive application.

cvmx_get_core_num() Queries a MIPS-standard register on the core to get the core
number this instance.

cvmx_phys_to_ptr() Convert physical address into a pointer containing a virtual
address.

cvmx_ptr_to_phys() Convert a pointer containing a virtual address into a physical
address.

cvmx_sysinfo_get() Access the global cvmx_sysinfo data structure (for instance, to
synchronize cores)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-13

More information about the Simple Executive functions and macros may be found in the SDK
document “OCTEON Simple Executive Overview”.

Simple Executive functions and macros may be used either to create a standalone Simple Executive
application, or may be called from drivers or applications running on an operating system kernel
such as Linux. For instance, after the Linux kernel is booted, a Cavium Networks Ethernet driver
may be started. This driver uses the Simple Executive API to configure the OCTEON hardware.
Simple Executive User-Mode applications may also be started from Linux.

Both 32-bit and 64-bit modes are supported, although 64-bit mode should be used whenever
possible.

Figure 2: Using Simple Executive API from Different Runtime Environments

4 Runtime Environment Choices for cnMIPS Cores
There are several choices for runtime environment. The three supplied by Cavium Networks are
Simple Executive standalone mode, Linux, and the hardware simulator.

When running Simple Executive on multiple cores, the same ELF file is usually run on all of the
cores. These cores are all started from one load command. The cores share the .text and read-only
data (.rodata) sections. They also share cvmx_shared variables, and memory allocated with
bootmem_alloc.

When running Linux on multiple cores (SMP), there is one kernel running, not one kernel per core.
Linux applications are scheduled to run on different cores.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Simple Executive may be run on some of the cores, while Linux is run on the other cores (a hybrid
system). In this case, the two ELF files are booted using two separate boot commands. The set of
cores to run the program on is specified as an argument to the boot command.

Linux and Simple Executive both use the bootmem functions to allocate and free memory. Shared
memory may be shared between the Linux and Simple Executive applications if the named block
bootmem_alloc functions are used.

4.1 Performance Difference Between Simple Executive and Linux
Simple Executive run in standalone mode provides the lowest overhead and the greatest potential
for scaling.

When running Simple Executive applications as Linux user-mode applications, although the
OCTEON hardware has been configured to allow access to both hardware and memory without
performance penalties, your application may still have noticeably slower performance than if it was
run in standalone mode. Cache misses, TLB misses, and bus contention are more likely when
running as a Linux user-mode application due to the large amounts of code and data needed for
Linux. The Linux scheduler timer interrupt also periodically transfers focus to other tasks. The
exact performance difference is application-dependent.

4.2 Simple Executive
Simple Executive provides an API to the hardware units. Simple Executive may be run Standalone
(SE-S), or as a user-mode (SE-UM) application on an operating system such as Linux. When run
as a user-mode application, different application startup code (main()) is called, and there are
other minor porting items to consider.

All cores running a Simple Executive application which are started from the same load command
share the cvmx_shared data section. For more information, see Section 8.1.1 – “The Cavium
Networks-Specific cvmx_shared Section”. They also share the .text and read-only data (.rodata).
They also share memory allocated with bootmem_alloc.

The following figure shows a representation of a core running Simple Executive in Standalone
(SE-S) mode.

Figure 3: Simple Executive Standalone Application (SE-S)

Simple Executive calls may be made from kernel mode. For example, the Cavium Networks
Ethernet driver, which runs on Linux, makes Simple Executive calls.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-15

Figure 4: Simple Executive calls from Kernel Mode

The following figure shows a representation of a core running Simple Executive as a User-Mode
application.

Figure 5: Simple Executive User-Mode (SE-UM) Application

To use all available memory, SE-UM applications should be compiled for 64-bit mode. 32-bit
mode is sometimes used, but can only access a limited amount of physical memory.

SE-S supports a single instance per core (there is no scheduler running). Note than an SE-S
instance is not as complex as a process.

SE-S is very fast compared to SE-UM. There are no context switches, and all memory is mapped
for fast access.

To get the maximum performance from the OCTEON processor: Whenever possible, design the
application to use a 64-bit Simple Executive application.

4.3 SMP Linux
SMP (Symmetric Multi-Processing) Linux may be run on one or more cores. The file system is
either the tiny embedded root file system (embedded_rootfs) or the large Debian file system.
Usually, embedded_rootfs is used because it will fit into on-board flash. In some circumstances,
such as during development, the larger Debian file system may be desired. The Debian file system
must be used from either Compact Flash, or NFS.

When Linux is booted, the boot command (bootoctlinux) has an optional argument (mem)
which is used to set the amount of memory allocated to Linux. The default is 512 MBytes. Setting
“mem=0” will allow the kernel to use all the memory on the board. Note that setting “mem=0” will
leave no bootmem available for applications running on other cores to allocate. The Linux driver
will still allocate skbuff memory and populate the FPAs needed to send and receive packets.

Note: The default SDK configuration requires around 230 MBytes of system memory. Linux can
be run with as little as 8 MBytes when the file system is in flash or Compact Flash.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.1 Linux: embedded_rootfs File System
When running Linux with the embedded root file system (embedded_rootfs), the root file system is
a RAM disk (in memory only). In this case, the ELF file is either stored in on-board flash, or
downloaded from a host.

Note that when the system is powered off or reset, the ELF file is no longer in memory. It
must be reloaded from flash or downloaded from a host.

The embedded root file system is used when there are no devices attached to the OCTEON
processor to store the root file system for download to OCTEON. (For instance, if the ELF file
cannot be loaded over the network or from an external device such as Compact Flash.) The Linux
examples in the SDK Tutorial chapter will use embedded_rootfs.

Typically, the embedded root file system contains only the minimum number of files needed. To
save space, the small utility set “BusyBox” is used instead of the normal Linux utilities. The
BusyBox component in the embedded root file system is controlled by the makefile:
$OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/busybox.mk.

There is one utility called /bin/busybox. The file is symbolically linked to other names to
allow you to call the other “utilities”. When the utility is called by a different name, such as cat,
it executes that function. BusyBox can be tailored to exclude any unneeded functions. This
reduces the executable size, saving space.

The BusyBox.txt file has a list of the included “functions” (which then act as utilities).
From the BusyBox.txt file:

“COMMANDS
 Currently defined functions include:

 [, [[, addgroup, adduser, adjtimex, ar, arping, ash, awk,
 basename, bbconfig, bunzip2, busybox, bzcat, cal, cat, catv,
 chattr, chgrp, chmod, chown, chroot, chvt, cksum, clear, cmp,
 comm, cp, cpio, crond, crontab, cut, date, dc, <text
omitted>”

Note that some utility options are not supported by these functions: options not usually needed in
the embedded environment are not included. The exact options supported are detailed in the
BusyBox.txt file.

More details may be found on the net at http://www.busybox.net/about.html or in
$OCTEON_ROOT/linux/embedded_rootfs/build/busybox-
1.2.1/docs/BusyBox.txt.

4.3.1.1 Adding Examples to embedded_rootfs
The example applications were added to Linux embedded_rootfs by instructions in package
makefile $OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/sdk-
examples.mk.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.busybox.net/about.html

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-17

For detailed directions on adding an application to the embedded root file system, see the SDK
document “Linux on the OCTEON” in the section “How to add a Package”.

4.3.2 Linux: Debian File System
When running Linux with the Debian file system, the root file system is on a Compact Flash card.
Other than some minor changes, the Cavium Networks version of Debian is a distribution from
http://www.debian.org/, with some minor changes. Cavium Networks has not modified the utilities
provided by Debian. If problems with the utilities occur, contact Debian for assistance.

When using the Debian file system, the kernel is booted off the Compact Flash card with the boot
command option root=/dev/cfa2. This tells the kernel that the root file system is on the
second partition on the Compact Flash card. Once the kernel has booted, the root file system is
located on the Compact Flash Card. (Note that the “root” file system is mounted as “/” when the
kernel is booted. In the Linux directory structure “/” is the “root” directory. All other directory
paths are relative to this point.)

The Debian file system is useful for the large variety of programs provided.

For more information on running Debian Linux on the OCTEON processor, see the SDK Tutorial
chapter, and the SDK document “Running Debian GNU/Linux on OCTEON”.

4.3.3 Linux Application Support
Both 32-bit and 64-bit Linux applications are supported by the cross development toolchain. Since
OCTEON is a 64-bit processor, running in 64-bit mode is faster and more efficient, but is not
required.

Note: The kernel is always in 64-bit mode.

To run an application as a Linux user-mode application, the application may be added either to
embedded_rootfs, or to the Debian file system. Note that running SE-UM applications over NFS is
not recommended. (See the note in Section 4.3.4 – “Cavium Networks Ethernet Driver”.)

Linux applications may make Simple Executive API calls. These Simple Executive files are not
supported under Linux:

• cvmx-interrupt.c
• cvmx-interrrupt-handler.S
• cvmx-malloc.c
• cvmx-app-init.c (this file is replaced with cvmx-app-init-linux.c)

When building an application using the Makefiles provided with the example code, if the target is a
Linux target, the file $OCTEON_ROOT/exectutive/cvmx.mk will make the appropriate
changes to the object files used in the build.

These applications also may not call cvmx_malloc() functions or cvmx_zone() functions.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.debian.org/

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.4 Cavium Networks Ethernet Driver
A Cavium Networks Ethernet driver module is available to support Ethernet using either the GMII,
RGMII, SGMII interfaces, SPI4 (with a SPI4000 daughter card), or XAUI. Different OCTEON
models support different devices. The GMII, RGMII, and SGMII ports are Ethernet devices “eth0”
through “ethN”. SPI4000 ports are devices “spi0” through “spiN”. XAUI devices are “xaui0”
through “xauiN”. (N is the maximum number of devices supported by the system.)

To add the Cavium Networks Ethernet driver, use the modprobe command. (Note that the POW
unit has been renamed to SSO in documentation, but is still referred to as POW in software.)
Arguments to the modprobe command include:

• pow_receive_group: only packets with this group number are received by the kernel.
The default is “15”.

• pow_send_group: Linux creates a virtual Ethernet device not connected to any
physical ports, named “pow0”. This device will accept work from the POW receive group
and transmit using the POW send group. In the linux-filter example, this group is
set to “14”. The linux-filter example is discussed in more detail in Section 6.6 –
“Example: linux-filter”.

An example where modprobe is used is presented in the SDK Tutorial chapter.

Note: When the Cavium Networks Ethernet driver is in use, applications must not
reconfigure the OCTEON hardware. The Ethernet driver configures the SSO, FPA, CIU,
PIP, IPD, PKO, and FAU (the Fetch and Add Unit). Some examples such as “passthrough”
also configure the hardware units. Running both the Cavium Networks Ethernet driver and
an example which initializes the hardware will cause the crash and reset with an error
similar to the following text:

Version: Cavium Networks OCTEON SDK version 1.7.2, build 244
Warning: Enabling FPA when FPA already enabled.
Fpa pool 0(Packet Buffers) already has 928 buffers. Skipping setup.
Fpa pool 1(Work Queue Entries) already has 960 buffers. Skipping setup.
Fpa pool 2(PKO Command Buffers) already has 124 buffers. Skipping setup.
Interface 1 has 4 ports (RGMII)

Similarly, if the file system is NFS-mounted, then the Cavium Networks Ethernet driver is
loaded. Running a program such as the example program passthough over NFS will not
work because passthough will reconfigure the OCTEON hardware and NFS will stop
working.

More details may be found in the SDK document “Linux on the OCTEON” in the section “Kernel
Ethernet Drivers”.

4.3.5 Simple Executive API Calls From Linux
Linux kernel and applications may both make Simple Executive API calls. When Simple
Executive calls are made from Linux user space, the process is referred to as a Simple Executive
User-Mode application (SE-UM).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-19

According to the SDK documentation, applications using the Simple Executive libraries under
Linux userspace must rename their main() function to match the prototype below. This allows
Simple Executive to perform needed memory initialization and process creation before the
application runs.

extern int appmain(int argc, const char *argv[]);

When building examples with the provided Makefiles, the file $OCTEON_ROOT/common.mk
will redefine the word “main” to “appmain” if a Linux target is specified, for example:

ifeq (${OCTEON_TARGET},linux_64)
 PREFIX=-linux_64
 CFLAGS_GLOBAL += -DOCTEON_TARGET=${OCTEON_TARGET} -mabi=64 -
march=octeon
-msoft-float -Dmain=appmain

This is why the linux-filter example does not contain two different main() calls (the
string “main” becomes main() for SE-S applications, and appmain() for SE-UM applications).

The following are some of the key points to remember when writing applications to run both under
the SE-S and SE-UM environments:

• Use #ifdef __linux__ to make SE-UM-specific changes to the code.
• Be careful to use cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). The Simple

Executive 1:1 TLB mappings allow you to be sloppy and interchange physical addresses
with virtual address. This isn't true under Linux.

• If you're talking directly to hardware, be careful. The normal Linux protections are
circumvented. If you do something bad, Linux won't save you.

• Most hardware can only be initialized once. Unless you're very careful this also means
your SE-UM application can only run once.

The linux-filter example, which runs both as SE-S and SE-UM, includes some examples
showing use of the #ifdef __linux__ test, for example:

// if running on Linux, include file which contains definitions required
// for compatibility with the POSIX standard
#ifdef __linux__
#include <unistd.h>
#endif

The SDK Tutorial chapter contains a table showing the available example applications, and
whether they may be run on Linux. Examples of Linux applications which use Simple Executive
API calls may be found in the /examples directory after Linux is booted on the OCTEON
processor.

More details may be found in the SDK document “Linux Userspace on the OCTEON” in the
section “Running Simple Executive Applications under Linux”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.3.6 CPU Affinity
Use the oncpu Linux utility to control which core or set of cores the SE-UM application will run
on.

A SE-UM application should never call sched_setaffinity(), unlike a generic Linux
application which may call sched_setaffinity() to control the cores it uses.

Note: SE-UM applications are not full Linux apps and should limit themselves to the
features supplied by the Simple Executive.

Details on using the oncpu utility with SE-UM applications are provided in Section 5.5.3 –
“Starting SE-UM Applications With the oncpu Command”.

4.3.7 Linux on Small Systems (Limited MBytes of Memory)
To run Linux on a small system (256 MBytes or less), see the directions in the SDK document
“Linux on Small OCTEON Systems”.

4.3.8 Running Multiple Linux Kernels on the OCTEON Processor
More than one Linux kernel can be run on the OCTEON processor. For more information, see the
SDK document “Linux on the OCTEON” in the section “Booting Two Separate Kernels on an
EBT3000”.

4.4 Hybrid Systems: Simple Executive and Linux Co-Existing
Linux may be run on a subset of the cores while Simple Executive is running on a different subset
of cores.

More details may be found in the SDK document “Linux on the OCTEON” in the section “Co-
existing with Simple Executive Applications”. Here are the general guidelines provided in that
chapter:

1. Allocate shared memory using the bootmem allocator functions. These functions provide
the needed locking so that two applications will not get the same memory.

2. Keep core dependencies generic. Instead of allocating cores by core ID, use
cvmx_sysinfo_get() to get the bitmask of cores actually running your application.
Use the cvmx_sysinfo_t field “core_mask” to determine how many cores are
running your application, and use cvmx_coremask_first_core() to select the core
for initialization tasks. An example of using these functions may be found in the FPA
chapter (in Volume 2).

3. Choose a single application to perform hardware initialization. Many initialization tasks
must only be performed once. When designing a hybrid system, choose which single
instance is responsible for initialization.

4. Use OCTEON hardware for inter-application communication. Both the SSO (via groups)
and the Fetch and Add Unit (FAU) can be used to provide fast hardware-based messaging.

Hybrid systems may also consist of other configurations.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-21

Note that Linux does not support booting SE-S. SE-S ELF files must be started from the
bootloader.

4.5 System Initialization
Note that only one operating system or SE instance is responsible for initialization.

When running only SE-S applications (in one load set), the first core in the load set is responsible
for system initialization.

When running Linux and SE-S, normally the Linux kernel initializes the hardware through the
Ethernet driver. Simple Executive applications must wait until this initialization is done before
continuing. SE-UM applications which also initialize the hardware (such as passthough) must
not be run at the same time as the Cavium Networks Ethernet driver is running.

See Section 5.7 – “Synchronizing Multiple Cores” for more information.

4.6 The Hardware Simulator
The third runtime environment supplied by Cavium Networks is the Hardware Simulator.
The simulator is useful when actual hardware is not available and it is also very useful for
performance tuning. Performance tuning is most easily done using the tool Viewzilla. This
tool analyzes the output of the simulator, so making sure the code will run on the simulator as well
as on actual hardware is recommended for performance-critical applications.

See the whitepaper “OCTEON_Performance_Tuning” for more information.

All of the examples provided with the SDK run on the simulator.

4.7 Other Runtime Environments
In addition to the three runtime environments supplied by Cavium Networks, several open-source
and proprietary operating systems are available. Contact your Cavium Networks representative for
an updated list of choices.

5 Combinations of Runtime Environments on One Chip
The following figures show chips running combinations of runtime environments, without showing
the control-plane/data-plane configuration.

Note: these figures are intended to show the flexibility of the OCTEON processor. A specific
design does not have to exactly match the figures shown below.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.1 One-Core Runtime Choices
The following choices are available if the OCTEON model has only one core:

Figure 6: One Core Runtime Choices

SE-S

One core runs a Simple Executive
Standalone (SE-S) application

Linux

One core runs Linux with Cavium Networks
Ethernet Driver

One core runs another OS with Simple
Executive User-Mode application.

Choices If Only One Core is Available

LinuxSE-
UM

One core runs a Simple Executive User-
Mode (SE-UM) application on Linux

Driver

One core runs another OS

Another
OS

Driver

SE-
UM

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-23

5.2 Multicore Runtime Choices
The following figures show different runtime choices for the OCTEON processor.

5.2.1 Easiest Configurations to Implement
The following configurations are the easiest to implement.

Figure 7: Easiest Multicore Configurations

5.2.2 Intermediate Configurations
The following configurations in the midrange of complexity to implement.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 8: Intermediate Multicore Configurations

Linux

SMP Linux or other SMP-
capable OS (single copy)

Linux Linux SE-S SE-S SE-S SE-S SE-S

Example of 8-core hybrid system: 3 cores run Linux, 5 cores run a Simple
Executive Standalone (SE-S) application

Intermediate Multicore Implementations

Note: Only a few cores of the maximum possible cores are shown in this example.

LinuxLinux

SMP Linux (single
copy)

SE-
UM

Example of 2-core system running Linux on cores 0 and 1 and an application
such as linux-filter runs as a Simple Executive User-Mode (SE-UM)
application on core 1 (started by the oncpu command). .

Driver

Driver

Note: Although Linux is usually run on core 0, this is not a requirement.

5.2.3 Advanced Configurations
The following configurations require advanced OCTEON processor knowledge, and careful
resource management.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-25

Figure 9: Advanced Multicore Configurations

Non-
SMP
OS

Example of 8-core hybrid system: 8 cores may run 3 different Linux instances
(advanced). Note only 1 Cavium Networks Ethernet driver may be run. (This
configuration is not recommended.)

Advanced Multicore Implementations (More Complex Resource Sharing)

Linux

SMP
Linux (single copy)

Linux Linux SE-S SE-S SE-S

Linux

SMP
Linux (Instance 1)

Linux Linux Linux

SMP
Linux (Instance 2)

Linux Linux Linux

SMP
Linux (Instance 3)

Linux

Note: Only a few cores of the maximum possible cores are shown in this example.

Non-
SMP
OS

Example of 8-core simple system running a non-SMP OS: 8 separate
instances of another OS

Non-SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Non-
SMP
OS

Example of 8-core hybrid system: 3 cores run Linux or another SMP OS; 2
cores run a non-SMP OS; 3 cores run SE-S

LinuxLinux

SMP Linux (single copy)

Linux Linux Linux Linux Linux LinuxSE-
UM

Example of 8-core simple system running Linux with 2 Simple Executive User-
Mode (SE-UM) applications: a single Linux instance runs on 8 cores. An
application such as linux-filter runs as a Simple Executive (SE-UM)
application on cores 1 and 4 (started by the oncpu command).

SE-
UM

Driver

Driver

Driver

Driver

5.3 Application Entry Point and Startup Code
An application such as linux-filter may be compiled as either an SE-S or SE-UM
application without modification.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The code executed when the application is started is not the same: when SE-S is the build target,
the file cvmx-app-init.o is linked into the target. When Linux SE-UM is the build target,
the file cvmx-app-init-linux.o is included instead. The makefile
$OCTEON_ROOT/executive/cvmx.mk is responsible for making this change.

ifeq (linux,$(findstring linux,$(OCTEON_TARGET)))
OBJS_$(d) += \
 $(OBJ_DIR)/cvmx-app-init-linux.o
else
OBJS_$(d) += \
 $(OBJ_DIR)/cvmx-interrupt.o \
 $(OBJ_DIR)/cvmx-interrupt-handler.o \
 $(OBJ_DIR)/cvmx-app-init.o \
 $(OBJ_DIR)/cvmx-malloc.o
endif

Additionally, main() is renamed to appmain() if the example is build as a Linux SE-UM
application. The makefile $OCTEON_ROOT/common.mk is responsible for making this change.
See Section 4.3.5 – “Simple Executive API Calls From Linux”

The following two tables are a simplified view of the application entry point and startup functions.

The following table shows a simplified view of SE-S application entry point and startup functions.

Table 4: SE-S Application Entry Point and Startup
Simple Executive Standalone (SE-S) Entry Point and Startup Functions

__cvmx_app_init() Application entry point. Defined in cvmx-app-init.c.

main()
Defined in applicaton code such as linux-filter.c. Called
after __cvmx_app_init().

cvmx_user_app_init() Called by main(), defined in cvmx-app-init.c.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-27

The following table shows a simplified view of Linux SE-UM application entry point and startup
functions.

Table 5: Linux SE-UM Application Entry Point and Startup
Simple Executive User-Mode (SE-UM) Entry Point and Startup Functions

main() Application entry point. Defined in cvmx-app-init-linux.c.

appmain()
Defined in application code such as linux-filter.c : "main" is
aliased to "appmain" by common.mk.

cvmx_user_app_init() Called by appmain(), defined in cvmx-app-init-linux.c.

5.4 Booting SE-S or SE-UM Applications
To boot Simple Executive applications:

• for SE-S applications: bootoct bootloader command
• for SE-UM applications: oncpu Linux command or invoke the application from the

command line (for example ./linux-filter)

These commands may be used to boot on one or more cores. In the following section, booting on
more than one core is discussed. Details of the oncpu command are provided in that section.

5.5 Booting One ELF File on Multiple Cores: Load Sets
Usually one Simple Executive application is run on multiple cores, booted by the same load
command:

• for SE-S applications, using the same bootoct bootloader command for all relevant cores
• for SE-UM applications, using the same oncpu Linux command for all relevant cores

All cores booted by the same load command are in the same load set. The following figure shows
cores running Simple Executive Standalone in a load set.

Figure 10: SE-S Load Set

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following figure shows cores running two Simple Executive User-Mode processes in a load
set.

Figure 11: SE-UM Load Set

Load sets are discussed in more detail in Section 8.1.1.2 – “The cvmx_shared Section”

5.5.1 Starting SE-S Applications With the bootoct Command
Starting Simple Executive Standalone applications with the bootoct command is
straightforward. An example is provided in the SDK Tutorial chapter. This command is discussed
in more detail in Section 16.2 – “Booting the Same SE-S ELF File on Multiple Cores”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-29

Figure 12: Booting SE-S Applications With the Bootoct Command

O
ne

 L
oa

d
Se

t

Create instance 3

5.5.2 Starting Linux With the bootoctlinux Command
Linux may be started with the bootoctlinux command is straightforward. An example is
provided in the SDK Tutorial chapter. This command is discussed in more detail in Section 5.5.2 –
“Starting Linux With the bootoctlinux Command”.

5.5.3 Starting SE-UM Applications With the oncpu Command
Usually the oncpu utility may be used to start a SE-UM application on Linux. The oncpu utility
takes as arguments the core or coremask and name of the application to start. (The words CPU and
Core are equivalent.)

oncpu <core> command
or
oncpu <coremask> command

Core is a decimal number from 0 to one less than the number of cores in the system; Coremask
must be a hexadecimal number specified as 0xXXXX. Core 0 is represented by the lowest bit in the
mask.

Note: oncpu takes a virtual core number. This number can be different from the hardware core
number. For instance, if SMP Linux is running on cores 4, 5, and 6, the kernels virtual core
numbers are 0, 1, and 2.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

To start a SE-UM application on core 5, the command would be:

oncpu 1 application

To start the application on all 3 cores, the command would be:

oncpu 0x7 application

In the traditional Linux use of oncpu, if the coremask contains more than one core, then the
process may run on any of the cores in the coremask. This is a way of limiting the process to a
subset of the available cores.

When oncpu is used to start a SE-UM application on multiple cores, the SE-UM application
begins to run on only one core. Once the process begins to run, main() (defined in the Simple
Executive source file cvmx-app-init-linux.c) will fork() one instance of the SE-UM
application for each additional core, and use sched_setaffinity() to bind each process to
one core. The result is one SE-UM process for each core. This is very different from traditional
Linux applications where only one process is run on the cores in the coremask. See the next figure
for an illustration of the difference between using traditional Linux processes and SE-UM
processes with oncpu.

The set of processes created by one oncpu command is referred to as a load set. This set of
processes shares the text, read-only data, and cvmx_shared sections. They also have set-awareness
via the sysinfo data structure. This benefit is lost if multiple oncpu commands are used to start
the same process on multiple cores. More information is provided on these features later in this
chapter.

Note that while linux-filter is a good example of how oncpu may be used, the example
named-block is not a good example. In the named-block code, once the forked process
begins to run a test is made:

if (!cvmx_coremask_first_core(cvmx_sysinfo_get()->core_mask))
 return 0;

This test causes each program which is not the running on the first core to return without doing
anything.

The processes may be seen using the ps –ef command on the target.

Note: If you run a SE-UM application without oncpu it will run on all cores under the
control of Linux. The default coremask contains all cores under the control of Linux. This
is therefore equivalent to calling oncpu with a coremask of all cores.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-31

Figure 13: SE-UM Applications Started With oncpu on Multiple Cores

Using the oncpu command to start SE-UM Applications

After booting Linux, the oncpu command may be used to start SE-UM applications.

When more than one core is specified in the coremask argument to oncpu, one instance of
the SE-UM application will be run on each specified core.

This special processing begins when the SE-UM application begins to run on a core. The
function main() will fork() until a copy of the SE-UM process is running on every core
which has the corresponding bit set in the coremask. The main() will call the function
sched_setaffinity() to bind each SE-UM process to one core.

The set of SE-UM processes started by one load command is called a load set. All cores in
the load set share .text, read-only data (.rodata), and the cvmx_shared section.

All cores in the load set have set-awareness through the sysinfo data structure.

If the SE-UM application is started from the command line (for instance:
target# ./linux-filter), then main() will start one instance of the SE-UM application
on each SMP Linux core.

An example of using the oncpu command is presented in the SDK Tutorial chapter.

Details may be found in the SDK document “Linux Userspace on the OCTEON” in the section
“Controlling Core Affinity With oncpu”.

Sub-set of Cores specified by Coremask

One Load Set

Sub-set of Cores specified by Coremask

Traditional oncpu use: WITHOUT A SE APPLICATION: oncpu 0xE non-SE_app

LinuxLinux

SMP Linux (single copy)

SE-
UM
P1Driver

Linux
SE-
UM
P2

Linux
SE-
UM
P3

Cavium Networks result of using oncpu WITH a SE-UM application: oncpu 0xE SE_app

N cores and N SE-UM processes.

The SE-UM main() calls fork()
to fork (N-1) processes, and calls
sched_setaffinity() to bind
each SE-UM process to a core.

Linux

SMP Linux (single copy) N cores, 1 process may
run on any of N cores
specified in the coremask.Linux P Linux Linux

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.6 Booting Different ELF Files
If the system is a hybrid system with both Simple Executive and Linux, the Linux ELF file is
started separately on a different set of cores than the Simple Executive ELF file. Although Linux
can start a Simple Executive User-Mode Application, the most efficient way to run Simple
Executive is Standalone to avoid overhead added by Linux.

Figure 14: Hybrid Load Sets

One Load Set One Load Set

Linux

SMP Linux or other SMP-capable
OS (single copy). The SE-UM

processes started with one oncpu
command are in the same load set.

Linux Linux SE-S SE-S SE-S SE-S SE-S
Driver

SE-
UM

SE-
UM

All SE-S instances started with one bootloader
command are in the same load set.

Note that the Cavium Networks
Ethernet driver is not in the same load
set as the SE-UM applications.

Load Sets: Cores Loaded with the Same Load Command

The SDK Tutorial includes an example of booting two different ELF files (SMP Linux and
linux-filter), and also an example of running linux-filter as a Simple Executive User-
Mode Application.

If multiple load sets are used, as shown in the figure above, load the application on core 0 last.
Once the application is loaded onto on core 0, the other cores come out of reset and begin to run
their applications.

5.7 Synchronizing Multiple Cores
Synchronization between cores is critical, especially at system start-up when one core initializes
the hardware, and the other cores must wait until the initialization is complete.

There are three different synchronization environments, depending on how the cores were loaded:

1. Between cores in the same load set
2. Between cores in different load sets
3. SMP Linux cores

This section will provide more detail on these differences.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-33

5.7.1 Synchronizing Cores in the Same Load Set
The first synchronization environment is between cores started by the same load command, a “load
set”. The sysinfo data structure for each of these cores includes common synchronization
information.

All system initialization should be done by one core only, usually the first core in the core mask for
the application (if all cores are in the same load set). For SE-S or SE-UM applications which are in
the same load set, the function cvmx_barrier_sync() will cause the other cores to wait until
the initialization is complete.

For example, the following code from the passthrough example checks whether the code is
running on the first core in the core mask. If so, then the code initializes the hardware.

sysinfo = cvmx_sysinfo_get();
coremask_passthrough = sysinfo->core_mask;

/*
* Elect a core to perform boot initializations, as only
* one core should perform this function.
*
* cvmx_coremask_first_core returns 1 if this code is running on the first
* core in the core mask.
*/
if (cvmx_coremask_first_core(coremask_passthrough))
{
 if ((result =
 application_init_simple_exec(packet_termination_num+64)) != 0)
 {
 printf("Simple Executive initialization failed.\n");
 printf("TEST FAILED\n");
 return result;
 }
}
/* Wait until all cores in the given core mask have reached */
/* this point in the program execution before proceeding. */
cvmx_coremask_barrier_sync(coremask_passthrough);
 . . .

5.7.2 Synchronizing Cores in Different Load Sets
The second synchronization problem is between cores started by different load commands. In this
case, some special techniques are used. It is not possible to use bootmem global memory
(discussed in Section 11 – “Allocating and Using Bootmem Global Memory”) to create a shared
spinlock to use in initial synchronization because as of SDK 1.7.3, there is no function which
allocates the memory and atomically initializes it to a specific value. Thus there is no way to
initialize a spinlock for SE-S applications.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

A common technique is to have the initializing core initialize IPD last. The other cores can check
to see if the IPD has been enabled, as in the following code from the linux-filter example:

printf("Waiting for ethernet module to complete
initialization...\n\n\n");
cvmx_ipd_ctl_status_t ipd_reg;
do
{
 ipd_reg.u64 = cvmx_read_csr(CVMX_IPD_CTL_STATUS);
} while (!ipd_reg.s.ipd_en);

If there is further local initialization after the hardware initialization, the initializing application
could send a message via “work” to the waiting application. The waiting application could wait for
the IPD initialization, then perform the get_work operation to get the message that initialization
is now complete.

5.7.3 SMP Linux Synchronization
When running Linux on multiple cores, the cores all jump to the start address of the kernel, then
look at the core number. If the code is not running on the first core, the code spins waiting for the
first core to finish initializing the hardware and then change a variable in memory which will bring
all the other cores out of the loop at the same time.

5.7.4 Multiple SE-S or SE-UM ELF Files (Not Recommended)
The following configuration will work, but is not recommended. In this configuration, two
separate SE-S ELF files are booted, creating two different load sets. The two different load sets
will not share the sysinfo data structure, making it difficult to synchronize the cores, adding
coding complexity. In addition to this problem, more system memory is consumed because the
different load sets cannot share the .text and read-only data (.rodata) segments of the code. For
more information, see Section 11.3.1 – “The cvmx_shared Section is Not Always Shared”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-35

Figure 15: Multiple SE-S ELF Files (Not Recommended)

Pipelining can be done without dividing the packet processing into different programs, one per
core. Pipelining can be done with only one Simple Executive ELF file as shown in Figure 29 –
“Modified Pipelining”.

Similarly, multiple SE-UM ELF files are also not recommended, for the same reasons.

Figure 16: Multiple SE-UM ELF Files (Not Recommended)

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

6 Software Architecture
When designing the software, it helps to separate two basic types of processing: normal packet
processing (fast path), and exception processing (slow path).

Depending on the number of cores available, different configurations of cores devoted to either fast
path or slow path processing can be used to optimize throughput.

This is a brief discussion of the issues and choices.

6.1 Control-Plane Versus Data-Plane Applications
Application functions may be divided into two categories: control plane (slow path), and data
plane (fast path). The control plane usually handles exceptions. The data plane handles normal
packet processing.

SE-S applications may be used for both control plane and data plane. SE-S applications provide
the lowest overhead and highest potential for scaling. The next best solution (a typical solution) is
SE-UM for control plane and SE-S for data plane.

If necessary, SE-UM applications may be used for both control plane and data plane. This solution
is sometimes necessary if there is only one core, and the application cannot be ported to Simple
Executive.

The fastest multicore solution is to run one Simple Executive load set on all the cores. Note
that only ONE Simple Executive ELF file has been downloaded to run on multiple cores,
even if some cores are responsible for slow path and others responsible for fast path
processing.

When running multicore applications, only one core does the initialization routine.

 Figure 17: SE-S Used for Both Control-Plane and Data-Plane Applications

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-37

Or Linux may run on one or more cores, with Simple Executive on the others.

Figure 18: Linux for Control-Plane and SE-S for Data-Plane Applications

6.2 Event-driven Loop (Polling) Versus Interrupt-Driven Loop
There are two different models for receiving packets to process: an event-driven loop (polling) or
an interrupt-driven loop.

An event-driven loop looks like:
while (there is work do do)
{
 do the work
}

Typically, OCTEON programmers design software to use the event-driven loop. The Cavium
Networks Ethernet Driver uses a hybrid of an interrupt-driven and event loop. In this loop, the
driver sleeps when there is no work to do. When there is more work to do, an interrupt is sent to
the driver. Then the driver processes all the work available until there is no more work to do.

The following code fragment shows the event-driven loop used in linux-filter when the code
is run as a SE-S application:

while(1)
{
/* In standalone CVMX, we have nothing to do if there isn't work,
so use the WAIT flag to reduce power usage */
 cvmx_wqe_t *work = cvmx_pow_work_request_sync(CVMX_POW_WAIT);
 if (work == NULL)
 continue;
 . . .

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following code fragment shows an event-driven loop used in linux-filter when the code
is run as a SE-UM application. Note that this code performs the get_work operation, bypassing
the Cavium Networks Ethernet Driver.

while (1)
 {
 cvmx_wqe_t *work = cvmx_pow_work_request_sync(CVMX_POW_NO_WAIT);
 if (work == NULL)
 {
 /* Yield to other processes since there is no work to do */
 usleep(0);
 continue;
 }
 . . .

The event-driven loop is a higher performance processing architecture than the interrupt-driven
loop. In an event-driven loop, when the core is ready for work and work is available, it gets the
work; when there is no work, the core loops looking for work to do. When using an interrupt-
driven loop, there may be a delay between work available and the process being notified. SSO
(POW) interrupts are configured based either on a time counter or the quantity of work available
for a particular group (via the POW_WQ_INT_CNT registers). Instead of looping looking for
work, the interrupt-handler thread exits, then is called again when the interrupt occurs. This not
only can result in work being processed less quickly, but also results in more context switches,
costing unnecessary system overhead.

The Cavium Networks Ethernet driver uses a modified interrupt-driven loop: once the interrupt
occurs, the receive function performs the get_work operation to receive up to 60 packets, then
exits. This is done to prevent the transmit function from being starved for CPU time. This code is
also not as efficient as an event-driven loop. The Cavium Networks Ethernet driver code is located
in $OCTEON_ROOT/linux/kernel_2.6/linux/drivers/cavium-ethernet.

6.3 Using Work Groups in Packet Processing
Work Groups were previously mentioned in the Packet Flow chapter.

6.3.1 Work Groups
The Work Queue Entry data structure was introduced in the Packet Flow chapter. This data
structure contains a field “Grp” which stands for Group (Work Group). The group number is set
by the PIP/IPD Unit, based on the settings of its configuration register when the packet is received.
Group values range from 0-Y where Y is one less than the number of groups supported by the
OCTEON model.

Figure 19: The First Two Words of the Work Queue Entry

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-39

6.3.2 Configuring the Per-Core Group Mask in the SSO Scheduler
When a core performs a get_work operation, the request goes to the SSO Scheduler.

The SSO Scheduler maintains a per-core group mask. This group mask has one bit set for each
group the core will accept work from. Cores may accept work from any or all work groups. When
the scheduler receives the get_work request, it will schedule the highest priority WQE which is,
based on its group, schedulable to the core.

Cores may receive work from any and all groups. Multiple cores may receive work from the same
work group. This technique provides easy load-balancing, and also allows the creation of a special
type of work, such as monitoring information, which can be processed by only one core.

Figure 20: Each Core May Accept Work from Any and All Groups

The simplest way to set the core’s group mask is by using the Simple Executive function
cvmx_pow_set_group_mask(). The arguments to this function are the core number and the
group_mask for the core. An example of using this function is presented in the SDK Tutorial
chapter.

The cvmx_pow_set_group_mask() function modifies the per-core SSO (POW) registers:
POW_PP_GRP_MSK(N), where N represents the core number: on a 16-core system N ranges
from 0-15. (“PP” stands for “packet processor”, which simply means “core”.)

Inside the POW_PP_GRP_MSK(N)register, the field GRP_MASK is used to control which groups
the core accepts work from. Each bit in the GRP_MSK represents a group: if bit 0 in the mask is
set, group 1 work is accepted, and so on. There are Y groups. Typically (but not always), N = Y
(the number of groups matches the number of cores in the system). Each group is represented by a
bit in the mask. Group 0 is represented by 1 << 0. Group 15 is represented by 1 << 15.

When the core performs the get_work operation, only work with a group number corresponding
to a bit set in the core’s GRP_MSK is returned.

In the following table, core 0 is configured to only receive work with group number 15. Core 1 is
configured to receive work from groups 0 and 14. (The linux-filter example uses this
configuration.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 6: Setting the Cores’s Group Mask in the SSO

Group Mask [GRP_MSK)] Notes

Group 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

C
o
r
e
.
.
.

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Only group 15 work
is schedulable to this
core.

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Only groups 0 and 14
work is schedulable
to this core.

2
3

Once the group mask is set, the scheduler will only return the highest-priority work which can be
scheduled to this core.

The cores may also be configured to accept work from a limited set of QoS Input Queues, and to
adjust the priority of the QoS Input Queues they accept work from. Inside the
POW_PP_GRP_MSK(N)register, the fields QOS[N]_PRI (one for each QoS priority) is used to
control the QoS Input Queue priority for the core. A value of 0xF prevents the core from
receiving work for that QoS level.

In the following figure, the core will receive the first schedulable group 0 work in from the highest
priority QoS Input Queue (as viewed from the core’s QOS[N]_PRI field). This is a highly
simplified view of SSO scheduling based on groups.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-41

Figure 21: Cores Can Receive Work Based on Their Group Mask

Note that the core may be idle if there is work to do, but none of it is in a work group accepted by
the core. Part of load-balancing is making sure the cores are as busy as possible. The core in the
next figure can be configured to accept work from more groups.

SSO UNIT

QoS Input Queues
Next
WD

G2

G0

G1

G3

G0

G1

G0G0

G0 G1

G0G2

G0

G1G3

G2 G0

G0G1

G0 QoS 0
Queue

Queue
Heads

QoS 1
Queue

QoS 2
Queue

QoS 3
Queue

QoS 4
Queue

QoS 5
Queue

QoS 6
Queue

QoS 7
Queue

The Cores can Receive New Work from Any or All Groups, Depending on their Group Mask

The first schedulable G0 Work Descriptor is returned by the scheduler, in this example the WD is from QoS 0 Queue. Note
that the scheduling algorithm is highly simplified in this figure.

Core N
only

accepts
G0 work

1 get_work()3

2

SSO Scheduler 4 WQE pointer

from
Group 0 (G0)

Chosen by
the scheduler
for this core.

The scheduler
will only return
work which is in
a work group
the core
accepts. If no
suitable work is
found, the
scheduler
returns NULL.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 22: A Core is Idle if No Suitable Work is Available

SSO UNIT

QoS Input Queues
Next
WD

G2

G2

G1

G3

G2

G1

G1G2

G1 G1

G2G2

G1

G1G3

G2 G1

G3G1

G1 QoS 0
Queue

Queue
Heads

QoS 1
Queue

QoS 2
Queue

QoS 3
Queue

QoS 4
Queue

QoS 5
Queue

QoS 6
Queue

QoS 7
Queue

A Core is Idle if No Suitable Work is Available
If no G0 work is found, the scheduler returns NULL. Note that the scheduling algorithm is highly simplified in this figure.

Note that in this simplified drawing, only the group (G) field In the work descriptor is show. G1 represents Group 1.

Core N
only

accepts
G0 work

1 get_work()

4 NULL

3 NULL

2

SSO Scheduler

The scheduler
will return NULL
if no suitable
work is found.

Groups may be used for many purposes: they are a flexible tool.

The PIP/IPD assigns the initial group number. After the work is assigned to a core, the core may
change the group number by performing the swtag_desched operation.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-43

6.3.2.1 Passing Work From One Core to Another Core
The following steps are used to pass work from one core to another core:

1. The swtag_desched operation deschedules the work from the core. The work remains
in the In-Flight Queue so that ordering properties are maintained.

2. The corresponding Work Descriptor (WD) is unscheduled from the core and its state is set
to Descheduled.

3. Once the WD is the head of its In-Flight Queue, a pointer to it is stored in the Descheduled-
Now-Ready List (DS-Now_Ready List). The WD can now be scheduled to a new core.
(There is one DS-Now-Ready List per group. These lists contain only pointers to WDs
which are ready to be rescheduled because each is the head of its In-Flight Queue.)

4. A new core will receive the now-ready WD when the core performs the get_work
operation and the SSO schedules now-ready WD to the core.

The DS-Now-Ready List has a higher priority than the QoS Input Queue, which allows now-ready
in-flight work to complete prior to new work.

This technique may be used to pass a packet from one core to another. For example, in linux-
filter, groups are used to pass messages between data-plane and control-plane cores. This
example is presented in Section 6.6 – “Example: linux-filter”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 23: Scheduling Previously Descheduled Work

SSO UNIT

QoS Input Queues
QoS
Next
WD

G2

G0

G1

G3

G0

G1

G0G0

G0 G1

G0G2

G0

G1G3

G2 G0

G0G1

G0 QoS 0
Queue

Queue
Heads

QoS 1
Queue

QoS 2
Queue

QoS 3
Queue

QoS 4
Queue

QoS 5
Queue

QoS 6
Queue

QoS 7
Queue

Scheduling Previously Descheduled Work

Note: In this example only the group field (G) of the Work Descriptors (WD) are shown, and only one
core is shown.
Note: This view of the SSO Scheduler is simplified: the details of the configurable scheduling
algorithm are not shown.

Core N
only

accepts
G0 work

1 get_work()

4

In this example, core N only accepts work from group 0.

SSO Scheduler Steps Shown in this Figure:
1. Core N performs the get_work() operation, accepting work only from group 0 (G0).
2. If the Group 0 Descheduled-Now-Ready List (DS-Now-Ready List) is not empty, the scheduler

removes the entry from the DS-Now-Ready List and uses the corresponding
Work Descriptor (WD) in step 4. The scheduler goes to step 4. (As shown in the figure.)

3. Else there are no entries on the G0 Ready List. The scheduler now examines the Next WD entries
for the QoS Queues according to a configurable scheduling algorithm, looking for a WD which is
suitable for the core. If the scheduler finds a suitable WD, it removes it from the QoS Queue.
The scheduler goes to step 4.

4. If a suitable WD was found in either the DS-Now-Ready List or the QoS queues, the scheduler
assigns the WD to the core and returns the WQE pointer to the core.
Else (no suitable WD) was found, the scheduler returns NULL.

In-Flight Queues

G0G1

Chosen by
the scheduler
for this core.

2
 C

he
ck
 H
er
e

Fi
rs
t

3 Check Here Last

Head

SSO Scheduler
First check DS-Now-
Ready List(s), then, if
needed, check QoS

queues.

G0G0

Descheduled-Now-
Ready Lists (one list per

group)

G0 DS-Now-Ready List

G1 DS-Now-Ready List

GN DS-Now-Ready List

There is one
Descheduled
-Now-Ready
list per group.
When a
Descheduled
WD is the
head of its In-
Flight Queue,
a pointer to it
is put on a
DS-Now-
Ready List.
The WD is
now ready to
be
scheduled to
a new core.Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-45

6.4 Pipelined Versus Run-To-Completion Software Architecture
The OCTEON processor supports traditional pipeline, run-to-completion, and modified pipeline
architectures. On some processors, system constraints can force the architecture into a pipelined
model. For example, some processors can only run a limited number of instructions per core due
to limited instruction memory per core. The OCTEON processor does not have this limitation.

Example software architectures supported include:

1. Run-to-completion: In run-to-completion architecture, each core performs all the functions,
and the packet stays on the same core as it moves through the series of functions.

2. Traditional pipeline: In traditional pipeline architecture, each core handles one function
and the packet moves through the pipeline, changing cores as needed to pass through the
series of functions. The stages of the pipeline are bound to specific cores. On the
OCTEON processor, when each core completes its part of the processing, it changes the
packet’s work group to a new value, and performs the swtag_desched operation to send
the packet to the next core in the pipeline. The next core receives the packet when it
performs the get_work operation.

3. Modified pipeline: On the OCTEON processor, because there is no limitation on code size,
a modification of the traditional pipeline architecture can be used. A modified pipeline is
one where any core can process any stage of the pipeline: the stages are not bound to
specific cores. This modified architecture provides better load-balancing and scaling
capabilities than traditional pipelining.

6.4.1 Comparing Run-To-Completion and Traditional Pipelining
Pipelining can be very nearly as efficient as run-to-completion, measured from a strict performance
viewpoint.

The problems arise when writing and maintaining the software: pipe length adjustment, higher
context switching overhead, and the need to re-tune the system after adding new functionality:

• For best performance, the processing time of each pipe stage must be about the same
length, or else everything will stack up at the entry to the slowest stage. While that problem
can be mitigated by adding cores to the slower stages (in modified pipelining), it's a long
path to tune. In the future, when new functionality is added to a pipe stage then
performance degrades, and the system must be re-tuned.

• Pipelining adds context switches (in this case, SSO tag switches) to each packet's path. A
simple run-to-completion model can have 2-3 tag switches. Any pipeline model will have
at least one tag switch per pipe stage plus ordinary overhead which will still probably be
needed.

• Passing the packet from core to core will decrease utilization of the L1 data cache: each
core will have to fault in new cache lines as it picks up a new packet. If the same core had
continued operating on the packet, the data would still be in the L1 Dcache. The packet
will probably still be in the L2 cache, but this is not as efficient as having it in the L1
Dcache. See Section 9.4 – “Caching” for a brief introduction to caching on the OCTEON
processor.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

• Due to the extra cycles spent in the context switch passing the packet from core to core,
traditional pipelined architectures depend on optimizing the L1 instruction cache usage.
The instruction/code size must be small enough to fit into the L1 instruction cache to avoid
wasting cycles on cache misses.

A simpler run-to-completion model does not have the scaling and maintenance complexity, or the
additional overhead of the pipelined model.

6.4.2 A Quick Look at Packet Processing Math
The following example uses a 750 MHz processor, and Ethernet packets with an IMIX average
frame size of 353.8 bytes per frame.

To process packets at a line rate of 3.3 Mfps (Million frames per second), which is about 10 Gbps
of Ethernet traffic when the bytes times per frame is 374 byte times per frame, there are only 299.2
ns per frame to complete packet processing. Every cycle is precious at this speed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-47

Figure 24: Packet Processing Math

ݏ݁݉ܽݎ݂ 7 כ ݏ݁ݐݕܾ 64
݁݉ܽݎ݂ 1 ݏ݁݉ܽݎ݂ 4 כ ݏ݁ݐݕܾ 570

݁݉ܽݎ݂ 1 כ ݁݉ܽݎ݂ 1 כ ݏ݁ݐݕܾ 1518
݁݉ܽݎ݂ 1

ݏ݁݉ܽݎ݂ 12 ൌ 353.8
ݏ݁ݐݕܾ

݁݉ܽݎܨ

ݏ݁ݐݕܾ 354 ݏ݁ݐݕܾ 8 ݏ݁ݐݕܾ 12 ൌ ݁݉ܽݎ݂ ݎ݁ ݏ݁݉݅ݐ ݁ݐݕܾ 374

݁ݐܴܽ ݁݊݅ܮ
݁ݖ݅ݏ ݁݉ܽݎܨ ܦܨܵ & ݈ܾ݁݉ܽ݁ݎܲ ܩܨܫ

ݏݐܾ݅ 10,000,000,000
ݏ 1 כ

݁ݐݕܾ 1
ݏݐܾ݅ 8 כ

݁݉ܽݎ݂ 1
ݏ݁ݐݕܾ 374 ൌ ݏ݂ܯ 3.342

1
݁ݐܽݎ ݁݉ܽݎܨ ൌ

݀݊ܿ݁ݏ 1
ݏ݂ܯ 3.342 ൌ 299.2

ݏ݊
 ݁݉ܽݎ݂

1
ݕܿ݊݁ݑݍ݁ݎܨ ൌ

ݏ 1
ݏ݈݁ݕܿ ܯ 750 ൌ 1.3333

ݏ݊
 ݈݁ܿݕܿ

݁݉ܽݎܨ ݎ݁ ݁݉݅ܶ ݈ܾ݈݁ܽ݅ܽݒܣ
݀݅ݎ݁ܲ ݈݁ܿݕܥ ൌ

ݏ݊ 299.2
݁݉ܽݎ݂ 1 כ

݈݁ܿݕܿ 1
ݏ݊ 1.333 ൌ 224

ݏ݈݁ܿݕܿ ܷܲܥ
݁݉ܽݎ݂

݁݉ܽݎ݂ ݎ݁ ݏ݈݁ܿݕܿ ܷܲܥ
݈݁ܿݕܿ ݎ݁ ݏ݊݅ݐܿݑݎݐݏ݊ܫ ൌ

ݏ݈݁ܿݕܿ ܷܲܥ 224
݁݉ܽݎ݂ 1 כ

ݏ݊݅ݐܿݑݎݐݏ݊݅ 1.3
݈݁ܿݕܿ ܷܲܥ 1 ൌ 291

ݏ݊݅ݐܿݑݎݐݏ݊݅
݁݉ܽݎ݂

Calculating Instructions per Packet
As shown in the math below, the number of instructions used to process one packet before the next is received can be
small. Every cycle is precious at this speed.

Assumptions:

1. 10 Gpbs Line Rate (10,000,000,000 bits per second)
2. Data traffic is Ethernet
3. Assumed cnMIPS Instructions Per Cycle (IPC) is 1.3 MIPS/MHz (See Note 1)
4. OCTEON Processor with cnMIPS cores each running at 750 MHz

IMIX Average Frame Size:

That rounds to 354 bytes per frame.

Each frame at the IMIX average size requires 374 byte times:

IMIX Average Frame Size + Preamble & SFD + Inter-frame Gap

(Preamble is 7 bytes, Start Frame Delimiter (SFD) is one byte.)

The frame rate is thus:

The available frame processing time, therefore, is:

From this, we can see how many CPU cycles are available per frame. Each core clock cycle period is:

And the CPU cycles available are:

Last, the number of cnMIPS instruction per frame assuming an IMIX average, is

Note 1: The number of instructions executed per cycle may vary greatly depending on the application, compiler
optimizations, cache sizes and cache utilization, and the locality of the code.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In a traditional pipeline, that means the first stage has to accept a packet every 224 cycles (on a 750
MHz core). There are a total of 3,584 core cycles (16 cores * 224 cycles in each stage) to complete
packet processing on this packet (this extra processing time introduces a latency in packet
processing). For example, assume the number of instructions per cycle is 1.3. At 1.3 instructions
per cycle, 224 cycles is roughly 291 instructions per pipeline stage.

In this tight timeframe (10 Gbps), there is little time to do very much packet processing. To move
the packet down the pipeline, the first core performs a swtag_desched operation to pass the
WQE pointer to the next core. The receiving core performs a get_work operation to receive the
WQE pointer. This is repeated for each stage in the pipeline. Spending unnecessary cycles on
extra operations should be avoided if possible in order to achieve performance goals.

The run-to-completion model minimizes cycles spent on switches. Each core has 3,584 core cycles
before it needs to accept another packet (assuming no switches occur).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-49

Figure 25: Run-To-Completion Versus Traditional Pipelining

Note that as packet size increases, the packet rate drops dramatically. It is easier to keep up with
the line rate when using larger packet sizes. There is a fixed per-packet overhead. Using a larger
packet size will reduce the amount of overhead for the same data transfer.

6.4.3 Run-To-Completion
In run-to-completion architecture, each data-plane core runs the same application. Each core may
receive new work and process it to completion. One core cannot stall packet processing for the
system, only for the single packet involved.

Run-to-Completion

Switch

Switch

Switch

Run To
Completion

Core 0

Core 1

Core 2

Core 3

Wasted
Cycles

Stage 1

Core 0

Stage 2

Stage 3

Stage 4

Traditional Pipelining

Core 3

Run-To-Completion is Useful for High Performance Packet Processing Where Every Cycle Counts

The code is divided into stages. Each
stage takes the same amount of time.
To move through packet processing, the
packet is switched from core to core
down the pipeline.

Each core receives the
packet, processes it,

and transmits it.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 26: Simplified Run-To-Completion Architecture

Run-to-completion is easy to scale, as shown in the following figures. Simply add cores.

Packet

2

Packet

1

Pa
ck

et

0

Pac
ke

t

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-51

Figure 27: Scaling Run-To-Completion Architecture

Note that the run-to-completion model also keeps cores busy: if there is something to do, a core
will get the work and do it.

Pac
ke

t

15

Packet 12
Packet

11 Packet

10

Packet
9

Packet
8

Packet

7

Packet

6

Packet 4

Pa
ck

et

3Pa
ck

et

2

Pa
ck

et

1

Pa
ck

et

0

Work groups and tag types can be used to route packets to specific cores.

In the figures above, no switches are shown. It is not unusual to use 2-3 switches in the run-to-
completion model (for instance, the switch to the ATOMIC tag type to use packet-linked locking).
Switches may or may not move the WQE to a different core.

Switches and work groups may be also used to send work between the control plane and data
plane.

6.4.4 Traditional Pipelining
A simplified view of traditional pipelining is that each core handles part of packet processing, and
the packet is passed from one core to the next until processing is complete.

On the OCTEON processor, this might be handled by having each core receive only one group.
After each core completes its part of the packet processing, it performs the swtag_desched

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

operation (changing the packet’s work group number) to pass the packet to the next core. In
traditional pipelining, each core will only accept work from one group.

Figure 28: Traditional Pipelining

ge
t_
wo
rk
()

Note that it can be more efficient for one core to get a packet, and do packet processing all the way
to completion instead of using stages. This will conserve the extra cycles spent on the
switch_desched operation. This example is merely being used to illustrate the capability for
modified pipelining. Run-to-completion is typically a higher performance architecture.

6.4.5 Modified Pipelining
If a pipelining architecture must be used on the OCTEON processor, the recommended architecture
is the modified pipelining architecture.

To use modified pipelining, cores may process more than one stage of packet processing. This is
easy to implement by modifying the per-core group masks in the SSO.

In this model, each core can run the same application. After the get_work operation returns a
WQE pointer to the core, the core can execute the appropriate function based on the packet’s work
group.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-53

Figure 29: Modified Pipelining

S1

g
e
t
_
w
o
r
k
(
)

S1

The core’s group mask can easily be modified to add or subtract groups. This makes load-
balancing and adding new functionality simpler than the traditional pipelining model. This
technique also allows cores to be in the same load set, with the shared data and synchronization
advantages provided by a single load set.

Figure 30: Modified Pipelining: Using Groups to Load Balance

To

P
K
O
O
u
tp
u
t

Q
ue
u
e

g
e
t
_
w
o
r
k
(
)

Gro
up

 0

Grou
p 1

Grou
p 2

Group 3

S2
S2

Note that modified pipelining, like traditional pipelining, has the disadvantage of cycles spent on
swtag_desched and get_work operations. Load balancing is also still a problem when new
functionality is added. The run-to-completion model is usually the easiest architecture to load-
balance and scale.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

S
E

R
W

 O
V

W

 OCTEON Programmer’s Guide

3-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

V
IE

6.5 Other Software Architecture Issues

6.5.1 Scaling
A key software architecture goal is to create software which scales well. Scaling refers to adding
cores to a system to improve throughput. This is often needed as the system throughput needs
increase over time.

In traditional pipelined processing, there is one function to a core: a static core allocation. This
hard-coded architecture is difficult to tune for performance, to load-balance, and to scale.

Both run-to-completion and modified pipelining scale well. By using groups and tag types,
software architecture can be created which scales well, is easy to tune for performance, and is easy
to load-balance. A well-designed system will easily scale when cores are added.

Key elements of a well-designed system:

1. Locking: eliminate locks or minimize critical sections. Use packet-linked locks (via
ATOMIC tags) when possible.

2. Cluster data which accessed at the same time into the same cache line so the core won’t
stall waiting for data. This is discussed in more detail in the OCTEON Performance Tuning
Whitepaper. Clustering data can reduce contention on the shared bus by one third, or about
33%.

3. Use a polling (event-driven) loop instead of an interrupt-driven loop

In the following figure, the data-plane cores are scaled up from 1 to 7 cores. In the next section,
the example linux-filter is discussed briefly. This is an example of an architecture designed
for scaling: by running linux-filter on a load set of multiple cores, performance can be
added to the data plane without changing the code.

Note that performance improvement from scaling depends on how much processing can be done in
parallel versus how much processing must be serialized. For more details, see “Amdahl's Law” at
http://www.wikipedia.org/. Designing an architecture which maximizes parallel processing will
result in the best performance improvement with scaling.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.wikipedia.org/

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-55

Figure 31: Scaling the Data Plane

More information on scaling and performance tuning can be found in the OCTEON Performance
Tuning Whitepaper.

6.5.2 Code Locality: Reducing Icache Misses
On some large, very high-performance applications, reducing L1 Instruction Cache (Icache) misses
can result in a significant performance improvement in some applications. This can be
accomplished by improving code locality.

Each MIPS instruction is 4 bytes long. The size of the Icache varies with OCTEON model. If the
Icache is 32 KBytes, then 8,192 instructions will fit into the Icache. Each cache line is 128 bytes
(32 sequential instructions).

Once the core loads a set of instructions into Icache, if it continues to run only that set of
instructions, the performance cost of Icache misses is 0.

For example, to take code locality to an extreme and reduce Icache misses to 0, the code is
logically divided into functions which are small enough to fit into each core’s Icache. This
division results in instruction locality: the same instructions to stay in the cache, eliminating cache

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

misses. Work groups may be used to route the packet to different cores as needed. Note that
performance analysis is needed to weigh the benefit of code locality versus the cost of any
additional switches.

This extreme type of code locality can only be accomplished with only SE-S applications, not SE-
UM applications. In the case of SE-UM applications, once the Linux Kernel runs (for instance,
due to a timer interrupt), the kernel will displace the application code from the Icache.

Figure 32: Using Code Locality to Reduce Icache Misses

One Load Set

32 KByte
Icache

Core
running
Group 0

Core
running
Group 1

Core
running
Group 2

Core
running
Group 3

32 KByte
Icache

32 KByte
Icache

32 KByte
Icache

Group 0 Code
(8192

instructions)

Group 1 Code
(8192

instructions)

Group 2 Code
(8192

instructions)

Group 3 Code
(8192

instructions)

The same SE-S program is running on all the cores.

Each core only accesses a small part of the code, and does not access the other parts if possible. To
accomplish this, the code is logically divided into functions which are small enough to fit into each core's
Icache. This division results in instruction locality: the same instructions to stay in the cache, eliminating
cache misses.

Work groups may be used to route the packet to different cores as needed.

Each MIPS instruction is 4 bytes long.

A 32 KByte Icache can fit 8192
instructions (32KBytes / 4 bytes per
instruction).

Using Instruction Locality to Minimize Icache Misses

SE-S
in-memory

image
code

Load Icache only onceLoad Icache only onceLoad Icache only once

Load Icache only once

In the figure above, the cores are all in the same load set (running the same ELF file) but accept
different groups and perform the different functions which match the group number. Each core
may accept more than one group (perform more than one function).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-57

In a less extreme situation, performance can be improved by increasing code locality while running
a larger amount of code which does not fit in the Icache. For example, functions which are defined
in the same source file are kept together by the linker. This may increase the possibility that they
will share a cache block with another function needed by the same core. Similarly, when deciding
which cores will perform which functions it is a good idea to look for opportunities to increase
locality.

See Section 9.4 – “Caching” for a brief introduction to the L1 Cache.

6.5.3 Load-Balancing
Load-balancing is tuning the system so each core is working to its fullest capability. In a
traditional pipelined system, load-balancing consists of making sure each processor uses the same
amount of packet processing time, so one processor cannot stall the pipeline.

In the modified pipelining or the run-to-completion architecture which use the concept of work
groups, load-balancing becomes simpler. For instance, in modified pipelining, the work can be
divided into processing stages, with each stage represented by a group. To add more power to a
processing stage, allow more cores to accept work with the group corresponding to the impacted
stage. Similarly, underutilized cores may accept work from more work groups. This is shown in
the figures in Section 6.4.5 – “Modified Pipelining”.

In the run-to-completion architecture, the different flows may be spread across the cores. For
example, the PIP/IPD may be configured to assign the group number based on the tuple hash
instead of the port number.

6.6 Example: linux-filter
An example of a design separating control path and data path, using a hybrid system is the
examples/linux-filter example. This example shows a different use of work groups than
modified pipelining: work groups are used to communicate between the data plane and control
plane.

In this example, a Simple Executive application runs on one or more cores. Linux is also running
on one or more cores. The cores running the Simple Executive application (filter) receive all
incoming packets, check the packet type, and only send packets which are not IP broadcast to
Linux.

Note that an ideal control path will only handle packets which are exceptions. In linux-
filter, the control path is given packets which are not exceptions. This example is simplified
and is intended only to illustrate packet filtering by a SE-S application, and passing packets
between the control and data path. It is not intended for unmodified use in packet processing.

This program uses the idea of Work Groups to separate cores belonging to the fast path from those
belonging to the slow path. Additionally, groups are used to identify the next processing phase.
This example may be used as the base for an application which does similar processing.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In this example, Simple Executive (fast path) cores accept work for group 0 (new packet), and
group 14 (response to packet received and processed by Linux). Linux cores (slow path) accept
work for group 15.

The next two figures show linux-filter processing, without showing the rest of the OCTEON
processor, or the connections between the hardware blocks. The packet interfaces are not shown in
these figures. Although these figures show only two cores, many more cores may run linux-
filter or Linux simultaneously.

In the first figure, the core receives an IP Broadcast Ping packet. The Simple Executive
application, linux-filter, running on the fast path cores drops the packet (does not send it to
the slow path (Linux) cores.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-59

Figure 33: Example: Linux-filter Drops a Broadcast IP Packet

The hardware units and data plane cores perform a large amount of packet processing
without requiring any action from the cores running the control plane. Processing is shown in
steps 1-4, below.

OCTEON HOST

Data Plane

SSO - Schedule/
Synchronization

/Order

PKO – Packet
Output Unit

1. Ping
(broadcast)

2. add_wo
rk – group 0 3. get_work result – group 0

Data Plane: Cores 1 and 2
Running linux-filter as a SE-
S application: accepts work for
groups 0 and 14

Note that either data-plane core
can handle the packet processing.

Control Plane

Control Plane: Core 0
Running: Linux Operating
System
The control plane does not need
to process this packet: it is
offloaded.

SE-S

SE-S

linux-filter: Offloading the Control Plane

Linux
Driver

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the

SSO.
Step 3: A data-plane core calls get_work() and receives

the packet.
Step 4: The data-plane core tests the packet: Test if packet

((broadcast) && (IP)) = TRUE, therefore discards
packet by calling
cvmx_pip_free_packet_data() and
cvmx_fpa_free() to free Packet Data Buffer and
Work Queue Entry.

RX

TX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-60 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In the following figure, the Simple Executive application, linux-filter, accepts a non-
broadcast ping packet, and forwards the packet to Linux. Linux sends a reply via linux-
filter.

The exact details on how to run and test this example are presented in the SDK Tutorial chapter.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-61

Figure 34: Example: Linux-filter Forwards a Non-Broadcast IP Packet

The hardware units and data plane cores perform a large amount of packet processing without requiring any
action from the cores running the control plane. Processing is shown in steps 1-12, below.

OCTEON HOST

Data Plane

SSO - Schedule/
Synchronization

/Order

PKO – Packet
Output Unit

1. Ping
(not broadcast)

2.
 ad

d_w
ork

–

gro
up

0

3. get_work result – group 0

5. a
dd_w

ork
- grou

p 15

6. get_work result –

group 15

8. add_work -
group 14

9.
get_

work
 res

ult
– grou

p 14

11
.
To
 P
KO
 C
om
ma
nd
 Q
ue
ue

12. Ping reply

Data Plane: Cores 1 and 2
Running linux-filter as
a SE-S application: accepts
work for groups 0 and 14

Note that either data-plane
core can handle the packet
processing.

Control Plane

Control Plane: Core 0
Running: Linux Operating System
accepts work for group=15

SE-S

SE-S

linux-filter: Forwarding a Packet to the Control Plane

Linux
Driver

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the SSO.
Step 3: Data-plane core calls get_work() and receives the packet.
Step 4: Data-plane core tests the packet: Test if packet ((broadcast) &&

(IP)) = FALSE. Send packet to Linux.
Step 5: Data-plane core changes the group to 15 and sends the packet to

the SSO
Step 6: Control-plane core calls get_work() and receives the packet.
Step 7: Control-plane core processes the ping request and replies, using

Group 14
Step 8: Control-plane core sends the packet to the SSO.
Step 9: Data-plane calls get_work() and receives the packet.
Step 10: Data-plane receives the ping reply
Step 11: Data-plane core sends packet to PKO for transmit.
Step 12: PKO sends ping reply.

RX

TX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-62 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

7 Application Binary Interface (ABI)
Several Application Binary Interfaces (ABIs) are supported for Simple Executive and Linux
applications. Simple Executive and Linux applications may be compiled for 32-bits or 64-bits.
The 64-bit mode is usually the highest performing choice. Note that the Linux Kernel is always
64-bit; only the Linux applications may be compiled for 32-bit mode.

To select the ABI, use the makefile option OCTEON_TARGET, as in “make linux-filter
OCTEON_TARGET=linux_64”. The different choices for OCTEON_TARGET can be seen in the
file $OCTEON_ROOT/common.mk.

For Simple Executive, the preferred ABI is EABI. For Linux, the preferred ABI is linux_64.

All the ABIs create ELF-format files.

7.1 ABI Choices
There are several ABI choices available. Which ABI is used depends on whether the application is
64-bit or 32-bit, and whether the application is run as a SE-S or SE-UM application. The target is
the ELF executable file.

7.1.1 EABI (OCTEON_TARGET=cvmx_64): SE-S 64-Bit
The Simple Executive applications are created with this ABI. The matching toolchain is
“mipsisa64-octeon-elf-*”. This ABI supports 64-bit registers and address space. This
ABI is the default for Simple Executive.

7.1.2 N64 (OCTEON_TARGET=linux_64): SE-UM 64-Bit
The 64-bit Linux applications are created with this ABI. The matching toolchain is “mips64-
octeon-linux-gnu-*” with the “-mabi=64” option. This ABI supports 64-bit registers
and address space. This ABI is the default for Linux kernel and user space. The resulting binary is
in ELF64 format.

For example, linux-filter can be compiled with this option. The resultant target file is
$OCTEON_ROOT/examples/linux-filter/linux-filter-linux_64. This file may
be added to the embedded rootfs. When vmlinux.64 is booted, the file is automatically included in
the /examples directory on the target, and has been renamed from
linux-filter-linux_64 to linux-filter.

7.1.3 N32 (OCTEON_TARGET=cvmx_n32): SE-S 32-Bit
Simple Executive 32-bit applications are created with this ABI.

The same ABI is used for SE-UM 32-bit applications, but the toolchain is different for SE-S 32-bit
applications:

• The N32 toolchain for Simple Executive is “mipsisa64-octeon-elf-*” with the
“-mabi=n32” command line option. This ABI supports 64-bit registers and 32-bit

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-63

address space. The resulting binary is in ELF32 format, whose symbol table is in DWARF
format.

7.1.4 N32 (OCTEON_TARGET=linux_n32): SE-UM 32-Bit
Simple Executive Linux User Mode 32-bit (SE-UM 32-bit) applications are created with this ABI.
The same ABI is used for SE-S 32-bit applications, but the toolchain is different for SE-UM 32-bit
applications:

• The N32 toolchain for Linux is “mips64-octeon-linux-gnu-*” with the
“-mabi=n32” option.

Note: SE-UM 32-bit applications are useful for compatibility with older code. Applications using
large data structures may also get a benefit from pointers being smaller and taking less room. The
downside is that there is much less memory available to 32-bit applications. These 32-bit Linux
applications must use reserve32, a special region of free memory which is low enough to have
32-bit physical addresses (the “shallow end” of the memory pool). 32-bit SE-S applications do not
use reserve32.

7.1.5 O32 (linux_o32) (Not Recommended)
The older O32 ABI is in ELF32 format with the symbol table in .mdebug (dot mdebug) format. All
registers are treated as 32 bits. The 64-bit types are split into two separate registers.

Although the Cavium Networks compilers can compile o32 applications, they cannot link them: no
o32 libraries are provided. To build o32 applications (which will NOT take advantage of Cavium
Networks-specific instructions), use the Debian compiler.

7.1.6 Linux uclibc (linux_uclibc)
Linux applications are built with the smaller uclibc instead of glibc. The uclibc library is 32-bit
only.

7.1.7 Choosing the OCTEON_TARGET
Linux code requiring large amounts of memory and the fastest possible access to OCTEON
hardware should use the N64 ABI.

Linux code requiring many data structures dealing with pointers, but requiring only occasional
hardware access should use the N32 ABI.

Some older applications and binaries may still use the O32 ABI, but it is recommended that they be
upgraded to the N32 ABI.

A detailed discussion of Linux ABIs is located in the SDK document “Linux Userspace on the
OCTEON”.

7.2 64-Bit Porting Issues
The key difference from a software porting perspective is in the following variables:

1) Size of long

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2) Size of (void *)

With N32, be alert to automatic sign extension when loading 32-bit values into 64-bit registers.
The N32 registers are 64 bits, but sizeof(void *) = 32 bits, so when loading a 32-bit value
into a 64-bit register, it is automatically sign extended.

The following tables provide the ABIs, data type length and toolchain information for SE-S and
SE-UM applications, as well as information on the older O32 ABI.

Table 7: Key ABI Differences
(the most useful values are highlighted)

Data Type O32 N32 N64 and
EABI64

int 32 bits 32 bits 32 bits
long 32 bits 32 bits 64 bits
long long 64 bits 64 bits 64 bits
pointer 32 bits 32 bits 64 bits
register 32 bits 64 bits 64 bits

Table 8: SE-S ABIs (N32, EABI64), Data Type Lengths, and Toolchain
(the most useful values are highlighted)

Application Type SE-S
32-bit

SE-S
64-bit

Data Type N32 (see Note
1)

EABI64

int 32 bits 32 bits
long 32 bits 64 bits
long long 64 bits 64 bits
pointer (void *) 32 bits 64 bits
register 64 bits 64 bits
Toolchain mipsisa64-octeon-elf-*
Note 1: Function calls are not ABI-conformant in this
toolchain.

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-65

Table 9: SE-UM ABIs (N32, N64), Data Type Lengths, and Toolchain
(the most useful values are highlighted)

Application Type SE-UM
32-bit

SE-UM
64-bit

Data Type N32 N64
int 32 bits 32 bits
long 32 bits 64 bits
long long 64 bits 64 bits
pointer (void *) 32 bits 64 bits
register 64 bits 64 bits
Toolchain mips64-octeon-linux-gnu-*

Table 10: Other ABI (O32), Data Type Lengths, and Toolchain
(the most useful values are highlighted)

Application Type Other
32-bit

Data Type O32
int 32 bits
long 32 bits
long long 64 bits
pointer (void *) 32 bits
register 32 bits (see Note 1)
Toolchain Debian
Note 1: Registers are not 64-bits, unlike the
other ABIs.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Two key things to remember when writing portable code:
1. Use stdint.h data types. Data types, such as uint64_t, are defined in this file in a

portable way. This is the most important priority in writing portable code. In the executive
and in examples, stdint.h is included indirectly: they include cvmx.h which includes
executive/cvmx_platform.h which includes stdint.h.

2. When using printf() to print pointers, use “%p”.

Note: Be careful to use the functions cvmx_ptr_to_phys() and
cvmx_phys_to_ptr() when converting between physical addresses and virtual
addresses. 90% of porting problems come from mistakenly using casts on physical and
virtual addresses.

8 Tools
This section provides a quick overview of some of the tools. Tools are discussed in further detail
in the SDK Tutorial chapter.

8.1 GNU Cross-Development Toolchain
Cross-development tools are tools run on the host machine to build object files which will run on
the target machine.

In the tools/bin directory, there are two sets of tools including the cross compiler, linker, and
libraries. One set is prefixed “mipsisa64-octeon-elf”; the other set is prefixed “mips64-
octeon-linux-gnu”. These tools have been modified to support OCTEON-specific
instructions to achieve maximum runtime performance, and support the Cavium Networks-specific
section: cvmx_shared.

8.1.1 The Cavium Networks-Specific cvmx_shared Section
Cavium Networks toolchains support a cvmx_shared section, used to share small amounts of
memory between cores started from the same load command.

8.1.1.1 Sections
When object files are created by the compiler, they are divided into different sections. Four
common sections are .text, .rodata, .data, and .bss. The .text section is read-only executable code,
.rodata is read-only data, .data is initialized data, and .bss is uninitialized data (which is initialized
to 0 when the section is loaded). Because the .text section of an object file is read-only, multiple
instances of the same object file may share this information in memory, which conserves system
memory. This also allows the bootloader to collect sections with similar access permissions into
the same block of memory (for instance .text and .rodata which are both read-only) allowing the
system to use fewer TLB entries to map the program. (See Section 10 – “Virtual Memory”.)

The sections can be seen with the objdump command. Most of these sections can be ignored by
the programmer. There is one which the programmer needs to be aware of, however, and that is
the cvmx_shared section.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-67

host$ mipsisa64-octeon-elf-objdump -h fpa
fpa: file format elf32-bigmips

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reginfo 00000018 10000000 10000000 0001c058 2**2
 CONTENTS, READONLY, LINK_ONCE_DISCARD
 1 .init 00000028 10000018 10000018 00001018 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .text 00016058 10000040 10000040 00001040 2**3
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 3 .fini 00000020 10016098 10016098 00017098 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 4 .rodata 00003368 100160b8 100160b8 000170b8 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .eh_frame 00000404 10019420 10019420 0001a420 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 .ctors 00000010 12000000 12000000 0001b000 2**3
 CONTENTS, ALLOC, LOAD, DATA
 7 .dtors 00000010 12000010 12000010 0001b010 2**3
 CONTENTS, ALLOC, LOAD, DATA
 8 .jcr 00000008 12000020 12000020 0001b020 2**3
 CONTENTS, ALLOC, LOAD, DATA
 9 .data 00000f88 12000028 12000028 0001b028 2**3
 CONTENTS, ALLOC, LOAD, DATA
 10 .sdata 000000a8 12000fb0 12000fb0 0001bfb0 2**3
 CONTENTS, ALLOC, LOAD, DATA
 11 .sbss 000000a0 12001058 12001058 0001c058 2**3
 ALLOC
 12 .bss 00000458 120010f8 120010f8 0001c058 2**3
 ALLOC
 13 .cvmx_shared_bss 000012b0 14000000 14000000 0001c058 2**3
 ALLOC

<The remaining sections are not shown here.>

8.1.1.2 The cvmx_shared Section
Both SE-S and SE-UM applications support the cvmx_shared section, a Cavium Networks-specific
section which is used to provide a shared data space for applications started with the same boot
(load) command or one oncpu command.

When cores are in the same load set, shared variables can be created at compile time by specifying
the CVMX_SHARED attribute. Variables declared with the CVMX_SHARED attribute are put
into a special section in the compiled file: .cvmx_shared_bss.

If the cvmx_shared section is large, the ELF file will also be large. This can cause problems, for
instance during load time. For example, when running very large SE-S programs (which will
consume above the virtual address 0x20000000) 1:1 mappings cannot be used. As an
alternative, when large amounts of shared memory are desired, the variable stored in the
cvmx_shared section should be only a pointer. At application initialization time, the initializing
core can use the bootmem functions to allocate shared memory from memory outside the 256
MByte program space. The initializing core can then put the address of the allocated memory into

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

the CVMX_SHARED pointer. This will keep the application size small, while allowing a large
amount of shared memory.

Usage of a CVMX_SHARED variable may be seen in the linux-filter example code:

CVMX_SHARED int intercept_port = 0;

The cvmx_shared (.cvmx_shared_bss) section can be seen with the objdump utility:

host$ mipsisa64-octeon-elf-objdump -h linux-filter
passthrough: file format elf32-tradbigmips

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reginfo 00000018 10000000 10000000 00036cd0 2**2
 CONTENTS, READONLY, LINK_ONCE_DISCARD
 <text omitted>
 13 .cvmx_shared_bss 00001358 14000000 14000000 00036cd0 2**3
 ALLOC
<more text follows>

Note: The bss (Block Started by Symbol) section is the name of the data section which contains
static variables which will initialized to zero by the ELF loader when it loads the program.

8.1.2 Link Addresses
Link addresses and section sizes for a specific application can be seen using the objdump utility.

For example, when linux-filter is built as a SE-S application:

host$ mipsisa64-octeon-elf-objdump -h linux-filter

linux-filter: file format elf32-tradbigmips

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reginfo 00000018 10000000 10000000 0001b6d8 2**2
 CONTENTS, READONLY, LINK_ONCE_DISCARD
 1 .init 00000028 10000018 10000018 00000098 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .text 000155b8 10000040 10000040 000000c0 2**3

8.1.3 Simple Executive Development Tools
The mipsisa64-octeon-elf-* tools are used to build Simple Executive Applications.

8.1.3.1 C/C++ Runtime Support for Simple Executive
The C/C++ runtime support for Simple Executive is specified in the SDK document “OCTEON
Simple Executive Overview”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-69

8.1.4 Linux Development Tools
The mips64-octeon-linux-gnu-* tools are used to build Linux Applications.

The cross-development tools are discussed in more detail in the SDK Tutorial chapter.

8.2 Native Tools (Run on the Target)
Native tools are those which may be run on the target instead of on the development host.

8.2.1 Native tools and Simple Executive
Simple Executive does not have a file system. Only one application runs. Thus there are no native
tools.

8.2.2 Native tools and Linux
Native tools are provided with both embedded_rootfs and Debian.

8.2.2.1 The embedded_rootfs Native Tools
Native Linux tools are usually located in /bin, /sbin, and /usr/bin.

8.2.2.2 Debian Native Tools
Two toolchains are provided with the Debian file system:

- The Debian native toolchain
- A Cavium Networks toolchain, optimized for the OCTEON processor.

These toolchains are used for native compiling.
The Cavium Networks native toolchain supports both 32-bit and 64-bit Linux applications. This
toolchain implements the Cavium Networks-specific instruction set. See the OCTEON Hardware
Reference Manual for instruction set details.

To compile O32 applications, use the Debian toolchain. Note that these applications cannot use the
Cavium Networks-specific instruction set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-70 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

9 Physical Address Map and Caching on the OCTEON
Processor

A brief introduction to hardware issues such as the physical address map and the concept of
caching is provided in this section.

9.1 Physical Address Map
There are two key elements in the physical address map:

1. System memory (DRAM)
2. I/O space

Out of 64 possible Physical Address Bits (PABITS), only 49 bits (PABITS=49) are used to access
the physical address space. These are bits <48:0>.

A simplified physical address map is shown in the next figure. Exact details may be found in the
OCTEON Hardware Reference Manual.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-71

Figure 35: Simplified Physical Address Map

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

9.2 System Memory (DRAM) Addresses
System memory (DRAM) is located starting at address 0 (zero). The amount of memory on the
board is a design option. The default Linux configuration supplied with the SDK requires 230
MBytes of memory, so a minimum of 256 MBytes of system memory is recommended for this
configuration. If less than 256 MBytes of system memory is available, see Section 4.3.7 – “Linux
on Small Systems (Limited MBytes of Memory)” for instructions on how to configure Linux to
require less system memory.

Note: The bootloader uses the first MByte of system memory. This space is needed even
after the bootloader exits. This space is used by the bootmem functions.

There are up to three regions of system memory: DRAM Region 0, DRAM Region 1, and DRAM
Region 2. (These regions are sometimes labeled as DR0, DR1, and DR2.) The actual memory
map will vary depending on the amount of DRAM installed in the target board.

If physical address bit 48 is 0, the access is to system memory (DRAM). Out of the 49 PABITS,
36 bits (<35:0>) are architected to access all of system memory.

9.3 I/O Space Addresses
The I/O space contains the OCTEON processor configuration and status registers for the various
hardware units and also contains the PCI configuration, I/O and memory space.

If physical address bit 48 is 1, the access is to I/O space.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-73

Table 11: Simplified View of I/O Space
Physical Addresses

I/O Space Addressed
FROM TO

0x1 F000 0000 0000 0x1 F00F FFFF FFFF FAU Operations
0x1 6000 0000 0000 0x1 6700 0000 03FF SSO (POW)
0x1 5200 0000 0000 0x1 5200 0003 FFFF PKO doorbell store operations
0x1 4F00 0000 0000 0x1 4F00 0000 07FF IPD
0x1 4000 0000 0000 0x1 4000 0000 07FF RNG Load/IOBDMA operations
0x1 3800 0000 0000 0x1 3800 0000 0007 ZIP doorbell store operations
0x1 3700 0000 0000 0x1 3707 FFFF FFFF DFA NCB type CSRs and operations
0x1 2800 0000 0000 0x1 2F0F FFFF FFFF FPA Pools Allocate/Free operations
0x1 2000 0000 0000 0x1 2000 0000 1FFF KEY Memory operation
0x1 1F00 0000 0000 0x1 1F0F FFFF FFFF NPI NCB type CSRs, doorbells
0x1 1B00 0000 0000 0x1 1E0F FFFF FFFF PCI Bus Memory space
0x1 1A00 0000 0000 0x1 1A0F FFFF FFFF PCI Bus IO space
0x1 1900 0000 0000 0x1 190F FFFF FFFF PCI Bus Config/IACK/Special space
0x1 1800 F000 0000 0x1 1800 F000 07FF IOB
0x1 1800 B800 0000 0x1 1800 B800 03FF ASX1
0x1 1800 B000 0000 0x1 1800 B000 03FF ASX0
0x1 1800 A800 0000 0x1 1800 A800 00FF TRA
0x1 1800 A000 0000 0x1 1800 A000 1FFF PIP
0x1 1800 9800 0000 0x1 1800 9800 07FF SPX1, SRX1, and STX1
0x1 1800 9000 0000 0x1 1800 9000 07FF SPX0, SRX0, and STX0
0x1 1800 8800 0000 0x1 1800 8800 007F LMC
0x1 1800 8000 0000 0x1 1800 8000 07FF L2C
0x1 1800 5800 0000 0x1 1800 5800 1FFF TIM
0x1 1800 5000 0000 0x1 1800 5000 1FFF PKO
0x1 1800 4000 0000 0x1 1800 4000 000F RNM
0x1 1800 3800 0000 0x1 1800 3800 00FF ZIP
0x1 1800 3000 0000 0x1 1800 3000 07FF DFA
0x1 1800 2800 0000 0x1 1800 2800 01FF FPA
0x1 1800 2000 0000 0x1 1800 2000 001F KEY
0x1 1800 1000 0000 0x1 1800 1000 1FFF GMX1
0x1 1800 0800 0000 0x1 1800 0800 1FFF GMX0
0x1 1800 0000 0000 0x1 1800 0000 1FFF MIO BOOT, LED, FUS, TWSI, UART,

SMI
0x1 0700 0000 0000 0x1 0700 0000 08FF CIU and GPIO
(Note this is an example of I/O Space. I/O space details are OCTEON model-specific.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-74 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

9.4 Caching
On the OCTEON processor, caching only applies to system memory (DRAM) accesses, not I/O
space. Caching is used to improve system performance by providing core-local or chip-local fast
memory which is used to cache (save a copy) of recently accessed data. This improves
performance because accesses to on-chip cached system memory are lower latency than accesses to
the external system memory (DRAM).

Caches on the OCTEON processor:

• Level-1 Data cache (Dcache) (per core)
• Level-1 Instruction cache (Icache) (per core)
• Level-2 (L2) cache (one shared by all the cores)

The following figure is a simplified view of a data load access, showing the difference between a
cache miss and a cache hit.

Figure 36: Simplified View of Cache “miss” and “hit”

R
ea

d
R

eq
ue

st

L
oa

d

R
ea

d
R

eq
ue

st

L
oa

d

L
oa

d
to

 L
1

C
ac

he

L
oa

dR
ea

d
R

eq
ue

st

(M
is

s)

R
ea

d
R

eq
ue

st

(M
is

s)

Note that the sizes of the L1 and L2 caches are limited. The specific sizes depend on the OCTEON
model. The size of the L1 Dcache is also affected by the amount of Dcache set aside for cvmseg.

L
oa

d
to

 L
1

C
ac

he
L

oa
d

to
 L

2
C

ac
he

R
ea

d
R

eq
ue

st

R
ea

d
R

eq
ue

st

(M
is

s)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-75

(The Cavium Networks-specific segment cvmseg is discussed in Section 10.6 – “Cavium
Networks-Specific cvmseg Segment”.)

System memory stores are always cached.

The data returned by load instructions is usually cached in both L1 and L2 caches. As a
performance improvement, prefetch commands may be used. Prefetch commands hide the fetch
latency by requesting the data before it is needed. A normal prefetch loads the data into both the
L1 and L2 caches. Some customers may wish to completely bypass the cache when accessing
memory, especially when debugging hardware issues, however this is not an option. Special
prefetch instructions are available which may bypass some, but not all, of the caches. Prefetch
commands are not discussed in detail here. The following figure illustrates the prefetch instruction
choices available.

Figure 37: Prefetch Commands Used to Bypass Some Caches

CVMX_PREFETCH_NOTL2
(address, offset)

(Bypass L2 Cache)

CVMX_PREFETCH
(address, offset)

(Normal Prefetch)

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A

D
LO

A
D

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A

D

CVMX_PREFETCH_L2
(address, offset)

(Fetch only to L2, not L1)

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A

D

Prefetch Commands Used to Bypass Some Caches

Prefetching into the L1 cache, bypassing the L2 cache, is useful to avoid “polluting” the shared L2
cache with data needed by only one core. This option should only be used if the data is read-only.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-76 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Prefetching into the L2 cache (but not the L1 cache) is only useful if the data will be needed by a
core other than the one issuing the prefetch.

9.5 Special L2 Cache Features: Partitioning and Locking
The L2 cache controller provides two features that may be used in performance tuning:
partitioning and locking.

Both partitioning and locking can be used to prevent one core from starving the other cores by
causing excessive L2 traffic and causing other cores cache blocks to be evicted.

Partitioning can split the cache up into core-specific regions, so each core can only cause evictions
from its own region.

Locking can be used to make a particular region of memory resident in the L2 cache, so it cannot
be evicted. This feature is also used to speed access to this memory region for all cores.

See the OCTEON Hardware Reference Manual for more details.

10 Virtual Memory
The goal of virtual memory is to make accessing physical memory and I/O space safer and more
convenient.

Safety is provided when a process may only write to its own memory, not the memory of other
processes. Because the user addresses are all mapped, the operating system can prevent the user
from accessing memory inappropriately.

Convenience is provided so that, when the program is compiled, the linker may select the same
hard-coded virtual address as starting address for each program. The hardware and operating
system work together to translate identical virtual addresses into unique physical addresses, as
shown in the following figure.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-77

Figure 38: Multiple Programs Have the Same Virtual Addresses

Translated by TLB

Translated by TLB

10.1 Virtual Address Translation
In the traditional view of virtual addresses, addresses are always translated by the operating system
working together with the MMU. This translation is referred to as mapping.

10.1.1 Mapping
There is a translation (mapping) between the physical and virtual address. Physical memory is
mapped when accesses to it go through this translation process. This mapping allows multiple
Linux applications to have the same starting address. Each virtual starting address is mapped to a
different physical address. This is done so that when the file is compiled, the program addresses
can be resolved at compile time instead of at load time.

Mapping requires, at a minimum, entries into a Translation Look-aside Buffer (TLB). Simple
Executive Standalone applications use only the TLB for mapping; Linux uses a more complex
memory management system (page tables and TLB miss handler). In this chapter, it is only
necessary to know about the TLB.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-78 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10.1.2 The Translation Look-Aside Buffer (TLB)
The Translation Look-aside Buffer (TLB) is used to store a limited number of virtual-to-physical
address mappings. There are either 32 or 64 entries in the TLB, depending on the OCTEON
model. Each of these entries is a double entry. The 32-entry TLB can store 64 mappings. The 64-
entry TLB can store 128 mappings. The sizes of the mapped pages may vary from 4 KBytes to 256
MBytes (all sizes which are powers of 2 in this range are allowed).

TLB entries contain an Address Space ID (ASID) (similar to a process ID (PID)). This identifies
which process owns the TLB entry.

There is one TLB per core. It is shared by all the processes running on the core. In the Simple
Executive, there is only one process per core, so TLB use is very simple. On Linux, many
processes compete for the TLB entries.

10.1.3 Wired TLB Entries
Some entries in the TLB may be made permanent and not replaced by newer values. When a
mapping is permanently saved in the TLB, the entry is considered to be “wired”.

Wired TLB entries may increase performance when the same page is accessed frequently: TLB
miss exceptions will not occur for accesses within the wired region.

Wired TLB entries may also harm performance by reducing the number of TLB entries available
for the other processes.

To determine the affect of wired TLB entries for the application, use profiling and performance
tuning tools after the application has been written.

10.2 Generic MIPS Virtual Memory Map
The generic MIPS virtual memory map is shown in the figure below. The 64-bit address space
contains a 32-bit compatibility region.

In the figure below, the xkphys segment is highlighted. This segment is particularly important
because 64-bit software may use this segment to accesses physical memory and I/O space without
mapping the virtual addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-79

Figure 39: Generic MIPS Memory Map

10.3 MIPS Virtual Memory Address Translation
MIPS virtual memory is divided into segments, not all segments are mapped (see Section 10.4 –
“Mapped and Unmapped Segments”), and the MMU is streamlined.

Virtual address translation depends on:

1. The number of address bits in the address space: 64-bit or 32-bit address space
2. The segment addressed
3. The privilege level (mode): kernel, supervisor, or user

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-80 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10.3.1 Segments
In MIPS architecture, the address space is divided into segments: it is not an undifferentiated
virtual address space.

10.3.1.1 Segments: 64-Bit Virtual Address Map
In the 64-bit virtual address map, the high two bits of the virtual address (<63:62>) are used to
select one of four segments. These address bits are always translated by the hardware, not the
operating system.

Of the remaining 62 bits in the virtual address, some of the high bits are ignored if the processor
does not support that many virtual address bits within a segment (SEGBITS).

On the OCTEON processor, SEGBITS equals 49, so only bits <48:0> of the virtual address define
the address space within the segment. The remaining bits (<61:49>) are ignored.

Figure 40: 64-Bit Virtual Address: Segment Selector and SEGBITS

10.3.1.2 Segments: 32-Bit Virtual Address Map
In the 32-bit virtual address map:

• If the high bit (<31>) is 0, then the segment is useg. Within useg, the other 31 bits are not
used as a segment selector.

• If the high bit (<31>) is 1, then 2 more bits are used as segment selectors (<30-29>).

The following figure illustrates the segment selector and SEGBITS for a 32-bit virtual address.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-81

Figure 41: 32-Bit Virtual Address: Segment Selector and SEGBITS

10.3.2 Privilege Level (Mode) and Segments
There are three “modes” (privilege levels): user, supervisor, and kernel. The two most important
modes are user and kernel (most Operating Systems ignore supervisor mode). Applications usually
run in user mode. The kernel and drivers run in kernel mode.

On traditional processors, any virtual page can be mapped as any mode, and the mode bits are
stored as part of the TLB entry. On MIPS, the virtual address space is divided into segments which
are designed to correspond to the different runtime modes. For example:

• processes running in user mode use xuseg
• the kernel uses xkseg

Segments are also accessible to processes running in a higher mode, so xuseg is accessible to the
kernel and drivers: they can access all legal addresses in the 64-bit or 32-bit virtual memory map.

In general, the user processes are restricted to xuseg (useg) addresses (any access outside xuseg will
cause a trap). The Cavium Networks Linux port offers configurable options which may allow 64-
bit user processes to access xkphys I/O or memory addresses. In addition, both 64-bit and 32-bit
processes may access a special Cavium Networks-specific segment, cvmseg, which is in xkseg (or
kseg3 for 32-bit processes) virtual address segment.

The address space is divided into segments. Depending on the mode, different segments are visible
to the process:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-82 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In 64-bit MIPS:

• User mode segments: useg (on the OCTEON processor xkphys may optionally be accessed
in user mode by SE-UM 64-bit applications)

• Supervisor mode: useg, xsseg (usually not used)
• Kernel mode segments: xuseg, xsseg, xkseg, xkphys

In 32-bit MIPS:

• User mode segments: useg
• Supervisor mode segment: useg, sseg (usually not used)
• Kernel mode segments: useg, sseg, kseg3, kseg0, kseg

10.4 Mapped and Unmapped Segments
Depending on which segment is selected, MIPS also may interpret the SEGBITS part of the virtual
address differently than traditional processors. On some traditional processors, all the virtual
addresses are always mapped (translated by the operating system or TLB).

10.4.1 Unmapped Segments

10.4.1.1 64-Bit Virtual Address Space: xkphys
On the OCTEON processor, both 64-bit kernel-mode processes and 64-bit user-mode processes
may access physical memory and I/O space through the xkphys segment.

On MIPS, xkphys addresses are not mapped, and are never translated by the operating system or
TLB. The xkphys addresses provide a “window” into the physical address space. The high bits are
stripped off the virtual address, and the low PABITS (Physical Address BITS) are used as a
physical address. On the OCTEON processor, PABITS is 49: bits <48:0>, matching the number
of SEGBITS (49).

Note that the I/O space is selected if bit 48 of the physical address is “1”. Physical memory is
selected if bit 48 of the physical address is “0”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-83

Figure 42: The xkphys Window to Physical Address Space

W
in

do
w

 to
 I/

O
 S

pa
ce

 a
nd

Sy

st
em

 M
em

or
y

th
ro

ug
h

xk
ph

ys

10.4.1.2 32-Bit Virtual Address Space: kseg0 and kseg1
The 32-bit kernel-mode processes have a small window into physical address space though kseg0.
This window is not large enough to reach the I/O space, and it can only reach the first 256 MBytes
of DRAM (DRAM Region 0).

32-bit Simple Executive Standalone applications run in kernel mode and access physical memory
through kseg0 addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-84 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 43: The Small kseg0 Window to Physical Address Space

Note that kseg0 and kseg1 access the same system memory. In the generic MIPS memory map,
kseg0 accesses are cached, and kseg1 accesses are uncached. In the software provided with the
OCTEON SDK, kernel-mode accesses to system memory are made through kseg0, not kseg1.
Accesses to system memory on the OCTEON processor are always cached, even those made
through kseg1.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-85

Figure 44: kseg0 and kseg1 Access the Same Memory

32-bit Simple Executive User-Mode (SE-UM 32-bit) applications cannot access kseg0. Instead,
they access system memory through memory mapped into useg (the reserve32 area). The
reserve32 area is discussed in detail in Section 12.3.2 – “SE-UM 32-Bit Bootmem Access”.

10.4.2 Mapped Segments
On some traditional processors, the Memory Management Unit (MMU) consists of a TLB and
hardware page tables which the operating system can read and write.

On MIPS, the MMU consists only of the TLB: page tables are optional and are implemented
entirely in software.

When a program accesses a page which should be mapped, but the mapping is not found in the
TLB, a TLB miss exception occurs. This exception causes the hardware to jump to a hardware
vector and run a page fault handler. The page fault handler looks up the page in the page table,
checks access permissions, and if access is allowed, it adds the mapping to the TLB, evicting a
prior mapping if needed. Then the page access is retried and the access succeeds.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-86 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following figure shows simplified address translation for the different segments in the 64-bit
virtual memory map.

Figure 45: 64-Bit Virtual Address Translation on MIPS

Kernel Mapped
xkseg

The kernel loads
and runs from
this segment.

Kernel
Unmapped

xkphys
A “window”

into the physical
address space.

Supervisor
Mapped

xsseg
(usually not

used)

User Mapped
xuseg
User

applications load
and run from
this address

segment.

TLB – for Mapped Regions. If mapping is
not resident a TLB miss occurs. On Linux,

the kernel looks up the mapping in the
software page tables, and puts the mapping
into the TLB, then the page access is tried

again, this time succeeding.

Vi
rtu

al
 a

dd
re

ss

V
irt

ua
l a

dd
re

ss

Vi
rtu

al
 a

dd
re

ss

S
ys

te
m

 M
em

or
y

A
dd

re
ss

System Memory

V
irt

ua
l

ad
dr

es
s

The lower 49 bits
(<48:0>) of the

virtual address are
used as the physical

address.

I/O Space

Bit 48 used to select
System Memory or

I/O Space

P
hy

si
ca

l
A

dd
re

ss

Syst
em M

emory
Address

I/O
 S

pa
ce

A
dd

re
ss

Software Page Tables
(Only on Linux, not on

Simple Executive.
Simple Executive maps
all of system memory in

the TLB and does not
have a TLB miss

handler).

TLB Miss

TLB Fill

Bits <63:62> select the segment: xuseg, xsseg, xkseg, or xkphys.

64-Bit Virtual Address Translation on MIPS

00 01 11 10

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-87

Figure 46: 32-Bit Virtual Address Translation on MIPS

10.4.3 Addresses Versus Pointers
In this document, the word pointer refers to a C or C++ data type which holds a virtual address,
NULL, or an invalid address. The word address refers to a physical address.

The addresses used by a program are always virtual addresses. Virtual addresses are not the same
as physical addresses, even if their 64-bit values are the same. Virtual addresses are always
interpreted differently by the hardware (segment selector, ignored bits, and SEGBITS). C and C++
programs must therefore always use virtual addresses (pointers), not physical addresses, when
accessing memory. Because of this requirement, the Simple Executive API functions such as

Kernel Mapped
kseg3

The kernel loads
and runs from
this segment.

Kernel
Unmapped

kseg0
A “window”

into the physical
address space.

Supervisor
Mapped

sseg
(usually not

used)

User Mapped
useg
User

applications load
and run from
this address

segment.

TLB – for Mapped Regions. If mapping is
not resident, a TLB miss occurs. On

Linux, the kernel looks up the mapping in
the software page tables, and puts the
mapping into the TLB, then the page

access is tried again, this time succeeding.

Vi
rtu

al
 a

dd
re

ss

V
irt

ua
l a

dd
re

ssVirtual address

S
ys

te
m

 M
em

or
y

A
dd

re
ss

System Memory

Vi
rtu

al

ad
dr

es
s

The lower 30 bits
(<29:0>) of the

virtual address are
used as the physical

address.

I/O Space

Select System
Memory Only

P
hy

si
ca

l
Ad

dr
es

s

Syst
em M

emory
Address

(256 M
Byte

s o
nly)

Software Page Tables
(Only on Linux, not on

Simple Executive.
Simple Executive maps
all of system memory in

the TLB and does not
have a TLB miss

handler).

TLB Miss

TLB Fill

Bits <31:29> select the segment: useg, sseg, kseg3, kseg0, or kseg1.

Kernel
Uncached
Unmapped

kseg1
A “window”

into the physical
address space

(not used)

Access I/O space is
through inline
assembly code.

32-Bit Virtual Address Translation on MIPS

1011001111100XX

Virtu
al

ad
dre

ss

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-88 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

cvmx_fpa_alloc() use pointer arguments and return values, not addresses. These pointers
contain virtual addresses which can be directly used by the application without further conversion.

At the hardware level, transactions requiring addresses use physical addresses. For instance, the
“allocate” and “free” operations use the physical address of the buffer in DRAM, not a virtual
address. The FPA is a hardware unit: it has no concept of the TLB or of virtual address space.

When accessing hardware registers directly, be aware that addresses sent and returned are physical,
not virtual addresses. API functions to convert between the two types of addresses are provided:
cvmx_ptr_to_phys() and cvmx_phys_to_ptr().

10.5 Virtual Memory onCavium Networks MIPS (cnMIPS)
The virtual memory on the cnMIPS cores varies from the generic MIPS virtual memory map in the
following areas:

• Caching
1. System memory accesses are always cached, even those made through kseg1 addresses.
2. I/O memory accesses are never cached.

• Mapping
1. I/O memory is never mapped unless explicitly mapped by the user.

In addition, the following virtual memory features were added:

• Special Access to xkphys for Linux Users
1. 64-bit Linux applications may optionally access system memory and I/O space via

xkphys addresses. This is a kernel configuration option. This option is discussed in
more detail in Section 12.3 – “Accessing Bootmem Global Memory from SE-UM
Applications”. Access to xkphys I/O Space or System Memory is controlled by a bit in
the Coprocessor 0 (COP0) register CvmMemCtl (fields XKIOENAU and XKMEMENAU).

2. 32-bit Linux applications may optionally reserve a pool of free memory which has
physical addresses low enough for 32-bit applications to use. This memory is mapped
into useg. An example where this is needed is when using FPA buffers: the function
cvmx_fpa_alloc() returns the address of the allocated buffer, which must fit in 32
bits. This option is discussed in more detail in Section 12.3 – “Accessing Bootmem
Global Memory from SE-UM Applications”.

a. This pool of reserved memory may optionally be mapped to ALL 64-bit and
32-bit processes on all cores running the same Linux kernel.

• The cvmseg segment

1. There is a Cavium Networks-specific cvmseg segment. This segment is used for local
scratchpad memory and for IOBDMA operations such as
cvmx_fpa_alloc_async(). This special segment is discussed in more detail in
Section 10.6 – “Cavium Networks-Specific cvmseg Segment” and in Section 11.3 –
“The cvmx_shared”. Access to xkphys I/O space or system memory is controlled by a
bit in the Coprocessor 0 (COP0) register CvmMemCtl [fields CVMSEGENAU,
CVMSEGENAK, and LMEMSZ].

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-89

2. Linux User applications are allowed to access cvmseg (in kseg3) when doing cvmseg
access operations. Running in kernel mode is not required. No special configuration is
needed for this permission.

10.6 Cavium Networks-Specific cvmseg Segment
Part of the per-core data cache (Dcache) may be set aside for IOBDMA operations and scratchpad
memory. The amount of Dcache used for cvmseg is set when either Simple Executive or Linux is
configured.

Note that since space for cvmseg comes from Dcache, keeping the size of cvmseg to a
minimum will help system performance by leaving more Dcache blocks available for the
application.

The special cvmseg memory is be configured at build time for both Simple Executive applications
and Linux.

It consists of two segments:

• CVMSEG LM
• CVMSEG IO

The CVMSEG LM memory consists of up to 54 cache blocks taken from the Dcache for this
purpose (typically, only 2 or 4 cache blocks are used). Each cache block (cache line) is 128 bytes.

CVMSEG IO has only one valid address: 0xFFFF FFFF FFFF A200. A store instruction to
this address starts an IOBDMA operation.

The data written in the IOBDMA instruction includes the CVMSEG LM offset (scratchpad location)
where the result of the IOBDMA operation should be stored.

For example: cvmx_fpa_alloc_async() will start an IOBDMA operation which will get the
address of a free buffer from the FPA, and store the buffer’s address in the CVMSEG LM
(scratchpad) memory.

The IOBDMA operations are asynchronous (the program does not wait for the result). When the
program is ready to use the buffer, it issues a SYNCIOBDMA operation to make sure all the
IOBDMA operations for that core have completed, and then retrieves the returned buffer address
from the scratchpad.

Note: If an illegal address is provided in an IOBDMA instruction, or the requested number
of bytes will exceed the allocated cache lines in CVMSEG LM, but within the range shown in
the virtual address map, then the adjacent Dcache memory may be overwritten. (An address
error will occur, but stores to these illegal addresses may not be stopped by the hardware, so
they may corrupt the Dcache.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-90 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The cvmseg addresses are in the kseg3 address range, and are treated specially by the cnMIPS
cores. (Although cvmseg is in xkseg when using a 64-bit address space, it is referred to as being
kseg3. The 64-bit address space contains the compatibility space, so kseg3 exists in the 64-bit
address space, inside of xkseg.) When configured into the system (the default), load and store
instructions access cvmseg. Otherwise, the access is a normal kseg3 reference. Access to cvmseg
is controlled by a bit in the Coprocessor 0 (COP0) register cvmctl.

When running Linux, the scratchpad memory is saved and restored on context switches.

10.7 Accessing Application-Private System Memory
Each application has private system memory. This private system memory is mapped into the
application’s virtual address space.

SE-S applications run in kernel mode, but are mapped into the xuseg or useg virtual address space,
depending on whether they are 64-bit or 32-bit applications.

SE-UM applications run in user mode and are mapped into the xuseg or useg virtual address space,
depending on whether they are 64-bit or 32-bit applications.

The Linux Kernel runs in kernel mode and is mapped into xkseg. It is always 64-bit.

10.8 Summary of Virtual Address Space on cnMIPS
The MIPS virtual address space is divided into segments. The 64-bit virtual address space contains
a 32-bit compatibility mode address space.

The MIPS memory management unit is simplified, and consists only of a TLB. Page tables are
optionally implemented in software.

Mapped: A virtual address is ‘mapped” when access is through a TLB entry.

Cached: When a virtual address accesses system memory, the system memory is “cached” if it is
stored in the L1 and/or L2 cache for fast access. On the OCTEON processor, all system memory
accesses are cached.

In general, user-mode processes cannot access kernel-mode virtual address space. On the
OCTEON processor, there are some exceptions to this rule and the generic MIPS virtual memory
map.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-91

Table 12: The 64-Bit Virtual Address Segments
Segment Generic MIPS OCTEON cnMIPS

 Mapped Segments Mapped Segments
xuseg The xuseg segment is the user address

space (mapped).
SE-S 64-bit applications run in kernel-
mode, but are mapped into xuseg.)

xsseg The xsseg segment is the supervisor
address space (usually not used)
(mapped).

The xsseg segment is usually not used in
OCTEON cnMIPS.

xkseg The xkseg segment is in the kernel
address space (mapped).

The xkseg segment contains the
OCTEON-specific cvmseg segment.
User-Mode access is allowed to cvmseg.

 Unmapped Segments Unmapped Segments
xkphys The xkphys segment is in the kernel

address space. It is an unmapped
address space: a window into the
physical address space: system
memory and I/O space.

SE-UM 64-bit applications may be
allowed access to xkphys addresses. SE-
S 64-bit applications always have access
to xkphys addresses (they run in kernel-
mode). Accesses to system memory are
always cached. Accesses to I/O space
are never cached.

Note: The Linux kernel always runs in 64-bit mode. SE-UM and SE-S applications may run in
either 64-bit or 32-bit mode. SE-S applications always run in kernel-mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-92 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 13: The 32-Bit Virtual Address Segments

Segment Generic MIPS OCTEON cnMIPS
 Mapped Segments Mapped Segments

useg The useg segment is the user address
space (mapped).

OCTEON SE-S 32-bit applications run in
kernel-mode, but are mapped into useg.

sseg The sseg segment is the supervisor
address space (usually not used)
(mapped)

This segment is usually not used.

kseg3 The kseg3 segment is in the kernel
address space (mapped)

User-Mode access is allowed only to
cvmseg in this segment.

 Unmapped Segments Unmapped Segments
kseg0 The kseg0 segment is in the kernel

address space (unmapped, uncached)
Accesses to this segment access system
memory which is always cached on
OCTEON. SE-S 32-bit applications run in
kernel-mode and access system memory
through kseg0 addresses.

kseg1 The kseg1 segment is in the kernel
address space (unmapped, cache
attribute not defined)

Accesses to this segment accesses system
memory which is always cached on the
OCTEON processor.

Note: The Linux kernel always runs in 64-bit mode. Relative to a SE-UM 32-bit virtual address
space, cvmseg is in kseg3. SE-S applications always run in kernel-mode.

SE-S 64-bit applications run in kernel mode and are mapped to xuseg.
SE-S 32-bit applications run in kernel mode and are mapped into useg.
SE-UM 64-bit applications run in user mode and are mapped into xuseg.
SE-UM 32-bit applications run in user mode and are mapped into useg.
The Linux kernel is always 64-bit, runs in kernel mode, and is mapped into xkseg.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-93

Figure 47: OCTEON 64-Bit Virtual Address Space – Summarized

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-94 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 48: OCTEON 32-Bit Virtual Address Space - Summarized

11 Allocating and Using Bootmem Global Memory

11.1 Using Global Bootmem
Large chunks of system memory are needed to create the FPA buffer pools. After the pools are
created, the memory is usually shared between all cores on the processor, regardless of what in-
memory images the cores are running. For instance: both Linux kernel-mode and user-mode
processes, and Simple Executive Standalone processes read and write to Packet Data Buffers.

Processors may also need to allocate chunks of memory for other purposes.

At boot time, the bootloader creates a pool of all free memory, bootmem. This memory is managed
by the bootmem allocator functions. These functions provide the needed locking so that two
applications will not get the same memory, and return the appropriate virtual address of the
allocated memory region.

Note that memory allocated via these functions is uninitialized: it is not guaranteed to be all
zeroes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-95

Memory allocated via bootmem allocator functions is referred to as bootmem global memory.

The memory allocation functions are multicore safe: the free list will not become corrupted if
different cores may simultaneous requests.

Table 14: Bootmem Allocator Functions in SDK 1.8
Function Action

cvmx_bootmem_alloc() Allocate a chunk of contiguous system memory
(unnamed block). This memory cannot be freed.
If enough contiguous memory is available to
satisfy the request, the function returns a pointer to
the start of the block, otherwise returns 0.

cvmx_bootmem_alloc_address() Allocate a chunk of contiguous system memory
(unnamed block). This memory cannot be freed.
Specify the specific starting physical address
desired. If the requested address has not already
been allocated, and enough contiguous memory is
available, the function returns a pointer to the start
of the block, otherwise it returns 0.

cvmx_bootmem_alloc_named() Allocate a chunk of contiguous system memory
(named block), and name it. If the named block
has not already been created, and enough
contiguous memory is available to satisfy the
request, the function returns a pointer to the start
of the block, otherwise it returns 0. This memory
block can be freed.

cvmx_bootmem_alloc_named_address() Allocate a chunk of contiguous system memory
(block), and name it. Specify the specific starting
physical address desired. If the named block has
not already been created, and the requested
address has not already been allocated, and
enough contiguous memory is available, the
function returns a pointer to the start of the block,
otherwise it returns 0. This memory block can be
freed.

cvmx_bootmem_find_named_block() Find a named block which has already been
allocated. If the block is found, the function
returns a pointer to the start of the block,
otherwise it returns 0.

cvmx_bootmem_free_named() Free the entire named block, and free the name.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-96 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that some of the allocation functions allow processes to allocate memory, but not free it. To
be able to free the memory, named blocks must be used: cvmx_bootmem_alloc_named()
and cvmx_bootmem_alloc_named_address(). Note that
cvmx_bootmem_free_named() is for limited use to free temporary allocations, for instance
the bootloader uses this function to free the Reserved Download Block. This function should not
be used frequently: there is no memory defragmentation. If you need to free memory frequently,
do not use bootmem functions.

As shown in the figure below, chunks of allocated bootmem are stored as either named or un-
named blocks. The bootmem allocator functions are responsible for managing both unallocated
and allocated memory.

Figure 49: Named and Unnamed Memory Blocks

Bootmem Allocator Functions

Named
Block

Unnamed
Block

Allocated memory

Unallocated memory

Color Key

Named and Unnamed Blocks

Memory allocation functions access free system
memory and are used to create and use named

or unnamed blocks of memory.

Free System Memory

11.2 The malloc() and free() Functions and FPA Buffers
The C-library functions malloc() and free() only manage core-local memory. This memory
can not be used for FPA buffers. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-97

11.3 The cvmx_shared Section and FPA Buffers
There are two reasons why the cvmx_shared section may not be the best choice to create a large
amount of shared memory, for instance for FPA buffers: the memory is not always shared, and it
should be kept small to keep the ELF file and the in-memory image small.

11.3.1 The cvmx_shared Section is Not Always Shared
The cvmx_shared section provides shared memory between cores started with the same load
command (the same load set):

• for SE-S applications, the same bootoct bootloader command
• for SE-UM applications, the same oncpu Linux command

The cores started with the same load command are referred to as a load set. Note that each of the
Simple Executive applications is a process, not a thread: global variables are not shared between
cores.

The cvmx_shared section cannot be used to share memory between processes started with different
load commands (different load sets).

Figure 50: cvmx_shared: Same and Different Load Sets

As shown in the figure above, one oncpu command is used to start multiple SE-UM applications
on Linux so they will share the same load set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-98 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

As shown in the following figure, it is inefficient to load different SE-S applications because they
will not share common sections: they will be in different load sets.

Figure 51: cvmx_shared: Inefficient SE-S Configuration

Similarly, it is inefficient to start SE-UM applications with two different oncpu commands.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-99

Figure 52: cvmx_shared: Inefficient SE-UM Configuration

Linux

SMP Linux or other SMP-capable
OS (single copy). The SE-UM
processes were started with two
different oncpu commands.

Linux Linux
Driver

SE-
UM

SE-
UM

Shared text,
rodata, and

cvmx_shared
section.

Shared text,
rodata, and

cvmx_shared
section.

cvmx_shared: Inefficient
SE-UM Configuration

Note that there are no shared sections
between different load sets.

11.3.2 The cvmx_shared Section Should be Kept Small
It is not a good idea to use cvmx_shared to contain large amounts of shared memory. It is best to
keep the size of the loaded ELF file small. The current (SDK 1.8) maximum ELF file download
size is 256 MBytes. Also, some Simple Executive Standalone applications must fit into 256
MBytes of virtual memory (if 1:1 mapping is used). If a large cvmx_shared section has been
created, the ELF file may not fit into virtual memory, causing the bootloader to fail. See Figure 54
– “Simple Executive Size Limitation if 1:1 Mapping is Used”.

The best use of cvmx_shared is to create a pointer to shared memory, then allocate the memory on
startup, and put the address into the cvmx_shared pointer. This keeps the size of the cvmx_shared
section small, while still providing a large amount of shared memory. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-100 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

11.4 Using Named Blocks to Share Memory Between Different Load
Sets

To share system memory between cores running different load sets, use the named block bootmem
allocator functions: cvmx_bootmem_alloc_named(),
cvmx_bootmem_find_named_block(name)), etc.

By using named blocks, two different load sets such as Simple Executive and Linux may easily
share memory:

• Both cores call cvmx_bootmem_alloc_named() to allocate memory and name it.
• The first core to make the function call creates the named memory block; all other cores

which call the same function with the same named block will get a return value of “0”,
which tells them that the named block has already been created.

• If the return value is “0”, they call cvmx_bootmem_find_named_block(name)) to
get the address of the existing named block.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-101

Figure 53: Sharing Memory Between Different Load Sets
Isolated Processes Can Use Bootmem Functions to Share Memory

Load Set 1: Data PathLoad Set 0: Control
Path

CORE 1 –
SE-S

Fast path

CORE 2 –
SE-S

Fast path

Named Block

The first core to call cvmx_bootmem_alloc_named() creates the named
block, and a pointer to the named block is returned. All other cores call the same
function, and receive a return value of 0. Then they call
cvmx_bootmem_find_named_block(), providing the name of the block, and
receive a pointer to it in return.

The core running the Linux kernel is not shown in this picture.

SE-UM

Free System Memory Managed by the Bootmem Allocator

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-102 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following code is from $OCTEON_ROOT/examples/queue/queue.c.

/**
 * Gets a pointer to a named bootmem allocated block,
 * allocating it if necessary. This function is called
 * by all cores, and they will all get the same address.
 *
 * @param size size of block to allocate
 * @param name name of block
 *
 * @return Pointer to shared memory (physical address)
 * NULL on failure
 */
void *get_shared_named_block(uint64_t size, char *name)
{
 void *ptr = cvmx_bootmem_alloc_named(size, 128, name);
 if (!ptr)
 {
 /* Either this core did not allocate it, or the allocation
request
 ** cannot be satisfied. Look up the block, and if that fails,
 ** then the allocation cannot be satisfied
 **/
 if (cvmx_bootmem_find_named_block(name))
 ptr = cvmx_phys_to_ptr(
 cvmx_bootmem_find_named_block(name)->base_addr);
 }

 return(ptr);
}

An example use of named blocks is to create a spinlock shared between different load sets.

12 Accessing Bootmem Global Memory (Buffers)
A simple example of accessing memory happens in packet processing. One process allocates
memory for the FPA pools, divides it into buffers, and gives the buffers to the FPA to manage.
The PIP/IPD automatically allocates Work Queue Entry Buffers and Packet Data Buffers. Any
core can perform the get_work operation, which returns a Work Queue Entry Buffer. Now the
core must access the buffer.

The most important thing to know about accessing memory is to use the functions
cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). If these functions are used, all the
complexity in the following discussion is hidden from the user.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-103

Table 15: Summary of Access to System Memory and I/O Space

Runtime
Environment

Virtual
Address
Space

Run
Mode

Application
-Private
Memory

Bootmem
Global

Memory

I/O
Space
Access

Notes

SE-S: 64-bit no 1:1
mapping 64 bit kernel

mode
xuseg (See

Note 1) xkphys xkphys
Preferred

configuration - safest
for porting.

SE-S: 64-bit with
1:1 mapping 64 bit kernel

mode
xuseg (See

Note 1) xuseg xkphys

Using 1:1 mapping
can result in porting

problems if
cvmx_phys_to_ptr()

and
cvmx_ptr_to_phys()

are not used.

SE-S: 32-bit no 1:1
mapping 32 bit kernel

mode
useg (See
Note 1) kseg0

inline
assembly

code

This is the preferred
configuration: safest
for porting, but only

256 MBytes of
memory are

addressable through
kseg0.

SE-S: 32-bit with
1:1 mapping 32 bit kernel

mode
useg (See
Note 1) useg

inline
assembly

code

Using 1:1 mapping
can result in porting

problems if
cvmx_phys_to_ptr()

and
cvmx_ptr_to_phys()

are not used.
Linux kernel and

drivers 64 bit kernel
mode xkseg xkphys xkphys

Linux SE-UM: 64-
bit 64 bit user

mode xuseg xkphys xkphys

Kernel configuration
option provides xkphys

access to user-mode
processes.

Linux SE-UM: 32-
bit 32 bit user

mode useg
useg

(reserve32
)

inline
assembly

code

A reserve32 region is
mapped into the

address space of the
process. Each

application is limited
to 2 GBytes of virtual

address space.

Note 1: Although SE-S applications are run in kernel-mode, they use the xuseg or useg address space for
application-private memory, depending on whether the application is 64-bit or 32-bit.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-104 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

12.1 Accessing Bootmem Global Memory From SE-S Applications

12.1.1 SE-S 64-Bit Bootmem Access
64-bit SE-S applications may access bootmem global memory through either xkphys addresses or
xuseg addresses.

12.1.1.1 SE-S 64-Bit: Access Via xkphys (NO 1:1 Mapping)
SE-S applications run in kernel mode which allows them access to the xkphys segment. In order to
select this option, when configuring the Simple Executive, set
CVMX_USE_1_TO_1_TLB_MAPPINGS to 0 (FALSE). No mapping step is needed because
xkphys accesses are not mapped.

12.1.1.2 SE-S 64-Bit: Access Via xuseg (1:1 Mapping)
If CVMX_USE_1_TO_1_TLB_MAPPINGS is 1 (TRUE), then all of system memory is mapped
into the process address space (xuseg) by cvmx_user_app_init(). All of bootmem global
memory is accessible to any SE-S application: a separate mapping step is not needed because it
has already been done.

This is discussed in more detail in Section 14.4 – “Simple Executive Virtual Memory
Configuration Options”.

12.1.2 SE-S 32-Bit Bootmem Access
32-bit SE-S applications may access bootmem global memory through either kseg0 addresses or
useg addresses.

12.1.2.1 SE-S 32-Bit: Access Via kseg0 (NO 1:1 Mapping)
SE-S applications run in kernel mode which allows them access to the kseg0 segment. In order to
select this option, when configuring the Simple Executive, set
CVMX_USE_1_TO_1_TLB_MAPPINGS to 0 (FALSE). No mapping step is needed because
kseg0 accesses are not mapped.

12.1.2.2 SE-S 32-bit: Access Via useg (1:1 Mapping)
If CVMX_USE_1_TO_1_TLB_MAPPINGS is 1 (TRUE), then all of system memory is mapped
into the TLB by cvmx_user_app_init(). The access is via useg. Note that the user will
only be able to access the low addresses (within the 2 GByte useg address range). A separate
mapping step is not needed because it has already been done by cvmx_user_app_init().

This is discussed in more detail in Section 14.4 – “Simple Executive Virtual Memory
Configuration Options”.

12.2 Accessing Bootmem Global Memory From Linux Kernel: 64-Bit
The Linux kernel-mode processes such as the kernel and drivers access bootmem global memory
via xkphys addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-105

12.3 Accessing Bootmem Global Memory from SE-UM Applications

12.3.1 SE-UM 64-Bit Bootmem Access
The 64-bit Simple Executive User-Mode applications access bootmem global memory via xkphys
addresses, not xuseg addresses. No mapping step is needed, because xkphys is a window to system
memory. This is a configurable kernel option.

12.3.2 SE-UM 32-Bit Bootmem Access
The 32-bit Simple Executive User-Mode applications must access bootmem global memory via
useg addresses, because xkphys addresses are outside the 32-bit virtual address space.

To allow the same code to be compiled as either a 32-bit or 64-bit application, some special
processing will happen, hidden from the user. Without this special processing, the 32-bit SE-UM
process would have to call mmap() to map the bootmem global memory into its address space.
The code would have to be changed to handle this case, and runtime performance would be
degraded.

The special processing involves setting aside the bootmem global memory during system start-up
to preserve the lowest memory addresses for the 32-bit process to allocate using the bootmem
functions.

• When the kernel is configured, a special reserve32 named block is specified. The size of
this named block is specified at configuration time.

• When the kernel is booted, it calls cvmx_bootmem_alloc_named() to allocate
bootmem global memory for the reserve32 named block. Because low memory addresses
are allocated first, this action preserves the low memory addresses.

• After the kernel initializes the rest of memory, it frees the reserve32 named block. The free
list now contains a chunk of contiguous memory with low addresses.

• The previously reserved memory is now available to be the first block of free memory
allocated by the bootmem allocator.

The user does not need to map reserve32 into the process virtual address space: when the
application runs, the Simple Executive function main() calls mmap() to map all of reserve32.
(Note that this mapping includes system memory which has not been allocated by the process: thus
the process has access to system memory which it does not own.)

Later when applications ask for memory there are two cases:
1. If a SE-UM 32-bit process calls cvmx_bootmem_alloc(), the function internally limits

the range of memory to the addresses range of the original reserve32 region. If enough
contiguous memory cannot be found, the request fails. Typically, the SE-UM 32-bit process is
responsible for allocating any shared memory which it needs to access, to guarantee that the
allocated memory is within its address range. For example, a SE-UM 32-bit application which
will use Packet Data Buffers must allocate the memory for them, and will usually initialize all
of the FPA pools.

2. If a SE-S or SE-UM 64-bit processes calls cvmx_bootmem_alloc(), the function will
attempt to get bootmem global memory from the address range in the original reserve32 block

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-106 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

simply because it is first in the free list. If there is not enough contiguous memory to satisfy
the request, the function will continue to search the free list for memory outside of the
reserve32 region.

This process will be discussed in more detail in Section 15.1.4 – “SE-UM 32-bit: Reserving a Pool
of Free Memory”.

12.4 Bootmem Size in Different Access Methods
The 32-bit and 64-bit applications have different amounts of bootmem available, depending on the
exact configuration.

The following table summarizes how system limits are affected by different configurations.

Table 16: Configuration Choices and Resultant Global Memory Limits

Application
Type Variations Virtual Address

Space - size
Load Image

Maximum Size

Bootmem
Global

Memory
Access

Bootmem Global
Memory Accessible

from the
Application

SE-S Applications

SE-S 64-bit NO 1:1 Mapping xuseg - "unlimited"
(see Note 4) "unlimited" xkphys ALL DRAM (see

Note 2)

SE-S 64-bit 1:1 mapping xuseg - "unlimited"
(see Note 4)

256 MBytes
(squeezed by

mapped memory)
xuseg ALL DRAM (see

Note 2)

SE-S 32-bit NO 1:1 Mapping useg - 2 GBytes
2 GBytes max

(see Note 1, Note
3)

kseg0 256 MBytes (See
Note 2)

SE-S 32-bit 1:1 mapping useg - 2 GBytes
256 MBytes
(squeezed by

mapped memory)
useg

no more than 2
GBytes (useg limit)

(see Note 2)
Linux SE-UM Applications

SE-UM 64-
bit N/A xuseg - "unlimited"

(see Note 4)
"unlimited" (see
Note 1, Note 3) xkphys ALL DRAM (see

Note 2)

SE-UM 32-
bit

reserve32 - not
wired useg - 2 GBytes 2 GBytes minus

reserve32 size
useg:

reserve32

Blocks of DRAM in
power of 2.

Application load size
must be than 2

GBytes. (See Note
2)

SE-UM 32-
bit reserve32 - wired useg - 2 GBytes 2 GBytes minus

reserve32 size
useg:

reserve32
512, 1024, or 1536

MBytes (see Note 2)
Notes
Note 1: Huge load images may encounter problems loading. The maximum load size shown here is not guaranteed.
Note 2: Bootmem size is limited by the amount of DRAM which is supported by and installed in the target system.
Note 3: The current (SDK 1.8) maximum ELF image download size is 256 MBytes. The loaded image
includes stack and bss, so the loaded image is larger than the ELF image file.
Note 4: Although there is a limit to the size of xuseg, for practical purposes it is "unlimited".

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-107

12.5 Using cvmx_ptr_to_phys() and cmvx_phys_to_ptr() Functions
If conversion is needed between pointers and physical addresses, use the functions
cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). This will allow the same code for both
SE-S and SE-UM applications, and reduce porting complexity.

Since not using these functions can cause big problems for customers, the warning is repeated here:

Note: Be careful to use the functions cvmx_ptr_to_phys() and
cvmx_phys_to_ptr() when converting between physical addresses and virtual
addresses. 90% of porting problems come from mistakenly using casts on physical and
virtual addresses.

13 Accessing I/O Space
Various cvmx functions are used to hide any complexity in accessing the I/O Space:

static void cvmx_write_csr (uint64_t csr_addr, uint64_t val)
static void cvmx_write_io (uint64_t io_addr, uint64_t val)
static uint64_t cvmx_read_csr (uint64_t csr_addr)
static void cvmx_send_single (uint64_t data)
static void cvmx_read_csr_async (uint64_t scraddr, uint64_t csr_addr)

This section describes how the different accesses occur (the hidden complexity). For a summary,
see Table 15 – “Summary of Access to System Memory and I/O Space”.

13.1 Accessing I/O Space from SE-S Applications

13.1.1 SE-S 64-Bit I/O Space Access
In Simple Executive Standalone (SE-S) applications run in kernel mode and access I/O space
through xkphys addresses.

13.1.2 SE-S 32-Bit I/O Space Access
In Simple Executive Standalone (SE-S) applications run in kernel mode and access I/O space
through inline assembly instructions. See Section 13.3.2 – “SE-UM 32-Bit I/O Space Access” for
more information.

13.2 Accessing I/O Space from Linux Kernel: 64-Bit
The Linux kernel-mode processes such as the kernel and drivers access I/O Space via xkphys
addresses.

13.3 Accessing I/O Space from SE-UM Applications

13.3.1 SE-UM 64-Bit I/O Space Access
The 64-bit Simple Executive User-Mode applications may access I/O Space via xkphys addresses.
This option is configured into the kernel.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-108 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

13.3.2 SE-UM 32-Bit I/O Space Access
I/O Space is accessed by using inline assembly instructions.

When using the functions cvmx_read_csr() and cvmx_write_csr(), all the complexity
described below is hidden from the user. The technical details are included here for readers who
need more detail.

Accessing I/O Space from 32-bit applications requires conversion between 32-bit pointers and 64-
bit address values.

In the N32 ABI (used to compile SE-S 32-bit and SE-UM 32-bit applications), pointers are 32-bit
values, and registers are 64-bit values. Since OCTEON hardware always uses 64 bits for memory
access, and registers are 64-bit values, inline assembly can be used to bypass the 32-bit pointer
limitation.

In O32 ABI (not recommended), pointers are 32-bit values, and registers (as viewed from the ABI)
are 32-bit values. Hardware registers are always physically 64-bit values; it is just the O32 ABI
that thinks they are only 32-bit values. Since O32 doesn't know about the 64-bit registers, it stores
all 64-bit values in two separate registers. If the stored value is an address, to access the address
quite a few assembly-language steps are needed:

1. Shift the high order bits into the upper bits of a register and add the lower bits.
2. Do the memory read, specifying the now 64-bit address in the 64-bit register.
3. Convert the 64-bit response into two 32-bit registers.
4. Make sure all registers touched are properly truncated to 32bits.
5. Return to C code.

A common error is forgetting step #4, because it is not obvious that you need to restore registers
which are no longer needed.

This is why O32 is slower than N32 when doing CSR access.

The functions cvmx_read64_uint() and cvmx_write_64_uint() handle the special
conversions required. The functions cvmx_read_csr() and cvmx_write_csr() are then
thin wrappers around these functions.

14 Simple Executive Standalone (SE-S) Memory Model
Simple Executive Standalone (SE-S) applications run in kernel mode. All of the system memory is
mapped, allowing Simple Executive applications full access to memory, including memory they do
not own. 64-bit SE-S applications may also freely access the I/O space by using xkphys addresses.
There are no context switches, and no TLB misses. SE-S applications are lightweight and fast.

On startup the bootloader and Simple Executive function cvmx_user_app_init() create a
kernel-mode address space where all address mapping is complete by the time the application
initialization routine completes. There are no expected TLB misses when running under SE-S:
there is no exception handler. A TLB miss will cause the system to crash, because there is no TLB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-109

miss handler for the hardware exception. The system would need to be reset or power cycled to
recover.

Note: Even when virtual addresses are used, SE-S applications can overwrite memory they
do not own because all system memory is mapped!

The file $OCTEON_ROOT/executive/cmvx.mk will include the file
$OCTEON_ROOT/executive/cvmx-app-init.c when a Simple Executive target is
specified on the “make” command line. This file includes the application initialization code
cvmx_user_app_init().

14.1 Simple Executive Application Space
Applications are loaded into xuseg or useg at virtual address 0x1000 0000.

There is some stack overflow protection. When the bootloader allocates memory for the stack, it
leaves the page below the stack unmapped, so that any access to this region will generate a TLB
exception.

14.2 Simple Executive System Memory Access
Hardware units only use physical, not virtual memory addresses. A function such as
cvmx_fpa_alloc() will convert the physical address into a virtual address as needed, returning
a pointer to the buffer.

To access the corresponding physical address, this address must be converted to a physical address.
Conversion functions are supplied by Simple Executive (cvmx_ptr_to_phys() and
cvmx_phys_to_ptr()).

14.2.1 Mapping of System Memory
System memory may optionally be mapped 1:1 to the user’s address space, so that physical address
0 is virtual address 0. This configuration is not recommended, however for historical reasons it is
currently the default.

The 1:1 mapping allowed for “lazy” address translation, but causes two problems:

1. Porting problems occurred when code was not written to use the cvmx_ptr_to_phys()
and cvmx_phys_to_ptr() functions. These functions hide pointer / address
conversions, creating highly portable code.

2. The size of the Simple Executive application’s runtime size was limited to 256 MBytes.
(Note the application’s in-memory image size is larger than the ELF file size because it
includes memory allocated for the stack and heap.)

The reason the in-memory image size is limited to 256 MBytes is because the Simple Executive
application will be loaded into the virtual memory map, squeezed between two blocks of system
memory (see figure below). If 1:1 mapping is not used, Simple Executive applications load at
0x1000 0000, but memory can be mapped anywhere instead of immediately above and below the
application, so the application can be larger than 256 MBytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-110 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following figure is shown using the 64-bit virtual address space for simplicity. A similar
problem exists in the 32-bit virtual address space.

If CVMX_USE_1_TO_1_TLB_MAPPINGS is defined to 1, then the application must fit inside of
256 MBytes (0x2000 0000).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-111

Figure 54: Simple Executive Size Limitation if 1:1 Mapping is Used

49-bit Physical Address Space (not
drawn to scale) – only system memory is

shown

0x0 0004 1000 0000

0x0 0004 1FFF FFFF

0x0 0000 2000 0000

0x0 0003 FFFF FFFF

0x0 0000 0000 0000

0x0 0000 1FFF FFFF

0x0 0000 1000 0000

0x0 0000 0FFF FFFF

(256 MByte
alignment gap
before the next
memory block.)

256 MBytes
Reserved for Boot

Bus

xuseg (not drawn
to scale)

64-bit Virtual Address Space (not drawn to
scale) – only xuseg is shown

0x3FFF FFFF FFFF FFFF

0x0000 0000 0000 0000

Simple Executive
Load Point is
0x1000 0000

DRAM Region 0
Mapped

DRAM Region 2
Mapped

DRAM Region 1
Mapped

Simple Executive
applications are linked
to load at virtual
address
0x1000 0000 (useg).
When 1:1 Mapping is
used, Simple Executive
is surrounded by
mapped memory, and
cannot be larger than
the 256 MByte Boot Bus
window.

Mapped 1-1

Mapped 1:1

Mapped 1:1

DRAM Region 2
(Up to 15.5

GBytes)

DRAM Region 0
(256 MBytes)

DRAM Region 1
(256 MBytes)

Simple Executive Size Limitation if 1:1 Mapping is Used

Not mapped,
creating a

window in the
virtual

memory map.

The Simple Executive application’s virtual memory map is shown in the figure below. If 1:1
mapping is not used, memory is not mapped into the user segment. Instead it is accessed either via
xkphys (for 64-bit applications), or via inline assembly code.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-112 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 55: SE-S 64-Bit Virtual Memory Map

kseg3

xkphys

xuseg

SE-S 64-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

0x0000 0000 0000 0000

Application Space
(256 Mbytes)

The size of the loaded application must
not exceed 256 MBytes.

Mapped and cached system memory:
First 256 MBytes of DRAM (the first

MByte is unmapped)

Unmapped and uncached
I/O Space

(accessed through xkphys) (discontiguous
where there is no matching I/O device)

SE-S 64-Bit Virtual Memory Map

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through xkphys) (discontiguous

where system memory is not present)

Mapped and cached system memory:
Second 256 MBytes of DRAM

Mapped and cached system memory:
Upper 15.5 GBytes of DRAM (as much as

is present)

0x0000 0000 1000 0000

0x0000 0000 1FFF FFFF

0x0000 0000 2000 0000

0x0000 0003 FFFF FFFF

0x0000 0004 1000 0000

0x0000 0004 1FFF FFFF

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

0x0000 0000 0FFF FFFF

The application will only have access to the part
of this space mapped in by the bootloader. This
space is mapped and cached. To get more than
256 MBytes, define
CVMX_USE_1_TO_1_MAPPINGS to 0. These
addresses are the same in both 32-bit and 64-bit
APIs.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1. To map the first 1 MBytes, define
CVMX_NULL_POINTER_PROTECT to 0.

Access to hardware unit CSRs (Configuration
and Status Registers).

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

This space is used for IOBDMA operations.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS is NOT
defined to 1.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-113

Virtual address “0” (the first 1 MByte) is usually unmapped. If virtual address “0” is unmapped, a
NULL pointer access will cause that core to crash because there is no TLB exception handler.
Memory may be accessed through xuseg (for example, 0x0000 0000 0020 0000) or through
xkphys (0x8000 0000 0020 0000). Accesses through xuseg are mapped. Accesses through
xkphys are unmapped. System memory is always cached, whether it is accessed through xuseg or
xkphys.

Note that although all of system memory is mapped to each application, it does not necessarily
belong to that application. It is possible to overwrite memory belonging to another application.
Careful coding is needed.

14.3 Simple Executive I/O Space Access
The hardware IO Space is accessed only via xkphys. The IO space is unmapped and uncached.
This IO space includes the configuration and status registers for the various hardware units.

14.4 Simple Executive Virtual Memory Configuration Options
Note that in the figure above, there are two compile-time defines:
CVMX_USE_1_TO_1_TLB_MAPPINGS and CVMX_NULL_POINTER_PROTECT.

General information on configuring Simple Executive may be found in the SDK document
“OCTEON SDK config and build system”.

14.4.1 CVMX_USE_1_TO_1_TLB_MAPPINGS
The value of CVMX_USE_1_TO_1_TLB_MAPPINGS is set to 1 by default.

The use of 1:1 TLB mappings is discouraged because it leads to many time-consuming bugs to
solve when porting code. SE-S code which uses 1:1 TLB mappings will function without use of
cvmx_ptr_to_phys() and cvmx_phys_to_ptr(). When run as SE-UM, the code breaks.

The 1:1 TLB mappings value must be changed to 0 if the application exceeds 256 MBytes.

Note that fewer TLB entries are needed if 1:1 mapping is not used (except when
CVMX_NULL_POINTER_PROTECT is 1): each double TLB entry will map 512 MBytes of
memory.

In all cases, memory access should go through cvmx_ptr_to_phys() and
cvmx_phys_to_ptr() to safely convert between virtual and physical addresses. By using this
access routine, the address translation will occur as needed, transparent to the user.

14.4.1.1 Changing the Value of CVMX_USE_1_TO_1_TLB_MAPPINGS
To change the value of CVMX_USE_1_TO_1_TLB_MAPPINGS, configure
CVMX_CPPFLAGS_GLOBAL_ADD to contain the string
“-DCVMX_USE_1_TO_1_TLB_MAPPINGS=0”, as shown in the following bash shell script
(named “doit.sh”):

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-114 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

#!/bin/bash

source env-setup OCTEON_CN38XX # change this to the correct OCTEON_MODEL

export OCTEON_CPPFLAGS_GLOBAL_ADD="$OCTEON_CPPFLAGS_GLOBAL_ADD
 -DCVMX_USE_1_TO_1_TLB_MAPPINGS=0" # all one line, not
two lines

echo $OCTEON_CPPFLAGS_GLOBAL_ADD

Then “source” doit.sh:

host$ source ./doit.sh # Correct!
host$ echo $OCTEON_CPPFLAGS_GLOBAL_ADD
-DCVMX_USE_1_TO_1_TLB_MAPPINGS=0

This will cause the application initialization code to not setup 1:1 mappings, and also will direct
cvmx_phys_to_ptr() and cvmx_ptr_to_phys() to do the proper conversions.

Note: If you do not “source” doit.sh after the script exits, the values set when it was run will
no longer be set:

host$./doit.sh # Wrong!!! The file must be “sourced”
host$ echo $OCTEON_CPPFLAGS_GLOBAL_ADD
host$ # the variable is not set when doit.sh exits

14.4.2 CVMX_NULL_POINTER_PROTECT
CVMX_NULL_POINTER_PROTECT is also set to 1 by default. This setting causes an extra 12
TLB entries to be consumed. To recover the TLB entries, you can set this define to 0. If that
happens, NULL pointer accesses will not be rejected by the system. Since this space is reserved
for use by the bootloader, even after it exits, an accidental store to this area may create problems.

14.4.2.1 Changing the Value of CVMX_NULL_POINTER_PROTECT
This value can be changed by editing cvmx-config.h.

/************************* Config Specific Defines
************************/
#define CVMX_LLM_NUM_PORTS 1
#define CVMX_NULL_POINTER_PROTECT 0 // 0 = FALSE

Note this file is local to the application’s config directory. It will be automatically read when the
application is rebuilt.

14.5 SE-S 32-Bit Applications
Simple Executive Standalone applications do nothing special about memory allocation.
They assume the results from cvmx_bootmem_alloc() will be in the lower 2 GBytes of
memory. Most of the time that assumption is true because the boot memory allocator returns the

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-115

low addresses first, so higher addresses will not be returned for the first allocations (unless the
allocations are huge.) 32-bit applications currently must use range limits
(cvmx_bootmem_alloc_address() or cvmx_bootmem_alloc_named_address())
for allocations if they require 32-bit addressable memory. This requirement is expected to change
in a future SDK. At that time, the boomem allocation functions will not return memory which is
out of the process address range. Note that the range of addresses allocated will be from physical
address <address> to <address+size>.

Note that the 32-bit useg virtual address space is only 2 GBytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-116 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 56: SE-S 32-Bit Virtual Memory Map

kseg3

kseg0

useg

SE-S 32-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF BFFF

0x0000 0000

Application Space
(256 MBytes)

The size of the loaded application must
not exceed 256 MBytes.

Mapped and cached system memory:
First 256 MBytes of DRAM (the first

Mbyte is unmapped)

Unmapped and uncached
I/O Space (accessed through xkseg via in-

line assembly code.) (discontiguous
where there is no matching I/O device)

SE-S 32-Bit Virtual Memory Map

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through kseg0) (discontiguous
where system memory is not present).

Note only 256 MBytes of system memory
may be accessed via this segment because

the segment size is only 256 MBytes.

Mapped and cached system memory.
Only up to ((2 GBytes minus 512

MBytes) of possible 15.5 GBytes of
DRAM Region 3

0x1000 0000

0x1FFF FFFF

0x2000 0000

0x0000 0003 FFFF FFFF

0x0000 0004 1000 0000

0x0000 0004 1FFF FFFF

0x8000 0000

0x9FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF 8000

0xFFFF 9FFF

0xFFFF A000

0x0FFF FFFF

The application will only have access to the part
of this space mapped in by the bootloader. This
space is mapped and cached. To get more than
256 MBytes, define
CVMX_USE_1_TO_1_MAPPINGS to 0. These
addresses are the same in both 32-bit and 64-bit
APIs.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1. To map the first 1 Mbytes, define
CVMX_NULL_POINTER_PROTECT to 0.

Access to hardware unit CSRs (Configuration
and Status Registers).

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

This space is used for IOBDMA operations.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS is NOT
defined to 1.

This access is used if
CVMX_USE_1_TO_1_MAPPINGS IS defined
to 1.

DRAM Region 2 is not accessible through
useg.

Most of DRAM Region 3 is not accessible
through useg.

0x7FFF FFFF

0x0000 0000 8FFF FFFF

*** Note 1: Some 64-bit addresses
(outside the 32-bit virtual memory map)
have been included in this figure. This is
because access to these areas is via
inline assembly instructions. ***

See Note 1

See Note 1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-117

15 Linux Memory Model
The Linux kernel is always 64 bits. The Cavium Networks Ethernet driver runs in kernel mode.
User-Mode applications run on the kernel may be either 64-bit or 32-bit applications.

When Simple Executive User-Mode (SE-UM) applications are run on Linux, access to system
memory is different than for SE-S applications.

Unless configured otherwise, 64-bit applications can only access system memory and I/O space
through mapped xuseg addresses, not xkphys addresses. This would require an extra mmap() step
before using allocated addresses, so the kernel should be configured to support xkphys access.

32-bit applications can never use xkphys addresses because they are outside the 32-bit virtual
address space. Unless configured otherwise, 32-bit applications would have to map system
memory before using it, which would require conditionalized code and would also hurt runtime
performance. Instead the kernel can be configured to support a reserve32 area of memory at
addresses accessible to 32-bit SE-UM applications.

Whenever possible, use 64-bit SE-UM applications. This will result in improved
performance, and simpler code: they can access the physical address space through xkphys
addresses, allowing access to I/O space and all of system memory.

When the application is compiled, the file $OCTEON_ROOT/executive/cmvx.mk will include
cvmx-app-init-linux.c instead of cvmx-app-init.c when a SE-UM target is
specified on the make command line. This will cause main() to be run for SE-UM. The
equivalent function for SE-S applications is cvmx_user_app_init(). The Linux-specific
main() will initialize the SE-UM applications.

15.1 Configuring Linux and the Effect on the Memory Model
Cavium Networks-specific options may be configured when the kernel is built. The exact details
of the Linux memory model is controlled by several configuration parameters which are set by
running “make menuconfig” in the $OCTEON_ROOT/linux/kernel_2.6/linux
directory.

There are five configuration options which affect the virtual memory map:

1. The size of cvmseg
2. Whether 64-bit applications can use xkphys addresses to access I/O space.
3. Whether 64-bit applications can use xkphys addresses to access system memory.
4. How much free memory should be reserved for 32-bit applications (reserve32).
5. Whether the reserve32 memory should be wired so all applications can access it.

15.1.1 Linux cvmseg (IOBDMA and Scratchpad) Size
The configuration variable CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE is used to set the
number of Dcache lines to reserve for scratchpad and IOBDMA use.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-118 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that specifying a large cvmseg will reduce the number of Dcache blocks available for process
use, which can degrade performance.

15.1.2 SE-UM 64-Bit: Direct Access to I/O Space Via xkphys
If the configuration variable CONFIG_CAVIUM_OCTEON_USER_IO is set to “1” (true), then 64-
bit applications may access I/O space thorough xkphys without switching to kernel mode.
Although these processes run in user mode, special access is allowed via bits in the COP2 cvmctl
register. This is a kernel configuration option.

This option is used to allow SE-S applications to be compiled as SE-UM applications without
changing the code.

15.1.3 SE-UM 64-Bit: Direct Access to System Memory Via xkphys
If the configuration variable CONFIG_CAVIUM_OCTEON_USER_MEM is set to “1” (true), then
64-bit applications may access system memory through xkphys without switching to kernel mode.
Note that xkphys memory accesses are not mapped, unlike xuseg accesses. Although these
processes run in user mode, special access is allowed via bits in the COP2 cvmctl register. This is a
kernel configuration option.

This option is used to allow SE-S applications to be compiled as SE-UM applications without
changing the code.

15.1.4 SE-UM 32-bit: Reserving a Pool of Free Memory
In Section 12.3.2 – “SE-UM 32-Bit Bootmem Access”, the problem of how a 32-bit SE-UM
application accesses system memory was introduced. Because a 32-bit SE-UM application can not
access system memory via xkphys addresses, it accesses system memory via a continuous block of
virtual addresses within the useg address range: reserve32. The reserve32 block is reserved by the
kernel, but this memory does not “belong” to the SE-UM application. When the SE-UM
application starts up, main() will mmap() reserve32 into the virtual address space of the
process. The application must use cvmx_bootmem_alloc() to allocate the memory.

Note that the application may access system memory which it does not “own” because the
entire reserve32 region is mapped to its address space. This can create a security problem
because protection from writing into un-owned system memory are absent.

If the configuration variable CONFIG_CAVIUM_RESERVE32 is set to a legal value, then the
reserve32 region will be set up by the kernel. This region is shared by all SE-UM applications,
both 32-bit and 64-bit.

The reserved32 region is needed to allow SE-S applications to be compiled as 32-bit SE-UM
applications without changing the code.

Note: This option is configured-in so that the kernel will reserve a contiguous block of
system memory for the reserve32 region. When using reserve32 in a hybrid system, boot
Linux first to make sure enough low memory is available for reserve32. The 32-bit
application is then responsible for hardware initialization (such as initializing the FPA).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-119

This is necessary so that buffer pointers, such as Packet Data Buffers, are created from
memory in the reserve32 region which is already mapped into the 32-bit address space.

After allocating memory, use the cvmx_phys_to_ptr() and cvmx_ptr_to_phys()
functions to convert between physical and virtual addresses as needed.

SE-UM 32-bit applications will allocate memory only from reserve32. SE-UM 64-bit applications
and 32-bit and 64-bit SE-S applications will have all of memory to allocate from, and may or may
not allocate memory from reserve32.

If the memory will be “wired” (described in the next section), then only a limited amount of
memory is available (512 MBytes, 1024 MBytes, or 1536 MBytes). Otherwise, the only restriction
is that the memory be a power of 2.

Note: Because 32-bit application space is limited to 2 GBytes, if 1.5 GBytes are set up in
reserve32, only 512 MBytes are left for the rest of the application.

The file /proc/octeon_info contains the physical address of the reserve32 region after the
kernel is booted if the memory was successfully allocated.

If there not enough memory for the reserve32 region, an error message is printed at boot time and
the physical addresses of the reserve32 region in /proc/octeon_info are set to zero, as if the
reserve32 region was not configured.

15.1.4.1 Using Wired TLB Entries for reserve32
CONFIG_CAVIUM_RESERVE32_USE_WIRED: map the free memory into every process (32-
bit and 64-bit) (including Linux binaries like bash).

Specifying wired TLB means that the mapping will stay resident in the TLB (cannot be evicted and
replaced by a different mapping).

When using this option, the amount of reserve32 is limited to the following choices: 512 MBytes,
1024 MBytes, or 1536 MBytes.
When using wired TLB entries, the entire reserve32 region is mapped into the address space of
every 32-bit and 64-bit application (including Linux binaries like bash) on all cores running the
same SMP Linux image (started from the same boot command).

Warning: Wired reserve32 presents a huge security risk for the system. Allowing
applications to access system memory or I/O space without switching to Kernel Mode will
allow one rogue application to corrupt system memory, which can result in difficult-to-debug
errors in unrelated applications.

For some applications, this option can result in a significant improvement in performance (up to 3
times faster). For example, mapping 512 MBytes using 4 KByte pages takes 131,072 entries (the
TLB has 128 entries (64 double entries)). When using wired TLB, 512 MByte pages are mapped,
resulting in only 1-3 TLB entries consumed, depending on the size of reserve32.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-120 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Warning: For some applications, this option can degrade performance because TLB entries
are consumed, causing more TLB misses as processes contend for fewer remaining entries.
The impact of this option on performance is application-dependent.

Use of this option should be delayed until the performance tuning phase of product development.

15.2 Linux Kernel Space and Simple Executive API Calls
The OCTEON Ethernet driver is an example of a kernel-space use of Simple Executive API calls.

The kernel may use the cvmx functions, but they are used differently than for Simple Executive
applications:

• There is no equivalent of appmain() (The main() function (for instance
in linux-filter.c) is aliased to appmain(), so the function
actually running instead of main() is appmain().)

• Each SE-UM instance is a single-threaded process.
• Global variables are shared
• The cvmx_shared section has no meaning (there is no other process to share memory with)

15.3 Linux Memory Configuration Steps
The following options are relevant to the userspace memory map and are all set via menuconfig.
There are more menuconfig options than are mentioned in this section. Only the options
affecting the memory map are mentioned here.

Table 17: Cavium Networks-Specific Linux menuconfig Options
Option Variable in autoconfig.h Default

Value Brief Descripton

Number of L1
cache lines
reserved for
CVMSEG
memory.

CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE 2

This memory is reserved for
CVMSEG LM, the dcache

lines set aside for IOBDMA
operations.

Allow User space
to access

hardware IO
directly.

CONFIG_CAVIUM_OCTEON_USER_IO 1 (yes)

64-bit applications can
access the OCTEON I/O

registers without switching
to kernel mode.

Allow User space
to access memory

directly
CONFIG_CAVIUM_OCTEON_USER_MEM 1 (yes)

64-bit applications can
access hardware buffers
(such as FPA buffers)

without switching to kernel
mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-121

Option Variable in autoconfig.h Default
Value Brief Descripton

Memory to
reserve for user
processes shared

region (MB).

CONFIG_CAVIUM_RESERVE32 0 Mb

The number of MBytes to
reserve so that 32-bit
applications can use

cvmx_bootmem_alloc(
) functions. Required for
32-bit applications to send

and receive packets directly.

Use wired TLB
entries to access

the reserved
memory region.

CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB #undef

When this option is set, the
reserve32 region is globally

mappped to all userspace
programs using wired TLB

entires. If
CONFIG_CAVIUM_RESE
RVE32 is NOT 0, then this
value will be automatically

defined.

When running “make menuconfig”, the memory configuration options are accessed via the
“Machine selection” sub-menu.

The first menuconfig screen looks similar to this:

Machine selection --->
Endianess selection (Big endian) --->
CPU selection --->
Kernel type --->
Code maturity level options --->
General setup --->
Loadable module support --->
Block layer --->
Bus options (PCI, PCMCIA, EISA, ISA, TC) --->
Executable file formats --->
Networking --->
Device Drivers --->
File systems --->
Profiling support --->
Kernel hacking --->
Security options --->
Cryptographic options --->
Library routines --->

To navigate this screen, use the arrow keys on the keyboard. The bottom of the screen provides
some options that can be selected with the TAB key. In the first screen, these options are “Select,

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-122 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Exit, and Help”. To select a highlighted option, press Enter when the option “Select” (at the
bottom of the screen) is highlighted.

To configure the Cavium Networks-specific options, select “Machine selection”. The next screen
will look similar to this (options discussed in this chapter are shown in bold red):

System type (Support for the Cavium Networks OCTEON reference board) ---
>
 [*] Enable OCTEON specific options
 [] Build the kernel to be used as a 2nd kernel on the same chip
 [*] Enable support for Compact flash hooked to the OCTEON Boot Bus
 [*] Enable hardware fixups of unaligned loads and stores
 [*] Enable fast access to the thread pointer
 [*] Support dynamically replacing emulated thread pointer accesses
 (2) Number of L1 cache lines reserved for CVMSEG memory
 [*] Lock often used kernel code in the L2
 [*] Lock the TLB handler in L2
 [*] Lock the exception handler in L2
 [*] Lock the interrupt handler in L2
 [*] Lock the 2nd level interrupt handler in L2
 [*] Lock memcpy() in L2
 [*] Allow User space to access hardware IO directly
 [*] Allow User space to access memory directly
 (0) Memory to reserve for user processes shared region (MB)
 [*] Use wired TLB entries to access the reserved memory region
 (5000) Number of packet buffers (and work queue entries) for the
Ethernet
 driver
 <M> POW based internal only Ethernet driver
 <*> OCTEON watchdog driver
 [] Enable enhancements to the IPSec stack to allow protocol offload.

When using menuconfig:

• Type “?” for help with a highlighted option.
• Items marked with [*] are “on”. To turn them to off, change the star to a space (“*”

becomes “ “).

To see the configured values, look in the file
linux/kernel_2.6linux/include/linux/autoconf.h. This file is created during
the build.

#define CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE 2
#define CONFIG_CAVIUM_OCTEON_USER_IO 1
#define CONFIG_CAVIUM_OCTEON_USER_MEM 1
#define CONFIG_CAVIUM_RESERVE32 0
#undef CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB

Items marked with [*] are “on”. To turn them to off, change the star to a space (“*” becomes “ ”).

Example: Change the amount of memory to reserve for user processes shared region, highlight the
line, and then select it using the choices at the bottom of the screen. The number is in MBytes, and

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-123

should be a power of 2 for optimal performance (if the memory is wired, then only the values 512
MBytes, 1024 MBytes, or 1536 MBytes are legal.) In this example, the value is changed from 0 to
512.

Note: if there isn't sufficient memory for the reserve32, the kernel fails the bootmem allocate step
during boot. It prints a message and the entries in /proc/octeon_info will be zero (as if
reserve32 was not configured).

After changing any needed items and exiting menuconfig, remake the kernel in the
linux/kernel_2.6/linux directory:

host$ sudo make kernel

(This build takes about 20 minutes.)

The file autoconf.h now has the new values, and
CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB is now defined:

host$ grep RESERVE32 autoconf.h
#define CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB 1
#define CONFIG_CAVIUM_RESERVE32 512

Note that this build is not the same as the make kernel command typed in the
$OCTEON_ROOT/linux directory. The top-level kernel build, which is run after this step, will
create a bootable ELF file. This process will be discussed later in this chapter.

Before this change, the file /proc/octeon_info contains:

host# cat /proc/octeon_info
32bit_shared_mem_base: 0x0
32bit_shared_mem_size: 0x0
32bit_shared_mem_wired: 0

When the new kernel is booted with the configuration change, the file
/proc/octeon_info contains:

host# cat /proc/octeon_info
32bit_shared_mem_base: 0x20000000
32bit_shared_mem_size: 0x20000000
32bit_shared_mem_wired: 1

An Example Linux Memory Configuration Error:
If reserve32 is being used, and the memory is “wired”, but the configured memory is not a legal
value or there is not enough free memory to fill the request, after the kernel is booted, the file
/proc/octeon_info will not show the configured shared memory. The incorrect values will
fail on boot and the configured size is set to 0 on failure:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-124 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

cat /proc/octeon_info
32bit_shared_mem_base: 0x0
32bit_shared_mem_size: 0x0
32bit_shared_mem_wired: 1

For a detailed discussion, see the SDK document “Linux Userspace on the OCTEON”.

15.4 Linux Kernel-Mode Virtual Address Space on the OCTEON
Processor

The following figure shows the Linux Kernel-Mode 64-bit Virtual Address Space for the
OCTEON processor. Processes running in kernel mode may access all segments.

The size of cvmseg is set during kernel configuration.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-125

Figure 57: Linux Kernel Virtual Address Space

kseg3

xkphys

xuseg

Linux Kernel-Mode 64-Bit Virtual Address Space (not drawn to scale).
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

0x0000 0000 0000 0000

Normal 64-bit Application Space

Unmapped and uncached I/O Space
(accessed through xkphys).

(discontiguous where there is no matching
I/O device.

Linux Kernel Virtual Address Space

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through xkphys) (discontiguous

where system memory is not present)

0x3FFF FFFF FFFF FFFF

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

This space is used for IOBDMA operations.
This space is saved/restored on context switch.

Access to hardware unit CSRs (Configuration
and Status Registers). Accessible in Kernel
Mode.

Accessible in Kernel Mode.

Normal 64-bit application address space, visible
to the kernel.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-126 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

15.5 Linux 64-bit User-Mode Virtual Address Space for OCTEON
The following figure shows the Linux User-Mode 64-bit Virtual Address Space for the OCTEON
processor. 64-bit applications may optionally access xkphys addresses. The size of cvmseg is set
during kernel configuration.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-127

Figure 58: Linux 64-Bit SE-UM Virtual Address Space for OCTEON

15.6 Linux 32-Bit Virtual Address Space for OCTEON
The following figure shows the Linux 32-bit Virtual Address Space for the OCTEON processor.
The kernel always runs in 64-bit mode. The size of cvmseg is set during kernel configuration.

kseg3

xkphys

xuseg

Linux SE-UM 64-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

0x0000 0000 0000 0000

Normal 64-bit Application Space

Unmapped and uncached I/O Space
(accessed through xkphys).

(discontiguous where there is no matching
I/O device.

Linux 64-Bit SE-UM Virtual Address Space for OCTEON

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

CVMSEG – LM
(part of DCACHE)

Unmapped and uncached system memory
(accessed through xkphys) (discontiguous

where system memory is not present)

0x3FFF FFFF FFFF FFFF

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

This space is used for IOBDMA operations.
This space is saved/restored on context switch.

Access to hardware unit CSRs (Configuration
and Status Registers). Accessible in Kernel
Mode. Accessible in 64-bit user mode if
CONFIG_CAVIUM_OCTEON_USER_IO is
true.

Accessible in Kernel Mode. Accessible in 64-bit
user mode if
CONFIG_CAVIUM_OCTEON_USER_MEM is
true.

Normal 64-bit application address space.

Physical memory may be accessed from this
space if it is allocated via the bootmem functions,
and mapped with mmap().

CVMSEG (in kseg3) can be accessed from user
mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-128 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that the Shared Memory Reserved Region is always reserved. If the kernel was configured
with CONFIG_CAVIUM_RESERVE32 set to a legal value, then the amount of memory specified
will be allocated and mapped into the user’s application space. If reserve32 is wired, the memory
is mapped to 0x8000 0000 (2 GB) minus the size of the memory region requested. If reserve32 is
not wired, the memory may be mapped anywhere in the processes address space.

Only trusted user applications should be allowed to access system memory without going through
the Kernel.

If CONFIG_CAVIUM_USE_WIRED_TLB is specified, then this memory is mapped to every
process running on the system. This may cause problems if a rogue process writes to this address,
corrupting memory. It also consumes TLB entries. If all processes do not need to access shared
memory, this option should not be used.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-129

Figure 59: Linux 32-Bit SE-UM Virtual Application Space on OCTEON

16 Downloading and Booting the ELF File
After the ELF file (either Linux or a SE-S program), it will need to be downloaded to the board and
booted. In this section, a quick overview of downloading and booting an ELF file is provided. The
SDK Tutorial chapter provides more detailed instructions.

kseg3

useg

Linux SE-UM 32-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF BFFF

0x0000 0000

Normal 32-bit Application Space

Unmapped and uncached
I/O Space (accessed through xkseg via in-

line assembly code.) (discontiguous
where there is no matching I/O device)

Linux 32-Bit SE-UM Virtual Address Space for OCTEON

CVMSEG – IO
(only valid address =

0xFFFF FFFF FFFF A200)

If CvmMemCtl[CVMK/S/U] is set, loads and
stores to this address range are treated specially
by the cnMIPS cores.

CVMSEG – LM
(part of DCACHE)

reserve32
The amount of physical memory reserved

depends on the configuration. If wired
TLB is used, the memory is mapped at the

top of useg, otherwise it can be mapped
anywhere in useg.

0x7FFF 7FFF

0x8001 0000 0000 0000

0x8001 6700 0000 03FF

0xFFFF 8000

0xFFFF 9FFF

0xFFFF A000

This space is used for IOBDMA operations.
This space is saved/restored on context switch.

Access to hardware unit CSRs (Configuration
and Status Registers).

See Note 1

To allocate system memory, use the bootmem
functions. The bootmem functions will allocate
the memory from the reserve32 pool of free
memory set aside for 32-bit processes. On
startup, mmap() is called to map the reserve32
region to the virtual address space of the process.
The allocated memory can be used immediately
after allocation because it has already been
mapped. Note that the reserve32 region must be
configured into the kernel, or it is not available.

The CVMSEG region (in kseg3) can be accessed
from user-mode.

This space is always reserved. It is usable by the
32-bit application if
CONFIG_CAVIUM_RESERVE32 is a legal
non-zero value. It wired TLB is configured, the
reserve32 system memory is begins at 2 GBytes
(0x8000 0000) minus
CONFIG_CAVIUM_RESERVE32) and ends at
0x7FFF FFFF. If wired TLB is not configured,
the reserve32 system memory can be mapped
anywhere in useg.

0x7FFF FFFF

0x7FFF 8000

*** Note 1: Some 64-bit addresses (outside the
32-bit virtual memory map) have been included
in this figure. This is because access to these
areas is via inline assembly instructions. ***

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-130 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 60: Creating an In-Memory Image

16.1 Bootloader Memory Model
Two memory areas are reserved by the bootloader: the Reserved Download Block, which is used
to download the application, and the Reserved Linux Block. These two areas may be seen with the
bootloader command namedprint.

Beginning with bootloader 1.7, the bootloader sets the location and size of the Reserved Download
Block based on available memory. For information on bootloaders prior to SDK 1.7, see Section
18 – “Bootloader Historical Information”.

The following output is from a 1.7 bootloader. The exact configuration selected by the bootloader
will vary depending on how much memory is installed in the target.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-131

target# namedprint
List of currently allocated named bootmem blocks:
Name: __tmp_load, address: 0x0000000020000000, size: 0x0000000006000000,
index: 0
Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x0000000008000000, index: 1
Name: __tmp_fpa_alloc_0, address: 0x000000000ffde800, size:
0x000000000001f400, index: 2
Name: __tmp_fpa_alloc_1, address: 0x000000000ffbe800, size:
0x0000000000020000, index: 3
Name: __tmp_fpa_alloc_2, address: 0x000000000fdca800, size:
0x00000000001f4000, index: 4
Name: cvmx_cmd_queues, address: 0x0000000008100000, size:
0x0000000000007800, index: 5

16.1.1 The Reserved Download Block
When downloading an ELF file, for instance over PCI, the ELF file is downloaded from the host
and stored in memory in a temporary location: the Reserved Download Block.

Note: If the ELF file is in on-board flash, this step is not needed. In that case, the bootloader will
read the ELF file from the on-board flash.

16.1.2 ELF File Maximum Download Size
In all ABIs, the created file is in ELF format. The current (SDK 1.8) maximum downloadable ELF
file size is 256 MBytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-132 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 61: Downloading to the Reserved Download Block
The ELF File is Downloaded to the

Reserved Download Block

OCTEON Board
System Memory

2. Reserved Download
Block: The ELF File is
downloaded to here.

1. ELF file downloaded

When the ELF file is
downloaded (for instance over

Ethernet or PCI), the
bootloader stores it

temporarily in the Reserved
Download Block. If the ELF
file is in flash, the Reserved
Download Block is not used.
Instead the ELF file is read

from flash when the cores are
booted.

After storing the ELF file in the Reserved Download Block, the bootloader reads the ELF file,
parses it, allocates system memory for the in-memory image, and creates the in-memory image(s)
in different system memory location(s). All of this processing is part of the boot command.

The bootloader creates the needed TLB entries to map the virtual to physical addresses for the in-
memory image. Note that the in-memory image is larger than the ELF file: memory is allocated
for the stack and heap.

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-133

Figure 62: The Bootloader Creates the In-memory Image
The Bootloader Creates the In-Memory Image

OCTEON Board

System Memory

4. The in-memory image
is created here: memory

has been allocated for
stack and heap. The

Virtual to physical
address map is stored in

the application’s TLB.

3
.

C
r
e
a
t
e

i
n
-
m
e
m
o
r
y

i
m
a
g
e

Note that until the in-
memory image

creation is complete,
there are two

“copies” of the file in
memory. When the
application running
on core 0 is booted,
the memory used for
Reserved Download
Block is reclaimed
and added to the

available free
memory.

2. Reserved Download
Block: The ELF File is
downloaded to here.

After the in-memory image is created, the Reserved Download Block memory may be reused to
download another ELF file. For instance, if the system will run both Linux and Simple Executive,
then first Simple Executive may be downloaded, and then the Linux (note that whichever is
running on core 0 should be loaded last). Both load commands may use the same Reserved
Download Block address.

If the ELF file is in flash, then the reserved downloading memory location is not used. The
bootloader will read the file from flash instead of the Reserved Download Block.

Once the application begins running (when the application running on core 0 is booted), the
memory used for Reserved Download Block is reclaimed and added to the available free memory.

16.1.3 The Reserved Linux Block
In addition to the Reserved Download Block, a block of memory is reserved for Linux: the
Reserved Linux Block. Unlike Simple Executive applications, which can be loaded anywhere in

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-134 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

memory, Linux is linked to run at specific physical addresses. A block of memory is reserved so
that when the Simple Executive application’s in-memory image is created, the bootloader will not
locate it in the area of memory Linux requires. If Linux is not loaded, this area of memory is
reclaimed. If Linux will not be run on the system, then the Linux reserved area size can be set to
zero. The only advantage to doing this is to eliminate the memory fragmentation caused when the
block is freed.

Figure 63: The Reserved Linux Block

start_addr

end_addr

The Reserved
Linux Block (the
Linux in-memory
image is loaded

here)

Part of Physical Address Space (not drawn to scale)

The Reserved Linux Block

Linux and other operating systems
are linked at a specific physical
address. Reserving this space
keeps those addresses available
even if other allocations (such as
loading a Simple Executive Stand-
alone (SE-S) ELF file) are done
before loading Linux.

This space is only needed if Linux
is used along with Simple
Executive Stand-alone (SE-S)
applications.

If Linux is not loaded, this area of
memory is freed to bootmem.

The values of start_addr and end_addr will depend on the amount of system memory is installed in
the target.

For example, if the target’s boot command namedprint shows the Reserved Linux Block is:

Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x0000000008000000, index: 1

Then the start address is 0x100000 (a 1 MByte offset), the size is 128 MBytes and:
end_addr = 0x80F FFFF
start_addr = 0x10 0000

In the following figure, the Reserved Download Block is not shown: the specific address and size
is configuration dependent. The size of the Reserved Linux Block is adjusted based on how much
memory is on the board, and the user can also configure it manually using bootloader environment
variables.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-135

Figure 64: Bootloader Memory Usage in SDK 1.7 and Above

0x0810 0000

Color Key

0x080F FFFF

0x1000 0000

Part of Physical Address Space (not drawn to scale)

Bootloader Memory Usage in SDK 1.7 and Above

Linux and other operating systems are linked at a
specific physical address. Reserving this space keeps
those addresses available even if other allocations (such
as loading a Simple Executive Stand-alone (SE-S) ELF
file) are done before loading Linux.

This space is only needed if Linux is used along with
Simple Executive Stand-alone (SE-S) applications.

If Linux is not loaded, this area of memory is freed to
bootmem.

0x0010 0000

0x000F FFFF

0x0000 0000

The Reserved Linux
Block (the Linux in-

memory image is
created here)

The remainder of
system memory. In

this example,
system memory size

= 256 MBytes. In this example, the system has 256 MBytes of system
memory. The default SDK configuration for Linux
requires 230 MBytes of system memory.

Low one Megabyte
(1 MByte)

Reserved for boot-time initialization, exception vectors,
bootloader code, debugger stub, debugger state. This
memory remains in use by the bootmem functions after
the application has started.

Allocated memory

Unallocated memory

16.2 Booting the Same SE-S ELF File on Multiple Cores
Typically, one SE-S application is booted on multiple cores. The cores share the read-only parts of
the in-memory image: the text and read only data. They also share cvmx_shared variables. These
cores are all booted from the same boot command by specifying all the cores in the coremask
argument to the boot command. Because of this, they are in the same load set.

To download the same application on multiple cores, specify the cores it should run on as an
argument to the boot command (bootoct, bootoctlinux, or bootelf): -coremask=<hex
value>.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-136 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 65: The Power of One Load Set

Cores 0-3
are not

shown in
this figure.

One Load Set

System Memory

SE-S –
Core 4

SE-S –
Core 5

SE-S –
Core 6

SE-S –
Core 7

In-Memory Image
Space

The Power of One Load Command
When SE-S cores are started with one bootloader command
(for example: bootoct 0 coremask=0xF0), they are all part of the same load set:

System memory is conserved because the cores share the read-only file sections:
text, and rodata
Cores share system memory through the cvmx_shared image file section
Cores have load set awareness through the sysinfo data structure, and can thus
synchronize easily. (The function cvmx_coremask_first_core() returns 1 if code is
running on the first core in the load set, in this case core 4).

Shared text, and rodata
sections

Reserved Download Block: The ELF
File is downloaded to here.

Core 4
Private
Memory

(read/write
data,

stack, bss)

Core 5
Private
Memory

(read/write
data,

stack, bss)

Core 6
Private
Memory

(read/write
data, stack,

bss)

Core 7
Private
Memory

(read/write
data, stack,

bss)

Lo
ad

Load Core0

Lo
ad

 C
or

e1

Lo
ad

 C
or

e2

Load Core3

One Load Command:
bootoct 0 coremask=0xF0

cvmx_shared
region (read/
write shared

memory)

Shared: r
ead-only

Shared: re
ad-onlyShared: re

ad-onlyShared: read-only

Shared: read-write

Shared: read-write

Shared: read-write

Load Shared

Shared: read-write

P
riv

at
e

Pr
iv

at
e

Pr
iv

at
e

Pr
iva

te

Load Shared

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-137

16.3 Downloading and Booting Multiple ELF Files
When downloading multiple ELF files it is important to be aware of what the command is doing.
If both downloads go to the same Reserved Download Block, one ELF file will over-write the
other unless the first ELF file has been booted before the second is downloaded. An alternative is
to use two different Reserved Download Block addresses, but they both have to be within the
bootloader’s Reserved Download Block. Using two separate Reserved Download Block addresses
is not recommended.

16.3.1 Downloading by Re-using One Reserved Download Block
To download both Linux and a Simple Executive application, the following commands might be
used (the example is for an 8 core system). Note that the bootloader for SDK 1.7 and higher, the
address argument should be “0” to take the default Reserved Download Block address.

Note: If the PCI target commands are in a script, add “sleep 1” between the first boot command
and the second download command. The bootloader needs some time to finish booting the first
application before the second ELF file is downloaded to the same space.

For example:

On a PCI target:
host$ oct-pci-load 0 testname/dl/vmlinux.64
host$ oct-pci-bootcmd "bootoctlinux 0 coremask=0xF0"
host$ oct-pci-load 0 testname/dl/linux-filter
host$ oct-pci-bootcmd "bootoct 0 coremask=0x0F"

On a Standalone Board:
target# dhcp
target# tftpboot 0 testname/dl/vmlinux.64
target# bootoctlinux 0 coremask=0xF0
target# tftpboot 0 testname/dl/linux-filter
target# bootoct 0 coremask=0x0F

NOTE: Notice that the application which will run on core 0 is booted last. Once this core is
booted, the other cores are taken out of reset and their applications run.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-138 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 66: Downloading Multiple ELF Files – Same Download Block

Multiple ELF Files may be Downloaded Using the Same
Reserved Download Block

OCTEON Board
System Memory

Reserved
Download Block: BOTH

ELF Files are
downloaded to here, one

at a time.

1. ELF file downloaded

3. ELF file downloaded

The first load set of in-
memory images are

created here.

2
.

b
o
o
t
o
c
t

The second load set of
in-memory images are

created here.

4
.

b
o
o
t
o
c
t
l
i
n
u
xNote: Load the

ELF file which
will run on core
0 last.

The same Reserved
Download Block can be
used to download
multiple ELF files.

In this example, SE-S is
downloaded, then Linux.

16.3.2 Downloading Using Two Different Reserved Download Blocks
As an alternative, two separate Reserved Download Block addresses may be used to download
both Linux and a Simple Executive application. This is not recommended unless both addresses
are within the bootloader’s Reserved Download Block. It is far simpler to re-use the download
block. The following commands might be used (the example is for an 8 core system). Note that in
this case, the “boot” does not have to happen before the second download.

First, get the start address of the Reserved Download Block. In the Minicom session to the
bootloader, type

target# namedprint

This will show you the Reserved Download Block: “__tmp_load”. In this example, the start
address is 0x20000000, and the length is 96 MBytes (0x6000000).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-139

The exact start address and size will depend on your configuration. The bootloader detects the
amount of memory you have and sets the values appropriately.

target# namedprint
List of currently allocated named bootmem blocks:
Name: __tmp_load, address: 0x0000000020000000, size: 0x0000000006000000,
index:
0
Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x000000000800000
0, index: 1

Since both ELF files must fit in the same Reserved Download Block, care must be taken.
Using two separate Reserved Download Blocks is not recommended due to the effort involved
in ensuring the two loaded ELF files do not overlap, and do not exceed the area reserved by
the bootloader. Maintenance problems can occur as the ELF file sizes change and the size
of the load addresses need to also change. Errors can occur from miscalculation or a
change in the ELF file size when the space allocated for each download is not changed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-140 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 67: Downloading Two ELF Files Using Two Download Blocks
Using Two Separate Reserved Download Blocks is

Not Recommended

OCTEON Board
System Memory

First Reserved
Download Block: The

FIRST ELF file is
downloaded to here.

1. ELF file downloaded

Second Reserved
Download Block: The
SECOND ELF file is
downloaded to here.

2. ELF file downloaded

The first load set of in-
memory images are

created here.

The second load set of
in-memory images are

created here.

3
.

b
o
o
t
o
c
t

4
.

b
o
o
t
o
c
t
l
i
n
u
x

Using two separate
Reserved Download
Blocks is not
recommended:

The images must
not overlap
The images must
not exceed the
reserved area.
Maintenance
problems can
occur with image
sizes change.

16.4 Protection from Booting Multiple Applications on the Same Core
The bootloader will issue a warning if the user tries to boot multiple applications on the same core:

target# bootoct 0x20000000 coremask=0xD0
ERROR: Can't load code on core twice! (provided coremask overlaps
previously loaded coremask

17 SDK Code Conventions

17.1 Register Definitions and Accessing Registers

17.1.1 Register Definitions
Registers are defined in cvmx-csr-addresses.h. Each one is assigned the appropriate virtual
address in the include file. The register name in the Hardware Reference Manual will become a

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-141

name (in all upper case) which is used to access the register. This name is pre-pended with
“CVMX” (for example: CVMX_FPA_CTL_STATUS).

Where more than one pool has a register with a similar name, the API convention is to use a macro
with an X in the name. The argument to the macro is the pool number. The macro will use the
pool number to calculate the address of the matching register. This allows the code to easily access
the matching register for different pools. The macro will take a pool number as an argument. For
example: CVMX_FPA_QUEX_PAGE_INDEX(2) will access the same register as
CVMX_FPA_QUE2_PAGE_INDEX.

Some of the FPA registers defined in cvmx-csr-addresses.h are:

CVMX_FPA_CTL_STATUS
CVMX_FPA_INT_ENB
CVMX_FPA_INT_SUM
CVMX_FPA_QUE_ACT
CVMX_FPA_QUE_EXP
CVMX_FPA_QUEX_AVAILABLE(offset)
CVMX_FPA_QUEX_PAGE_INDEX(offset)
CVMX_FPA_FPFX_MARKS(offset)
CVMX_FPA_FPFX_SIZE(offset)

17.1.2 Register Typedefs
To access a field inside the register, instead of the entire register, read the register into a data
structure, then access the field. The data structures are defined in cvmx-csr-typedefs.h.
The register data structures are given the same name as the register, except they are all lower case.
The typedefs end in the characters “_t”. The register data structure fields will also have names
matching the Hardware Reference Manual names (see Table 18: “Accessing Register Fields”).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-142 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Here is an example register data structure typedef for the FPA_CTL_STATUS register (known to
the Simple Executive as CVMX_FPA_CTL_STATUS, with the register data structure typedef
cvmx_fpa_ctl_status_t).

/**
 * cvmx_fpa_ctl_status
 *
 * FPA_CTL_STATUS = FPA's Control/Status Register
 *
 * The FPA's interrupt enable register.
 */
typedef union
{
 uint64_t u64;
 struct cvmx_fpa_ctl_status_s
 {
#if __BYTE_ORDER == __BIG_ENDIAN
 uint64_t reserved_18_63 : 46;
 uint64_t reset : 1;
 uint64_t use_ldt : 1;
 uint64_t use_stt : 1;
 uint64_t enb : 1;
 uint64_t mem1_err : 7
 uint64_t mem0_err : 7
#else
 uint64_t mem0_err : 7;
 uint64_t mem1_err : 7;
 uint64_t enb : 1;
 uint64_t use_stt : 1;
 uint64_t use_ldt : 1;
 uint64_t reset : 1;
 uint64_t reserved_18_63 : 46;
#endif
 } s;
 struct cvmx_fpa_ctl_status_s cn3020;
 struct cvmx_fpa_ctl_status_s cn30xx;
 struct cvmx_fpa_ctl_status_s cn31xx;
 struct cvmx_fpa_ctl_status_s cn36xx;
 struct cvmx_fpa_ctl_status_s cn38xx;
 struct cvmx_fpa_ctl_status_s cn38xxp2;
 struct cvmx_fpa_ctl_status_s cn56xx;
 struct cvmx_fpa_ctl_status_s cn58xx;
} cvmx_fpa_ctl_status_t;

17.1.3 Accessing Registers Using Register Definitions and Data Structures
To read a register, call the function cvmx_read_csr(). Give this function the name of the
register or register macro (such as CVMX_FPA_QUEX_PAGE_INDEX(pool)). Use
cvmx_write_csr() to write the register.

To access a field inside the register, not the entire register, read the register into a data structure,
then access the field. The data structures are defined cvmx-csr-typedefs.h.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-143

Example 1: Read from a register, modify a field, and then write to the register:
In this example, we read the CVMX_FPA_CTL_STATUS register, write a “1” to the Enable field
(setting the Enable bit), and then write the new value to the register. This enables the FPA.

 cvmx_fpa_ctl_status_t status;

 status.u64 = cvmx_read_csr(CVMX_FPA_CTL_STATUS);
 status.s.enb = 1;
 cvmx_write_csr(CVMX_FPA_CTL_STATUS, status.u64);

Example 2: Read from a register using the register macro, which requires a pool number:

In the case of CVMX_FPA_QUEX_AVAILABLE, the pool number is provided as an argument.
This number is then used in calculating the FPA_QUEn_AVAILABLE address for this pool. For
example:

cvmx_fpa_quex_available_t queue_size_register;

 // Ask FPA the number of buffers available
 // using the data structure defined in cvmx-csr-typedefs.h

 printf("\nReading the FPA register to see how many buffers”
 “ are available.\n");
 queue_size_register.u64 =

cvmx_read_csr(CVMX_FPA_QUEX_AVAILABLE(CVMX_MY_POOL));

// que_siz, a bit field, is declared uint64_t, but is modified by the
// compiler to be a unsigned int, thus is printed %u instead of %lu
printf("The number of buffers available in MY POOL = %u\n",
 queue_size_register.s.que_siz);

Table 18: Accessing Register Fields

Register Field
Name

Access from SDK: typedef
(union)For example:

cvmx_fpa_available_t avail;

Field (N is one
of pool 0-7) For

example:
avail.s.que_siz

FPA_CTL_STATUS ENB cvmx_fpa_ctl_status_t s.enb
FPA_FPFn_SIZE FPF_SIZ cvmx_fpa_fpf0_size_t s.fpf_siz

FPA_FPFn_MARKS FPF_RD cvmx_fpa_fpf_marks_t s.fpf_rd
FPA_FPFn_MARKS FPF_WR cvmx_fpa_fpf_marks_t s.fpf_wr

FPA_INT_ENB FED0_SBE cvmx_fpa_int_enb_t s.fed0_sbe
FPA_INT_ENB FED0_DBE cvmx_fpa_int_enb_t s.fed0_dbe
FPA_INT_ENB FED1_SBE cvmx_fpa_int_enb_t s.fed1_sbe

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-144 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Register Field
Name

Access from SDK: typedef
(union)For example:

cvmx_fpa_available_t avail;

Field (N is one
of pool 0-7) For

example:
avail.s.que_siz

FPA_INT_ENB FED1_DBE cvmx_fpa_int_enb_t s.fed1_dbe
FPA_INT_ENB Qn_UND cvmx_fpa_int_enb_t s.qN_und
FPA_INT_ENB Qn_COFF cvmx_fpa_int_enb_t s.qN_coff
FPA_INT_ENB Qn_PERR cvmx_fpa_int_enb_t s.qN_perr

FPA_INT_SUM FED0_SBE cvmx_fpa_int_sum_t s.fed0_sbe
FPA_INT_SUM FED0_DBE cvmx_fpa_int_sum_t s.fed0_dbe
FPA_INT_SUM FED1_SBE cvmx_fpa_int_sum_t s.fed1_sbe
FPA_INT_SUM FED1_DBE cvmx_fpa_int_sum_t s.fed1_dbe
FPA_INT_SUM Qn_UND cvmx_fpa_int_sum_t s.qN_und
FPA_INT_SUM Qn_COFF cvmx_fpa_int_sum_t s.qN_coff
FPA_INT_SUM Qn_PERR cvmx_fpa_int_sum_t s.qN_perr

FPA_QUEn_PAGES_AVAILABLE QUE_SIZ cvmx_fpa_quex_available_t s.que_siz

FPA_QUEn_PAGE_INDEX PG_NUM cvmx_fpa_quex_page_index_t s.pg_num
FPA_QUE_EXP EXP_INDX cvmx_fpa_que_exp_t s.exp_indx
FPA_QUE_EXP EXP_QUE cvmx_fpa_que_exp_t s.exp_que
FPA_QUE_ACT ACT_INDX cvmx_fpa_que_act_t s.act_indx
FPA_QUE_ACT ACT_QUE cvmx_fpa_que_act_t s.act_que

17.2 The cvmx_sysinfo_t Typedef
The cvmx_sysinfo_t data structure is private to each process. The data in it was copied from
the global info from the bootloader.

This data structure is accessed by the Simple Executive API function cvmx_sysinfo_get().

The cvmx_sysinfo_get() function is used in the passthrough example to determine
whether the application is running on the simulator:

if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
{

The cvmx_sysinfo_get() function is used in the linux-filter example to determine
whether the application is running on the first core in the load set:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-145

cvmx_sysinfo_t *sysinfo = cvmx_sysinfo_get();

/* Have one core do the hardware initialization */
if (cvmx_get_core_num() == sysinfo->init_core)
{

Information in this structure is also used to synchronize cores in the same load set. See Section 5.7
– “Synchronizing Multiple Cores”.

17.3 OCTEON Models
OCTEON models are defined in $OCTEON_ROOT/executive/octeon-model.h. The
choices for the env_setup command line are in $OCTEON_MODEL/octeon-model.txt.

18 Bootloader Historical Information
The bootloader’s memory map changed with SDK 1.7. If the bootloader on the board is older than
1.7, it should be upgraded.

Along with this upgrade, commands used to boot the board have changed. In particular, instead of
specifying a specific download address such as 0x21000000, the value “0” is used, allowing the
bootloader to select the download address.

This historical information is provided for persons who need to make these modifications to a
previously developed product, and need to understand the technical differences between pre 1.7
bootloaders and post 1.7 bootloaders.

The version command is used to find out whether the bootloader was compiled by SDK 1.6 or
newer. After SDK 1.6, a change was made to how the bootloader loads ELF files in memory,
affecting the commands used to load the ELF files.

To find out if your board was built with SDK 1.7 or higher, use the bootloader command
version, typed in the Minicom session to the bootloader.

The following bootloader command shows a bootloader built with SDK 1.7.3:

target# version
U-Boot 1.1.1 (U-boot build #: 194) (SDK version: 1.7.3-264) (Build time:
Jun 13)

As shown when discussing bootloader 1.7 and above, there are two memory areas which are
reserved by the bootloader: the Reserved Download Block, and the Reserved Linux Block. These
two areas may be seen with the bootloader command namedprint.

On bootloader 1.6 and lower, the size and location of both the Reserved Download Block (15
MBytes) and the Reserved Linux Block (80 MBytes) are fixed. (On bootloader 1.7 and higher, the
bootloader sets the location and size of the Reserved Download Block based on available memory.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-146 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In SDK 1.6 and lower, the Reserved Download Block and Reserved Linux Block were located in
the bottom 256 MBytes of memory (DDR0) as shown in the following figure:

Figure 68: Bootloader Memory Usage in SDK 1.6 and Below

ELF files larger than 15 MBytes would not fit into the Reserved Download Block.
To solve this problem a different physical address, usually 0x21000000 was specified on the “oct-
pci-load” command line. However, this address is out of the memory range for systems with only
256 MBytes (0x10000000).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-147

For example the ELF file for Linux, vmlinux.64, is about 69 MBytes, not 15 MBytes, so it will not
fit in the SDK 1.6 default Reserved Download Block.

host$ ls –l vmlinux.64
-rwxr-xr-x 1 testname software 71500064 Jul 14 16:00 vmlinux.64

Note that 15 MBytes, shown by “ls –l” is 15,728,640. Clearly vmlinux.64 is too big to fit.

To solve these problems, SDK 1.7 and higher allow the bootloader to evaluate the amount of
memory available on the system and select suitable addresses.

18.1 Backward Compatibility for Linux ELF Files Built Under SDK 1.6
Linux compiled under SDK 1.6 and lower will load and run on a 1.7 bootloader because the
Reserved Linux Block includes the SDK 1.6 Linux link addresses if the board has at least 256
MBytes of memory.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SW
 O

V
E

R
V

IE
W

 OCTEON Programmer’s Guide

3-148 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-1

Software Development Kit (SDK)
Tutorial

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 5
LIST OF FIGURES .. 7
1 Introduction ... 8

1.1 Where to Get More Information ... 11
2 Overview ... 11
3 Hardware and Software Requirements ... 11

3.1 Development Target Requirements .. 12
3.2 Development Host Requirements ... 12
3.3 PCI Host, TFTP Server, and Test System Requirements ... 13
3.4 DHCP Server .. 13
3.5 Traffic Generator .. 14

4 Hands-on: System Administration Tasks .. 14
4.1 User Account Configuration ... 14
4.2 Multiple Users on the Same Development Host ... 14

5 Hands-on: Connect the Development Target .. 15
5.1 PCI Development Target .. 15
5.2 Standalone Development Target ... 17

6 Hands-on: Viewing the Target Board Console Output .. 19
6.1 Starting Minicom .. 19
6.2 Configuring Minicom ... 19
6.3 Minicom Basics .. 21
6.4 Verify Connection to Target Console Works ... 21
6.5 Minicom Line Wrap and Viewing the Bootloader Help Menu .. 22
6.6 Scrolling Up and Down .. 22
6.7 A Typical Minicom Error ... 23
6.8 Troubleshooting a Missing Bootloader Prompt .. 23
6.9 Determining the Number of Cores on the OCTEON Processor 24

7 Hands-on: Gather Key Hardware Information .. 24
7.1 Determining the OCTEON Model on the Development Target 24
7.2 Determining the Number of Cores on the OCTEON Processor 24

8 Hands-on: Install the SDK ... 25
8.1 Mounting the CD .. 25
8.2 Using the RPM Utility to Install the Packages ... 26

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

8.3 Making a Copy of the Installed SDK ... 27
8.4 The OCTEON_ROOT Environment Variable .. 28
8.5 Setting Environment Variables on the Development Host ... 28
8.6 Adding env-setup to Your Profile .. 31
8.7 Viewing the Installed SDK Version ... 32

9 Hands-on: Tour the Installed SDK .. 32
9.1 Key Information .. 32
9.2 Looking at the Installed Directories ... 32
9.3 Documentation Provided with the SDK ... 35
9.4 Development Tools ... 37
9.5 Oprofile Profiling Tools ... 43
9.6 Native Tools (Run on the Development Target) .. 43
9.7 Example Applications ... 47

10 About Building Example Applications ... 49
10.1 Makefiles .. 49
10.2 Makefile Targets for Example Code ... 50
10.3 Building SE-S Examples .. 51
10.4 Building SE-UM Examples .. 52
10.5 Saving make Output .. 52
10.6 Other Makefile Targets ... 52
10.7 Using the strip Utility .. 53

11 Hands-on: Build and Run a SE-S Application (hello) .. 54
11.1 Run hello on a PCI Target Board ... 55
11.2 Run hello on a Standalone Target Board .. 59

12 Hands-on: Run hello on Multiple Cores .. 67
13 About the Bootloader .. 69

13.1 Booting an OCTEON Board ... 69
13.2 Review of Bootloader Memory Use ... 71
13.3 The Failsafe Bootloader .. 71
13.4 Bootloader Commands ... 71
13.5 Bootloader Environment Variables .. 73
13.6 Upgrading the Bootloader ... 73

14 About Downloading the Application .. 73
15 About Booting SE-S Applications .. 76

15.1 The Coremask ... 76
15.2 The Boot Command .. 76

16 About Building Linux ... 77
16.1 The Root Filesystem ... 78
16.2 Linux Makefiles and Makefile Targets ... 80
16.3 Configuring Linux .. 81
16.4 Building Linux .. 82
16.5 About the make clean Command .. 83
16.6 The Kernel File Name: vmlinux vs vmlinux.64 ... 83
16.7 The strip Utility and the vmlinux.64 ELF File ... 84

17 Hands-on: Build and Run Linux .. 84
17.1 Build the Kernel and Embedded Root Filesystem .. 86

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-3

17.2 Download vmlinux.64 to the Development Target ... 87
17.3 Boot Linux on the Development Target ... 87

18 Hands-on: Run a SE-UM Example (named-block) .. 88
19 About the linux-filter Example ... 88
20 Hands-on: Run linux-filter as a SE-S Application (Hybrid System) 92
21 Hands-on: Run linux-filter as a Linux SE-UM Application .. 98
22 Hands-on: Run linux-filter as a SE-UM Application on Multiple Cores 103
23 Hands-on: Creating a Custom Application .. 104

23.1 Adding Applications to the Embedded Root Filesystem .. 104
23.2 Example Application Which Breaks Ethernet Driver .. 107

24 The Hardware Simulator ... 108
24.1 Simulator Documentation ... 108
24.2 Run SE-S Applications on the Simulator ... 108
24.3 Specifying –noperf and –quiet to Speed Up Processing....................................... 110
24.4 Running Linux on the Simulator .. 110
24.5 Simulator: Download and Run Bootloader .. 113
24.6 Using the Simulator to Optimize Performance ... 114

25 Appendix A: Introduction to Available Products .. 115
26 Appendix B: Linux Basics ... 120

26.1 Linux Commands .. 120
26.2 Shell Scripts .. 124
26.3 Aliases ... 124
26.4 Linux File Information and the Set User ID Bit ... 125
26.5 Killing a Process ... 126

27 Appendix C: About the RPM Utility ... 126
27.1 Installing from the Support Site Instead of a CD ... 126
27.2 Useful RPM Commands ... 127
27.3 RPM Commands Quick Reference Guide .. 129

28 Appendix D: Other Useful Tools ... 130
28.1 Cscope ... 130
28.2 Ctags ... 130
28.3 Tera Term, Putty, VNC .. 131

29 Appendix E: U-Boot Commands Quick Reference Guide .. 131
30 Appendix F: ELF File Boot Commands Quick Reference .. 133
31 Appendix G: Null Modem Serial Cable Information .. 135
32 Appendix H: Query EEPROM to get Board Information ... 135

32.1 Detecting a Problem with the EEPROM .. 137
33 Appendix I: Updating U-Boot on a Standalone Board .. 137

33.1 Locating the Correct Bootloader .. 137
33.2 Save the old Bootloader Environment .. 139
33.3 Updating the Bootloader on the Board ... 140

34 Appendix J: TFTP Boot Assistance (tftpboot) .. 144
34.1 TFTP Server Firewall ... 144
34.2 Verify that the TFTP Server RPM is Installed on the TFTP Server 144
34.3 Verify the TFTP Server is Currently Enabled .. 144
34.4 About the TFTP Download Directory on the TFTP Server ... 146

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

34.5 Verify serverip is set Correctly on the OCTEON Target Board 146
34.6 Test tftpboot: Boot hello on the OCTEON Target Board 147
34.7 Further Information .. 148

35 Appendix K: Downloading Using the Serial Connection .. 148
35.1 Kermit ... 148
35.2 Copy hello to /tmp .. 148
35.3 Set up the .kermrc File ... 149
35.4 Start Minicom ... 149

36 Appendix L: Simple Executive Configuration .. 149
37 Appendix M: Changing the ABI Used for Linux .. 150
38 Appendix N: Contents of the Embedded Root Filesystem .. 150
39 Appendix O: Getting Ready to Use a Flash Card .. 152

39.1 System Administration Steps .. 152
40 Appendix P: Booting an ELF File From a Flash Card .. 154

40.1 System Administration Steps .. 154
40.2 Copying the ELF File to the Flash Card ... 154
40.3 Moving the Flash Card to the Target .. 154
40.4 Loading the ELF File From the Flash Card into Memory .. 155
40.5 Booting the ELF File From the Flash Card .. 155

41 Appendix Q: Using the Debian Root Filesystem .. 155
41.1 System Administration Steps .. 155
41.2 About the Debian Root Filesystem ... 155
41.3 Install Kernel Plus Debian Onto the Flash card .. 156
41.4 Moving the Flash Card to the Target .. 156
41.5 Load the Kernel from the Flash Card into Memory ... 156
41.6 Boot the Kernel ... 156
41.7 Upgrading the Kernel on the Flash Card .. 157

42 Appendix R: About oct-pci-console ... 157
43 Appendix S: About oct-pci-reset and oct-pci-csr .. 158

43.1 Reset: oct-pci-reset ... 158
43.2 Access Control and Status Registers (CSRs): oct-pci-csr 158

44 Appendix T: Multiple Embedded Root Filesystem Builds .. 159
45 Appendix U: How to Find the Process’s Core Number .. 161

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-5

 LIST OF TABLES
Table 1: Options to the env-setup Script ... 30
Table 2: Key SDK Files ... 33
Table 3: Key SDK Directories ... 34
Table 4: Documentation Provided via doc/html/index.html .. 36
Table 5: GNU Tool Chain ... 40
Table 6: Host Tools ... 41
Table 7: Host Tools, continued .. 42
Table 8: Profiling Tools (Oprofile) .. 43
Table 9: Hardware Diagnostic Tools ... 43
Table 10: Special Cavium Networks Native Tools, Part 1 .. 45
Table 11: Special Cavium Networks Native Tools, Part 2 .. 46
Table 12: Examples Provided with SDK 1.8.0 .. 48
Table 13: Different Makefile Targets, Different Target Names .. 51
Table 14: Key oct-pci-* Commands ... 55
Table 15: Run hello on a PCI Development Target, Part 1 ... 56
Table 16: Run hello on a PCI Development Target, Part 2 ... 57
Table 17: Run hello on a Standalone Development Target, Part 1 ... 60
Table 18: Run hello on a Standalone Development Target, Part 2 ... 61
Table 19: Run hello on a Standalone Development Target, Part 3 ... 62
Table 20: Key Bootloader Commands ... 72
Table 21: Commands to Download ELF File for Different Configurations 75
Table 22: ELF File Download Command Details ... 76
Table 23: Linux Top-Level Makefile Targets ... 81
Table 24: Build and Run Linux, Part 1 .. 85
Table 25: Build and Run Linux, Part 2 .. 86
Table 26: Build and Run Linux and linux-filter (SE-S), Part 1 .. 93
Table 27: Build and Run Linux and linux-filter (SE-S), Part 2 .. 94
Table 28: Build and Run Linux and linux-filter (SE-S), Part 3 .. 95
Table 29: Build and Run Linux and linux-filter (SE-S), Part 4 .. 96
Table 30: Build and Run Linux and linux-filter (SE-S), Part 5 .. 97
Table 31: Build and Run Linux and linux-filter (SE-UM), Part 1 99
Table 32: Build and Run Linux and linux-filter (SE-UM), Part 2 100
Table 33: Build and Run Linux and linux-filter (SE-UM), Part 3 101
Table 34: Build and Run Linux and linux-filter (SE-UM), Part 4 102
Table 35: Simulator Documentation .. 108
Table 36: Run Linux on the Hardware Simulator, Part 1 .. 112
Table 37: Run Linux on the Hardware Simulator, Part 2 .. 113
Table 38: Packages Provided on the Installation CD, Part 1 ... 116
Table 39: Packages Provided on the Installation CD, Part 2 ... 117
Table 40: Example RPMs on the SDK Installation CD .. 118
Table 41: Package Dependencies .. 118
Table 42: Optional Toolkits ... 119
Table 43: Application Development Kits (ADKs) .. 119

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 44: Linux Commands Quick Reference, Part 1 ... 121
Table 45: Linux Commands Quick Reference, Part 2 ... 122
Table 46: Linux Commands Quick Reference, Part 3 ... 123
Table 47: RPM Commands Quick Reference ... 129
Table 48: U-Boot Commands Quick Reference, Part 1 .. 132
Table 49: U-Boot Commands Quick Reference, Part 2 .. 133
Table 50: ELF File Download and Boot Commands Quick Reference, Part 1 134
Table 51: ELF File Download and Boot Commands Quick Reference, Part 2 135
Table 52: SDK 1.7.3 Boards and Bootloader File Names, Part 1 ... 138
Table 53: SDK 1.7.3 Boards and Bootloader File Names, Part 2 ... 139
Table 54: Example Bootloader Environment File Changes due to Upgrade 143

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-7

 LIST OF FIGURES
Figure 1: Different Runtime Modes Covered in This Tutorial 10
Figure 2: Development Host and Target 12
Figure 3: Hardware Configuration: PCI Development Target 17
Figure 4: Hardware Configuration: Standalone Development Target 18
Figure 5: Minicom Configuration Menu 20
Figure 6: Example Minicom Serial Port Configuration 20
Figure 7: Saving the Minicom Configuration to a File 21
Figure 8: Run hello on 1 out of 8 Cores 54
Figure 9: Run hello on 4 out of 8 Cores 67
Figure 10: Core 0 Runs Bootloader While the Other Cores Stay in Reset 69
Figure 11: Creating an In-Memory Image 74
Figure 12: Root Filesystem Locations 78
Figure 13: Example: linux-filter Forwards an IP Non-broadcast Packet 90
Figure 14: Example: linux-filter Does Not Forward an IP Broadcast Packet 91
Figure 15: Example of linux-filter (SE-S) and Linux Run on 2 out of 8 Cores 92
Figure 16: Example of linux-filter run as a SE-UM Application on Linux 98
Figure 17: Run linux-filter as a SE-UM Load Set 103
Figure 18: Running Linux on Simulated Hardware 110

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

1 Introduction
This chapter introduces the Software Development Kit (SDK) from a hands-on perspective,
provides a tour of the installed SDK, and also contains useful information for users new to
embedded software development or new to Linux.

This chapter assumes the reader will use either an evaluation or a reference board to follow the
hands-on steps. To maximize understanding of this chapter, the reader will need:

- An i386 or x86_64 development host, running Linux
- An OCTEONprocessor reference or evaluation board
- The Cavium Networks OCTEON SDK, either on CD or downloaded from the support site

at http://www.caviumnetworks.com/
- root privilege on the development host

Before reading this chapter, please read the Packet Flow and the Software Overview chapters. The
Packet Flow chapter will provide background information on the basic hardware units and how
they interact. This information is necessary to understand the Simple Executive API and the
examples. The Software Overview chapter introduces the cnMIPS cores, runtime environment
choices, high-level system design, memory map basics, Simple Executive API (Application
Programming Interface), and the ABI (Application Binary Interface) choices available.

In addition to the chapters in this book, the Quick Start Guide provided with the evaluation or
reference board is essential to correctly configuring and powering on the evaluation or reference
board.

This chapter is designed to augment the SDK documentation by providing a high-level view of the
SDK and step-by-step instructions from installing the SDK to running example code on an
evaluation board.

The examples covered include running a SE-S application, booting Linux, running a SE-UM
application, and running a hybrid system with both SE-S and SE-UM applications.

A large reference section begins at Section 25 – “Appendix A: Introduction to Available
Products”. This section will assist readers who are new to the OCTEON processor and to Linux.

Because this chapter is a tutorial, hands-on sections are labeled “Hands-on”. Discussion sections
are labeled “About”. The chapter should be read in order, and the hands-on steps taken in order
(except for the Appendices). For example, before running Linux or a SE-UM application, be sure
to run the SE-S application hello. Later steps in this document depend on successful execution
of the earlier steps.

The details often follow the hands-on directions. This is done to keep the reader from
being distracted by technical details. The goal of the tutorial is to get up and running as
rapidly as possible.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-9

If you are only interested in running Linux or SE-UM applications you may be tempted to skip the
step of booting the example application hello. Running hello is actually an important part of
verifying that:

• the SDK is properly installed
• the environment variables are properly configured
• the development target board has booted properly
• the development target board is connected properly to the development host
• the development target is working

After all of these things have been verified by running hello, it is a simple step to run Linux.
Once Linux is running, it is a simple step to run a SE-UM application. From there, the step to
running a hybrid system is also simple. Most of the new material to learn is presented in the
simplest of all examples: hello.

Readers new to the OCTEON processor will benefit from the details in this chapter,
especially the extra information in the Reference Section.

Note: In the text below,

• host$ means execute the command as a normal user on the development host.
Commands which require root privilege will be preceded by sudo, which is used to obtain
the root privilege. When typing in the command as shown in the tutorial, omit this text.

• target# means execute the command as root on the development target. When typing in
the command as shown in the tutorial, omit this text.

The hands-on sections in this tutorial are:

• Section 4 – “Hands-on: System Administration Tasks
• Section 5 – “Hands-on: Connect the Development Target”
• Section 6 – “Hands-on: Viewing the Target Board Console Output”
• Section 7 – “Hands-on: Gather Key Hardware Information”
• Section 8 – “Hands-on: Install the SDK”
• Section 9 – “Hands-on: Tour the Installed SDK”
• Section 11 – “Hands-on: Build and Run a SE-S Application (hello)”
• Section 12 – “Hands-on: Run hello on Multiple Cores”
• Section 17 – “Hands-on: Build and Run Linux”
• Section 18 – “Hands-on: Run a SE-UM Example (named-block)”
• Section 20 – “Hands-on: Run linux-filter as a SE-S Application (Hybrid System)”
• Section 21 – “Hands-on: Run linux-filter as a Linux SE-UM Application”
• Section 22 – “Hands-on: Run linux-filter as a SE-UM Application on Multiple

Cores”
• Section 23 – “Hands-on: Creating a Custom Application”
Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 1: Different Runtime Modes Covered in This Tutorial

SE-S

Linux

SE-S/Single Core
Run hello on one core as a Simple
Executive Standalone (SE-S) application.
This is helpful for debugging the hardware
setup.

Linux/Single Core
Run Linux on one core.

Linux/SE-UM/Single Core
Run named-block as a Simple Executive
User-Mode (SE-UM) application on Linux.

SE-S/Multicore
Run hello on four cores as a Simple
Executive Standalone (SE-S) application in
one load set.

Hybrid: Linux/Ethernet Driver/SE-S
Run Linux and the Cavium Networks
Ethernet Driver on one core and run
linux-filter as a SE-S application on
another core.

Hybrid: SMP Linux/Single Core SE-UM
Run Linux and the Cavium Networks
Ethernet Driver on two cores and run
linux-filter as a SE-UM application
on one of the two cores.

Different Runtime Modes Covered in This Tutorial

SMP Linux/Multicore SE-UM
Run Linux and the Cavium Networks
Ethernet Driver on three cores and run
linux-filter as a SE-UM application
on two of the three cores.

One Load Set

Linux

SMP Linux or other SMP-capable OS
(single copy). The SE-UM processes

started with one oncpu command.

Linux Linux
Driver

SE-
UM

SE-
UM

LinuxLinux

SMP Linux (single
copy)

Driver

LinuxSE-S
Driver

LinuxSE-
UM

One Load Set

SE-S SE-S SE-S SE-S

SE-
UM

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-11

1.1 Where to Get More Information
Extensive documentation is supplied with the SDK. This documentation is outlined in Section 9.3
“Documentation Provided with the SDK”.

In addition to the documentation supplied with the SDK, the Hardware Reference Manual (HRM)
for the specific OCTEON model used in your application will provide more information. The
HRM is available from the support site at http://www.caviumnetworks.com/.

The Quick Start Guide (OCTEON-SDK-QSG.pdf) is needed to install the evaluation board. The
Quick Start Guide included in hard-copy with the evaluation board, and is also available as a PDF
file on the SDK CD, or in the docs directory of the installed base SDK.

The source for the tool chain and additional information is available from http://www.cnusers.org/.

2 Overview
The CD included with the evaluation or reference board contains the SDK. The SDK will be
installed on a development host: a host PC running Linux.

The SDK is defined to be two packages: the base SDK, and OCTEON Linux. All other RPM
packages are not included in the definition of the SDK.

The base SDK package includes:

• The complete GNU-based tool chain including the compiler, linker, and generic
libraries, optimized to take advantage of the cnMIPS cores contained within the
OCTEON processor.

• The OCTEON software simulator, which includes performance measuring tools.
• Cavium Networks Simple Executive: software that enables quick application

development. This software provides a C or C++ API to the underlying hardware.
• Several example applications.

The OCTEON Linux package contains OCTEON Linux (ported to the OCTEON processor from
the Linux source at http://www.linux-mips.org/).

Simple Executive applications may run on OCTEON Linux as user-mode applications (SE-UM),
or may run as Simple Executive standalone application (SE-S). Because SE-S applications have no
operating system overhead, they are typically used in the highest-performance designs.

This tutorial provides step-by-step instructions for running both SE-S and SE-UM applications.
SE-S applications require only the base SDK. SE-UM applications require the OCTEON Linux
package.

3 Hardware and Software Requirements
To avoid confusion with the term PCI host, the term development host will be used to describe the
i386 or x86_64 machine which is used as a cross-development platform. The term development
target refers to the OCTEON evaluation board connected to the development host.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/
http://www.cnusers.org/
http://www.linux-mips.org/

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In this chapter, the development host is configured to handle multiple roles. It is the:

• Development host used in cross-compilation
• PCI host when the development target is a PCI board
• TFTP server used to tftpboot the ELF file
• Test System which has a dedicated Ethernet connection to the development target, and/or

can be used to run the hardware simulator

The application (or example program) is built on the development host. Once the application is
built, it will be downloaded to either a PCI development target (inserted inside the development
host), or to a standalone development target board connected to the development host. The two
different configurations are shown in the following figure.

Figure 2: Development Host and Target

Null
 m

od
em

 se
ria

l c
ab

le

Et
he

rn
et

 C
ab

le
 –

te
st

 n
et

w
or

k

Et
he

rn
et

 C
ab

le
 –

te
st

ne
tw

or
k

Null
 m

od
em

 se
ria

l c
ab

le
Et

he
rn

et
 C

ab
le

 –
te

st
 n

et
w

or
k

Et
he

rn
et

 C
ab

le
 –

te
st

ne
tw

or
k

3.1 Development Target Requirements
The development target (OCTEON evaluation or reference board) may be either a PCI or
standalone board.

3.2 Development Host Requirements
The application will be built on the development host using a cross-compiler.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-13

Development host platform:

• i386 or
• x86_64

Development host operating system:

• Red Hat Linux, such as Fedora. Cavium Networks has tested the SDK on Fedora Core 4
and Red Hat Enterprise Linux (RHEL5-X, scientific build).

• Other configurations may work, but they have not been tested.

3.3 PCI Host, TFTP Server, and Test System Requirements
In this chapter, it is assumed that the development host, the PCI host, the TFTP Server, and the
Test System are one PC used for multiple purposes. Since they are not required to be the same
system, the separate requirements are listed below:

• PCI Host: If the OCTEON development target is a PCI board, then the most convenient
configuration is to have the development host be the PCI host. The PCI host must have a
3.3 volt 64-bit PCI slot. Note: PCI Express (PCIe) does not have multiple voltage levels
available, so all PCIe boards will work in all PCIe systems. In this chapter, PCI host means
either a PCI or PCIe host, and PCI target means either a PCI or PCIe target.

• TFTP Server: If the OCTEON development target is a standalone board, then the most
convenient configuration is to have the development host be the TFTP server. Note if
TFTP is not available, a flash card may be used to download the application to the
development target.

• Test System:
o Test System Memory: If the hardware simulator will be run, and multiple cores

will be simulated, the test system will need a minimum of 512 MBytes; 1 GByte or
more recommended.

o Test System Ethernet: The test machine either runs the hardware simulator or is
connected to the target board and used to run tests on it. For instance, Ethernet
ICMP echo requests (ping) may be sent from the test system to the development
target.

Important: Configure the test system to have an isolated Ethernet connection to
the Target board (separate from the office Ethernet). Tests done between the
development host and development target over Ethernet can interfere with normal
uses for Ethernet, for instance by flooding the Ethernet with packets.

3.4 DHCP Server
A Dynamic Host Configuration Protocol (DHCP) server can be used to assign the IP address to the
development target. Otherwise, simply use a static IP. The directions in this chapter include both
choices.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

3.5 Traffic Generator
A traffic generator can be helpful in running examples and in testing your application. If a traffic
generator is not available, run the example program example traffic-gen on the hardware
simulator to generate traffic. This solution is adequate for simple tests.

Note that a traffic generator is not needed to run the examples in this chapter.

4 Hands-on: System Administration Tasks
In this chapter, the assumption is made that each user has their own development host. If the
development host is shared among several users, see Section 4.2 – “Multiple Users on the Same
Development Host”.
Before continuing, the following system administration tasks should be done on the development
host:

• Create a personal account on the development host (shown as testname in this document).
The shell used in these directions is bash. Login as this user and do all work as this user,
except when directed to use the sudo command.

• Obtain root (sudo) permission on the development host. This is needed to install the SDK.
To test if this permission has been correctly set up, type: sudo ls. If this command
works, sudo has been correctly set up. Sudo permission is also needed to build the
Linux kernel, and to use the PCI tools. Note that when using sudo you do not enter the
root password, you enter your own password.

4.1 User Account Configuration
When configuring the user’s account, two items are important:

1. The user’s account should not be on a NFS-mounted drive:
Note: If the user’s home directory is in a NFS-mounted drive, and the user’s SDK
workspace is in their home directory, then some steps in this tutorial will fail. This
failure is because some steps require root privilege. NFS will, by default, prevent root on
client machines from having access to the files on the NFS-mounted drive. Usually root
is mapped to nobody. This is known as root squashing. If the user’s home directory
must be on an NFS-mounted drive, then the user must also have a separate non-NFS-
mounted workspace. The SDK may be copied to that workspace.

2. As root, use the sudo vi sudoers command to edit the /etc/sudoers file. See
man sudo and man sudoers for assistance. Only root can run vi sudo. An
example entry looks like:

testname ALL=(ALL) ALL

4.2 Multiple Users on the Same Development Host
The following items should be considered if the development host is shared by multiple users:

1. If users will share the same copy of the SDK (not recommended), then the users should all
be in the same access group. The directory permissions can then grant read/write access for
the entire group.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-15

2. If multiple users will need to build the embedded root filesystem, see Section 44 –
“Appendix T: Multiple Embedded Root Filesystem Builds” for directions on how to
modify the sudoers entry.

3. If multiple users will use tftpboot to download to a board, see Section 34.4 – “About
the TFTP Download Directory on the TFTP Server”.

5 Hands-on: Connect the Development Target
A copy of the Quick Start Guide is needed to correctly configure, connect, and power-on the
development target board.

There are critical board-specific directions in the Quick Start Guide. In some cases, failing
to read and follow the directions can irreparably harm both the development target and the
development host.

The Quick Start Guide contains essential hardware information, including jumper information.
Note that software issues including SDK installation, Minicom connection to the target console,
and loading and booting are discussed in greater detail in this chapter than in the Quick Start
Guide. After configuring and powering on the hardware, return to this chapter.

A hard-copy of the Quick Start Guide is provided with the evaluation or reference board. A copy
of the Quick Start Guide is also on the CD supplied with the OCTEON evaluation board, and on
the support site which is accessible from http://www.caviumnetworks.com/. If the hard-copy of the
Quick Start Guide is missing, simply skip to Section 8 – “Hands-on: Install the SDK”, and use the
directions there to locate the Quick Start Guide provided with the SDK.

5.1 PCI Development Target
To install a PCI development target into the development host (PCI host), first power off the
development host using the command:

host$ sudo poweroff

Warning: Power off and unplug the host before inserting the PCI development target board.
Most modern PCs still have power auxiliary on the PCI bus when powered off. Unplug the
machine to make sure all power is off before plugging in the development target board.

PCI development target boards have special configuration options controlled by jumpers on the
board (see the Quick Start Guide for details):

1. PCI target mode versus PCI host mode: This chapter assumes the PCI board is configured
to be a PCI target board. To set to PCI target mode: PCI HOST jumper = OFF (not
installed).

2. Boot from flash or boot over PCI bus from PCI host. Booting from flash is easiest. PCI
boot is used when the bootloader itself is under development, and the board is configured as
a PCI target board. To use flash boot: PCI BOOT jumper = OFF and PCI HOST
jumper = OFF (not installed).

Connect the supplied null modem serial cable between UART0 on the board, and COM1 on the
development host. This serial connection may be used to connect to the target console.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note: A null modem serial cable is different from an ordinary serial cable. Null modem
cables swap the transmit and receive lines. See Section 31 – “Appendix G: Null Modem
Serial Cable Information” for details.

See Section 9.4.4 – “PCI Host Tools” for a list of oct-pci-* tools which can be used to control
the PCI target from the PCI host. Using these convenient commands on the host, the target may be
easily reset and an application downloaded and booted over the PCI bus. The target console may
either be viewed over the PCI bus or via a serial cable attached to the target console port.

Debugging connections are discussed in the Software Debugging Tutorial chapter.

In the figure below, the PCI host is the same as the development host.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-17

Figure 3: Hardware Configuration: PCI Development Target

Development Host Running Linux

Dedicated Ethernet Card

OCTEON Development Target

Console
Port

Debug
Port

Serial
Port

Eth
Port 0

Eth
Port 1

Ethernet Hub

Et
he

rn
et

 C
ab

le
 –

te
st

 n
et

w
or

k

Eth
Port 0

Eth
Port 1

Et
he

rn
et

 C
ab

le
 –

te
st

ne
tw

or
k

PCI SLOT

Note: The test network should be isolated from the normal office network so that
experiments done on this network will not disturb machines on the office network.

PCI FINGERS

Example PCI Board Test Configuration

Serial
Port

Null
 m

od
em

 se
ria

l c
ab

le

The serial cable to the debug port is optional for
debugging SE-S applications.

5.2 Standalone Development Target
If the development target is a standalone board, the board is booted from onboard flash. The
application is typically downloaded via tftpboot. The target console is viewed over a serial
cable attached to the console port on the target board.

Debugging connections are discussed in the Software Debugging Tutorial chapter.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In the figure below, a standalone OCTEON board is connected via Ethernet to the TFTP Server. In
this case, the TFTP server is the same as the development host, which is running Linux. The TFTP
server is used to tftpboot the application.

Figure 4: Hardware Configuration: Standalone Development Target

Development Host Running Linux

Dedicated Ethernet Card

OCTEON
Development Target

Console
Port

Debug
Port

Serial
Port

Eth
Port 0

Eth
Port 1

Ethernet Hub

Et
he

rn
et

 C
ab

le
 –

te
st

 n
et

w
or

k

Eth
Port 0

Eth
Port 1

Et
he

rn
et

 C
ab

le
 –

te
st

ne
tw

or
k

Note: The test network should be isolated from the normal office network so that
experiments done on this network will not disturb machines on the office network.

Example Standalone Board Test Configuration

Serial
Port

Null
 m

od
em

 se
ria

l c
ab

le

C
F

Note: For SE-UM applications, Debian Linux may be
booted from compact flash to enable native
debugging. In the figure “CF” is the compact flash.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-19

6 Hands-on: Viewing the Target Board Console Output
The easiest way to view the target board console output is by running the Minicom utility on the
host, and connecting to the target board via a null-modem serial cable.

The console output for the target board is directed to UART0 on the target board. In this example,
UART0 is connected via a serial cable to the first serial port on the development host. Linux
connects to the first serial port on the device /dev/ttyS0.

To connect to the console, use a terminal emulator such as minicom. The minicom utility is
usually provided in a default Linux installation.

6.1 Starting Minicom
To start minicom, type

host$ minicom ttyS0

If the following error occurs:

minicom: there is no global configuration file /etc/minirc.ttyS0
Ask your sysadm to create one (with minicom -s).

then go to Section 6.2 – “Configuring Minicom”.

If the following error occurs:
Device /dev/ttyS0 access failed: Permission denied.

then modify the group permission on the minicom utility (set group ID):
host$ sudo chmod g+s /usr/bin/minicom

(This will give anyone executing minicom its group ID, which is uucp, providing access to the
/dev/ttyS0 file.) For more about set group ID, see Section 26.4.2 – “The Set User ID Bit”.

If minicom is not in /usr/bin, then use the following command to locate the full pathname:

host$ which minicom

6.2 Configuring Minicom
This step is only needed if minicom has not already been configured correctly. By convention,
the configuration file for ttyS0 is /etc/minirc.ttyS0.

If the file /etc/minirc.ttyS0 already exists, and has correct contents, then this step may be
skipped.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The minirc.ttyS0 file will only contain changed settings relative to the minirc.dfl file, so
the exact contents will vary. The key information is:
Machine-generated file - use "minicom -s" to change parameters.
pr port /dev/ttyS0
pu baudrate 115200
pu bits 8
pu parity N
pu stopbits 1

If the /etc/minirc.ttyS0 file does not exist, or needs to be changed, type:

host$ sudo minicom –s

Figure 5: Minicom Configuration Menu
 Filenames and paths
 File transfer protocols

 Modem and dialing
 Screen and keyboard
 Save setup as dfl
 Save setup as..
 Exit
 Exit from Minicom

Serial port setup

Use the arrow keys to move down to “Serial port setup”, and press Enter.

Figure 6: Example Minicom Serial Port Configuration

 A - Serial Device :
 B - Lockfile Location : /var/lock
 C - Callin Program :
 D - Callout Program :
 E - Bps/Par/Bits :
 F - Hardware Flow Control : Yes
 G - Software Flow Control : No

 Change which setting?

/dev/ttyS0

115200 8N1

Use letters to select any item which needs to be changed (such as “E”), and follow the prompts on
the screen.

The required Minicom settings are: /dev/ttyS0, 115200 (115K), 8-N-1 (8 bits, no parity, 1
stop bit). (Typically the first serial port is /dev/ttyS0, and the second serial port is
/dev/ttyS1). Hardware control may be set to “Yes”. Not all boards support hardware control,
but the “Yes” value will not cause problems on boards which do not support it.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-21

Press Enter to return to the previous menu.

Figure 7: Saving the Minicom Configuration to a File
 Filenames and paths
 File transfer protocols
 Serial port setup
 Modem and dialing
 Screen and keyboard
 Save setup as dfl

 Exit
 Exit from Minicom

 Save setup as..

 Use the arrow keys to move down to “Save setup as..” to save the new settings, and press
Enter. When prompted for a name, enter the string “ttyS0”, then select “Exit from
Minicom” to exit Minicom.

The file /etc/minirc.ttyS0 has now been created.

6.3 Minicom Basics
After the configuration file is created, to start Minicom use the command:

host$ minicom –w ttyS0 #substitute your tty file for ttyS0

Once in Minicom, type Ctrl-A Z to see the help menu (hold down the Ctrl key and the A key at the
same time, and then let them go and press Z. The letters you type are really lower case A and Z).

Use Ctrl-A X to exit Minicom.

Note that Minicom offers session logging, to allow you to save the console session to a file.

Refer to the Minicom documentation for more information.

6.4 Verify Connection to Target Console Works
Power on or reset the development target board. If the target board is a PCI board inside the
development host, it is already powered on.

On the target console, press Enter a few times. You should see text similar to the following text:

U-Boot 1.1.1 (U-boot build #: 160) (SDK version: 1.6.0-221) (Build time: Aug
31)

EBT3000 board revision major:3, minor:1, serial #: 2005-00087-3.1
OCTEON CN38XX-NSP revision: 3, Core clock: 500 MHz, DDR clock: 266 MHz (532
Mhz)
DRAM: 2048 MB

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Flash: 8 MB
Using default environment

IPD backpressure workaround verified, took 36 loops
Clearing DRAM........ done
BIST check passed.
Net: octeth0, octeth1, octeth2, octeth3
Octeon ebt3000(ram)#

If there is no output, or if the output is odd looking, then recheck that cables are plugged into the
correct ports, and recheck the Minicom configuration. (Note: There is a Microcontroller (MCU)
port on the evaluation board which is only for factory use. Verify the serial cable is not
accidentally connected to this port. There is only one MCU port, but there are two UART ports.
Look for the double ports on the board.) If there is still a problem, see Section 6.8 –
“Troubleshooting a Missing Bootloader Prompt”.

6.5 Minicom Line Wrap and Viewing the Bootloader Help Menu
The Minicom screen is as wide as the window it was run in. When attempting to view the
bootloader help menu by using the command help bootoct, the help line is usually longer than
the screen. When this happens, the help output is difficult to read because it flows off the screen,
printing each character in the last column, so only the first screen-width characters in the line can
be read.

For example, without line wrap:
target# help
bootoctelf - Boot a generic ELF image in memory. NOTE: This command does not
sut
 simple executive applications, use bootoct for those.

With line wrap on, the “ppor” in “support” is missing:
target# help
bootoctelf - Boot a generic ELF image in memory. NOTE: This command does not
support
 simple executive applications, use bootoct for those.

To see the entire help, either start Minicom with the –w option, or use the Minicom help menu to
find the line wrap option, and turn it on. Then the line will wrap and the entire line may be read.

Another option is to resize the minicom window. Note that resizing the minicom window will
clear the screen. The screen will be blank until more characters are received.

6.6 Scrolling Up and Down
To scroll up and down use the arrow keys. To page up and down, use either the PageUp and
PageDown keys, or Ctrl-F (forward) or Ctrl-B (backward). Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-23

6.7 A Typical Minicom Error
It is not unusual to get the following error when starting Minicom:

host$ minicom –w
Device /dev/ttyS0 lock failed: Operation not permitted.

The error can occur because Minicom creates a lock file that prevents more than one user from
using the same device. This protection is useful when sharing a target board. To identify the
person using the device, look at the owner of the lock file. The lock file is usually located in
/var/lock. In the case of /dev/ttyS0, the lock file is named LCK..ttyS0.

host$ ls -l /var/lock
-rw-rw-r-- 3 testname lock 11 Aug 5 13:01 LCK..ttyS0

This problem may occur if the terminal session is closed before exiting Minicom.

Check the Minicom instructions on the development host for details.

6.8 Troubleshooting a Missing Bootloader Prompt
The word Boot should appear on the red diagnostic LEDs on the board indicating that the
bootloader is running (if the board has the diagnostic LEDs). If the LEDs are present, but the word
Boot is not, something is wrong with either the bootloader or the development target board.

The following steps will usually resolve the problem:

1. Verify the board is configured to boot from flash.
2. Verify the board is powered on.
3. Examine the board’s LEDs for the word Boot. If the word Boot appears, but there is no

prompt on the Minicom screen (even after the Enter key is pressed), then check the cables
and port names carefully. Common errors include:

• Plugging into the wrong UART port on the target board
• Specifying the wrong serial port in the Minicom command line
• Incorrect Minicom serial port settings
• Failing to use a null-modem serial cable

4. If the word Boot does not appear in the board’s LEDs, and the board is not a new one, the
problem may be the bootloader code. In this case, boot from the failsafe bootloader, then
restore the main bootloader. See Section 13.3 – “The Failsafe Bootloader”.

5. If there is still no bootloader prompt in the Minicom screen, re-check the hardware
connection to the target console.

Note: If the board is not new, there is sometimes a problem if the EEPROM is corrupted.
The bootloader will come up, but will also issue a warning. See Section 32.1 –
“Detecting a Problem with the EEPROM” for more information. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

S
K

D
 T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

4-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

6.9 Determining the Number of Cores on the OCTEON Processor
Once the bootloader is up, the printenv command can be used to determine the number of cores
running on the OCTEON processor. The number of available cores is defined in the
coremask_override environment variable:

target# printenv
<text omitted>
coremask_override=0xfff <<< 12 cores available
<text omitted>

7 Hands-on: Gather Key Hardware Information
The following information is needed later in this chapter:

1. The OCTEON model on the development target. If the OCTEON model is not obvious, see
the next section.

2. The number of cnMIPS cores provided by the OCTEON model on the development target.
This information is needed for application design, and to download the application to the
board.

The following information is not needed for this chapter, but is useful for software development:

1. CPU Frequency
2. DDR Frequency
3. The board type

To locate CPU frequency, DDR frequency, and board type see Section 32 – “Appendix H: Query
EEPROM to get Board Information”.

7.1 Determining the OCTEON Model on the Development Target
Note that when the board boots up, board information is printed on the target console, including the
OCTEON model.

The bootloader will output text similar to the following text:

EBT3000 board rev
OCTEON CN3860-NSP pass 2.X, Core clock: 500 MHz, DDR clock: 266 MHz (532
Mhz data rate)

ision major:4, minor:0, serial #: 2006-00257-4.0

DRAM: 2048 MB
Flash: 8 MB

7.2 Determining the Number of Cores on the OCTEON Processor
The number of cores can be determined by using the information in Section 6.9 – “Determining the
Number of Cores on the OCTEON Processor”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-25

8 Hands-on: Install the SDK
The installation CD which accompanies the evaluation board contains the SDK (the base SDK and
OCTEON Linux) and other product files which may or may not be needed depending on your
application and OCTEON model.

The optional products on the CD include:

1. Linux on the OCTEON processor: If you plan to use Linux on any OCTEON cores, install
the Linux package after installing the base SDK. Linux is needed to run some of the
examples in this chapter.

2. Support for special hardware capabilities on the OCTEON processor: Crypto, ZIP, and
DFA. The OCTEON model must support these optional hardware capabilities. The
software support for these capabilities is provided by special RPMs.

3. Software to implement packet send/receive over the PCI bus. A PCI host can be configured
to offload work to the OCTEON PCI target by passing packets over the PCI bus.

These other product files are discussed briefly in Section 25.1.1 – “Product Files on the Installation
CD”.

The product files may also be downloaded from the support site. See instructions in Section 27.1 –
“Installing from the Support Site Instead of a CD”.

Note that the other packages on the CD are not included in the SDK or in the SDK documentation.

Note that only two SDK files need to be installed to follow the directions in this tutorial: the base
SDK (OCTEON-SDK-*.i386.rpm) and OCTEON Linux (OCTEON-LINUX-*.i386.rpm).
(The “*” character means the exact text varies with SDK version number.)

In addition to the SDK and optional product files, there are optional toolkits and Application
Development Kits (ADKs) which can accelerate product development. The toolkits are introduced
in Section 25.1.2 – “Toolkits”. The ADKs are introduced in Section 25.1.3 – “Optional
Application Development Kits (ADKs) “.

At a minimum, install the base SDK and the Quick Start Guide. These are needed by everyone.

8.1 Mounting the CD
Insert the CD which came with the Evaluation or Production Board into your development host’s
CDROM drive. Usually the system will automatically mount the CD. In this example, the mount
point is /media/cdrom.

Each file name which ends in .rpm is referred to as an RPM (Red Hat Package Manager) file,
product, or package.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following files will be installed:

OCTEON-SDK-*.i386.rpm
OCTEON-LINUX-*.i386.rpm

Note that no technical problems will occur if unneeded RPMs are installed.

8.2 Using the RPM Utility to Install the Packages
Unless instructed otherwise, the rpm utility will install the SDK packages in the default directory,
/usr/local/Cavium_Networks/OCTEON-SDK. During installation, this directory will be
created.

We recommend installing the SDK to a custom directory instead of the default directory. The
advantage in using a custom directory is that you can specify the SDK version number as part of
the directory path. This is helpful when a new SDK is later installed: it can be installed to a
different path. For example, /opt/173 and /opt/181 would contain SDK 1.7.3 and 1.8.1,
respectively. If the default installation directory is used to install two different SDKs, the new
SDK will over-write the previously installed version.

Note: When using RPM, the directory name cannot be simply changed after installation.
Instead, to change the directory path name, the package must be uninstalled and
reinstalled.

After the SDK is installed, the installation directory can only be changed by un-installing the SDK
and re-installing it.

In this chapter, the custom SDK installation directory is /opt/181. When following the
instructions in this chapter, specify your custom installation directory instead of /opt/181.

To install to a custom directory, add the –-prefix <directory_name> option to the rpm
command. Note: <directory_name> is the directory pathname, including the leading /.

To install the base SDK and OCTEON Linux to a custom directory, run the command:

substitute /media/cdrom for your mount directory if needed
host$ sudo rpm –i –-prefix /opt/181 /media/cdrom/OCTEON-SDK*.rpm
host$ sudo rpm –i –-prefix /opt/181 /media/cdrom/OCTEON-LINUX*.rpm

As an alternative, to install all the RPMs:

substitute /media/cdrom for your mount directory if needed
host$ sudo rpm –i –-prefix /opt/181 /media/cdrom/*.rpm

Note that each RPM can be installed only once. Attempting to re-install the RPM without first
removing it will result in an error message.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-27

Note: When installing other software packages, use the same prefix so the packages
install in the same directory.

For more information about the rpm utility, see Section 27 – “Appendix C: About the RPM”.

After installing the SDK, unmount the CD:

host$ umount /media/cdrom

8.3 Making a Copy of the Installed SDK
The directions in this chapter assume the SDK is copied from the original installation directory
(/opt/181/OCTEON-SDK) to a working directory, usually located in the user’s home directory.
The user edits the copy and original installation is preserved untouched for reference.

In addition to preserving a reference copy, creating a working copy allows the user to work at a
lower privilege level. The original installation can only be used by a user with root privilege; the
copy can be edited by a normal (non-root-privilege) user. Using a normal login instead of root
helps protect the system from accidental damage.

The copy of the SDK must be done using the sudo command because there are some file
permissions which are damaged if the copy is not made using root (super user) privilege. See
Section 26.4 – “ Linux File Information and the Set User ID Bit” for more information.

Additionally, be sure to copy the entire SDK.

Note: The GNU tool chain provided by Cavium Networks is included in the SDK. This
tool chain contains special Cavium Networks-specific instructions which take advantage
of the OCTEON hardware acceleration. Details of the special instructions are provided
in the Software Overview chapter, and in the Hardware Reference Manual. Using this
tool chain is highly recommended because it will result in the highest performance
applications. This tool chain is automatically provided when the entire SDK is copied.

For help with Linux commands, see Section 26 – “Appendix B: Linux Basics”.

A good private directory name will include the SDK version, such as
/home/testname/sdk181. In this document, the private copy of the SDK is in
/home/testname/sdk. This name was chosen to provide directions which do not depend on
the SDK version.

For example:

host$ mkdir ~/sdk # create the sub-directory “sdk” in the user’s home
directory
host$ cd /opt/181/OCTEON-SDK
host$ sudo cp –r . ~/sdk # recursively copy files to the new directory

This copy can take a few minutes. The word recursive means that the command operates on all the
sub-directories, not only the top-level directory.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

To see the files being copied, add the verbose option to cp, type cp –rv . ~/sdk. (Note that
using verbose option will slow down the command.) A copy of the SDK should now be located
in the user’s home directory, in the sub-directory sdk. In this document, the copy is located in
/home/testname/sdk.

The new sub-directories will be owned by root.

host$ cd /home/testname/sdk
host$ ls -ld docs
drwxr-xr-x 4 root root 4096 Jan 23 12:14 docs

If the owner is not root, then the sudo cp –r step was not executed correctly. Double
check that the sudo command was used. Also double check that the destination directory
was not on an NFS-mounted drive. To see if the destination is on an NFS-mounted drive,
cd ~/sdk and type the df . command. If the output is of the form
hostname:mountname, then the directory is NFS-mounted. See Section 26.4.2 – “The
Set User ID Bit” for information on why the cp –r command requires root privilege.

Change the owner of all the directories to your user name before continuing:

use your user name instead of “testname”
host$ sudo find . -type d -exec chown testname {} \;

Note: If this step is omitted, then examples cannot be built due to a permission error.

8.4 The OCTEON_ROOT Environment Variable
The working directory (in this example /home/testname/sdk) is referred to as
$OCTEON_ROOT in the rest of this chapter. OCTEON_ROOT is an environment variable.
$OCTEON_ROOT refers to the value of the environment variable.

8.5 Setting Environment Variables on the Development Host
A script in the $OCTEON_ROOT directory, env-setup, will set essential environment variables.
Before executing the script, cd to the $OCTEON_ROOT directory. The env-setup script will
be located there. This script must be executed in the $OCTEON_ROOT directory because the value
of OCTEON_ROOT will be set by the script to the current working directory. An example of the
error which will occur if the script is not executed in the correct directory is shown at the end of
this section.

The following variables are set by the env-setup script:
1. OCTEON_ROOT – this variable will be set to the directory the env-setup script is

executed in (typically, the user’s copy of the SDK).
2. The PATH environment variable is modified to add the directories containing the tool chain

binaries and development host utilities.
3. OCTEON_MODEL
4. OCTEON_CPPFLAGS_GLOBAL_ADD

The script has only one required argument: OCTEON_MODEL. The file
$OCTEON_ROOT/octeon-models.txt contains a list of legal values for OCTEON_MODEL.
Unless you have a specific reason to specify a model containing the suffix pass1 or pass2, select a

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-29

model without a pass suffix, such as OCTEON_CN58XX. The env-setup script will set the
environment variable OCTEON_MODEL to the specified value.

In addition to the required argument, the optional arguments shown in the table below can be
specified.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 1: Options to the env-setup Script

Option Description Value added to
OCTEON_CPPFLAGS_GLOBAL_ADD

 --noverbose
 (default)

The script will not provide verbose
output.

 --verbose The script will provide verbose
output.

 --runtime-model
 (default)

Runtime model checking is useful if
software can run on different
OCTEON models. If this value is set
to 1, then the binary will run on all
OCTEON models. The value shown
in the column to the right is added to
the environment variable
OCTEON_CPPFLAGS_GLOBAL_ADD.

 -DUSE_RUNTIME_MODEL_CHECKS=1

 --noruntime-
model

 If the value is set to 0, the binary
will only run on the OCTEON model
specified during the env-setup
step. The value shown in the column
to the right is added to the
environment variable
OCTEON_CPPFLAGS_GLOBAL_ADD.

 -DUSE_RUNTIME_MODEL_CHECKS=0

 --nochecks
 (default)

Default value. Disables various
consistancy and programming
checks. The values shown in the
column to the right are added to the
environment variable
OCTEON_CPPFLAGS_GLOBAL_ADD.

 -DCVMX_ENABLE_PARAMETER_CHECKING=0
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=0

 -DCVMX_ENABLE_POW_CHECKS=0

 --checks Enables runtime checking of SSO
consistency, CSR addresses, and
other parameters. This is option
strongly recommended to identify
coding errors which are otherwise
difficult to find. The values shown
in the column to the right are added
to the environment variable
OCTEON_CPPFLAGS_GLOBAL_ADD.
See Note 1.

 -DCVMX_ENABLE_PARAMETER_CHECKING=1
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=1

 -DCVMX_ENABLE_POW_CHECKS=1

In the table below, the default values are highlighted.

Note 1: Do not use --checks when doing performance testing: The --checks option adds code
which will slow performance.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-31

Note: More information on OCTEON_CFLAGS_GLOBAL_ADD may be found in the SDK
document “OCTEON SDK Config and Build System”.

The env-setup script must be sourced to modify the environment variables of the current shell
(usually bash). When the script is sourced (source env-setup), all shells started from this
shell will inherit the shell’s environment variables. If the script is simply executed using the
command ./env-setup, then the environment variables are no longer set when the script exits.
(The command ./env-setup will result in the message: “bash: ./env-setup:
Permission denied” because the file does not have execute permission: it is meant to be
sourced, not simply executed.)

Note: The source command shown in this tutorial is for the shell bash. Different shells
source files differently. For example, other shells often use the command . env-
setup (dot space env-setup) instead of source env-setup.

For example, after using the --runtime-model argument, the change to
OCTEON_CPPFLAGS_GLOBAL_ADD can be seen using the echo command:

host$ source env-setup OCTEON_CN38XX --runtime-model
host$ echo $OCTEON_CPPFLAGS_GLOBAL_ADD
-DUSE_RUNTIME_MODEL_CHECKS=1 -DCVMX_ENABLE_PARAMETER_CHECKING=0
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=0 -DCVMX_ENABLE_POW_CHECKS=0

If the script is not executed in $OCTEON_ROOT, the following error will occur:
host$ source /home/testname/sdk/env-setup OCTEON_CN38XX
bash: ./env-setup.pl: No such file or directory

8.6 Adding env-setup to Your Profile
To add the env-setup step to your user profile (so it will be performed each time you login),
login using your non-root user name, and add the three lines shown below your
~/.bash_profile, then either start a new shell (host$ exec bash -l), or log out and
back in. Either of these actions will cause the .bash_profile file to be executed. (Note that
simply exiting a terminal session and starting a new one will not cause .bash_profile to be
executed. It is necessary to log out of the development host and log back in.)

In the example shown below, substitute your desired values for OCTEON_MODEL, --runtime-
model, and --verbose:

For example, the three lines to add to the .bash_profile might be:

pushd /home/testname/sdk # substitute your path to the working copy
substitute your OCTEON_MODEL for OCTEON_CN38XX and your options
source env-setup OCTEON_CN38XX --noruntime-model --verbose --checks
popd Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

8.7 Viewing the Installed SDK Version
A good test of correct installation and environment setup is to call the tool oct-version from
the command line.

For example:

host$ oct-version
Cavium Networks Octeon SDK version 1.8.0, build 275

If the env-setup step is not right, then the following error will occur:

host$ oct-version
oct-version: Command not found.

This command can optionally be added after the popd in .bash_profile.

The next section introduces the files, directories, tools, and example code provided with the SDK.

9 Hands-on: Tour the Installed SDK
The SDK includes documentation, tools, and example code. In this section, a quick overview of
these items is presented. The reader can follow along by locating the items discussed in this
chapter.

9.1 Key Information
The three most important directories are:

- executive/ – where the Simple Executive code is located
- examples/ – where the example applications are located
- linux/ – where the Linux files are located

The most important documents are:

- $OCTEON_ROOT/docs/OCTEON-SDK-QSG.pdf – the Quick Start Guide
- $OCTEON_ROOT/docs/html/index.html – the index to the SDK

documentation

9.2 Looking at the Installed Directories
The following two tables introduce some of the key files and directories in the SDK.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-33

Table 2: Key SDK Files
Files Description

application.mk One of three Makefiles included by all of the example Makefiles.

common.mk
One of three makefiles included by all example Makefiles, such as
examples/hello/Makefile. It includes
common-config.mk.

common-config.mk
Common configured variables needed by Makefiles which refer to all or
a portion of the simple executive. This Makefile is included by
common.mk.

env-setup
Setup script needed to set environment variables such as
OCTEON_ROOT before using the tools to download or compile.

env-setup.pl
Supporting script for env-setup: this script is not called directly by
the user

executive/cvmx.mk
One of three Makefiles included by all of the example Makefiles.
Contains the list of Simple Executive source files. Customize this to fit
the application as needed.

octeon-models.txt
A list of OCTEON models which may be used as input to the
env-setup script

README.txt

Contains information on the operation system needed for the host, on
memory requirements, environment variables, how to build and run
hello (on the simulator), how to determine which version of the SDK
you are running.

release-notes.txt
Contains an introduction to the directories, and a list of changes made
with each SDK release.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 3: Key SDK Directories
Directories Description

bootloader/ Contains source for the bootloader (U-Boot).
components/ Non-SDK packages install here (this directory is not present until other

packages are installed).
diagnostic/ Contains the utilities for testing and diagnosing OCTEON boards

(hardware diagnostics). Includes tests for RGMII, UART, memory, etc.

docs/ Contains the html documentation for the SDK. Also contains the
original documentation and copyright information for the tool chain,
debugger, and bootloader.

examples/ Contains the example applications. See the README files inside for
details. Many examples can be compiled and run under both Simple
Executive and Linux.

executive/ Contains the source for the simple executive. Customize this to fit your
application as needed.

gpl-executive/ A symbolic link to the executive directory (newer SDKs may not have
this link).

host/ Directory containing links to all of the development tools for x86.
Includes host/bin.

licenses/ Contains Cavium Networks License agreements.
linux/ Contains the version of Linux designed to run with the OCTEON.
simulator/ Contains the OCTEON simulator and related utilities such as

oct-debug, oct-profile, viewzilla, perfzilla.
target/ Contains links to all of the target (OCTEON) files. Has three sub-

directories: bin, include, and lib. The bin directory contains
downloadable bootloader files.

tools/ Symbolic link to one of the two tools directories, for example:
tools -> tools-gcc-4.1. By default, this will be set to the most
current set of tools. Use the command ls -l tools to see what
directory tools is linked to.

tools-gcc-*/ The exact tool path will vary. Two tools directories are provided. The
higher number corresponds to the newest and best tools. The path with
the lower number corresponds to the next-oldest set of tools provided by
Cavium Networks. When starting new development, use the newest
tools (the higher number directory). The tools-gcc-* directory
contains two different tool chains:
mipsisa64-octeon-elf target tools based on newlib C library and
mips64-octeon-linux target tools based on the glibc or the uClibc
libraries.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-35

9.3 Documentation Provided with the SDK
The documentation provided with the SDK provides detailed information. At the top level, there is
a README.txt and release-notes.txt file. Under the docs directory, there is another
README.txt file. Most of the documentation is in html format and can be accessed through
docs/html/index.html. This information can be displayed in your web browser.

For GNU cross tool chain documentation, see:

1. $OCTEON_ROOT/tools/man
2. $OCTEON_ROOT/tools/info directories.

For GNU native tool chain documentation, see:

1. $OCTEON_ROOT/tools/mips64-octeon-linux-gnu/sys-root/usr/man
2. $OCTEON_ROOT/tools/mips64-octeon-linux-gnu/sys-root/usr/info

Other documentation can be found most easily with the Linux command:

find all files in the current directory ending with the string ".txt".
host$ find . –name "*.txt"

(There is a huge amount of documentation provided, especially with the GNU tool chain.)

The documentation referenced in the table below may be viewed from your browser after the SDK
is installed:

host$ firefox file:///$OCTEON_ROOT/docs/html/index.html &

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 4: Documentation Provided via doc/html/index.html
Getting Started

OCTEON SDK Documentation Table of
Contents

A brief list of documents accessible from index.html.

OCTEON SDK Quick Start Guide Basic information needed to get an evaluation board up and running.
This is also available as a separate PDF file in the docs directory.

OCTEON SDK Release Notes Release notes.
OCTEON SDK Overview A brief summary of what is included with the SDK.
OCTEON SDK Examples Overview Brief descriptions of example code provided with the SDK.

Hardware Configuration
Developing with OCTEON as a PCI target Introduces the tools used when OCTEON is a PCI target. This is the

most common configuration.
OCTEON as a PCI host OCTEON as a PCI host.

Simulator
OCTEON Simulator Details about the OCTEON hardware simulator.

Simple Executive
OCTEON Simple Executive Overview Briefly introduces the Simple Executive: API, memory map.

Introduces the hardware units.
OCTEON SDK Config and Build System Details on how to configure and build Simple Executive applications

Linux
Linux Userspace on the OCTEON Read first when using Linux. Contains information also useful for

Simple Executive users. ABIs, User Space Memory Map, Building
Applications, Detailed Simple Executive Port, Startup, Booting, Core
Affinity, and other OCTEON-specific features.

Linux on the OCTEON Read second when using Linux.
Running Debian GNU/Linux on OCTEON How to run the Debian root filesystem from compact flash. The

Debian root filesystem can be used to provide native build and debug
of Linux applications).

Linux on Small OCTEON Systems Configuring Linux to run on less than 256 Mbytes of system memory.

Bootloader Details
OCTEON Bootloader Details of the bootloader

Debugging
Simple Executive Debugger How to debug SE-S applications. The same debugger is used to debug

the Linux kernel.
Linux Userspace Debugging How to debug Linux user-mode applications.

Performance Tuning
Performance Profiling using Oprofile Performance tuning on Linux
Performance Profiling using Viewzilla Performance tuning on Simulator
Profile-feedback optimization Performance tuning on Simple Executive

Tools
GCC 4.1 Upgrade Guide Notes on how to upgrade to the newer GNU tool chain.

Hardware Diagnostics
OCTEON Diagnostics Hardware diagnostics.

Additional Material
File List Contains documentation about the contents of Simple Executive files.

Once in the file, click on "more" to get more information.
Data Structures Documentation about the Simple Executive data structures.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-37

9.4 Development Tools
There are three tools directories commonly used in building, running, and debugging applications:

$OCTEON_ROOT/tools/bin
$OCTEON_ROOT/host/bin
$OCTEON_ROOT/linux/kernel_2.6

The tools directory is a symbolic link to the actual version of the GNU tool chain being used,
which should be the newest version available. In this example, the tools directory is linked to
tools-gcc-4.1.

This symbolic link can be seen with the Linux command ls:

host$ ls -ld tools
lrwxrwxrwx 1 root root 13 Oct 10 09:55 tools -> tools-gcc-4.1

The tools/bin directory contains the GNU compiler and associated programs which are run on
the development host used in cross-development to the target. The tools/man directory contains
manual pages documenting these tools.

If there are two tools-gcc directories (directory names are similar to: tools-gcc-
4.1/bin), then these are two different versions of the GNU tool chain. The higher number is the
most recent version (preferred).

The host/bin directory contains other tools which are run on the development host, including
the simulator, and performance analysis tools such as perfzilla.

9.4.1 Accessing the Tools from the Command Line
The script env-setup will add the tools/bin and host/bin directories to the PATH,
relative to $OCTEON_ROOT.

In this example, the working copy of the SDK is in /home/testname/sdk. After the
env-setup step, the two directories tools/bin and host/bin are pre-pended to the PATH
variable.

host$ echo $PATH
/home/testname/sdk/tools/bin:/home/testname/sdk/host/bin:/usr/kerberos/bi
n:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin

9.4.2 Tools Documentation

9.4.2.1 Tools Manual Pages
The manual (man) pages for the GNU tools man are accessed via the man utility. The tools
manual pages are located in $OCTEON_ROOT/tools/man. To access the manual pages, first
add this directory to the beginning of the MANPATH environment variable. The MANPATH variable

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

contains a list of directories to be searched (in left to right order) by the man utility when looking
for manual pages. In this example $OCTEON_ROOT is /home/testname/sdk.

Note: To be extra-sure you are reading the correct manual pages, consider moving the
host system’s manual directory:
host$ sudo mv /usr/share/man /usr/share/man.save
host$ man ar
No manual entry for ar

(Move /usr/share/man.save back to /usr/share/man when done with this experiment.)

In bash, using the directory /home/testname/sdk as an example:

host$ cd /home/testname/sdk/tools/man
host$ pwd
/home/testname/sdk/tools/man
be careful to use the back quote (`) character on the keyboard.
It is NOT the quote (“) or single quote (‘)character.
To verify the back quote is used, try the command: echo `pwd`
host$ echo `pwd`
/home/ mtestna e/sdk/tools/man
host$ export MANPATH=`pwd`:$MANPATH
host$ echo $MANPATH
/home/testname/sdk/tools/man:/usr/share/man

9.4.2.2 Tools Info Files
The information (info) files for the GNU tools are accessed via the info utility. The tools
information pages are located in $OCTEON_ROOT/tools/info. To access the information
pages, cd to the $OCTEON_ROOT/tools/info directory, use ls to locate the file of interest,
such as gdb.info, and use the info –f option to open the file.

Note: To be extra-sure you are reading the correct information pages, consider moving
the host system’s information directory:
host$ sudo mv /usr/share/info /usr/share/info.save
host$ info gdb
info: dir: No such file or directory

In bash, using the directory /home/testname/sdk as an example:

host$ cd /home/testname/sdk/tools/info
host$ pwd
/home/testname/sdk/tools/info
host$ info –f ./gdb.info

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-39

9.4.3 GNU Cross-development Tool Chain
In the tools/bin directory, there are two sets of GNU tools. These tools include the cross
compiler, linker, and libraries which are needed to build software to run on the OCTEON
processor. Both sets of tools have been modified to support OCTEON-specific instructions to
achieve maximum runtime performance. The two sets of tools are:

1. Simple Executive Development Tools: The mipsisa64-octeon-elf-* tools are used
to build Simple Executive applications.

2. Linux Development Tools: The mips64-octeon-linux-gnu-* tools are used to
build the Linux kernel and Linux User-mode applications.

Note: The GNU tool chain which is provided by Cavium Networks contains special
OCTEON-specific instructions which take advantage of the OCTEON hardware
acceleration. Using this tool chain is highly recommended because it will result in the
highest performance applications.

The GNU cross tool chain includes the following utilities (shown without their mipsisa64-
octeon-elf- or mips64-octeon-linux-gnu- prefix):

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 5: GNU Tool Chain

Tool Description
addr2line Convert addresses into file names and line numbers. If code

is compiled with -g, the pc values may be traced back to the
source line numbers.

ar Archiver
as Assembler
c++ Same as g++
cpp C preprocessor
ddd GUI Debugger (Data Display Debugger).
g++ GNU C++ compiler
gcc GNU C compiler - same as "gcc-*", below
gcc-* GNU C Compiler version *. (* means the exact version

number can vary.)
gcov Coverage testing tool. Used to display some aspects of

profiling data. See Note 1.
gdb Debugger
ld Linker
merge-gcdata Merge profiling data. See Note 1.
nm List symbols from object files.
objcopy Copies a binary file, possibly transforming it in the process.
objdump Display information from object files.
ranlib Generate and index to archive
readelf Display information about the object file
size Display size of segments in object file
strings Display strings in object file
strip Strip object file to reduce size.

Note 1: For more information, see the SDK Document Profile-feedback Optimization .

Select the correct prefix when using these tools:
1. The mipsisa64-octeon-elf-* tools are used to build Simple Executive
applications.
2. The mips64-octeon-linux-gnu-* tools are used to build the Linux kernel
and Linux User-Mode applications.

9.4.4 PCI Host Tools
When the the OCTEON processor is configured as a PCI target, oct-pci-* commands may be
executed on the PCI host to control the target board. This is very convenient during development
and debugging. Note that for the oct-pci-boot command to work, the board must be
configured as a PCI target and also configured for PCI booting instead of flash booting.
There are no man pages for the PCI host tools. For more information on oct-pci-* utilities, see
the SDK document “Developing with OCTEON as a PCI Target”. Also see Section 42 –

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-41

“Appendix R: About oct-pci-console” and Section 43 – “Appendix S: About oct-pci-
reset and oct-pci-csr”.
 Fred

Table 6: Host Tools
Tool Description (Commonly used commands are highlighted.)

cvmx-config Configure Simple Executive resources such as FPA, FAU, Scratch
pad, Timers. Called only by the Makefiles to process files in the
config directory.

dwarfdump Run dwarfdump on an ELF file to print DWARF object file
information in human-readable form. This is used internally by
perfzilla and viewzilla to get debugging information.

oct-debug Invokes the GUI debugger ddd (Data Display Debugger). This is for
use with Simple Executive applications only. This debugger will
connect to either the simulator, or over to the hardware target. Will
connect to hardware over serial connection or PCI. If mipsisa64-
octeon-elf-ddd is not in the PATH, then the command line
debugger will be invoked instead.

oct-debuginfo This utility is used when analyzing a crash dump. If code which
crashed was compiled with -g, then the PC (program counter) values
obtained from a crash dump may be traced back to the source line
numbers in the code. This utility works with both Linux and Simple
Executive applications.

oct-linux Used to simplify execution of Linux on the simulator. See Note 5.
oct-packet-io Used to pass packet data to and from the simulator. Use is

demonstrated in the passthrough example.
oct-pci-boot Boot the OCTEON PCI target board. This program configures the

DDR controller on the OCTEON, then loads and runs the U-Boot
bootloader on it. See Note 1.

oct-pci-bootcmd Used to run bootloader commands over PCI to an OCTEON PCI target
board. Used to run image files on the cores. This command may be
used to start the application which was downloaded via the oct-pci

-
load command. See Note 1.

Each note references an SDK Document where more information can be found.
(view $OCTEON ROOT/docs/html/index.html in a web browser)
Note 1: See the SDK document Developing with OCTEON as a PCI Target
Continued in the next table…

Notes

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 7: Host Tools, continued
Tool Description (Commonly used commands are highlighted.)

oct-pci-console Used to allow the bootloader, simple executive applications, and
Linux to redirect their console output over the PCI bus to the
oct-pci-console utility. This allows running interactive
programs on OCTEON without a serial connection. See Note 1.

oct-pci-csr OCTEON CSR (Control and Status Registers) may be read and written
directly over PCI using this utility. See Note 1.

oct-pci-ddr Tests memory after it is set up. This is a quick "alive" test. Use
hw-ddr2 for more extensive memory testing.

oct-pci-load Load a file into OCTEON memory over PCI from the host. See
Note 1.

oct-pci-memory Read or write DDR memory on the OCTEON target over PCI.
oct-pci-pow Display OCTEON POW (SSO) state. A debugging tool which should

not be used unless requested by a Cavium Networks representative.
The output is not easy to read.

oct-pci-profile Profiling of any code running on OCTEON: both Simple Executive
and Linux userspace applications. This profiler runs over PCI.

oct-pci-reset Reset the OCTEON PCI target board. See Note 1.
oct-pci-tra Access the trace buffer. See the Hardware Reference Manual for more

information on trace functions. This is somewhat complicated to use.

oct-profile Performance tuning on Linux. See Note 1.
oct-sim Invoke the simulator. See Note 4.
oct-uart-io A script to help when running the simulator. The script telnets to

localhost to get the simulator output. Not used for any other purpose.

oct-uudecode Used with profile-feedback optimization. See Note 2.
oct-version Show the version of the SDK installed on the development machine.
perfzilla Graphical profiling tool. Used to view the output of the oct-pci-

profile utility. See Note 1.
viewzilla Graphical performance tuning on the simulator. See Note 3.
vz-cut Copy a section out of a viewzilla file into a smaller file. See

Note 3.

Each note references an SDK Document where more information can be found.
Note 1: Developing with OCTEON as a PCI Target
Note 2: Profile-feedback Optimization
Note 3: Performance Profiling with Viewzilla
Note 4: OCTEON Simulator
Note 5: Linux on the OCTEON

Notes

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-43

9.5 Oprofile Profiling Tools
Profiling tools are built with the Linux build (make kernel). After the build, the following
tools are in $OCTEON_ROOT/linux/embedded_rootfs/build/oprofile-0.9.2:

Table 8: Profiling Tools (Oprofile)
Tool Description SDK Document (view

docs/html/index.html in a
browser)

utils/opcontrol Profiling a Linux application
on embedded_rootfs

Performance Profiling using Oprofile

pp/opreport Display the Oprofile profiling
data.

Performance Profiling using Oprofile

9.5.1 Hardware Diagnostic Tools
The following tools are in the $OCTEON_ROOT/diagnostic directory. The list of tools
available will change over time, so check the SDK document “OCTEON Diagnostics” for the most
current list.

Table 9: Hardware Diagnostic Tools
Tool Description

DDR2 memory diagnosticshw-ddr2
hw-gpio General Purpose I/O (GPIO) diagnostics
hw-llm Low-Latency Memory (LLM) diagnostics
hw-pcm PCM (Pulse Code Modulation) telephony interface diagnostics
hw-rc cnMIPS RISC Core diagnostics
hw-rgmii RGMII communications interface diagnostics
hw-spi SPI-4.2 communication interface diagnostics
hw-uart UART (RS-232 serial port) diagnostics
hw-usb USB device interface diagnostics
support Miscellaneous diagnostic utility routines

Note: In the SDK document OCTEON Diagnostics , click on "Notes" for more
information on each tool.

9.6 Native Tools (Run on the Development Target)
Native tools are tools which run on the development target, not the development host. Native tools
are only available when the development target is running Linux. Cores which are running SE-S
applications do not have native tools because SE-S applications run standalone (without an
operating system), so there is only one process.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Native tools may be accessed via:
1. The in-memory embedded root filesystem: contains a subset of the native tools.
2. Debian root filesystem located on a flash card: contains all the native tools.
3. A NFS-mounted root filesystem: contains all the native tools. This option is not covered in

this tutorial. Note that using a NFS-mounted filesystem might not be the best choice for
your application: NFS depends on the Cavium Networks Ethernet driver, and applications
which re-configure the OCTEON hardware should not be run when the Ethernet driver is
running.

4. An NFS-mounted filesystem (not the root filesystem): contains the tool chain. This option
is sometimes used when running Linux on the embedded root filesystem. The tool chain is
located in a directory on the development host, $OCTEON_ROOT/tools/mips64-
octeon-linux-gnu/sys-root. This directory is NFS mounted on the target.
Directions may be found in the SDK document “Linux Userspace on OCTEON”. Note that
using a NFS-mounted filesystem might not be the best choice for your application: NFS
depends on the Cavium Networks Ethernet driver, and applications which re-configure the
OCTEON hardware should not be run when the Ethernet driver is running.

Directions for building and running Linux on the embedded root filesystem and the Debian root
filesystem are in this tutorial.

See Figure 12 – “Root Filesystem Locations”.

Once Linux is booted on the target, the native utilities and tools are usually located in the /bin,
/sbin, and /usr/bin directories in the root filesystem.

The Cavium Networks native tool chain (gcc, etc) is supplied to build user-mode applications on
the OCTEON processor. Three tools are supplied in the embedded root filesystem: gdb,
gdbserver, and gprof. (Note that these commands are supplied without the
mips64-octeon-linux-gnu-* prefix.) To access the other tools, use the Debian root
filesystem instead of the embedded root filesystem.

In addition to the Cavium Networks native tool chain, the following Cavium Networks-specific
tools are supplied:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-45

Table 10: Special Cavium Networks Native Tools, Part 1

Tool Description
oct-linux-csr OCTEON Control and Status Registers (CSRs) may be read and

written using this utility.
oct-linux-identify Query Board about model, size of L2 cache, hardware units

supported, etc.
oct-linux-jtg This debugging tool should not be used unless requested by a Cavium

Networks representative. The output is not easy to read. This tool is
not usually used.

oct-linux-mdio Read/write on the MDIO bus (typically to Ethernet PHYs and
switches).

oct-linux-memory Read or write DDR memory on the OCTEON.
oct-linux-pow Display OCTEON POW (SSO) state. This debugging tool should not

be used unless requested by a Cavium Networks representative. The
output is not easy to read. This tool is not usually used.

oct-linux-profile Profiling of any code running on OCTEON: both Simple Executive
and Linux userspace applications.

Continued in the next table...

The following native tools are available when Linux is running on OCTEON.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 11: Special Cavium Networks Native Tools, Part 2

Tool Description
oct-pci-boot Boot the OCTEON PCI target board. This program configures the

DDR controller on the OCTEON, then loads and runs the u-boot
bootloader on it. See Note 1.

oct-pci-bootcmd Used to run bootloader commands over PCI to an OCTEON PCI
target board. Used to run image files on the cores. This command
may be used to start the application which was downloaded via the
oct-pci-load command. See Note 1.

oct-pci-csr OCTEON CSR (Control and Status Registers) may be read and
written directly over PCI using this utility. See Note 1.

oct-pci-ddr Tests memory after it is set up. This is a quick "alive" test. Use
hw-ddr2 for more extensive memory testing.

oct-pci-load Load a file into OCTEON memory over PCI from the host. See Note
1.

oct-pci-memory Read or write DDR memory on the OCTEON target over PCI.
oct-pci-profile Profiling of any code running on OCTEON: both Simple Executive

and Linux userspace applications. This profiler runs over PCI.
oct-pci-reset Reset the OCTEON PCI target board. See Note 1.
oct-pci-tra Access the trace buffer over Poise the Hardware Reference Manual

for more information on trace functions. This is somewhat
complicated to use.

Each note references an SDK Document where more information can be found.
(view $OCTEON_ROOT/docs/html/index.html in a browser)
Note 1: Developing with OCTEON as a PCI Target

The following native tools are available when Linux is running on OCTEON and OCTEON is a PCI host,
connected to an OCTEON PCI target.

Notes

Note: The oct-pci-* tools are used when the OCTEON processor is a PCI host
(instead of a PCI target). Not all boards support this configuration.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-47

An example of tools which run on the target is oct-linux-identify. Once Linux has been
booted on the target, in the target console, type oct-linux-identify:

target# oct-linux-identify
Model: CN3860p2.X-500-NSP
Level 2 cache: 1024 KB
Number of cores: 16
Crypto: Yes
Extended Multiplier:Yes
Low Latency Memory: Yes
Kasumi: No
RAID: No
DFA: Yes
ZIP: Yes
PCI BAR2: No

9.6.1 Linux Tools: Debian Filesystem Native Tools
Both the Debian compiler and the Cavium Networks compiler are supplied with Debian, however
only the Cavium Networks compiler should be used to build SE-UM applications on the target.

When running the Debian filesystem on an OCTEON core, the Cavium Networks tool chain is
located in /usr/local/Cavium_Networks/OCTEON-SDK/tools/usr/bin on the
development target. The compiler is named gcc (without the
mips64-octeon-linux-gnu-* prefix). The PATH environment variable needs to be
modified to use these tools before those supplied with Debian:

target# PATH=/usr/local/Cavium_Networks/OCTEON-SDK/tools/usr/bin:$PATH

Use the command gcc –v to see if the PATH variable was set up correctly. If it is correct, the
gcc version will include the string “Cavium Networks Version”.

The Debian tool chain may be used on the target to compile o32 applications. Note that these
applications cannot use the Cavium Networks-specific instructions or the Simple Executive API
functions.

Note: The Debian binaries are standard Debian files. Cavium Networks does not alter
these files, or rebuild them. Cavium Networks is not responsible for these files.

See the SDK document “Running Debian GNU/Linux on OCTEON” for more information.

9.7 Example Applications
Example applications are provided in the examples directory. Each of these is a Simple
Executive application.

Simple Executive standalone (SE-S) applications are self-contained: they do not require an
operating system to run. The ELF file may be booted on either one core or on a load set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Simple Executive User-Mode (SE-UM) applications are compiled to run under Linux. Usually
these files are executable files in the Linux filesystem. After Linux is booted, the SE-UM
application is started using the oncpu command. Linux can be booted from an embedded root
filesystem ELF image (vmlinux.64) or Linux can be booted from a flash card running Debian
Linux. The vmlinux.64 ELF image already includes the example programs, compiled to run
under Linux. Once this image is booted, the examples are ready to use. If Debian is used, the
examples need to be copied to the Debian filesystem. In this tutorial, the simpler embedded root
filesystem is used.

The following example programs are included with SDK 1.8.0. Each example is described in its
README.txt or README-Linux.txt file. All examples can be run as SE-S applications, and
most can be run as SE-UM applications under Linux. If the example application cannot be run
under Linux, the Makefile will issue the message: “This example doesn't support Linux”. In this
chapter, the examples hello and linux-filter will be built and run (see table, below).

Table 12: Examples Provided with SDK 1.8.0

Example
Can Run
as Linux
SE-UM

Hardware
Support

Required

Multicore
Example? Brief Description

application-args NO - NO How to pass arguments to Simple
Executive applications.

crypto YES Crypto YES Crypto hardware acceleration example.

debugger NO - YES Sample program for evaluating the
debugger.

hello NO - YES Simple "hello world" application.
linux-filter YES - YES Shows how to pass packets between

cores running Linux and cores running
a Stand-alone Simple Executive
application.

low-latency-mem YES LLM, DFA YES Low Latency Memory (LLM) usage
example.

mailbox NO - YES Shows how to use mailbox interrupts.
named-block YES - NO Shows how to use bootmem allocation

with named blocks.
passthrough YES - YES Packet passthrough example using

packet I/O.
queue YES - YES Implements a memory-access-efficient

message queue.
traffic-gen NO - YES A network traffic generator.
uart NO UART YES Simple example usage of the UART.
zip YES ZIP YES Example showing how to use the ZIP

Unit.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-49

10 About Building Example Applications
This section is an overview of building example applications. Building Linux will be explained in
Section 16 – “About Building Linux”.

Even if the reader is only interested in running applications under Linux, it is best to follow the
steps in the order presented here. Each section depends on material presented in the preceding
section. As an example, running the SE-S application hello is a perfect way to test the hardware
configuration without the added complexity of Linux, and introduces the reader to downloading
and running software on the OCTEON processor.

The steps taken will include:

• Section 11 – “Hands-on: Build and Run a SE-S Application (hello)”, a SE-S application
will be built and run.

• Section 17 – “Hands-on: Build and Run Linux”, Linux will be built and run.
• Section 18 – “Hands-on: Run a SE-UM Example”, a SE-UM application will be built and

run.
• Section 20 – “Hands-on: Run linux-filter as a SE-S Application (Hybrid System)”,

Linux will be run as a hybrid system with an SE-S application
• Section 21 – “Hands-on: Run linux-filter as a Linux SE-UM Application”, Linux

will be run with a SE-UM application.

Each step builds on knowledge gained in the previous step. Explanations are provided before and
after the steps.

10.1 Makefiles
Both applications and Linux are created by using Makefiles. These are typically files named
makefile, Makefile, or *.mk (as in cvmx.mk, or application.mk).

A Makefile can include other Makefiles. In the examples directory, each Makefile automatically
include several other files: common.mk, application.mk, and cvmx.mk:

include $(OCTEON_ROOT)/common.mk
include $(dir)/cvmx.mk
include $(OCTEON_ROOT)/application.mk

(The value of $(dir) is $OCTEON_ROOT/executive.)

And these Makefiles may include other Makefiles: $OCTEON_ROOT/common.mk includes
common-config.mk:

include $(OCTEON_ROOT)/common-config.mk

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

 OCTEON Programmer’s Guide

4-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

R
IA

L

When linux-filter is built, first the Simple Executive code located in the
$OCTEON_ROOT/executive directory is built, and the archive program (ar) packages the
Simple Executive object files into one library: libcvmx.a. The object files and library are put
in the linux-filter/obj directory:

mipsisa64-octeon-elf-ar -cr obj/libcvmx.a <more text omitted>

The linux-filter is then linked with libcvmx.a:

mipsisa64-octeon-elf-gcc obj/linux-filter.o -L/home/testname/sdk/target/lib
 obj/libcvmx.a -o linux-filter

10.2 Makefile Targets for Example Code
When looking at the example code, there are two Makefile targets possible for SE-S applications,
and four possible for SE-UM applications. The target is selected by setting OCTEON_TARGET
equal to the desired target on the make command line.

SE-S Targets:

• OCTEON_TARGET=cvmx_64 – the default Simple Executive target (standalone)
• OCTEON_TARGET=cvmx_n32 – the Simple Executive n32 target (not discussed in this

chapter)

SE-UM Targets:

• OCTEON_TARGET=linux_64 – the default Linux target
• OCTEON_TARGET=linux_n32 – the Linux n32 target (not discussed in this chapter)
• OCTEON_TARGET=linux_uclibc – the application is built with the 32-bit uclibc

library (saves memory). This is not discussed further in this chapter.
• OCTEON_TARGET=linux_o32 – not recommended. This API will not allow the user to

use Cavium Networks-specific instructions or the Simple Executive API. For that reason, it
will not be discussed further in this chapter.

Each built target ELF file has a unique name, as shown in the following table.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-51

Table 13: Different Makefile Targets, Different Target Names
OCTEON_TARGET Built Example Target Name Description

cvmx_64 linux-filter
the default Simple Executive target EABI
(SE-S)

cvmx_n32 linux-filter-cvmx_n32
the Simple Executive N32 target (not
discussed in this chapter) (SE-S)

linux_64 linux-filter-linux_64
the default Linux target: Linux N64 (SE-
UM)

linux_n32 linux-filter-linux_n32
Linux N32 application (not discussed in
this chapter) (SE-UM)

linux_uclibc linux-filter-linux_uclibc
Linux N32 application built with smaller
uclibc to save memory (SE-UM)

Each target is built with the object files in a separate directory, so multiple targets can share the
same source directory:

host$ cd examples/linux-filter
host$ ls -CF
config/ linux-filter-linux_n32 obj-linux_n32/
linux-filter linux-filter-linux_uclibc obj-linux_uclibc/
linux-filter.c Makefile README.txt
linux-filter-cvmx_n32 obj/ u-boot-env
linux-filter.input obj-cvmx_n32/
linux-filter-linux_64 obj-linux_64/

10.3 Building SE-S Examples
An example of how to build an SE-S example may be seen by going to the
examples/linux-filter directory, and typing one of:

• make
• make OCTEON_TARGET=cvmx_64
• make OCTEON_TARGET=cvmx_n32

See Section 8.3 – “Making a Copy of the Installed SDK” if the following error occurs:

<text omitted> mipsisa64-octeon-elf/bin/ld: cannot open output file
hello: Permission denied
collect2: ld returned 1 exit status
make: *** [hello] Error 1

Notice that running the command make with no arguments builds the application identically to
the option cvmx_64. The target is named linux-filter. When building with the option
OCTEON_TARGET=cvmx_n32, the target file is linux-filter-cvmx_n32. The object files
are put in separate directories: obj, and obj-cvmx_n32.

In this tutorial, the SE-S target will be cvmx_64.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10.4 Building SE-UM Examples
An example of how to build a SE-UM application may be seen by going to the
$OCTEON_ROOT/examples/linux-filter directory, and typing one of:

• make OCTEON_TARGET=linux_64
• make OCTEON_TARGET=linux_n32

The target is named either linux-filter-linux_64 or linux-filter-linux_n32,
depending on which target was specified on the make command line. Object files are put in
separate directories: obj_linux_64, and obj_linux_n32.

In this tutorial, the SE-UM target will be linux_64.

The next step is to put the object file into a filesystem, accessible once the Linux kernel is booted.
The details are discussed in Section 23.1 – “Adding Applications to the Embedded Root
Filesystem”.

10.5 Saving make Output
To execute the command, saving the output for later reference (in bash), type:

host$ make OCTEON_TARGET=cvmx_64 > make.out 2>&1 &

This will redirect the standard output (stdout) and standard error output (stderr) to the file named
make.out. The “&” symbol at the end of the command line puts the job into the background (a
prompt will occur on the screen, allowing you to type the next command).

The contents of the make.out file can be viewed by using the commands cat, head, tail, or
vi. During a long make, it is customary to use the tail -f command which will display
information as it is added to the file.

To move the make command from the background to the foreground, type fg.

10.6 Other Makefile Targets
Most Makefiles also support the clean and clobber targets.

To remove the executive .o files and target file to start fresh, type:

 host$ make clean OCTEON_TARGET=<your target> # specify OCTEON target

For the default (cvmx_64), simply type:

 host$ make clean

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-53

The clean target is used to remove all output of the build, and allow a fresh beginning.
clean:
 rm -f $(TARGET) config/cvmx-config.h
 rm -fr $(OBJ_DIR)

The clean command and the clobber command are not always used in the same way. For
example, in the passthrough example, clean is used to clean up after a test run, and clobber is
used to remove the .o files created in the prior build. Check the Makefile to be sure what exact
action will be performed.

From passthrough/Makefile:

clean:
 rm -f $(TARGET) output.log input-*.data output-*.data run-all.log
 rm -f $(CLEAN_LIST)
 rm -f $(CVMX_CONFIG)

clobber: clean
 rm -rf $(OBJ_DIR)

10.7 Using the strip Utility
The strip utility is used to remove debugging information from the ELF file. This step is usually
done after debugging is complete. The result is a smaller file, which downloads and boots faster.
Strip is used before putting the file into the onboard flash.

An example of the strip utility is seen in the following command line:

host$ mv hello hello_unstripped # save the unstrapped version of hello
host$ mipsisa64-octeon-elf-strip –o hello hello_unstripped

Verify the new executable is smaller:
host$ ls -l hello hello_unstripped
-rwxr-xr-x 1 testname software 64164 Jan 26 16:00 hello
-rwxr-xr-x 1 testname software 315199 Jan 9 18:26 hello_unstripped

In the SE-S examples shown in this chapter, strip will not be used to simplify the instructions.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

11 Hands-on: Build and Run a SE-S Application (hello)
In this section a simple SE-S application will be built, downloaded, and booted on the OCTEON
processor. Although the specific directions are for an SE-S application, only the build and boot
commands are different between SE-S and SE-UM applications.

It is important to read this section and follow the steps before going on to build, download,
and boot Linux and run a SE-UM example. The directions which are common to both types
of application will not be repeated.

The simplest application to build, download, and run is hello. The hello example is a Simple
Executive 64-bit standalone application (SE-S). This example does not support Linux (there is no
SE-UM hello application available).

Figure 8: Run hello on 1 out of 8 Cores

Hello Unused
Core

Unused
Core

Unused
Core

Unused
Core

Example of 8-core system running the SE-S application hello on 1 of the 8 cores.

Unused
Core

Unused
Core

Unused
Core

There are several key steps from power-on or reset to running the application:

1. Download and run the bootloader (if it is not already in flash)
2. Download the application ELF file (if it is not already in flash)

3. Boot the application: The bootloader reads the ELF file, loads the application into memory,
and runs it.

The board must be reset manually after the application has run to completion.

Currently, there is no support for returning to the bootloader once the program exits, so the board
must be reset after the application has completed. The user must manually reset the board:

• For standalone development target boards, use either the manual push-button reset or power
cycling the board.

• For PCI development target boards, the development target must be reset from the
development host, using either oct-pciboot or oct-pci-reset. For PCI target
boards, do not use the manual push-button reset.

As an alternative to manually resetting the board, the application can call
cvmx_reset_octeon() to reboot the board. Note that this will reboot all cores on the board.

Note that the ELF file is only stored in memory, so after a reset it will no longer be in
memory and must be downloaded again.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-55

The directions for PCI development targets are more streamlined than for standalone development
target because all the commands may be typed on the host, tftpboot is not needed, and the
board may be reset from the host.

The following tables summarize the directions for a first a PCI development target, then a
standalone development target. Select the directions which match your board type:

• To run hello on a standalone development target, go to Section 11.2 – “Run hello on a
Standalone Target Board”.

• To run hello on a PCI development target, see the next section.

Detailed directions follow the tables.

11.1 Run hello on a PCI Target Board
When using a PCI development target, special oct-pci-* commands are provided to use the
PCI bus to simplify application development.

Table 14: Key oct-pci-* Commands
Tool Description

, oct-pci-boot Reset the OCTEON PCI target, download the bootloader file to memory
and boot the OCTEON PCI target board. The board must be configured
for PCI boot, not flash boot.

oct-pci-bootcmd Used to run bootloader commands over PCI to an OCTEON PCI target
board. This command may be used to start the application which was
downloaded via the oct-pci-load command.

oct-pci-console Used to allow the bootloader, Simple Executive applications, and Linux
to redirect their console output over the PCI bus to the
oct-pci-console utility. This allows running interactive programs
on OCTEON without a serial connection.

oct-pci-load Download a file to OCTEON memory over the PCI bus.
oct-pci-reset Reset the OCTEON PCI target board. The board should be configured

for flash boot, not PCI boot.

For more oct-pci-* commands, see Table 6 – “Host Tools” and Table 7 – “Host Tools,
continued”.

See the SDK document “Developing with OCTEON as a PCI Target” for more information.

The following tables summarize the directions for a PCI development target. Detailed instructions
follow the tables. Steps 1-5 are identical for PCI and standalone target boards.

Warning: If an OCTEON PCI development target board is powered off or reset via the
manual reset switch, the host/target communication may become disrupted. The result
will be that configuration cycles and CSR access will continue to work, but bulk data
transfer will fail in strange and generally unpredictable ways. This problem occurs

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

because the development target has lost essential data in the PCI block. Instead of
powering off or using the manual reset switch, use either oct-pci-reset or oct-
pci-boot to reset an OCTEON PCI development target. These commands do not
disturb the data in the PCI block.

Table 15: Run hello on a PCI Development Target, Part 1

Steps Note

Connect serial cable to target console. Connect the
Ethernet cable.

Follow directions in the Quick Start Guide. Note: The
Ethernet cable is not needed to run hello on a PCI target
board, but will be needed later in the SDK Tutorial . Be carefu
to isolate the test network from the office network so that
experiments will not disturb the office network.

host$ oct-pci-reset The board should have been configured to boot from flash, so
oct-pci-boot is not needed. The word Boot should appear
on the red LEDs on the board. If not, the board is not
configured to boot from flash, or something is wrong with the
board.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to connect to
the OCTEON target board if it is not ttyS0. Minicom will
provide a connection to the target console. You should see the
bootloader prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194) (

(Build time: Jun 13)

If the bootloader's SDK version is not at least 1.7,
then before continuing, upgrade the bootloader to a
newer version.

Directions for upgrading the bootloader are included in the
SDK Tutorial .

host$ cd $OCTEON_ROOT/examples/hello
host$ make clean
host$ make

The make command will create the executable file hello.

Continued in the next table…

1. Connect the Hardware

2. Reset the board

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

6. Build the Application

l

SDK
version: 1.7.3-264)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-57

Table 16: Run hello on a PCI Development Target, Part 2
Steps Note

host$ oct-pci-load 0 hello Expect to see text similar to:
Found Octeon on bus 3 in slot 13.
BAR0=0xd8000000, BAR1=0xd0000000

type the following command on one line
host$ oct-pci-bootcmd "bootoct 0
coremask=0x1"

The bootoct command will run hello on core 0.
Expect to see (on target console):
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run
successfully.
Note: PP0 is "Packet Processor 0" (core 0). The coremask
must include core 0 (bit 0x1 in the coremask). All cores are
held in reset until an application is loaded on core 0. Setting
the coremask to 0xF will run hello on 4 cores.

host$ oct-pci-reset Note: To run hello a second time, the board must be reset
because there is no other way to return to the bootloader
prompt. Use oct-pci-reset to reset the board, not the
manual reset switch. Then download the application again.
The application cannot be re-run without downloading it again
because it is no longer in memory on the development target.

7. Download the Application to the Development Target

8. Boot the Application

9. Reset the Target Board

11.1.1 Connect the Hardware
This step is covered in Section 5 – “Hands-on: Connect the Development Target”.

11.1.2 Reset the Target Board
Use the command oct-pci-reset to reset the board. The board should have been configured
to boot from flash. Note that this step is not necessary if the board was just powered on or reset,
but the command only takes a second to complete. Do not reset the board using the push-button
reset.

11.1.3 Connect to the Target Console
This step is covered in Section 6 – “Hands-on: Viewing the Target Board Console Output”.

11.1.4 Verify Bootloader Prompt is Visible
This step is covered in Section 6 – “Hands-on: Viewing the Target Board Console Output”.

If the bootloader is located in flash, and the hardware is configured to boot from flash, then the
bootloader will run when the development target is powered on.

If the bootloader is not in flash then the bootloader must be downloaded before it can be run. In
order to simplify the directions in this chapter, the development target should be configured to boot
from flash. If the main bootloader is not usable, it can be restored from the failsafe bootloader.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

See Section 13.3 – “The Failsafe Bootloader” for more information. If necessary, the board may
be booted over PCI. See Section 11.1.9.2 – “Reset if booting over PCI”.

11.1.5 Verify Bootloader is at Least SDK 1.7
This step is covered in Section 6 – “Hands-on: Viewing the Target Board Console Output”.

11.1.6 Build hello
To build the example hello:

host$ cd $OCTEON_ROOT/examples/hello
host$ make OCTEON_TARGET=cvmx_64 > make.out 2>&1 &
host$ cat make.out

You should see output similar to:
mipsisa64-octeon-elf-gcc -o hello -g -O2 -W -Wall -Wno-unused-parameter
-I/home/testname/sdk/target/include -I/home/testname/sdk/target/include
-Iconfig -DUSE_RUNTIME_MODEL_CHECKS=1 -DCVMX_ENABLE_PARAMETER_CHECKING=0
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=0 -DCVMX_ENABLE_POW_CHECKS=0
-DOCTEON_MODEL=OCTEON_CN38XX -DOCTEON_TARGET=cvmx_64 hello.c

The file hello should now be in the examples/hello directory.

11.1.7 Download the Application to the Development Target
Use the command oct-pci-load to download the application to the Reserved Download Block.

For SDK 1.7 and higher:
host$ oct-pci-load 0 hello
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000, BAR1=0xd0000000

11.1.8 Boot the Application
Use the oct-pci-bootcmd to boot hello:

host$ oct-pci-bootcmd "bootoct 0 coremask=0x1"
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000, BAR1=0xd0000000

You should see:

bootloader: Booting Octeon Executive application at 0x20000000,
core mask: 0x1,
stack size: 0x100000, heap size: 0x300000
Bootloader: Done loading app on coremask: 0x1
PP0:~CONSOLE->
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run successfully.

11.1.9 Reset the Target Board
The board must be reset manually after the application has completed.

Currently, there is no support for returning to the bootloader once the program exits. The user
must manually reset the board using either the oct-pci-reset command or the oct-pci-

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-59

boot command. Do not use the manual push-button reset. (The oct-pci-boot command is
used if the board is not configured to boot from flash.)

Note that the ELF file is only stored in memory, so after a reset it will no longer be in
memory and must be downloaded again.

11.1.9.1 Reset if booting from flash
A PCI target board may be reset using the command oct-pci-reset if it is configured to boot
from flash.

11.1.9.2 Reset if booting over PCI
If booting over PCI from the PCI host, oct-pci-boot will reset the board, download the
bootloader from the PCI host and boot the bootloader. Note that the command will automatically
figure out the correct bootloader file to use.

host$ oct-pci-boot
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000, BAR1=0xd0000000
Using bootloader image:
/home/testname/sdk/target/bin/u-boot-octeon_ebt3000_pciboot.bin

11.1.10 Multiple OCTEON PCI Target Boards
By default, utilities operate on the first OCTEON target board found on the PCI bus. For example,
oct-pci-reset resets the first OCTEON target board found on the PCI bus.

If there are multiple OCTEON PCI targets attached to the same PCI host, the environment variable
OCTEON_PCI_DEVICE can be set to select which OCTEON target should be accessed. For
example, if OCT_PCI_DEVICE=1, the second OCTEON target is reset. The command
/sbin/lspci enumerates the PCI targets.

Skip Section 11.2 – “Run hello on a Standalone Target Board” and resume reading at Section 6.9
– “Determining the Number of Cores on the OCTEON”.

11.2 Run hello on a Standalone Target Board
The following tables summarize the directions for a standalone development target. Detailed
instructions follow the tables. Steps 1-5 (shown in the table containing the instructions) are
identical for PCI and standalone target boards.

The key differences between running an application on a standalone versus PCI board are in the
following steps:

1. The application will be downloaded over Ethernet from the development host to the
development target using the tftpboot utility. Note: tftpboot details are located in
Section 34 – “Appendix J: TFTP Boot Assistance (tftpboot)”.

2. After it is downloaded, the application is booted by typing the bootoct command in the
target console.

3. To reboot the board, push the reset switch on the board.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-60 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 17: Run hello on a Standalone Development Target, Part 1

Steps Note

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide. Note:
The Ethernet cable is not needed to run hello on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not
disturb the office network.

Power on or reset the target board. The word Boot should appear on the red LEDs on
the board. If not, the board is not configured to boot
from flash, or something is wrong with the board.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to
connect to the OCTEON target board if it is not
ttyS0. Minicom will provide a connection to the
target console. You should see the bootloader
prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(Build
time: Jun 13)

If the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

host$ cd $OCTEON_ROOT/examples/hello
host$ make clean
host$ make

The make command will create the executable file
hello.

Continued in the next table…

1. Connect the Hardware

2. Reset the board

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

6. Build the Application

SDK version: 1.7.3-264) (

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-61

Table 18: Run hello on a Standalone Development Target, Part 2

Steps N

host$ sudo cp hello /tftpboot See SDK Tutorial directions for tftpboot.

If a DHCP server is available, then selecting the target IP
address is handled by the server. Othewise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic
with your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

7. Copy the ELF file to the tftpboot Directory

8. Select Target IP Address, if Needed

9. Set the Development Target's IP Address
9a. No DHCP Server

9b. DHCP Server Available

10. Test the Ethernet Connection to the Host

Continued in the next table…

ote

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-62 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 19: Run hello on a Standalone Development Target, Part 3
Steps Note

Use tftpboot to download the application.
target# tftpboot 0 hello

See SDK Tutorial directions for tftpboot. If this
step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

target# bootoct 0 coremask=0x1 This command will run hello on core 0.
Expect to see:
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run
successfully.
Note: PP0 is "Packet Processor 0" (core 0). The
coremask must include core 0 (bit 0x1 in the
coremask). All cores are held in reset until an
application is loaded on core 0. Setting the
coremask to 0xF will run hello on 4 cores.

To reset the development target, use the the target's reset
switch.

To run hello a second time, the board must be
reset or power cycled because there is no other way
to return to the bootloader prompt. Then download
the application again. The application cannot be re-
run without downloading it again because it is no
longer in memory on the development target.

11. Download the Application to the Development Target

12. Boot the Application

13. Reset the Target Board

11.2.1 Connect the Hardware
This step is covered in Section 5 – “Hands-on: Connect the Development Target”.

11.2.2 Reset the Development Target
A standalone target board may be either reset using the reset button, or power cycled. In most
cases, the manual push-button should be adequate to reset the board.

11.2.3 Connect to the Target Console
This step is covered in Section 6 – “Hands-on: Viewing the Target Board Console Output”.

11.2.4 Verify Bootloader Prompt is Visible
This step is covered in Section 6 – “Hands-on: Viewing the Target Board Console Output”.

If the bootloader is located in flash, and the hardware is configured to boot from flash, then the
bootloader will run when the development target is powered on.

If the bootloader is not in flash then the bootloader must be downloaded before it can be run. If it
is a standalone board, then the bootloader must be present in flash. If the main bootloader is not

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-63

usable, it can be restored from the failsafe bootloader. See Section 13.3 – “The Failsafe
Bootloader” for more information.

11.2.5 Verify Bootloader is at Least SDK 1.7
This step is covered in Section 6 – “Hands-on: Viewing the Target Board Console Output”.

11.2.6 Build hello
To build the example hello:

host$ cd $OCTEON_ROOT/examples/hello
host$ make OCTEON_TARGET=cvmx_64 > make.out 2>&1 &
host$ cat make.out

You should see output similar to:
mipsisa64-octeon-elf-gcc -o hello -g -O2 -W -Wall -Wno-unused-parameter
-I/home/testname/sdk/target/include -I/home/testname/sdk/target/include
-Iconfig -DUSE_RUNTIME_MODEL_CHECKS=1 -DCVMX_ENABLE_PARAMETER_CHECKING=0
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=0 -DCVMX_ENABLE_POW_CHECKS=0
-DOCTEON_MODEL=OCTEON_CN38XX -DOCTEON_TARGET=cvmx_64 hello.c

The file hello should now be in the examples/hello directory.

11.2.7 Copy Application to the /tftpboot directory
Copy the example application hello to the /tftpboot folder. This folder should have been
created when the tftp-server RPM was installed. (Note that on some systems the default
tftpboot directory is /var/lib/tftpboot. The exact directory can be determined by
looking at the server_args value in the TFTP startup file.)

host$ cd $OCTEON_ROOT/examples/hello
host$ sudo cp hello /tftpboot

Note that the folder is only writable by the owner, root:

host$ cd /tftpboot
host$ ls -ld .
drwxr-xr-x 2 root root 4096 Feb 17 2004 .

11.2.8 Select Target IP Address, if Needed
If a DHCP server is used, the target IP address will be automatically assigned when the dhcp
command is executed. Otherwise, select an IP address for use in the next step.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

11.2.9 Set the Development Target’s IP Address
Before starting tftpboot to download the application, set the IP address of the target, and the IP
address of the TFTP server (serverip).

11.2.9.1 Using dhcp to Set the Target IP Address
If possible, use dhcp (Dynamic Host Configuration Protocol) to configure the IP address of the
OCTEON target.

In the target console, connected to the serial port on the OCTEON target, type dhcp. The
following text shows an example of the expected reply from the bootloader:

target# dhcp
BOOTP broadcast 1
octeth0: Up 1000 Mbps Full duplex (port 16)
DHCP client bound to address 192.168.51.193

11.2.9.2 Setting the Target IP Address without a dhcp server
 If a DHCP Server is not available, then set a static IP address using bootloader commands:

target# setenv gatewayip 192.168.51.254 # use your gateway IP address!
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159 # use your target IP address!
target# setenv serverip 192.168.51.1 # use your server IP address!

11.2.9.3 Confirm the IP Addresses are Correct
Use printenv to confirm:

target# printenv
gatewayip=192.168.51.254
netmask=255.255.255.0
ipaddr=192.168.51.159
serverip=192.168.51.1

11.2.10 Test the Ethernet Connection to the Development Host
Note that the development target will not reply to a ping from the development host. To test the
connection, a ping can be sent from the development target to the development host (in this
example, the development host’s IP address is 192.168.51.254). Note: to see the development
host’s IP address, use the /sbin/ifconfig command on the development host.

target# ping 192.168.51.254 # use your host IP address HERE!
Using octeth0 device
host 192.168.51.254 is alive

11.2.11 Download the Application to the Development Target
Before beginning this step, you will need a bootloader prompt, and a physical Ethernet connection
to the development host. The application to be downloaded should be available on the
development host in the directory configured for tftpboot to use, such as /tftpboot.
Then use the tftpboot command in the target console to download the application.

On a bootloader from SDK 1.7 or higher:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-65

target# tftpboot 0 hello

For example:
target# tftpboot 0 hello
Using octeth0 device
TFTP from server 192.168.51.254; our IP address is 192.168.51.186
Filename 'testname/dl/hello'.
Load address: 0x20000000
Loading: ### <<<< success! # characters will appear showing downloading
done
Bytes transferred = 317852 (4d99c hex), 8868 Kbytes/sec

Note that the bootloader will provide basic help on the tftpboot command:

target# help tftpboot
tftpboot [loadAddress] [bootfilename]
If loadAddress is 0, then file will be loaded to the default load address

Note: The name of the application to run, bootfilename, can be an absolute path name, or a
pathname relative to the tftpboot directory. For example, if the tftpboot directory is
/home and file is in /home/testname/dl/hello, the file may be booted by using either the
full or relative path name. For example, either testname/dl/hello or
/home/testname/dl/hello can be used to tftpboot the file.

11.2.11.1 Common tftpboot Errors

11.2.11.1.1 dhcp Step Forgotten
Example output if dhcp step has not yet been done:

target# tftpboot testname/dl/hello
Interface 1 has 4 ports (RGMII)
*** ERROR: `serverip' not set

If this output occurs, then the dhcp step was omitted.

11.2.11.1.2 ELF Image File Not Found on TFTP Server
When the ELF file is not found on the TFTP server, tftpboot will continue to try to download
the file, printing the character “T” on the target console, until the user types reset or Ctrl-C. Also,
when the file is not found, tftpboot prints a “File not found” error. This error is hidden in the
output, as shown in the following example:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

target# tftpboot 0 badfilename
Using octeth0 device
TFTP from server 192.168.51.254; our IP address is 192.168.51.184
Filename 'badfilename'.
Load address: 0x20000000
Loading: *
TFTP error: 'File not found' (1) <<<< ** difficult to see the error! **
Starting again

Using octeth1 device
TFTP from server 192.168.51.254; our IP address is 192.168.51.184
Filename 'badfilename'.
Load address: 0x20000000
Loading:
T T T T

 octeth1: Down (port 17)

Try again with the correct file name:

target# tftpboot 0 hello
Using octeth0 device
TFTP from server 192.168.16.41; our IP address is 192.168.16.61
Filename 'hello'.
Load address: 0x20000000
Loading: ### <<<< success! # characters will appear showing downloading
done
Bytes transferred = 315148 (4cf0c hex), 12823 Kbytes/sec

11.2.11.2 Ethernet Cable Plugged into Wrong Ethernet Port on Target
The default Ethernet port used for tftpboot on the target can be seen with the printenv
bootloader command. The variable ethact=octeth0. If the Ethernet cable is not plugged into
Port 0, then either change the cable to Port 0 or change the value of environment variable to refer to
the correct Ethernet port.

11.2.12 Boot the Application
From the target console, type bootoct for Simple Executive Applications. For example, to run
Simple Executive on the first core:

target# bootoct 0 coremask=0x1
Bootloader: Booting Octeon Executive application at 0x20000000, core
mask: 0x1,0
Bootloader: Done loading app on coremask: 0x1
PP0:~CONSOLE->
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run successfully.

Note that after running the application, the program halts, and does not return to the
bootloader. There is currently no support for returning to the bootloader.

11.2.13 Reset the Development Target
A standalone target board may be either reset using the reset button, or power cycled. In most
cases, the manual push-button should be adequate to reset the board.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-67

12 Hands-on: Run hello on Multiple Cores
The following figure shows hello running on a load set of 4 cores out of a total of 8 cores.

Figure 9: Run hello on 4 out of 8 Cores

To boot hello on multiple cores:

• PCI Development Target Command:
Adjust the coremask to not exceed the number of
cores available on your OCTEON model.
host$ oct-pci-bootcmd "bootoct 0 coremask=0xF"
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000, BAR1=0xd0000000

• Standalone Development Target Command:

Adjust the coremask to not exceed the number of
cores available on your OCTEON model.
target# bootoct 0 coremask=0xF

Note: Coremask needs to be an odd number, so that core 0 is always booted.

What you should see on the target console:
In this example, the program is running on 4 out of 8 cores, specified by the “coremask=0xF”
argument to the bootloader. Output from the cores is interleaved (whole lines, not partial lines) as
shown on the target console because they are running simultaneously (PP1 is core1).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

You should see:
Bootloader: Booting Octeon Executive application at 0x20000000, core
mask: 0xf,
stack size: 0x100000, heap size: 0x300000
Bootloader: Done loading app on coremask: 0xf
PP3:~CONSOLE->
PP1:~CONSOLE->
PP3:~CONSOLE->
PP0:~CONSOLE->
PP1:~CONSOLE->
PP2:~CONSOLE->
PP1:~CONSOLE-> Hello world!
PP3:~CONSOLE-> Hello world!
PP2:~CONSOLE->
PP0:~CONSOLE->
PP1:~CONSOLE-> Hello example run successfully.
PP2:~CONSOLE-> Hello world!
PP3:~CONSOLE-> Hello example run successfully.
PP0:~CONSOLE-> Hello world!
PP2:~CONSOLE-> Hello example run successfully.
PP0:~CONSOLE-> Hello example run successfully.

Note: The exact order of the output lines will vary because the different processors are competing
for access to the UART. This is a simple example of a race condition.

Note: If more cores are specified in the coremask than are available on your OCTEON model, you
will see an error message. In this example, only 12 cores are available, but 16 cores are requested
(0xFFFF). The bootloader replies that only 0xFFF is available (12 cores).

target# bootoct 0 coremask=0xFFFF
ERROR: Can't boot cores that don't exist! (available coremask: 0xfff)
Invalid coremask.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-69

13 About the Bootloader
This section provides a quick introduction to the bootloader.

Note: When following the steps in this tutorial, is important to run a bootloader which was
provided with SDK 1.7 or higher.

13.1 Booting an OCTEON Board
If the bootloader is located in flash, and the hardware is configured to boot from flash, then the
bootloader will run when the development target is powered on.

If the development target is a standalone board, then the bootloader must be present in flash. If the
main bootloader is not usable, it can be restored from the failsafe bootloader.

If the development target is a PCI board, then it can be configured to download the bootloader from
the PCI host over PCI. The oct-pci-boot command will reset the board and download and run
the bootloader.

In the following figure, the bootloader image is being run on core 0. The other cores stay in reset
until an application is loaded onto core 0 and begins to run.

Figure 10: Core 0 Runs Bootloader While the Other Cores Stay in Reset

OCTEON

The Bootloader Runs on Core 0 While the Other Cores Stay in Reset

CORE 0

Running
Bootloader

Code
In Reset In Reset In Reset

Serial
connection

to host
Bootloader
Image in
Memory

The bootloader
communicates
to the host
through the
target console
(UART0).

13.1.1 Booting from Onboard Flash
When the board is booted and is configured to boot from onboard flash:

• Core 0 starts execution at the reset vector 0xBFC00000 (the location of the bootloader code
in onboard flash).

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-70 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The bootloader (U-Boot) then:
1. Initializes the UART
2. Configures the DRAM controller to allow physical memory to be used. (The UART

provides the target console and debug console.)
3. Relocates itself from the onboard flash to DRAM, and continues executing from DRAM.
4. Executes the default command, if present.

13.1.2 Booting an OCTEON Board as a PCI Target
PCI development targets may be configured to boot from flash (described in the prior paragraph),
or to boot over the PCI bus. This option is selected via a jumper on the board. See the Quick Start
Guide for directions.

When the board is configured to boot over the PCI bus, after the board is powered on or after
oct-pci-reset, the bootloader will not run from the onboard flash, so there will not be a
prompt on the target console. The cores will stay in reset. The following is the output shown if the
board is reset, and it is not configured to boot from onboard flash.

host$ oct-pci-reset
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Warning: Timed-out waiting for bootloader (-1)

To boot the board over PCI, use the command oct-pci-boot, typed on the PCI host. This
command uses a version of the bootloader which has been modified to support booting over PCI.
If a bootloader is not specified on the command line, the default bootloader will be used. The
oct-pci-boot command:

1. Configures the DRAM controller on the OCTEON processor
2. Copies the bootloader code to DRAM.
3. Configures the development target so that the bootloader code will start when core 0 jumps

to the reset vector.
4. Takes core 0 out of reset.
5. Core 0 starts execution at the reset vector, which is now jumps to the bootloader code.

The bootloader (U-Boot) then:

1. Initializes the UART. (The UART provides the target console and debug console.)
2. Skips the DRAM controller setup.
3. Then U-Boot executes the default command, if present. When U-Boot is run on hardware

instead of the simulator, it displays a prompt on UART0 (the serial console):

13.1.3 Verifying the Bootloader is Up and Running
When U-Boot is run on hardware, it displays the bootloader prompt on UART0 (the target
console):

Octeon ebt3000(ram)#

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-71

If this prompt is not visible, typing Enter in the Minicom screen will result in a response from the
bootloader, ending with the bootloader prompt.

The board is now up and ready to download the application. The Minicom screen is now referred
to as the target console. Typing help on the Mincom screen will result in a reply from the
bootloader: a menu of possible commands.

13.2 Review of Bootloader Memory Use
As discussed in the Software Overview chapter, there are two memory areas reserved by the
bootloader: the Reserved Download Block, which is used to download the application, and the
Reserved Linux Block. These two areas may be seen with the bootloader command
namedprint.

The exact configuration selected by the bootloader will vary. The following output is from a 1.8.0
bootloader.

target# namedprint
List of currently allocated named bootmem blocks:
Name: __tmp_load, address: 0x0000000020000000, size: 0x0000000006000000, index:0
Name: __tmp_reserved_linux, address: 0x0000000000100000, size:
0x0000000008000000, index: 1

Bootloader memory usage changed between SDK 1.6 and lower and SDK 1.7 and higher. Be
sure to find out which bootloader is running on the board before continuing with the
tutorial. Upgrade if needed. The new bootloader is simpler to use than the old one.

13.3 The Failsafe Bootloader
Note: There are two bootloaders in the onboard flash: a failsafe image and the main bootloader
image. If the main image is damaged, the board may be booted from the failsafe bootloader image.
A new bootloader image may be downloaded to the onboard flash by copying it from the flash card
to the onboard flash, using commands in the failsafe bootloader image.

The failsafe bootloader does not have the full features of the main bootloader: it only contains
commands needed to read and write the flash, and a few configuration and diagnostic commands.

Note: The failsafe bootloader may ONLY be used to restore the main bootloader. It is
not safe to use the failsafe bootloader to download and run an application.

More information about the bootloader can be found in the SDK document “OCTEON
Bootloader”.

13.4 Bootloader Commands
Once the bootloader is running, type help in the target console to see a list of bootloader
commands. The command help <cmd> will show more details about the individual command.

A very important command is version. This command is used to find out whether the
bootloader was compiled by SDK 1.6 or newer. After SDK 1.6, a change was made to how the
bootloader loads ELF files in memory, changing the address used in the load commands.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The following bootloader command shows a bootloader built with SDK 1.7.3:

target# version
U-Boot 1.1.1 (U-boot build #: 194) (SDK version: 1.7.3-264) (Build time: Jun
13)

Cavium Networks has added the following commands to U-Boot:

1. Bootoct: Boot from an OCTEON Simple Executive ELF file in memory
2. bootoctlinux : Boot from a Linux ELF file in memory
3. bootoctelf: Added to support booting other ELF files such as non-Linux Operating

Systems. The OCTEON SDK does NOT create any ELF files suitable for use with this
command.

Bootloader commands which are used in this tutorial or in the Software Overview chapter are listed
in the following table. A complete list of bootloader commands is available in Table 48 – "U-Boot
Commands Quick Reference, Part 1".

Table 20: Key Bootloader Commands

Command Description
? An alias for help.
bootoct Boot from an OCTEON Executive ELF image in memory. This is used

to boot Simple Executive Stand-alone applications.
bootoctlinux Boot from a Linux ELF image in memory. This is used to boot Linux.
dhcp Invoke DHCP client to obtain IP/boot params (get IP address from

DHCP server).
fatload Load ELF file from a DOS file system (boot from compact flash).
help Print bootloader help menu or help with a specific command if

help <cmd> is typed.
namedprint Print list of named bootmem blocks.
ping Send ICMP ECHO_REQUEST to network host.
printenv Print environment variables. Some of the environment variables are

defined to be multiple commands, (for example nuke_env).
saveenv Save environment variables to persistent storage.
setenv Set environment variables such as the IP address.
tftpboot Boot image via network using TFTP protocol.
version Print the bootloader version information. This command will display the

matching SDK version, for example: SDK version: 1.7.3-264.

Commands are shown without arguments.

The oct-pci-bootcmd is used to run bootloader commands over PCI instead of the from the
target console. For example, after downloading a Simple Executive ELF file using the

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-73

oct-pci-load utility (creating an in-memory image); the oct-pci-bootcmd utility can be
used to boot the in-memory image.

Note that multiple applications cannot be accidentally booted on the same core because U-Boot
will issue a warning:

target# bootoct 0 coremask=0x2
Bootloader: Booting Octeon Executive application at 0x20000000, core
mask: 0x2,
stack size: 0x100000, heap size: 0x300000
Bootloader: Done loading app on coremask: 0x2
boot on the same core again by accident
target# bootoct 0 coremask=0x2
ERROR: Can't load code on core twice! (provided coremask(0x2) overlaps
previously loaded coremask(0x2))

13.5 Bootloader Environment Variables
Bootloader environment variables may be seen by typing printenv in the target console when
the bootloader is running.

Note that some of these, such as nuke_env are compound commands. Details on environment
variables may be found in the SDK document “OCTEON Bootloader”.

To prevent the bootloader from trying to automatically execute an application, set the bootloader
environment variable autoload to n in the Minicom session (autoload = n is the default when
the bootloader is upgraded):

target # setenv autoload n
save the value so it will still be set after a reset
target # saveenv

13.6 Upgrading the Bootloader
To view the bootloader version number, type version in the target console. If the bootloader
version number is lower than 1.7, then it should be upgraded. See Section 33 – “Appendix I:
Updating U-Boot on a Standalone Board” for directions.

14 About Downloading the Application
To run the application image in memory, it must first have been downloaded to memory. In a
production system, the image file is usually in onboard flash. During development, the image is
not in onboard flash, and must be downloaded to memory after each time the board is powered off
or reset.

When running a hybrid system (more than one load set), be sure to start the application
running on core 0 last. Once the application runs on core 0, the other cores come out of
reset and begin to run their applications. Core 0 may be one of many cores in the load set,
there is no need to start an application only on core 0.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-74 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

As discussed above, this download requires temporary memory to store the image. At the next
step, the ELF file boot step, the bootloader reads the ELF image from the Reserved Download
Block, parses it, and loads the application into memory (creating the in-memory image). After the
core 0 image starts to run, the memory used for the image download is freed and added to the pool
of free memory.

Figure 11: Creating an In-Memory Image

ELF File
SE-S ELF files may be stored in flash, or downloaded to the board.
SE-UM files may be stored in the embedded_rootfs of the Linux
ELF file, or downloaded after Linux is booted.

ELF Loader
For SE-S processes, the ELF loader is bootoct.
For Linux, the ELF loader is bootoctlinux.
For SE-UM instances, the kernel handles ELF file loading
automatically. The oncpu utility may be used to start SE-UM
applications on a subset of cores.

Creating an In-Memory Image

When run as a SE-UM application, the in-memory image file is called a process or instance of the program.
When run as a SE-S application, the in-memory image file is called an instance of the program.

Note: SE-S and SE-UM applications must be statically linked.

SE-S or SE-
UM or P

The in-memory image (instance of
the program) may be an SE-S, SE-
UM, or other Linux process.

For SE-S applications, the ELF loader reads the ELF File and creates an in-memory image (instance). The in-
memory image is larger than the ELF File: it contains system memory allocated for the stack and heap.

The instance of the program may share .text and .rodata with another instance of the program in the same load
set, but will always have some private (not shared) regions which make it unique.

ELF loaderSource
Files

ELF Object
Files (.o

files)

ELF
Executable
File (ELF

File)

In-
Memory
Image

(instance)

compiler linker

Downloading the application ELF file to the development target can be accomplished via:

1. PCI (oct-pci-load): The board is a PCI target (preferred).
2. Flash card (fatload): The flash card writer and cable are supplied with most evaluation

boards.
3. Ethernet via TFTP (tftpboot): The board is stand alone with an Ethernet connection to

the development host.
4. Serial Port: the slowest and least preferred, with a serial connection to the development

host. For information on how to download the application to the board over a serial
connection, see Section 35 – “Appendix K: Downloading Using the Serial Connection”.
For small applications such as hello the serial connection is fast enough, but for larger

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-75

applications it can be very slow. When possible, strip the ELF file to download the file
faster.

The ELF file is downloaded to the specified Reserved Download Block address. Bootloaders built
with SDK 1.7 and higher allow the specified address to be 0. When the address is 0, the default
Reserved Download Block address is selected by the bootloader. This simpler address (0) is used
in examples in this chapter. After the ELF file is downloaded, the bootloader relocates it to a
physical location of its choice (creating the in-memory image). The Reserved Download Block is
now available for the next download.

For shell script users: note that after a oct-pci-load command completes, about one second
(sleep 1) is needed for the bootloader to complete the relocation before the next download
command to the same location. Otherwise, the second downloaded image will overwrite the first
downloaded image before the bootloader is finished reading and relocating it.

The following table introduces the different ELF file download commands available. The choice
of download command depends on the runtime environment (PCI, standalone, or simulator), and
where the ELF file is located (on a PCI host, a flash card, onboard flash, etc.).

Table 21: Commands to Download ELF File for Different Configurations
Runtime

Environment
ELF File Location Command to Load ELF File into Memory

(create in-memory image)
On the PCI Host oct-pci-load (fastest for PCI Target Board)

File is on a Compact Flash Card fatload

File is burned into on-board flash No download needed.
File is on another system on the
network

tftpboot (fastest for Stand-alone boards)

File is on a Compact Flash Card fatload

File is burned into on-board flash No download needed.
OCTEON
Simulator

On the same computer oct-sim or oct-linux

OCTEON PCI
Target Board

Stand-alone
OCTEON

Board

The following table includes some notes on the different commands used to download an ELF file
to the board.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

I

 OCTEON Programmer’s Guide

4-76 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 22: ELF File Download Command Details
Command Notes

type the following command on one line
oct-pci-load <tmp_download_address> <filename>

In SDK 1.7 and above,
tmp_download_address should
be 0 to let the bootloader choose
the address. When using a shell
script, sleep 1 second between
oct-pci-load commands to
allow the relocation from the
image loading block to the
permanent address to complete.

tftpboot <tmp_download_address> <filename> In SDK 1.7 and above, specify 0
for the tmp_download_address
and let the bootloader choose the
address.

type the following command on one line
fatload <dev> <num> <tmp_download_address>
<filename>

In SDK 1.7 and above, specify 0
for the tmp_download_address
and let the bootloader choose the
address.

Directions on how to boot using a flash card are in Section 40 – “Appendix P: Booting an ELF
File From a Flash Card”. R

A
L

 15 About Booting SE-S Applications

15.1 The Coremask
The coremask is a bit mask where core 0 is represented by bit 0; core 1 is represented by bit 1, etc.

The value 0x0F (binary 0000 1111) would start an application on cores 0, 1, 2, 3.

The value 0xF0 (binary 1111 0000) would start an application on cores 4, 5, 6, 7.

The application running on core 0 should be started last. Once the application runs on core 0, the
other cores come out of reset and begin to run their applications.

15.2 The Boot Command
The arguments to the boot command are used to specify the stack and heap sizes, and the
coremask. In example programs such as hello, the default stack and heap size are adequate, so
they are not specified on the command line.

Note that the boot command will load the applications onto the cores, but all cores except core 0
are held in reset (the applications do not run) until the application running on core 0 is booted. For
this reason, core 0 should be booted last.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-77

For SDK 1.7 and higher, the bootoct usage is:

target# help bootoct
bootoct - Boot from an Octeon Executive ELF image in memory
 [elf_address [stack=stack_size] [heap=heap_size]
 [coremask=mask_to_run | numcores=core_cnt_to_run]
 [forceboot] [debug] [break] [endbootargs] [app_args...]
 elf_address - address of ELF image to load. defaults to $(loadaddr).
 If 0, default load address used.
 stack - size of stack in bytes. Defaults to 1 megabyte
 heap - size of heap in bytes. Defaults to 3 megabytes
 coremask - mask of cores to run on. Anded with coremask_override
 environment variable to ensure only working cores are used
 numcores - number of cores to run on. Runs on specified number of
cores,
 taking into account the coremask_override.
 skipcores - only meaningful with numcores. Skips this many
 cores (starting from 0) when
 loading the numcores cores. For example, setting
 skipcores to 1 will skip core 0
 and load the application starting at the next available core
 debug - if present, bootloader passes debug flag to application
 which will cause the application to stop at a
 breakpoint on startup
 break - if present, exit program when control-c is received on
 the console
 forceboot - if set, boots application even if core 0 is not in mask
 endbootargs - if set, bootloader does not process any further arguments
 and only passes the arguments that follow to the
 application. If not set, the application
 gets the entire command line as arguments.

Note: If you do not see the entire help text on the screen, start Minicom with the –w (line wrap)
option.

To boot an SE-S application, use the bootloader command bootoct. If the OCTEON board is a
PCI target, the utility oct-pci-bootcmd may be used instead of typing into the target console.

For example:

host$ oct-pci-bootcmd "bootoct 0 coremask=0x1"

The output of the hello application will appear on the target console.

To boot Linux, use the bootloader command bootoctlinux.

16 About Building Linux
In order to build Linux, some knowledge about the kernel and the root filesystem, Makefiles and
Makefile targets, and kernel and embedded root filesystem configuration are essential. This basic
information is provided in this section.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-78 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

16.1 The Root Filesystem
The Linux kernel requires access to a root filesystem. There are three possible locations for the
root filesystem:
In the simplest case, the root filesystem is located right next to the kernel in memory.
In a slightly more complex case, the root filesystem is on a flash card, or on another device which
is local to the target board, such as a USB device.
In a very complex case, the root filesystem is out on the network somewhere. This case is not
discussed in this tutorial.

The following figure is a simplified view of the Linux kernel running on the OCTEON processor,
with three different locations for the root filesystem.

Figure 12: Root Filesystem Locations

OCTEON Evaluation
Board

Root
Filesystem

OCTEON Evaluation
Board

C
F

Kernel

The root filesystem is
in-memory with the

kernel.
The root filesystem is

on compact flash.

OCTEON Evaluation
Board

Kernel

The root filesystem is
on the network.

Eth
Port 0

Case 1: Embedded
Root Filesystem

Case 2: Debian
Filesystem on

Compact Flash

Case 3: NFS Mount
Root Filesystem Located

on Remote Host

Kernel

Somewhere on
the network

Root Filesystem Locations

The root filesystem can be:
Case 1: In memory with the kernel
Case 2: On compact flash
Case 3: Out on the network

Linux build and boot options vary depending on where the root filesystem is located.

The information provided in this section is a brief overview. Detailed instructions may be found in
the SDK documents “Linux on the OCTEON” and “Running Debian GNU/Linux on OCTEON”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-79

For directions on using a root filesystem located on a USB device, see the SDK document “Linux
on Small OCTEON Systems”.

16.1.1 The Embedded Root Filesystem
Usually embedded systems do not have disk drives, so Linux is booted from an ELF file
(vmlinux.64) stored in onboard flash. The ELF file contains the Linux kernel and a filesystem
which runs in memory only. This filesystem is the embedded root filesystem (embedded_rootfs).
When the system is powered off, the in-memory copy of the filesystem is gone. The system must
be booted from the vmlinux.64 file stored in onboard flash again. Because the onboard flash is
small, the utilities in the root filesystem are the compact set supplied by busybox. This set is
smaller than the full Linux utilities in two ways: fewer utilities are present, and each utility
supports only essential options.

During development, vmlinux.64 may be downloaded from the host instead of stored in
onboard flash. The download process is identical to the one used for the hello application.

The vmlinux.64 file may also be copied to a flash card and booted from there. Directions are in
Section 40 – “Appendix P: Booting an ELF File From a Flash Card”.

The contents of the root filesystem can be seen on the host before Linux is booted. See Section 38
– “Appendix N: Contents of the Embedded Root Filesystem”.

16.1.2 The Debian Root Filesystem
The Debian filesystem is a non-embedded root filesystem. Typically, it is located on a flash card.
When the kernel is booted, it is directed to use the root filesystem located on the flash card.

The native tools, including the Cavium Networks GNU tool chain, may be used from the Debian
root filesystem to simplify development and debugging. See Section 9.6 – “Native Tools (Run on
the Development Target)” for more information.

See Section 41 – "Appendix Q: Using the Debian Root Filesystem” for more information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-80 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

16.2 Linux Makefiles and Makefile Targets
Linux consists of the kernel and the root filesystem. There are three key Makefiles involved in the
Linux build:

1. $OCTEON_ROOT/linux/Makefile: This is the top-level Linux Makefile.
2. $OCTEON_ROOT/linux/kernel_2.6/Makefile: This Makefile controls the

kernel and modules build: it is called by the top-level Makefile.
3. $OCTEON_ROOT/linux/kernel_2.6/linux/Makefile: This Makefile controls

the kernel build – it is called by the $OCTEON_ROOT/linux/kernel_2.6 Makefile.
4. $OCTEON_ROOT/linux/embedded_rootfs: This Makefile controls the embedded

root filesystem build.
5. $OCTEON_ROOT/linux/Debian: This Makefile includes the target compact-

flash which is used to put the Debian root filesystem onto the flash card.

The top-level Makefile has several key targets:

1. kernel – build the kernel and the embedded root filesystem
2. kernel-deb – builds the kernel only. The kernel will use the Debian root file system.
3. sim – build the kernel and the embedded root filesystem, designed to run on the hardware

simulator.
4. strip – strip the symbols out of vmlinux.64, creating a smaller vmlinux.64 file.
5. clean – remove all files created by the prior build

The kernel, kernel-deb, and the sim targets will build the ELF file
$OCTEON_ROOT/linux/kernel_2.6/linux/vmlinux.64. The vmlinux.64 file may
or may not contain a root filesystem, depending on the target selected.

To see the other make targets, cd $OCTEON_ROOT/linux and type make without a target.
The following table contains some of the commonly-used targets.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-81

Table 23: Linux Top-Level Makefile Targets
Target Description

kernel

The command make kernel will build the Linux kernel and the
embedded root filesystem, and create the vmlinux.64 ELF file. The
vmlinux.64 file contains the Linux kernel and the embedded root
filesystem.

kernel-deb

The command make kernel-deb will build the Linux kernel, and
create the vmlinux.64 ELF file. The vmlinux.64 file contains
only the Linux kernel. This target is used when the kernel uses the
separate Debian root filesystem. The Debian root filesystem is typically
located on compact flash.

sim

The command make sim will build the Linux kernel and the embedded
root filesystem, and create the vmlinux.64 ELF file. The
vmlinux.64 file contains the Linux kernel and the embedded root
filesystem. The vmlinux.64 file is built to run on the hardware
simulator.

strip Strip symbols out of vmlinux.64. This option will strip debugging
information, creating a smaller vmlinux.64 file.

tftp Copy vmlinux.64 to /tftpboot, then strip it.

flash Copy vmlinux.64 onto compact flash. The Makefile expects that the
compact flash was already mounted at /mnt/cf1).

clean Remove all generated files and the KERNEL CONFIG.

16.2.1 The sudo Command Needed to Configure and Build Linux
The sudo command is required to configure and build the Linux filesystem on the development
host. Note that once the sudo command is entered, and the password accepted, the system will
remember the password for awhile. The default amount of time is 5 minutes.

To make executing Linux build commands simpler, type sudo ls and enter the password
immediately before building Linux targets. This will facilitate putting the make command into the
background, and saving the output of the command, as discussed in Section 10.5 – “Saving make
Output”.

Note: If you omit the sudo before the make, you will be prompted for your sudo
password several times during the build. The first kernel is built takes about 20 minutes.
It is bothersome to have to watch for the multiple password prompts during the entire
build. It is also not possible to simply check on the build from time to time: the sudo
password prompt will time out after 5 minutes. If multiple users are sharing the same
system, see Section 44 – “Appendix T: Multiple Embedded Root Filesystem Builds”.

16.3 Configuring Linux
Both the kernel and the embedded root filesystem builds may be separately configured.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-82 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

16.3.1 Configuring the Linux Kernel
To configure the Linux kernel, go to $OCTEON_ROOT/linux/kernel_2.6/linux and type:

host$ make menuconfig

16.3.2 Configuring the Embedded Root Filesystem
To configure the embedded root filesystem, go to
$OCTEON_ROOT/linux/embedded_rootfs and type:

host$ sudo make menuconfig

While following the steps in this tutorial, do not change the kernel or embedded root filesystem
configuration unless specified in the instructions.

16.4 Building Linux
There are 3 separate ways to build Linux from the top-level Makefile:

1. The kernel with the embedded root filesystem
2. The kernel only
3. The kernel with embedded root filesystem which is built to run on the hardware simulator.

16.4.1 Build Linux with the Embedded Root Filesystem
Here are the steps for building a bootable embedded version of Linux which includes the
embedded root filesystem:

host$ cd $OCTEON_ROOT/linux
type sudo ls to set the root password. The host will remember it for

 # about 5 minutes.
 host$ sudo make clean

host$ sudo ls
host$ sudo make kernel >make.out 2>&1 &
host$ tail –f make.out

This build takes about 20 minutes. (Note that some warnings are normal with a Linux build.)

The Makefile will create the $OCTEON_ROOT/linux/kernel_2.6/linux/vmlinux.64
ELF file, which can be run on the OCTEON processor. (Note that newer SDKs may have a newer
version of the kernel, so that the kernel_2.6 directory may need to be updated to a higher
version number.)

Note: If multiple users are sharing a development host, and will need to build the
embedded root filesystem, see Section 44 – “Appendix T: Multiple Embedded Root
Filesystem Builds”.

16.4.2 Build the Linux Kernel Only
To build the Linux kernel only, use the instructions for building Linux with the embedded root
filesystem, but substitute kernel-deb instead of kernel as the make target:

host$ sudo make kernel-deb >make.out 2>&1 &

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-83

The Makefile will create the $OCTEON_ROOT/linux/kernel_2.6/linux/vmlinux.64
ELF file, which can be run on the OCTEON processor. (Note that newer SDKs may have a newer
version of the kernel, so that the kernel_2.6 directory may need to be updated to a higher
version number.)

16.4.3 Build Linux to Run on the Hardware Simulator
To build the Linux kernel only, use the instructions for building Linux with the embedded root
filesystem, but substitute sim instead of kernel as the make target:

h

ost$ sudo make sim >make.out 2>&1 &

The Makefile will create the $OCTEON_ROOT/linux/kernel_2.6/linux/vmlinux.64
ELF file, which can be run on the hardware simulator. (Note that newer SDKs may have a newer
version of the kernel, so that the kernel_2.6 directory may need to be updated to a higher
version number.)

16.5 About the make clean Command
If the make clean command is executed in the $OCTEON_ROOT/linux directory, then the
kernel’s $OCTEON_ROOT/linux/kernel_2.6/linux/.config file will be deleted. On
the next build, if the $OCTEON_ROOT/linux/kernel_2.6/linux/.config file is
missing, then the pristine (original kernel.config supplied with the release) is copied to
.config. This is done to allow the user to restore the original working kernel configuration.

This can be inconvenient if the user would like to save the .config file. The .config file can
be saved to another name, such as .config.save. After the clean step, this file can be copied to
.config.

To clean the kernel directory without removing the .config file, cd to
$OCTEON_ROOT/linux/kernel_2.6 before executing make clean, or use the following
command in the $OCTEON_ROOT/linux directory:

host$ make -s -C kernel_2.6 clean

16.6 The Kernel File Name: vmlinux vs vmlinux.64
In the SDK documentation, the name vmlinux.64 is used instead of vmlinux. Both files have
the same content, so when the directions specify vmlinux.64, it is okay to use vmlinux
instead.

The presence of two files is for historical reasons. At one point in the past there was a difference
between vmlinux and vmlinux.64. The kernel build process made a 32-bit binary and then
changed it into a 64-bit binary. This is no longer the case, but the vmlinux.64 name was kept
for backwards compatibility.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-84 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

16.7 The strip Utility and the vmlinux.64 ELF File
The strip utility is used to remove debugging information from the ELF file. This step is usually
done after debugging is complete. The result is a smaller file, which downloads and boots faster.
Strip is used before putting the file into the onboard flash.

To strip the kernel:

host$ cd $OCTEON_ROOT/linux/kernel_2.6/linux
save the unstrapped version
host$ cp vmlinux.64 vmlinux.64_unstripped
go to the $OCTEON_ROOT/linux directory
host$ cd ../..
strip the kernel
host$ sudo make strip

Verify the new executable is smaller:
-rwxr-xr-x 1 testname software 20097552 Feb 22 14:54 vmlinux.64
-rwxr-xr-x 1 testname software 81380505 Feb 22 14:54 vmlinux.64.unstripped

17 Hands-on: Build and Run Linux
In this step, the vmlinux.64 file will be build, downloaded and run. Linux will then use the
embedded root filesystem, running in memory.

Once the vmlinux.64 ELF file has been downloaded and booted, Linux will communicate via
the target console. Once the Linux prompt is up, type ls to see the busybox tools in action.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-85

Table 24: Build and Run Linux, Part 1
Steps N

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide . Note:
The Ethernet cable is not needed to run Linux on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not
disturb the office network.

For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

The word Boot should appear on the red LEDs on
the board. If not, something is wrong with the board

host$ minicom -w ttyS0 Substitute ttyS0 for the serial port on the host
connected to the OCTEON target board. This will
provide a connection to the target console. You
should see the bootloader prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(SDK version: 1.7.3-264) (Build
time: Jun 13)

f the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

6. Build Linux If this step was already done, no need to repeat it!
host$ cd $OCTEON_ROOT/linux

host$ sudo ls Set the sudo password for 5 minutes
host$ sudo make kernel >make.out 2>&1 & Build the kernel and embedded root filesystem in the

background. Use tail -f to see the output. The
make command will create the executable file
vmlinux.64.

host$ make strip Strip the vmlinux.64 file to make it smaller.
host$ cd kernel_2.6/linux The vmlinux.64 file is located in the

kernel_2.6/linux directory.

verify the build is complete before continuing
host$ wait
go to the created vmlinux file
host$ cd kernel_2.6/linux
host$ sudo cp vmlinux /tftpboot

See SDK Tutorial directions for tftpboot.

2. Reset the board

1. Connect the Hardware

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

Continued in the next table…

7. Copy the ELF file to the tftpboot Directory

ote

.

I

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-86 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 25: Build and Run Linux, Part 2
Steps N

f a DHCP server is available, then selecting the target IP
address is handled by the server. Othewise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic
with your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

Use tftpboot to download the application.
target# tftpboot 0 vmlinux.64

See SDK Tutorial directions for tftpboot. If this
step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

target# bootoctlinux 0 coremask=0x1 This command will run vmlinux.64 on core 0.
Expect to see the Linux prompt. Type ls to verify
Linux is u

ote

I

p and running.

To reset the development target, reboot Linux, or
For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

Note: To run vmlinux.64 a second time, the
board must be reset or power cycled because there is
no other way to return to the bootloader prompt.

12. Boot Linux

13. Reset the Target Board

9. Set the Development Target's IP Address

8. Select Target IP Address, if Needed

9a. No DHCP Server

9b. DHCP Server Available

10. Test the Ethernet Connection to the Host

11. Download Linux to the Development Target

17.1 Build the Kernel and Embedded Root Filesystem
First, build vmlinux.64:

host$ cd OCTEON_ROOT/linux
host$ sudo make clean

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-87

host$ sudo ls
host$ sudo make kernel >make.out 2>&1 &

The result of this build (the default ABI is EABI64 ABI) is an ELF file with the kernel and
filesystem packaged as a 64-bit ELF binary. On SDK 1.8.0, this file is
$OCTEON_ROOT/linux/kernel_2.6/linux/vmlinux.64.

17.2 Download vmlinux.64 to the Development Target
Using the steps shown in the hello example, download vmlinux.64 to the target board.

17.3 Boot Linux on the Development Target
Use the bootloader command bootoctlinux to boot Linux. For example, to run Linux on the
first core:

target# bootoctlinux 0 coremask=0x1
argv[2]: coremask=0x1
ELF file is 64 bit
Attempting to allocate memory for ELF segment: addr: 0xffffffff81100000
(adjust8
Allocated memory for ELF segment: addr: 0xffffffff81100000, size 0x1303988
Loading .text @ 0xffffffff81100000 (0x43e8bc bytes)
Loading __ex_table @ 0xffffffff8153e8c0 (0x6f80 bytes)
Loading .rodata @ 0xffffffff81546000 (0xb42a4 bytes)
Loading .pci_fixup @ 0xffffffff815fa2a8 (0xbe0 bytes)
Loading __ksymtab @ 0xffffffff815fae88 (0xa0a0 bytes)
Loading __ksymtab_gpl @ 0xffffffff81604f28 (0x2c40 bytes)
Loading __ksymtab_gpl_future @ 0xffffffff81607b68 (0x30 bytes)
Loading __ksymtab_strings @ 0xffffffff81607b98 (0x109c8 bytes)
Loading __param @ 0xffffffff81618560 (0x1ba8 bytes)
Loading .data @ 0xffffffff8161c000 (0x40eb0 bytes)
Loading .data.cacheline_aligned @ 0xffffffff8165d000 (0x8b80 bytes)
Loading .init.text @ 0xffffffff81666000 (0x38270 bytes)
Loading .init.data @ 0xffffffff8169e270 (0x6190 bytes)
Loading .init.setup @ 0xffffffff816a4400 (0x6d8 bytes)
Loading .initcall.init @ 0xffffffff816a4ad8 (0x5c8 bytes)
Loading .con_initcall.init @ 0xffffffff816a50a0 (0x18 bytes)
Loading .exit.text @ 0xffffffff816a50b8 (0x2278 bytes)
Loading .init.ramfs @ 0xffffffff816a8000 (0xccd997 bytes)
Loading .data.percpu @ 0xffffffff82375a00 (0x36c8 bytes)
Clearing .bss @ 0xffffffff8237a000 (0x443a0 bytes)
Clearing .cvmx_shared_bss @ 0xffffffff823be3a0 (0x310 bytes)
Loading Linux kernel with entry point: 0xffffffff81666000 ...
Bootloader: Done loading app on coremask: 0x1

For an example boot output, see the SDK Document “Linux on the OCTEON”.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-88 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that arguments may be passed to the kernel by using bootoctlinux:

target# help bootoctlinux
bootoctlinux elf_address [coremask=mask_to_run | numcores=core_cnt_to_run]
 [forceboot] [skipcores=core_cnt_to_skip] [endbootargs]
 [app_args ...]
elf_address - address of ELF image to load. If 0, default load address is used.
coremask - mask of cores to run on. Anded with coremask_override
environment
 variable to ensure only working cores are used
numcores - number of cores to run on. Runs on specified number of cores,
 taking into account the coremask_override.
skipcores - only meaningful with numcores. Skips this many cores (starting
 from 0) when loading the numcores cores. For example,
 setting skipcores to 1 will skip core 0
 and load the application starting at the next available core.
forceboot - if set, boots application even if core 0 is not in mask
endbootargs - if set, bootloader does not process any further arguments and
 only passes the arguments that follow to the kernel. If not
 set, the kernel gets the entire command line as arguments.

18 Hands-on: Run a SE-UM Example (named-block)
When the embedded root filesystem was built, the Linux examples were automatically built and
included in the root filesystem. Once Linux is up and running, a SE-UM example can be run.

If you type cd /examples, you will see some of the example programs there. These have been
compiled to run on Linux. The program named-block is a good example to run. This example
is very simple and does not require any special knowledge or optional hardware units.

Note: to execute an example, precede the file name with the characters ./ to provide the
pathname to the file (because /examples is not in the PATH list). Without the ./, the file will
not be found.

target# ./named-block
CVMX_SHARED: 0x1201a0000-0x1201b0000
Active coremask = 0x2
INFO: Size of pointer is 8 bytes
PASS: All tests passed

Note that this example may be run over and over without rebooting the system because, after the
application exits, the system should display the Linux prompt.

In the next section, a much more complex example will be run.

19 About the linux-filter Example
An example which shows downloading and booting multiple ELF files on multiple cores is
linux-filter. A Simple executive application, linux-filter, is downloaded to one set of
cores, and Linux is downloaded to another set of cores. In the steps shown here, to simplify the
example, only 2 cores are used, one for each application. In this example, core 0 will run

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-89

linux-filter and core 1 will run Linux. They can run on any core: there is no requirement
that linux-filter is run on core 0, nor that linux-filter and Linux be assigned to cores
in any particular order. Additionally, Linux and linux-filter may both be run on multiple
cores to add more processing power. The only requirement is that the application which will run
on core 0 is loaded last.

In this example, the Simple Executive application linux-filter receives all incoming packets.
If the packet is not an IP broadcast packet (such as ping –b), then linux-filter forwards
the packet to Linux, which is running on a different core.

Because cores receive packets to process via the get_work() operation, it is not necessary to
forward the packet to a specific core. All the Linux cores are set to receive packets destined for
their group, while the Simple Executive cores receive packets destined for their group. (See the
Software Overview chapter for a discussion of processing groups.) This allows cores to combine
their processing power.

This example requires an OCTEON processor with at least 2 cores. Although it can be run on
more than 2 cores, only 2 cores will be shown here. The directions below are for a 1.7 and higher
bootloader.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-90 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 13: Example: linux-filter Forwards an IP Non-broadcast Packet

2.
 ad

d_w
ork

–

gro
up

0

6. get_work result –

group 15

8. add_work -
group 14

11
.
To
 P
KO
 C
om
ma
nd
 Q
ue
ue

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-91

Figure 14: Example: linux-filter Does Not Forward an IP Broadcast
Packet

The hardware units and data plane cores perform a large amount of packet processing
without requiring any action from the cores running the control plane. Processing is shown in
steps 1-4, below.

OCTEON HOST

Data Plane

SSO - Schedule/
Synchronization

/Order

PKO – Packet
Output Unit

1. Ping
(broadcast)

2. add_wo
rk – group 0 3. get_work result – group 0

Data Plane: Cores 1 and 2
Running linux-filter as a SE-
S application: accepts work for
groups 0 and 14

Note that either data-plane core
can handle the packet processing.

Control Plane

Control Plane: Core 0
Running: Linux Operating
System
The control plane does not need
to process this packet: it is
offloaded.

SE-S

SE-S

linux-filter: Offloading the Control Plane

Linux
Driver

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the

SSO.
Step 3: A data-plane core calls get_work() and receives

the packet.
Step 4: The data-plane core tests the packet: Test if packet

((broadcast) && (IP)) = TRUE, therefore discards
packet by calling
cvmx_pip_free_packet_data() and
cvmx_fpa_free() to free Packet Data Buffer and
Work Queue Entry.

RX

TX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

S
 T

D
K

U
R

IA
L

 OCTEON Programmer’s Guide

4-92 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Test configuration: In the test configuration used in the examples shown in this chapter, the
development host IP address (eth0) is 192.168.51.254. The development host and development
target are on an isolated Ethernet. There are no other devices on the isolated Ethernet, so the IP
address used for the development target will be 192.168.51.159.

This is a summary of what will happen when the program is run. Note that in this example there is
only one core running Linux and one core running linux-filter. Each application may be run
on many cores.

1. The PIP/IPD receives the packet and set the group to the FROM_INPUT_PORT_GROUP
(group 0).

2. The core running linux-filter receives packets for group
FROM_INPUT_PORT_GROUP.

3. The core running linux-filter drops packets which are IP broadcast. It forwards the
others to the Linux cores by setting the group to the TO_LINUX_GROUP (group 15).

4. The Linux core replies to the packet, setting the group for the reply to
FROM_LINUX_GROUP (group 14).

5. The core running linux-filter also receives packets for group
FROM_LINUX_GROUP.

6. The core running linux-filter sends the packet to the PKO for transmission.

T
O

20 Hands-on: Run linux-filter as a SE-S Application
(Hybrid System)

These are the directions for running linux-filter as a Simple Executive Standalone
application (SE-S). This is an example of a hybrid system: Linux will run on one core, and the
SE-S application will run on another core.

Figure 15: Example of linux-filter (SE-S) and Linux Run on 2 out of 8
Cores

The following tables show the steps to run linux-filter as a SE-S application on one, and
Linux on another core. In this example, linux-filter is run on core 0 and Linux is run on
core 1, but there is no reason not to run both on more cores. This example shows two different
load sets, creating a hybrid system.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-93

To test linux-filter, first a ping is sent from the development host to the development
target, then a broadcast ping is sent from the development host to the development target. The
first ping should be forwarded, the broadcast ping should be filtered, offloading the core running
Linux. This example shows the data-plane offloading the control-plane.

Table 26: Build and Run Linux and linux-filter (SE-S), Part 1
Steps No

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide . Note:
The Ethernet cable is not needed to run Linux on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not disturb
the office network.

For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

The word Boot should appear on the red LEDs on
the board. If not, something is wrong with the board.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to
connect to the OCTEON target board if it is not
ttyS0. Minicom will provide a connection to the
target console. You should see the bootloader
prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(SDK version: 1.7.3-264) (Build
time: Jun 13)

f the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

type the following command on one line
host$ cd $OCTEON_ROOT/examples/linux-
filter
host$ make clean

host$ make Build the 64-bit SE-S applicaton. The output of the
make command is the file linux-filter. The SE-
UM version is automatically built by the Linux build,
and installed in the embedded root filesystem.

host$ sudo cp linux-filter /tftpboot See theSDK Tutorial directions for tftpboot.

2. Reset the board

1. Connect the Hardware

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

6. Build the Application

7. Copy the ELF file to the tftpboot Directory

Continued in the next table…

te

I

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-94 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 27: Build and Run Linux and linux-filter (SE-S), Part 2
Steps No

8. Build Linux and Copy the ELF File If this step was already done, no need to repeat it!
host$ cd $OCTEON_ROOT/linux

host$ sudo ls Set the sudo password for 5 minutes
host$ sudo make kernel >make.out 2>&1 & Build the kernel and embedded root filesystem in the

background. Use tail -f to see the output. The
make command will create the executable file
vmlinux.64.

verify the build is complete before continuing
host$ wait
host$ make strip
go to the created vmlinux file
host$ cd kernel_2.6/linux
host$ sudo cp vmlinux.64 /tftpboot

See SDK Tutorial directions for tftpboot.
Strip the vmlinux.64 file to make it smaller.
The vmlinux.64 file is located in the
kernel_2.6/linux directory.

f a DHCP server is available, then selecting the target IP
address is handled by the server. Othewise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic
with your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

Continued in the next table…

10a. No DHCP Server

10b. DHCP Server Available

11. Test the Ethernet Connection to the Host

9. Select Target IP Address, if Needed

10. Set the Development Target's IP Address

te

I

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-95

Table 28: Build and Run Linux and linux-filter (SE-S), Part 3
Steps No

Use tftpboot to download the application.
target# tftpboot 0 vmlinux.64

See the SDK Tutorial directions for tftpboot. If
this step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

target# bootoctlinux 0 coremask=0x2 This command will run vmlinux.64 on core 1.
Note: Linux will not run until core 0 comes out of
reset (when the linux-filter SE-S application is
downloaded

te

).

Use tftpboot to download the application.
target# tftpboot 0 linux-filter

See SDK Tutorial directions for tftpboot. If this
step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

target# bootoct 0 coremask=0x1 This command will run linux-filter on core 0.
Note: Linux will now run, and output a prompt on the
target console. Type ls to verify Linux is up and
running.

type the following command on one line
target# modprobe cavium-ethernet
pow_send_group=14 pow_receive_group=15

Type into the target console to load the Cavium
Networks Ethernet Driver. (Type all the text on the
left as one command line, omitting the target#.)

use your target IP address instead of the example value!
target# ifconfig pow0 192.168.51.159
target# ifconfig eth0 promisc up

Substitute your IP address for 192.168.51.159.

12. Download Linux to the Development Target

13. Boot Linux

Continued in the next table…

14. Download the Application to the Development Target

15. Boot the Application

16. Load the Ethernet Driver

17. Configure the Interfaces

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-96 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 29: Build and Run Linux and linux-filter (SE-S), Part 4
Steps No

target# ifconfig Expect to see:
eth0 Link encap:Ethernet
HWaddr 00:0F:B7:10:0C:16
 inet6 addr:
fe80::20f:b7ff:fe10:c16/64
 <text omitted>

lo Link encap:Local Loopback
 inet addr:127.0.0.1
Mask:255.0.0.0
 inet6 addr: ::1/128
Scope:Host
 <text omitted>

HWaddr 00:00:00:00:00:0E

Bcast:192.168.51.255
Mask:255.255.255.0
 <text omitted>

use your target IP address instead of the example value!
target# ping 192.168.51.159

Substitute your IP address for 192.168.51.159 .
This ping should succeed. The linux-filter
application is forwarding the ping to Linux. In the
Minicom session the following text will be visible:

PP0:~CONSOLE-> Received 98 byte
packet.
PP0:~CONSOLE-> Received 98 byte
packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 98 byte
packet. Sending to Linux.
PP0:~CONSOLE-> Received 98 byte
packet from Linux. Sending to PKO.
<text omitted>

18. Check the Ethernet Configuration

19. Ping the Target from the Development Host

Continued in the next table…

te

pow0 Link encap:Ethernet

inet addr:192.168.51.159

Sending to Linux.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-97

Table 30: Build and Run Linux and linux-filter (SE-S), Part 5
Steps Note

use your target IP address instead of the example value!
target# ping -b 192.168.51.159

The development target should not reply to the ping,
only the development host will reply to the broadcast
ping. The following text will be visible in the target
console:

PP0:~CONSOLE-> Received 92 byte
packet.
PP0:~CONSOLE-> Received 92 byte
packet. Filtered.
PP0:~CONSOLE-> Received 92 byte
packet. Filtered.
(etc)
Success! Linux filter has not passed the packet on to
the slow (control) path Linux core.

To reset the development target, reboot Linux, or
For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

Note: To run vmlinux.64 a second time, the
board must be reset or power cycled because there is
no other way to return to the bootloader prompt.

21. Reset the Target Board

20. Ping the Target from the Development Host, Using a Broadcast Ping

Filtered.

Note: After the ifconfig command, because there are normal Ethernet packets being
transmitted, in addition to ping requests typed in by the user, expect to see some output of this form
in addition to any generated by the ping commands. These printouts are normal.

target# ifconfig pow0 192.168.16.61
PP0:~CONSOLE-> Received 90 byte packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 78 byte packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 70 byte packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 90 byte packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 70 byte packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 70 byte packet from Linux. Sending to PKO.

target# ifconfig eth0 promisc up device eth0 entered promiscuous mode
PP0:~CONSOLE-> Received 390 byte packet. Sending to Linux.
PP0:~CONSOLE-> Received 60 byte packet. Sending to Linux.
PP0:~CONSOLE-> Received 60 byte packet. Sending to Linux.
PP0:~CONSOLE-> Received 106 byte packet. Sending to Linux.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-98 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

21 Hands-on: Run linux-filter as a Linux SE-UM
Application

Previously, linux-filter was compiled to run as a Simple Executive Standalone application
(SE-S). Now it will be run as a Simple Executive User-Mode Application (SE-UM) on Linux.

In this example, Linux is booted on cores 0 and 1, and then linux-filter is run on core 1 as a
SE-UM application. The linux-filter application is started using the oncpu command.
Details about the oncpu command are located in the Software Overview chapter.

To test linux-filter, first a ping is sent from the development host to the development
target, and then a broadcast ping is sent from the development host to the development target.
The first ping should be forwarded to Linux, the broadcast ping should be filtered.

Note that linux-filter cannot be run on the same core running the Cavium Networks
Ethernet driver, so this exercise cannot be done if the OCTEON model has only 1 core.

Figure 16: Example of linux-filter run as a SE-UM Application on Linux

The linux-filter application was automatically compiled when the Linux kernel target was
build. It has already been added to the embedded root filesystem. It can be found, after Linux is
booted, in the /examples directory on the target. Note that when it is installed in the embedded
root fileystem, the program name is changed to from linux-filter-linux_64 to linux-
filter.

On the target:

target# cd /examples
target# ls
busybox-testsuite low-latency-mem passthrough
crypto
linux-filter openssl-testsuite zip

 named-block testsuite

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-99

Table 31: Build and Run Linux and linux-filter (SE-UM), Part 1
Steps No

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide . Note:
The Ethernet cable is not needed to run Linux on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not disturb
the office network.

For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

The word Boot should appear on the red LEDs on
the board. If not, something is wrong with the board.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to
connect to the OCTEON target board if it is not
ttyS0. Minicom will provide a connection to the
target console. You should see the bootloader
prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(SDK version: 1.7.3-264) (Build
time: Jun 13)

f the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

6. Build Linux If this step was already done, no need to repeat it!
host$ cd $OCTEON_ROOT/linux

host$ sudo ls Set the sudo password for 5 minutes
host$ sudo make kernel >make.out 2>&1 & Build the kernel and embedded root filesystem in the

background. Use tail -f to see the output. The
make command will create the executable file
vmlinux.64.

verify the build is complete before continuing
host$ wait
host$ make strip
go to the created vmlinux file
host$ cd kernel_2.6/linux
host$ sudo cp vmlinux /tftpboot

See SDK Tutorial directions for tftpboot.
Strip the vmlinux.64 file to make it smaller.
The vmlinux.64 file is located in the
kernel_2.6/linux directory.

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

7. Copy the ELF file to the tftpboot Directory

1. Connect the Hardware

2. Reset the board

Continued in the next table…

te

I

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-100 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 32: Build and Run Linux and linux-filter (SE-UM), Part 2
Steps No

f a DHCP server is available, then selecting the target IP
address is handled by the server. Othewise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic
with your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

Use tftpboot to download the application.
target# tftpboot 0 vmlinux.64

See the SDK Tutorial directions for tftpboot. If
this step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

target# bootoctlinux 0 coremask=0x3 This command will run vmlinux.64 on cores 0 an
1. Note: Linux will now run, and output a prompt
on the target console. Type ls to verify Linux is up
and running.

type the following command on one line
target# modprobe cavium-ethernet
pow_send_group=14 pow_receive_group=15

Type into the target console to load the Cavium
Networks Ethernet Driver. (Type all the text on the
left as one command line, omitting the target#.)

8. Select Target IP Address, if Needed

Continued in the next table…

10. Test the Ethernet Connection to the Host

11. Download Linux to the Development Target

12. Boot Linux

13. Load the Ethernet Driver

9. Set the Development Target's IP Address
9a. No DHCP Server

9b. DHCP Server Available

te

I

d

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-101

Table 33: Build and Run Linux and linux-filter (SE-UM), Part 3
Steps No

use your target IP address instead of the example value!
target# ifconfig pow0 192.168.51.159
target# ifconfig eth0 promisc up

Substitute your IP address for 192.168.51.159

target# ifconfig Expect to see:
eth0 Link encap:Ethernet
HWaddr 00:0F:B7:10:0C:16
 inet6 addr:
fe80::20f:b7ff:fe10:c16/64
 <text omitted>

lo Link encap:Local Loopback
 inet addr:127.0.0.1
Mask:255.0.0.0
 inet6 addr: ::1/128
Scope:Host
 <text omitted>

pow0 Link encap:Ethernet
HWaddr 00:00:00:00:00:0E

Bcast:192.168.51.255
Mask:255.255.255.0
 <text omitted>

Be sure to start linux-filter in the background by using the

te

inet addr:192.168.51.159

&
character.
type the following command on one line
target# oncpu 0x2
/examples/linux-filter &

Expect to see:
Setting affinity to 0x2
CVMX_SHARED: 0x1201a0000-0x1201b0000
Active coremask = 0x2

14. Configure the Interfaces

16. Start the SE-UM Application

15. Check the Ethernet Configuration

Continued in the next table.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-102 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 34: Build and Run Linux and linux-filter (SE-UM), Part 4
Steps No

use your target IP address instead of the example value!
target# ping 192.168.51.159

Substitute your IP address for 192.168.51.159 .
This ping should succeed. The linux-filter
application is forwarding the ping to Linux. In the
Minicom session the following text will be visible:

PP0:~CONSOLE-> Received 98 byte
packet.
PP0:~CONSOLE-> Received 98 byte
packet from Linux. Sending to PKO.
PP0:~CONSOLE-> Received 98 byte
packet. Sending to Linux.
PP0:~CONSOLE-> Received 98 byte
packet from Linux. Sending to PKO.
<text omitted>

use your target IP address instead of the example value!
target# ping -b 192.168.51.159

The development target should not reply to the ping,
only the development host will reply to the broadcast
ping. The following text will be visible in the target
console:

PP0:~CONSOLE-> Received 92 byte
packet.
PP0:~CONSOLE-> Received 92 byte
packet. Filtered.
PP0:~CONSOLE-> Received 92 byte
packet. Filtered.
(etc)
Success! Linux filter has not passed the packet on to
the slow (control) path Linux core.

To reset the development target, reboot Linux, or
For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

Note: To run vmlinux.64 a second time, the
board must be reset or power cycled because there is
no other way to return to the bootloader prompt.

19. Reset the Target Board

17. Ping the Target from the Development Host

18. Ping the Target from the Development Host, Using a Broadcast Ping

te

Sending to Linux.

Filtered.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-103

22 Hands-on: Run linux-filter as a SE-UM Application on
Multiple Cores

The following figure shows linux-filter running on a load set of 2 cores of the 3 cores which
are running Linux. This figure does not show the unused cores.

Figure 17: Run linux-filter as a SE-UM Load Set

One Load Set

Linux

SMP Linux or other SMP-capable OS
(single copy). The SE-UM processes

started with one oncpu command.

Linux Linux
Driver

Note that the Cavium Networks Ethernet driver is
not in the same load set as the SE-UM applications.

SE-UM Load Set

linux-
filter

(SE-UM)

linux-
filter

(SE-UM)

In the steps shown in Section 21 – “Hands-on: Run linux-filter as a Linux SE-UM
Application”, make the following changes:

 Boot Linux on 3 cores (cores 0-2):

target# bootoctlinux 0 coremask=0x7

Note that linux-filter should not be run on the same core running the Cavium
Networks Ethernet driver, so this exercise cannot be done if the OCTEON model has only 2
cores.

Start the Cavium Networks Ethernet Driver
target# modprobe cavium-ethernet pow_send_group=14 pow_receive_group=15
target# ifconfig pow0 192.168.51.159
target# ifconfig eth0 promisc up

Start linux-filter on cores 1 and 2:
 # be sure to start linux-filter in the background using the & character

target# oncpu 0x6 /examples/linux-filter &
Setting affinity to 0x6
CVMX_SHARED: 0x1201a0000-0x1201b0000
Active coremask = 0x6

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-104 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Load the Cavium Networks Ethernet driver using the modprobe command:
target# modprobe cavium-ethernet pow_send_group=14 pow_receive_group=15
Waiting for ethernet module to complete initialization...
Waiting for packets from port 16...

Type ps to verify linux-filter is running on two cores:

target# ps
<text omitted>
784 root 324 S /examples/linux-filter
785 root 184 S /examples/linux-filter
<text omitted>

Then perform the ping and ping –b commands from the host to test the example.

See Section 45 – “Appendix U: How to Find the Process’s Core Number” for an advanced hands-
on step which can be taken at this point. This hands-on step is extra: it is not required for basic
understanding.

23 Hands-on: Creating a Custom Application
The next step is to decide on the runtime model and software architecture for the custom
application being developed.

Then select an example which does processing similar to the desired processing, such as
linux-filter or passthrough, and copy that example to a new sub-directory. Use this as a
base for the custom application to save time.

After copying the example, modify the Makefile as needed (for example, change the name of the
source .c file to a new name). The custom application can then be built in the same way the
examples are built.

Note that the hello example is too simple to use as a starting point for your own
application. Choose a more complex example such as linux-filter or
passthrough.

The Free Pool Allocator Chapter provides guidelines on configuring Simple Executive including
creating custom FPA pools. Other API chapters will provide guidelines on configuring individual
hardware units.

A small piece of code is provided with the on-line OCTEON Programmer’s Guide at the support
site. This tiny application is used to demonstrate configuring the FPA. It is a simple example of
creating a custom application by copying an existing example and modifying it. This example is
too simple to use to develop a network application, but may be helpful in showing how to modify
the Simple Executive configuration.

23.1 Adding Applications to the Embedded Root Filesystem
The examples are already added to the embedded root filesystem. To add a new application, copy
the information for a different application and change the names to the new application. A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-105

simplified FPA example is available at the Cavium Networks support site. That application can be
installed in the examples directory on the development host. To add it to the Linux embedded
root filesystem build, edit three files as show below. In the text below, the data for the zip
example is copied and modified to specify the fpa example. The file text shown in this example is
from SDK 1.8.

1. $OCTEON_ROOT/examples/Makefile
examples = application-args crypto debugger hello linux-filter \
low-latency-mem mailbox passthrough queue traffic-gen uart zip \
named-block fpa_simplified

2. $OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/sdk-

examples.mk:
menu "SDK Examples"

config CONFIG_sdk-examples
 bool "Include SDK Examples"
 default y
 help
 Include the SDK examples

<text omitted>
ifdef SDK_EXAMPLES_ZIP
install: build_SDK_EXAMPLES_ZIP
.PHONY: build_SDK_EXAMPLES_ZIP
build_SDK_EXAMPLES_ZIP:
 ${MAKE} -C ${OCTEON_ROOT}/examples/zip OCTEON_TARGET=${ABI}
config/cvmx-
config.h
 ${MAKE} -C ${OCTEON_ROOT}/examples/zip OCTEON_TARGET=${ABI}
endif
ifdef SDK_EXAMPLES_FPA
install: build_SDK_EXAMPLES_FPA
.PHONY: build_SDK_EXAMPLES_FPA
build_SDK_EXAMPLES_FPA:
 ${MAKE} -C ${OCTEON_ROOT}/examples/fpa_simplified \
OCTEON_TARGET=${ABI} config/cvmx-
config.h
 ${MAKE} -C ${OCTEON_ROOT}/examples/fpa_simplified \
OCTEON_TARGET=${ABI}
Endif
<text omitted>
.PHONY: install
install:
 mkdir -p ${ROOT}/examples
<text omitted>
ifdef SDK_EXAMPLES_ZIP
 cp ${OCTEON_ROOT}/examples/zip/zip-${ABI} ${ROOT}/examples/zip
endif
ifdef SDK_EXAMPLES_FPA
 cp ${OCTEON_ROOT}/examples/fpa_simplified/fpa-${ABI} \
${ROOT}/examples/fpa
endif

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-106 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

3. $OCTEON_ROOT/linux/embedded_rootfs/pkg_kconfig/ 74-sdk-
examples.kconfig:
<text omitted>

 bool "zip"
 depends CONFIG_sdk-examples
 default y

 config SDK_EXAMPLES_FPA
 bool "fpa"
 depends CONFIG_sdk-examples
 default y

The new item should appear when using the make menuconfig command in
$OCTEON_ROOT/linux/embedded_rootfs:

host$ cd $OCTEON_ROOT/linux/embedded_rootfs
host$sudo make menuconfig
 Global Options --->
 [*] device-files
 [*] busybox
 [*] Include the Busybox testsuite
 [*] init-scripts
 NFS Root filesystem --->
<text omitted>
 [*] mtd-tools
 SDK Examples --->
 [*] lockstat
 <text omitted>

When SDK Examples is selected, the next menu shows the new item:

 [*] Include SDK Examples
 [*] intercept-example
 [*] crypto
 [*] named-block
 [*] passthrough
 [*] linux-filter
 [*] low-latency-mem
 [*] zip
 [*] fpa_simplified (NEW)

Then rebuild the embedded root filesystem, by invoking the make kernel target in the
$OCTEON_ROOT/linux directory.

To verify that the new application is built correctly:

host$ grep examples/fpa make.out
make -C /home/testname/sdk18/examples/fpa OCTEON_TARGET=linux_64
config/cvmx-config.h
make[4]: Entering directory `/home/testname/sdk18/examples/fpa'
make[4]: Leaving directory `/home/testname/sdk18/examples/fpa'
make -C /home/testname/sdk18/examples/fpa OCTEON_TARGET=linux_64
make[4]: Entering directory `/home/testname/sdk18/examples/fpa'
make[4]: Leaving directory `/home/testname/sdk18/examples/fpa'
cp /home/testname/sdk18/examples/fpa/fpa-linux_64
/tmp/root-rootfs/examples/fpa

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-107

Verify that it is installed in the build system correctly:
host$ cd /tmp/root-rootfs/examples
host$ ls
busybox-testsuite fpa low-latency-mem openssl-testsuite testsuite
crypto linux-filter named-block passthrough zip

To verify the new program is in the embedded root filesystem without taking the time to boot
Linux, see Section 38 – “Appendix N: Contents of the Embedded Root Filesystem”.

Then boot Linux. After Linux is booted, run the fpa example.:

target# cd /examples
target# ls
busybox-testsuite linux-filter openssl-testsuite zip
crypto low-latency-mem passthrough
fpa named-block testsuite
target# oncpu 0 ./fpa
<The example should run correctly.>

Detailed instructions may be found in the SDK Document “Linux on the OCTEON”, in the section
“How to Add a Package”. This document includes information on how to add custom libraries as
well as a custom application.

23.2 Example Application Which Breaks Ethernet Driver
The Cavium Networks Ethernet driver configures the SSO, FPA, CIU, PIP, IPD, PKO, and FAU.
Applications which reconfigure these units will cause the Ethernet driver to stop working.

The FPA example is a perfect example of an application which reconfigures hardware already
configured by the Cavium Networks Ethernet driver (in this case, only the FPA). This
reconfiguration will cause the Ethernet driver to stop working, as shown in the following steps.

After booting Linux (with the FPA example included), run the FPA example:

target# cd /examples
target# oncpu 0 ./fpa
<the example should run correctly>

Then configure the Ethernet. In this example, a DHCP server is available. The IP address returned
by the DHCP server is shown in bold print in the example below:

target# modprobe cavium-ethernet
target# udhcpc -i eth0
udhcpc (v1.2.1) started
Jan 1 00:05:51 (none) local0.info udhcpc[753]: udhcpc (v1.2.1) started
Sending discover...
Jan 1 00:05:51 (none) local0.debug udhcpc[753]: Sending discover...
Sending select for 192.168.51.173...
Jan 1 00:05:51 (none) local0.debug udhcpc[753]: Sending select for
192.168.51.1
73...
Lease of 192.168.51.173 obtained, lease time 86400
Jan 1 00:05:51 (none) local0.info udhcpc[753]: Lease of 192.168.51.173
obtained
, lease time 86400

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-108 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

deleting routers
SIOCDELRT: No such process
adding dns 192.168.51.254

Ping the development target from the development host:

this ping should succeed
host$ ping 192.168.51.173

Run the FPA example – there should be a lot of errors, for example:

ERROR: cvmx_fpa_shutdown_pool: Illegal address 0x2e1f8880 in pool
(null)(2)

Ping the development target from the development host again:

this ping should fail
host$ ping 192.168.51.173

24 The Hardware Simulator
A hardware simulator can be run on an x86 Linux host. The simulator is most useful in running
SE-S applications. The Linux kernel may also be run on the simulator, but it is often impractical to
run SE-UM applications on the simulator because the simulator is too slow. The simulator is an
essential tool for SE-S application performance optimization. See Section 24.6 – “Using the
Simulator to Optimize Performance” for more information. See also the Software Debugging
Tutorial chapter, in the section on debugging on the hardware simulator for more information.

There are separate simulator binaries for different OCTEON models, but this information is hidden
when using the script oct-sim or oct-linux. These scripts get the OCTEON model number
from the OCTEON_MODEL environment variable (set by env-setup), then call the appropriate
simulator binary.

When the simulator is started, it will run the bootloader. The bootloader commands are located in
a file, and the filename is specified on the simulator command line. Once the bootloader is
running, the simulator will use the commands in the file to boot the application.

24.1 Simulator Documentation
More information about the simulator can be found in the following SDK documents:

Table 35: Simulator Documentation
SDK Document
Simple Executive Debugger
Linux on the OCTEON - Running Linux on the Simulator
OCTEON Bootloader - Simulator Specific Usage

24.2 Run SE-S Applications on the Simulator
When using the simulator, start the simulator using the oct-sim command to create an easier
debugging environment. This command will open a console session with scroll bars to allow the
user to review session activity which has scrolled off the screen.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-109

The example hello is a simple way to see a SE-S application run on the simulator.

The hello Makefile has two targets which will run hello on the simulator. After the
application is built, the command make run will run hello on the simulator, simulating 1 core.
The command make run4 will run hello on the simulator, simulating 4 cores.

host$ make run4

The last part of the output should be:
<text omitted>
PP1:~CONSOLE-> Hello world!
PP3:~CONSOLE->
PP2:~CONSOLE-> Hello world!
PP3:~CONSOLE->
PP1:~CONSOLE-> Hello example run successfully.
PP3:~CONSOLE-> Hello world!
PP2:~CONSOLE-> Hello example run successfully.
PP0:~CONSOLE-> Hello world!
PP3:~CONSOLE-> Hello example run successfully.
PP0:~CONSOLE-> Hello example run successfully.
PP0: stopping due to BREAK instruction

SIMULATION COMPLETE at cycle (approximate instruction) 753958 (0 global
stop phases)

Note that PP0, PP1… stand for “Packet Processor” 0, etc. These are the printouts from
the different cores on the OCTEON processor.

The $OCTEON_ROOT/examples/hello/Makefile contains the run and run4 targets.
The value of $TARGET is hello:

run: $(TARGET)
 oct-sim $(TARGET) -quiet -noperf -numcores=1

run4: $(TARGET)
 oct-sim $(TARGET) -quiet -noperf -numcores=4

Note: Not all example Makefiles support these targets.

Try this from the command line:
host$ cd $OCTEON_ROOT/examples/hello
host$ oct-sim hello –quiet –noperf –numcores=4

(At the end of the simulator output, type Enter a couple of times to see the bash prompt on the
screen.)

Note that the output of hello is seen in the same terminal session used to start the
simulator. This is not true for Linux.
Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-110 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

24.3 Specifying –noperf and –quiet to Speed Up Processing
When using the simulator, -noperf simulator option tells the simulator to not perform cycle-
accurate timing. This option is not required, but is especially useful when simulating a large
number of cores.

Similarly, the –quiet option will reduce the amount of verbose output and turn of tracing if
tracing is not specifically requested.

The oct-sim commands shown in examples/hello/Makefile both specify the –noperf
option.

24.4 Running Linux on the Simulator
It is easiest to use the oct-linux command to run Linux on the simulator. This command will
open a console session with scroll bars to allow the user to review session activity which has
scrolled off the screen.

Figure 18: Running Linux on Simulated Hardware

Development Host Running Linux

SIMULATED
OCTEON Target

UART0
Console

UART1
Debug
Port

Running Linux on Simulated Hardware

A. T
o S

im
ula

ted
 U

ART0

Terminal Session 2:
Connect to the simulated target console
(UART0) using telnet. The Linux prompt
will appear here.

Terminal Session 1:
Start Linux on the simulator using the
oct-linux command.

24.4.1 Build Linux to Run on the Simulator
Build Linux to run on the simulator, sending the make output to the file make.out and
examining make.out using the command tail (type Ctrl-C to exit the tail utility).

host$ cd $OCTEON_ROOT/linux

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-111

host$ sudo make clean
host$ sudo ls
host$ sudo make sim >make.out 2>&1

To see the output of the make command, in a different terminal session, type
host$ cd $OCTEON_ROOT/linux
host$ tail –f make.out

24.4.2 Run Linux and SE-UM Applications on the Simulator
To start Linux on the simulator, first open two terminal sessions. One will be used to run the
simulator and the other will connect to the simulated target console.

The script used to start the simulator, oct-linux, is located in the linux/kernel_2.6
directory. This script calls oct-sim with the arguments needed by Linux:

#!/bin/bash

memory=384
uart=2020
packet_port=2000

oct-sim linux/vmlinux.64 -envfile=u-boot-env -memsize=${memory} -
uart0=${uart} -
serve=${packet_port} -ld0x40000000:../embedded_rootfs/rootfs.ext3 $*

Note that oct-linux is not in the usual PATH:

host$ pwd
/home/testname/sdk
host$ oct-linux
bash: oct-linux: command not found
host$ find . -name oct-linux -print
./linux/kernel_2.6/oct-linux

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-112 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 36: Run Linux on the Hardware Simulator, Part 1
Steps N

1. Build the Kernel with Embedded Root Filesystem If this step was already done, no need to repeat it!

host$ cd $OCTEON_ROOT/linux
enter password now so it is stored for the next command
host$ sudo ls
type the following text on one line
host$ sudo make –s

Note: This step can take up to 20 minutes. When it has
completed successfully, the kernel_2.6/linux/vmlinux
file will have been created.

Note: The sudo ls command is merely used to set
the root password. The root password will be
stored for about 5 minutes for use in the next
command (sudo make...).

verify the build is complete before continuing
host$ wait

Create two terminal sessions on the host,
for these three purposes:
1. run the simulator
2. connect to the target console

First Terminal Session (hostT1$):
host$ cd $OCTEON_ROOT/linux/kernel_2.6
type the following text on one line
hostT1$ oct-linux -noperf -quiet
 -numcores=1

Note: The following error will occur if the make sim step
was omitted:
Error: Unable to open binary file:
../embedded_rootfs/rootfs.ext3

This command will run Linux on the OCTEON
simulator.
Expect to see:
Loading u-boot environment from
file: u-boot-env
mem size is 384 Megabytes
Using simulator: cn38xx-simulator
Loading linux/vmlinux.64 to boot
bus address 0x1000000
Starting simulator....
<text omitted>
Live Packet Listening at
pak.caveonetworks.com, port 2000
(0x7d0)
Uart Listening at
pak.caveonetworks.com, port
(0x7e4)
waiting for a connection to uart
<text omitted>

2. Create a Total of Two Terminal Sessions on the Development Host

3. Boot the Kernel on the OCTEON Simulator

Continued in the next table…

ote

sim >make.out 2>&1 &

2020

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-113

Table 37: Run Linux on the Hardware Simulator, Part 2
Steps N

Second Terminal Session (hostT2$):
hostT2$ telnet localhost

Note: The following error will occur if the telnet to 2020
s started before the simulator "waiting for a connection to

uart 0 1" message appears:
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1:
Connection refused

This command will connect to the simulated target
console. Note: Wait until "waiting for a connection
to uart 0 1" appears in the simulator output, but don'
wait too long.

Expect to see:
argv[2]: coremask=0x1
argv[3]: debug
ELF file is 64 bit
Attempting to allocate memory for
ELF segment: addr:
0xffffffff80100000 (adjusted to:
0x0000000000100000), size 0x1a99d58
<text omitted>
Bootloader: Done loading app on
coremask: 0x1
<Linux will stop here>

The Linux prompt will now come up on the simulated target
console.

4. Connect to the target console
ote

i

t
2020

The simulator will timeout after
about 45 seconds if no console connection is
made.

Eventually, an interactive shell will appear in the second terminal session. “Eventually” can be 5-
20 minutes, depending on the speed of the host processor, the amount of memory installed, and the
number of cores requested.

Once Linux boots to the interactive shell prompt, it can be useful to change telnet to character
mode instead of line mode. In the telnet session, press Ctrl-] and enter mode char at the
prompt. Then hit Enter a few times. Shell tab completion and other interactive aspects should
now work.

Once the interactive shell prompt appears, a SE-UM application, such as named-block, can be
run on the simulator.

24.5 Simulator: Download and Run Bootloader
When running an application on the simulator instead of hardware, the bootloader is automatically
invoked by the oct-sim script which starts the simulator.

Boot commands and application arguments are passed to the bootloader via an environment file.
The environment file is specified by the -envfile option to oct-sim.

See the SDK document “OCTEON Bootloader” for more information about booting, downloading,
and running on the simulator.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-114 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

24.6 Using the Simulator to Optimize Performance
Viewzilla is the best tool to analyze the code and optimize the performance, but this tool only runs
along with the simulator (on the output of the simulator).

When writing code for the Simple Executive, the programmer should try to make sure the code
also runs on the simulator through the entire development process. It is common to abandon the
simulator when the actual hardware becomes available. Then, when performance testing becomes
important near the end of the project, the code may no longer work on the simulator. This means
the key performance analysis tool, Viewzilla, will not work.

There are a couple of reasons why code will not run on the simulator. Some of them are simple,
while the others may be more complicated.

First, make sure the software can be configured to a minimal configuration. When doing
performance testing with the simulator, use a minimal setup (limited number of ports, etc), which
can pass packets. This minimal setup can then be analyzed with the simulator and Viewzilla.

The most common issue is a hardware setup which is difficult to replicate under the simulator
(more ports, PCI etc). The simulator does not support PCI. To simulate PCI, modify the code to
mimic PCI messages.

If PCI is used for initialization, provide some hard-coded initialization values which could be used
under the simulator instead. This solution is very application specific.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-115

The remainder of the information in this chapter is for reference only! It
will be in the Appendix of the final book.

25 Appendix A: Introduction to Available Products
In this section the various products which can be installed are introduced.

If an installation CD is not available, the SDK may be downloaded from the support site. See
instructions in Section 27.1 – “Installing from the Support Site Instead of a CD”. The information
in the next section which introduces the various files available is useful even if the installation CD
is not available.

Note that only 3 files need to be installed to follow the directions in this tutorial: the base SDK,
OCTEON Linux, and the Quick Start Guide.

The RPM file naming convention is:

<Product>-<rel><build>.i386.rpm

Where <rel> = release number and <build> is the build number.

For instance, SDK 1.7.3 contains the base SDK (OCTEON-SDK) product file:

OCTEON-SDK-1.7.2-244.i386.rpm

Note: This file was first released with SDK 1.7.2, and not changed for the 1.7.3 release, so the
file’s Product is 1.7.2.

25.1.1 Product Files on the Installation CD
The installation CD contains the SDK files: the base SDK, OCTEON Linux, the Quick Start
Guide, and other product files which may or may not be needed depending on your application.
The SDK files and optional product files may also be downloaded from the support site. Each file
which ends in .rpm is referred to as an RPM (Red Hat Package Manager) file, package, or
product.

At a minimum, install the base SDK and the Quick Start Guide. These are needed by everyone.

The following optional support is provided by RPMs on the CD:

• OCTEON Linux: To use Linux on any OCTEON cores, install the OCTEON Linux
package after installing the base SDK. OCTEON Linux is needed to run some of the
examples in this chapter.

• Software support for optional hardware capabilities on the OCTEON processor: Crypto,
ZIP, DFA. The OCTEON model must provide these optional hardware capabilities.

• Software which enables a PCI host to communicate with OCTEON PCI targets by sending
and receiving packets over the PCI bus.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-116 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

In order to the examples in this tutorial, the base SDK and OCTEON Linux package are required.
This tutorial only introduces these packages.

See the table below for the descriptions of the various packages available on the CD. The far right
column specifies whether the development target cores will be running Simple Executive
standalone or Linux.

Table 38: Packages Provided on the Installation CD, Part 1
Packages on

the CD
Brief Description SE-S or

Linux

SDK-QSG The Quick Start Guide for the SDK Needed by everyone. Both
SDK The base SDK. Needed by everyone. Both
LINUX This is OCTEON Linux. This package is needed to run Linux on

the OCTEON cores. This version of Linux has been ported to take
advantage of OCTEON features. This package may be called
"Linux Distro" on the Support Site.

Linux only

CRYPTO-CORE Requires an OCTEON model with cryptographic functions
enabled. This package provides the software which runs on the
core and performs hardware crypto functions.

Both

DFA Requires an OCTEON model with a DFA hardware unit. This
package includes a DFA compiler that runs on the i386 or x86_64
development host, and two examples of how to use Simple
Executive functions to access the DFA Engine on OCTEON.

Both

ZLIB-CORE Requires an OCTEON model with a ZIP hardware unit. The
OCTEON must run a SE-S application on at least one core. This
package provides the software which runs on the core and uses the
ZIP hardware unit.

SE-S only

ZLIB-LINUX Requires an OCTEON model with a ZIP hardware unit. The
OCTEON must run OCTEON Linux on at least one core. This
package provides the software which runs on a core and uses ZIP
hardware unit.

Linux only.

Special Hardware Capability Support

Basic Items

Continued in the next table…

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-117

Table 39: Packages Provided on the Installation CD, Part 2
Packages on

the CD
Brief Description SE-S or

Linux

COMPONENTS-
COMMON

The header files needed by PCI RPMs and the toolkits. Both

PCI-BASE Requires a PCI host and an OCTEON PCI target. This software
enables a PCI host to communicate with OCTEON PCI targets by
sending and receiving packets over the PCI bus. The PCI host must
be an i386, x86_64, PPC or OCTEON PCI host running Linux.
This software includes a Linux driver which can be installed on the
PCI host to implement the host-side of this capability. This is the
base PCI driver which other PCI drivers depend upon.

Both

PCI-NIC Requires a PCI host and an OCTEON PCI target. Includes an
application which runs on the OCTEON target board, plus a driver
to run on the Linux host to provide networking interfaces
corresponding to the physical ports on the OCTEON NIC. When
you install this, special devices are created on the host system
which look like network interfaces to the host (Ethernet devices).

Both

CRYPTO-HOST Requires a PCI host and an OCTEON PCI target with crypto
hardware capability. This software allows the PCI host to use the
crypto hardware capabilities on the OCTEON PCI target. (The PCI
host offloads the encrypt and decrypt (crypto) functions to the
OCTEON PCI target by passing packets to OCTEON over the PCI
bus.)

Both

PCI-CNTQ Requires a PCI host and an OCTEON PCI target with either ZIP or
crypto hardware capability. Install on a i386, x86_64, PPC or
OCTEON PCI host. This software implements an enhancement to
the base PCI packet interface: the Common Command Queue
(CCQ). The ZLIB-HOST and CRYPTO-HOST packages depend
on this package.

Both

ZLIB-HOST Requires a PCI host and an OCTEON PCI target with a ZIP
hardware unit. This software allows the PCI host to use the ZIP
hardware unit on the OCTEON PCI target. (The PCI host offloads
compression and decompression (ZIP) functions by passing packets
to OCTEON over the PCI bus.)

Both

Support for Linux PCI Host offloading crypto or ZIP work to OCTEON over PCI

Support for Linux PCI Host passing packets to OCTEON PCI target over PCI bus

The files available on the installation CD are listed in the following table.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-118 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 40: Example RPMs on the SDK Installation CD
RPM Files

OCTEON-COMPONENTS-COMMON-*.i386.rpm
OCTEON-CRYPTO-CORE-*.i386.rpm
OCTEON-CRYPTO-HOST-*.i386.rpm
OCTEON-DFA-*.i386.rpm
OCTEON-LINUX-*.i386.rpm
OCTEON-PCI-BASE-*.i386.rpm
OCTEON-PCI-CNTQ-*.i386.rpm
OCTEON-PCI-NIC-*.i386.rpm
OCTEON-SDK-*.i386.rpm
OCTEON-SDK-QSG-*.pdf
OCTEON-ZLIB-CORE-*.i386.rpm
OCTEON-ZLIB-HOST-*.i386.rpm
OCTEON-ZLIB-LINUX-*.i386.rpm
(* is the release number for each package)

Some of these packages depend on others. These dependencies can change with newer releases.
The dependencies for each package are always listed along with their descriptions on the support
site.

The dependencies for SDK 1.7.3 are shown in the following table.

Table 41: Package Dependencies
Packages on CD Prerequisites

Base SDK None
COMPONENTS-
COMMON

Base SDK

CRYPTO-CORE Base SDK
CRYPTO-HOST Base SDK, COMPONENTS-COMMON, PCI-BASE, CRYPTO-CORE
DFA Base SDK
LINUX-DISTRO Base SDK
PCI-BASE Base SDK, COMPONENTS-COMMON
PCI-CNTQ Base SDK, COMPONENTS-COMMON, PCI-BASE
PCI-NIC Base SDK, COMPONENTS-COMMON, PCI-BASE
ZLIB-CORE Base SDK
ZLIB-HOST Base SDK, COMPONENTS-COMMON, PCI-BASE, ZLIB-CORE
ZLIB-LINUX Base SDK, ZLIB-CORE, LINUX-DISTRO

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-119

25.1.2 Toolkits
In addition to these packages, various optional software toolkits are available. These toolkits are
designed to simplify application development under Linux. To use them, first download the base
SDK and the OCTEON Linux SDK. Note that if you plan to use a toolkit it is important to start
with the correct SDK. The toolkits are not ported to all of the SDKs. The toolkits have all been
ported to SDK 1.7.3. Contact your Cavium Networks sales representative for more information.

Table 42: Optional Toolkits
Toolkit Description

OCTEON IPSEC stack Provides hardware-accelerated IPSEC stack.
OCTEON L2 and IP stack Provides Ethernet frame and IP processing. Also

provides an IP forwarding example application.
OCTEON SSL stack Provides hardware-accelerated SSL stack.
OCTEON TCP/IP stack Provides TCP/IP stack for OCTEON Simple

Executive applications.

25.1.3 Optional Application Development Kits (ADKs)
Application Development Kits (ADKs) are designed to speed product development under Linux by
providing pre-ported software which runs on top of the SDK. The ADKs are targeted to specific
types of applications, such as router-bridge, or gateway.

Note that if you plan to use an ADK it is important to start with the correct SDK. The ADKs are
not ported to all of the SDKs. First determine the highest-numbered ADK available, and then
download both the ADK and the matching base SDK and OCTEON Linux SDK from the support
site at http://www.caviumnetworks.com/.

Table 43: Application Development Kits (ADKs)
ADK Contents

Router-bridge binary package IP forwarding, Network-Attached Storage (NAS)
Gateway binary package Triple play, security, and media server
Source package Open-source software for both binary packages. See Note 1.
Note 1: For source to third-party products, contact your Cavium Networks sales representative.

The ADK software is primarily open-source software, but some third-party software is also
included in binary-only form. This third-party software is provided for evaluation purposes only;
contact your Cavium Networks sales representative for third-party licensing information. The
open-source part of the ADKs is included with the SDK license, and source code is provided in the
source package.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-120 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

25.1.4 Product Updates
Note that updates to these files may be available at the support site, accessible from
http://www.caviumnetworks.com/. Registered support site users who have requested updates will
receive email when updates are released.

26 Appendix B: Linux Basics

26.1 Linux Commands
The following is a list of very commonly used Linux commands. These commands are typed in at
the shell prompt. This list is provided for persons new to Linux. If the man pages are installed on
your development host, then documentation may be accessed via the man utility.

Linux files are divided into two basic types: ASCII (human readable text) and Binary (machine
readable). Some file commands (such as cat or diff) are designed to work on ASCII; others
(such as cmp (compare)) are designed to work on binary. If you are not sure of the file type, you
can simply try it, or you can type file <filename> to determine the file type. Note that if you
cat a binary file to the screen, you may need to log out and back in to fix the screen.

To stop a command, use Ctrl-C (hit the Ctrl key, and while holding it down, hit the “c” key. Note
the key does not have be a capital letter C.

When using the bash shell, to recall a command typed before, use the arrow keys. For instance,
use the up-arrow key to see prior commands. Type it several times: each time the key is hit, an
older command is recalled. To edit the command, use the arrow keys to move left and right. Use
the backspace key to delete while moving left. To add characters, go to the place where they
should be added, using the arrow keys, then type in the new text.

To show the list of most recently executed commands, type history. In bash, you can use the
up-arrow and down-arrow keys to recall prior commands so that the entire command doesn’t have
to be typed in again (this is only one of many speed techniques available).

The \ (back slash) character is used to continue a line and is often used in Makefiles. This
character tells the shell or Makefile to escape the next character. When the next character is a
carriage return (end of line), the \ will cause the carriage return to be ignored. Back slash can also
be used in shell scripts or on the command line, for example:

Just type "echo hello" then press Enter and type "world": bash
will add the > character.
host$ echo hello \
> world
hello world

Note that the \ character must be placed at the end of the line. It only "escapes" the next
character.

See also: http://www.unix-manuals.com/quicktips (search for “tail -f” Linux command).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/
http://www.unix-manuals.com/quicktips

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-121

Table 44: Linux Commands Quick Reference, Part 1
Command Brief Description

`

"Back quote". This character is used in commands such as echo `pwd`. When used this
way, the value of the quoted command (pwd) is returned, such as
/home/testname/sdk. Note this character is not the same as " ' " (the single quote).

Comment delimiter. Used in shell scripts.

|
"Pipe". This will take the output of a prior command and redirect it to be the input to the
following command. For example: rpm -q --all | more.

*
"Star". This is a "wildcard" character. ls *.txt will show all files in the current
directory which end with the string ".txt". The command rpm -i *.rpm will install
all the files in the current directory which end with the string ".rpm".

~ "Tilde". Refers to the user's home directory, as in cp filename ~/sdk18.

alias

Used to set a string to a special meaning. For example, a series of commands may be aliased
to a convenient short name. After the commands are aliased, only the short name is typed.
This is very convenient for often-repeated commands. To see aliases currently on the
computer, type alias.

bash
Call the bash shell. This is a fast way to change from using another shell to using bash.
The correct way to change the login shell is to have it changed in the passwd file where the
per-user login information is stored.

cat

Send the contents of the file to the screen, as in cat octeon-models.txt. Note if the
file is not an ASCII file, the characters sent to the screen will not have meaning. Also, if the
file is not an ASCII file, the terminal session's configuration may be set to new and incorrect
values, causing the output on the screen to be unreadable. In that case, try the commands
clear, stty sane, or simply exit the terminal session to recover.

cd
Change directory. Remember that, under Linux, directories are separated by "/" not "\" , as
in cd /bin. The command cd .. (cd dot dot) goes up one level. The command cd
without any argument changes to the user's home directory.

chgrp
Used to change the group ownership of a file. For instance, chgrp staff doit.sh
will change the group ownership of doit.sh to staff. The file attributes can be seen
using the ls -l command.

chmod
Used to change the mode of a file. For instance, chmod +x doit.sh will make the file
doit.sh executable. The file attributes can be seen using the ls -l command.

chown

Used to change the owner of a file. For instance, chown testname doit.sh will
change the owner of doit.sh to testname. The file attributes can be seen using the
ls -l command.

clear Used to clear off the screen, especially before starting a new experiment.
cmp Compare two binary files.
diff Compare two ASCII files.

echo

Display a string to the screen. Examples: echo "hello world" to display the string
hello world on the screen, or echo $PATH to show the value of the PATH variable.
Use echo $SHELL to see which shell you are running (bash, csh, ksh, etc.).

Continued in the next table…

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-122 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 45: Linux Commands Quick Reference, Part 2
Command Brief Description

export

Make an environment variable's definition accessible to all child processes. Without
export, a child process will not have the variable's definition. For example host$
JUNK="my junk"; echo $JUNK; bash. Once the new shell is spawned, type
host$ echo $JUNK. Then try the same, adding export as in $host
JUNK=my junk".

fg

This command is used to bring a background process into the foreground, usually so that the
process may be aborted using Ctrl-C. For example, the command sudo make kernel
>make.out 2>&1 puts the Linux build process into the background. Typing fg will
bring the build process into the foreground.

file Show the type of the file.

find

Locate items such as files and/or directories. For example find . -name "*.txt"
will find all the files in the directory, recursively, which end with the suffix .txt. The
command find . -type d will find all the directories in the directory, recursively.

gedit
This editor may be used by users not familiar with the vi or emacs editors. The gedit
editor may be used from the host system console, or by VNCing (Virtual Network
Computing) from another computer to the host system.

grep
Search in ASCII files for a particular string. As an alternative, the command egrep allows
multiple strings and other special searches.

head This command displays the text at the beginning of an ASCII file.
history Show previously typed commands.

ifconfig
Configure Ethernet devices; show current configuration. Path = /sbin/ifconfig.

info Display detailed information about some commands, such as vi.
kill Used to kill a process. Locate the process to be killed by using the ps command.

less

Display to the screen, one page at a time, with controls to allow the user to scroll up as well
as down. Use the up-arrow to go up, the down-arrow to go down. The vi command 1G
will go to the start of the file. The vi command G will go to the end of the file. Use the

export

&

vi
command :q (colon q) to quit. If the commands aren't working right, type Esc (Escape
key) to exit input mode. After typing Esc the commands should work again. To search for
a string in the file, type :/ (colon forward-slash) followed by the search string, then Enter.

ln

The command ln (link) is used to create a link between two files. Linking allows the same
file to have two different names or locations in the file system. The command ln -s can
be used to symbolically link one file or directory to another. For example, the command ln
-s doit.sh newfile will create a file named newfile which is linked to the original
file doit.sh. The command vi newfile will then open the file doit.sh. The
command ls -l newfile will show: newfile -> doit.sh. The
$OCTEON_ROOT/host/bin directory has many "files" which are symbolic links to
the actual files. The ln command can be used without symbolic linking. See the ln man
page for more information.

Continued in the next table…

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-123

Table 46: Linux Commands Quick Reference, Part 3
Command Brief Description

ls

List the contents of a directory. The command ls -l (ls dash L) (long listing) provides
more details). The command ls -ld shows the directory. The command ls .* (ls dot
star) will show hidden files (hidden files begin with the character "." as in
.bash_profile). The command ls -CF will show the difference between files and
directories, and will mark executable files: executable files are marked with the * character;
directory names will be followed by the / character. Note that the string "ls" is often set
to and alias. Type alias to check.

make Build software using the directions in a Makefile.

man
Display the manual pages for commands such as cd, ls, vi, or man. For example man
man will display the manual page for the man utility. Note that the MANPATH environment
variable may have to be set before this will work.

modprobe Add or remove a module from the kernel, such as the Cavium Networks Ethernet driver.

more
Display to the screen, one page at a time. For example: cat Makefile | more. See
also less, which allows the use of vi commands to search and move to a prior screen.

mv Move a file or directory to a new name.
poweroff Shutdown Linux and power off the machine gracefully. Requires root permission.
pwd Display the current directory.

rm
Remove a file. Note: on Linux, there is no chance to recover the file after typing this
command unless there is a backup copy! The command rm -rf will remove all the
contents of a directory, recurtively.

rmdir Remove directory. Note: on Linux, there is no chance to recover the file after typing this
command unless there is a backup copy!

sleep
This command is used to introduce a delay (number of seconds) as in
sleep 1; echo "hello world". This command is often used in shell scripts,
especially when downloading and booting multiple ELF files.

sudo
Obtain root permission. The normal username must be in the /etc/sudoers file.

tail
This command displays the text at the end of an ASCII file. The command tail -f will
continue to display new lines as they are added to the file by another process. When using
tail -f, use Ctrl-C to exit.

vi

The vi editor is a commonly used editor in Linux. Use Esc:q (Escape key, colon, Q) to
exit. Use Esc:q! to get out without saving any changes to the file. For other commands,
see the documentation for vi. See also gedit. If possible, download a vi cheat sheet
from the internet (Google the string "vi cheat sheet").

which
This command is used to show the full path to a command, for example
which oct-pci-boot. Note that the command must be in the search path defined by
the PATH environment variable.

Notes
Note: An ASCII file is human readable text as opposed to binary, which is the output of a compiler and is machine
readable.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-124 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

26.2 Shell Scripts
Commands may be put into a shell script and executed. This is particularly useful when testing an
application on a PCI target board. The shell script is located on the development host. The
following is an example of a shell script.

The contents of the file doit.sh are:

oct-pci-boot
oct-pci-load 0 hello
boot the application without going to the Minicom session
oct-pci-bootcmd "bootoct 0 coremask=0xff"

After creating the file in the examples/hello directory, make it executable:

host$ chmod +x doit.sh

Then execute it:

host$./doit.sh

The “./” means “find the file doit.sh in the current directory”.

Note that, in shell, “#” is a comment delimiter.

26.3 Aliases
Aliases are often used to provide a short form of a command line. To see the aliases already set on
the system, type:

host$ alias

Here is an example of an alias. This alias is defined in .bash_profile. There are different “dot”
files such as .bash_profile and .bashrc. Be careful to not use commands which output to the screen
in .bashrc. The shells provided in different Linux distributions have different rules. Read the
manual page for exact information.

The following text is one line, no carriage returns in the middle
alias hello='(cd $OCTEON_ROOT/examples/hello; make clean; make; cp hello
/home/testname/dl; ls -l /home/testname/dl)'

Note that the semicolon character is used to separate commands (make clean; make).

Source .bash_profile to establish the alias, and run the aliased command:

host$ source .bash_profile
host$ hello
rm -f hello
rm -f output log.txt.gz mem?_*.txt pctrace.txt hello-*
mipsisa64-octeon-elf-gcc -o hello -g -O2 -W -Wall -Wno-unused-parameter
-I/home/testname/sdk18/target/include
-I/home/testname/sdk18/target/include -Iconfig
-DUSE_RUNTIME_MODEL_CHECKS=1 -DCVMX_ENABLE_PARAMETER_CHECKING=0
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=0 -DCVMX_ENABLE_POW_CHECKS=0

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-125

-DOCTEON_MODEL=OCTEON_CN38XX -DOCTEON_TARGET=cvmx_64 hello.c
total 81800
-rwxr-xr-x 1 testname software 315128 Feb 20 11:33 hello

26.4 Linux File Information and the Set User ID Bit

26.4.1 File Basics
By typing ls –l you can see the permission bits of the file. There are different permission bits
for each of owner, group, and world (everyone). The owner is shown first, then group, then world
(from left to right). The file permissions are shown as “r” for readable, “w” for writeable, “x” for
executable. The following file is “rwx” by root, “rx” by group root, and “rx” by everyone. Thus,
only root may write to the file.

-rwxr-xr-x 1 root root 520060 Jun 13 15:50 mips64-octeon-linux-gnu-gcc

26.4.2 The Set User ID Bit and Set Group ID Bit
The oct-pci-boot file has the “s” (set user ID or setuid) permission bit set, as seen in the next
line:

-rwsr-sr-x 1 root software 415120 Jul 18 10:14 oct-pci-boot

In this case, the set group ID (setgid) bit is also set:

-rwsr-sr-x 1 root software 415120 Jul 18 10:14 oct-pci-boot

(Note: All oct-pci-* tools have the set-user-ID bit and set-group-ID bit set. They are located
in the $OCTEON_ROOT/host/pci directory.)

When a command has the set-user-ID bit set, anyone executing the file takes on the privilege of the
file owner. In this case the owner is root.

When a command has the set-group-ID bit set, anyone executing the file takes on the privilege of
the file group. In this case the group is software.

The setuid bit is important, because it means you do not need to have root privilege to run
most commands shown in this chapter. One of the exceptions is you need root privilege to
build the Linux filesystem. When the set-user-ID or set-group-ID bits are not set, root
privilege is provided by the sudo command.

26.4.3 The Effect of Copying a File (cp)
This discussion is especially relevant when making a copy of the SDK, and explains why using
root privilege to make the copy is critical.

26.4.3.1 Copy the file as root
When you copy the file as root (using sudo), then the file permissions are preserved, and the
owner (root) is not changed. The set-user-ID bit remains set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-126 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

host$ sudo cp oct-pci-boot /tmp/testname
Password:
host$ ls -l /tmp/testname
-rwsr-sr-x 1 root root 415120 Jul 30 15:59 oct-pci-boot

26.4.3.2 Copy as regular user
When you copy a file with the set user ID bit set, unless you have root permission when you copy
the file, the set-user-ID bit is cleared, and the owner is changed to your login name.

host$ cp oct-pci-boot /tmp/testname
host$ ls -l /tmp/testname
-rwxr-xr-x 1 testname software 415120 Jul 30 15:57 oct-pci-boot

The new file is now owned by testname, the owner when the copy was made.

26.5 Killing a Process
The following example shows how to locate and kill a process. In this example, the process to be
killed is oct-pci-console.

host$ ps -a
 PID TTY TIME CMD
 5319 pts/0 00:00:00 bash
 5369 pts/1 00:00:00 bash
 6157 pts/1 00:00:00 oct-pci-console
 6170 pts/0 00:00:00 ps
host$ kill 6157

27 Appendix C: About the RPM Utility

27.1 Installing from the Support Site Instead of a CD
To install ALL the RPMs downloaded from the support site at http://www.caviumnetworks.com/ to
a specific directory on the development host:

1. Create a new directory on the development host. The downloaded RPM files will be put in
this directory.

2. Download any desired RPMs from the support site into the directory.
3. cd to the directory.
4. Verify that all the RPMs in the directory should be installed.
5. As a normal user, run the command:

host$ sudo rpm -i *.rpm

Note: If the RPM files are not visible at the support site, then contact your Cavium
Networks sales representative to fix the access permissions. Cavium Networks customer
support and Field Application Engineers (FAEs) do not have the authority to change access
permissions.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-127

27.2 Useful RPM Commands
This section introduces commonly used RPM commands.

27.2.1 Force the RPM to Install
The rpm installation may fail if the files were previously installed, but have since been deleted. In
this case, rpm will incorrectly determine that the files are already installed. To force the rpm to
reinstall the files, use the command:

host$ sudo rpm –i --prefix <PREFIX> --force OCTEON*.rpm

Where <PREFIX> is the desired directory pathname, including the leading /.

27.2.2 Determine Which SDK Packages are Installed
To query which packages are installed, you may query all of the installed packages with the
following command:

host$ rpm -qa | more

For example, the end of the output on a development host where the 1.7.3 SDK was installed is:

CN3XXX-COMPONENTS-COMMON-1.3.3-30
OCTEON-LINUX-1.6.0-221
OCTEON-IPSEC-1.2.4-21
OCTEON-PCI-CNTQ-0.9.6-53
OCTEON-SDK-1.7.3-264

Note that the package name (for instance OCTEON-SDK-1.7.3-264) does not include the
.386.rpm suffix.

27.2.3 Remove a SDK Package After Installation
To remove (erase) the package after installation, as root, run the following command ensuring that
.rpm is not appended as this command uninstalls a previously installed package, not a RPM file:

host$ sudo rpm –e <PACKAGE_NAME>

For example:

host$ rpm -e OCTEON-SDK-1.7.3-264
host$ rpm -e OCTEON-LINUX-1.7.3-264

27.2.4 Check Whether the Installed Files Have Changed Since Installation
Use the rpm –V command to see any changes made to the installed files. (Note that this
command only compares the files in the original installation directory against the system’s master
copy. It will not be useful to compare the master copy against a copy located in a different
directory.)

It is helpful to use the output of rpm –qa to help determine the package name needed for this
command:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

S
 T

U
D

K
T

O
R

IA
L

 OCTEON Programmer’s Guide

4-128 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

host$ sudo rpm –V <PACKAGE_NAME>

The output was not free from errors, but these may be ignored:

host$ sudo rpm -V OCTEON-SDK-1.7.3-264
Unsatisfied dependencies for OCTEON-SDK-1.7.3-264: CN3 X-SDK < 1.6.0-204
.......T /usr/local/Cavium_Networks/OCTEON-SDK/bootloader/u-
boot/include/bmp_logo.h
SM5...GT /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-boot
......GT /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-boot.c
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-
bootcmd
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-
console
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-csr
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-ddr
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-load
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-memory
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-pow
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-
profile
SM5...GT /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-reset
S.5....T /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-
reset.c
.M...... /usr/local/Cavium_Networks/OCTEON-SDK/host/pci/oct-pci-tra

27.2.5 More Information About RPM
Type man rpm on the development host to get more information about the rpm command.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-129

27.3 RPM Commands Quick Reference Guide
Table 47: RPM Commands Quick Reference

Brief Description Syntax
Install only one RPM
package into the default
destination directory. rpm -i <SRC_DIR> <PACKAGE_NAME>.rpm

Install only one RPM
package into a specific
destination directory. rpm -i <SRC_DIR> --prefix <DEST_DIR> <PKG_NAME>.rpm

Install all RPM
packages in the current
directory into the
default directory.

rpm -i *.rpm

Install all RPM files in
the current directory
into a specific
destination directory.

rpm -i <SRC_DIR> --prefix <DEST_DIR> *.rpm

Force the RPM package
to install. rpm -i <SRC_DIR> --prefix <PREFIX> --force <PKG_NAME>.rpm

Query which packages
are installed on the
system.

rpm -qa

Remove (erase) a RPM
package after
installation. Note only
the package name is
specified, not the
.i386.rpm suffix.

rpm -e <PKG_NAME>

Verify the installed files
have not changed since
installation.

rpm -V <PKG_NAME>

SRC_DIR is the directory where the .rpm files are located.
PKG _NAME is the name of the RPM file without the .i386.rpm suffix.
DEST_DIR is the location where the files will be installed.

Notes:

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-130 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

28 Appendix D: Other Useful Tools

28.1 Cscope
The open-source tool cscope is used to search source code. The utility may be downloaded for
free from: http://cscope.sourceforge.net/ .

To build the cscope data base, go to the top-level source directory and type:

host$ cscope -R

To start cscope without building the data base, go to the top-level source directory and type:

host$ cscope -d

 To exit cscope, use Ctrl-D (hold down control key (Ctrl) while pressing the letter “d”).

Use “tab” (the tab key) to toggle between the “found” half of the screen and the “menu” half of
the screen.

The user interface provides the following different searches:

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

In the “found” half of the screen (the top half), Enter will take you to the line in the referenced file,
using the editor vi. Quitting vi will bring you back to the cscope screen.

28.2 Ctags
The ctags utility is used to help vi users quickly move through the code. For example, go to the
$OCTEON_ROOT/executive directory, and type:

host$ ctags *.[chS]

This will build a “tags” file.

The tags file will help vi users navigate quickly to a desired function:

For example:

h

ost$ vi –t cvmx_fpa_alloc

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://cscope.sourceforge.net/

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-131

Once inside vi, position the cursor on the start of the call to cvmx_read_csr(), and press Ctrl-}
(Ctrl close-curley-bracket). This will take the editor to the code for cvmx_read_csr(). To
return to the prior location, type “:e#” (colon e #).

For example, after arriving at cvmx_fpa_alloc() via the vi –t cvmx_fpa_alloc
command, try using the Ctrl-} command to go to cvmx_read_csr():

static inline void *cvmx_fpa_alloc(uint64_t pool)
{
 uint64_t address =
cvmx_read_csr(CVMX_ADDR_DID(CVMX_FULL_DID(CVMX_OCT_DID_FP
A,pool)));
 if (address)
 return cvmx_phys_to_ptr(address);
 else
 return NULL;
}

28.3 Tera Term, Putty, VNC
The tools Tera Term, Putty, and VNC are all useful when connecting from a remote system to a
development host. These tools and information about them may be found on the Internet.

28.3.1 Putty Tip
When running Putty, sometimes weird symbols such as “â” instead of “ ’ ” appear when SSH’d
into the Linux development host.

This is due to a character set mismatch. The following technique may fix the problem:

On the Linux box, use the command:

host$ locale charmap

In this example the response was:

UTF-8

In the Putty config for Window->Translation, the “Character Set Translation of Received Data”,
select the value, which should match the chamap value. In this example, it had been set to a
default of ISO-8859-1). Change the value in the Putty screen to the correct charmap type (in
this example, to UTF-8).

29 Appendix E: U-Boot Commands Quick Reference Guide
Bootloader commands can be seen in the target console by typing help. If the entire help line
cannot be seen because it is too wide for the screen, use the Minicom command Ctrl-Alt W to turn
on line wrap. Next time, start minicom using the –w command-line option.

To see special aliases such as bootloader_flash_update, type printenv.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-132 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 48: U-Boot Commands Quick Reference, Part 1
Command Description

? alias for help
askenv get environment variables from stdin (typed into the target console)

autoscr run script from memory
base print or set address offset
bootelf Boot from an ELF image in memory (Note: This command does not

support SE-S or Linux. Use bootoct to boot a SE-S application. Use
bootoctlinux to boot Linux from an ELF image in memory.)

bootoct Boot from a SE-S application from an ELF image in memory
bootoctelf Boot a generic ELF image in memory. NOTE: This command does not

support SE-S or Linux. Use bootoct to boot an SE-S application.
Use bootoctlinux to boot Linux from an ELF image in memory.)

bootoctlinux Boot from a Linux ELF image in memory
bootp boot image via network using BootP/TFTP protocol
cmp memory compare
coninfo print console devices and informations
cp memory copy
crc32 checksum calculation
dhcp invoke DHCP client to obtain IP/boot params
echo echo args to console
eeprom EEPROM sub-system
erase erase FLASH memory
ext2load load binary file from a Ext2 filesystem
ext2ls list files in a directory (default directory is /)
fatinfo print information about filesystem
fatload load binary file from a DOS filesystem
fatloadalloc load binary file from a DOS filesystem, and allocate a named bootmem

block for file data.
fatls list files in a directory (default directory is /)
flinfo print FLASH memory information
freeprint Print list of free bootmem blocks
go start application at address addr
gunzip Uncompress an in-memory gzipped file
help print online help
Continued in the next table...

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-133

Table 49: U-Boot Commands Quick Reference, Part 2
Command Description

ide IDE sub-system
itest return true/false on integer compare
loadb load binary file over serial line (kermit mode)
loop infinite loop on address range
md memory display
mii MII utility commands
mm memory modify (auto-incrementing)
mtest simple RAM test
mw memory write (fill)
namedalloc Allocate a named bootmem block
namedfree Free a named bootmem block
namedprint Print list of named bootmem blocks
nm memory modify (constant address)
ping send ICMP ECHO_REQUEST to network host
printenv print environment variables
protect enable or disable FLASH write protection
rarpboot boot image via network using RARP/TFTP protocol
read64 read 64 bit word from 64 bit address
read64b read 8 bit word from 64 bit address
read64l read 32 bit word from 64 bit address
read64s read 16 bit word from 64 bit address
read_cmp read and compare memory to val
reset Perform RESET of the CPU
run run commands in an environment variable
saveenv save environment variables to persistent storage
setenv set environment variables
sleep delay execution for some time
tftpboot boot image via network using TFTP protocol
tlv_eeprom EEPROM data parsing for ebt3000 board
version print monitor version
write64 write 64 bit word to 64 bit address
write64b write 8 bit word to 64 bit address
write64l write 32 bit word to 64 bit address
write64s write 16 bit word to 64 bit address

30 Appendix F: ELF File Boot Commands Quick Reference
The following table is a summary of commands needed to boot the board.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-134 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 50: ELF File Download and Boot Commands Quick Reference, Part 1

Command Cheat Sheet Notes

PCI Target: oct-pci-reset After reset, the bootloader will
not come up if the hardware is
configured for PCI boot. See
Note 1.

Stand-alone: push the reset button on the board.

Stand-alone: Start from flash: no action needed
PCI Target: oct-pci-boot Usage: oct-pci-boot [--

memonly] [bootloader
filename] . With no
arguments, this command will
download and boot the default
bootloader.

Download the ELF Image File See Note 3.
PCI Target: oct-pci-load <tmp_download_address> <filename> For SDK 1.7+ use the address

"0" to take the default.
Addresses must be in hex.

Compact Flash: fatload <dev> <num> <tmp_download_address>
<filename>

Over the Network: dhcp; tftpboot <tmp_download_address> <filename> Image file path is relative to
/tftpboot. For SDK 1.7+,
use the address "0" to take the
default. When entering an
address, the 0x is optional, but
addresses must be in hex.

Target Console: Simple Executive: bootoct See Note 2 and Note 3.
bootoct - Boot from an OCTEON Executive ELF image in memory
 bootoct [elf_address [stack=stack_size] [heap=heap_size]
 [coremask=mask_to_run | numcores=core_cnt_to_run]
 [forceboot] [debug] [break] [endbootargs] [app_args...]

 elf_address - address of ELF image to load. defaults to $(loadaddr). If 0, default load address used.
 stack - size of stack in bytes. Defaults to 1 megabyte
 heap - size of heap in bytes. Defaults to 3 megabytes
 coremask - mask of cores to run on. Anded with coremask_override environment
 variable to ensure only working cores are used
 numcores - number of cores to run on. Runs on specified number of cores, taking into
 account the coremask_override.
 skipcores - only meaningful with numcores. Skips this many cores (starting from 0) when
 loading the numcores cores. For example, setting skipcores to 1 will skip core 0
 and load the application starting at the next available core.
 <other options not shown>
 endbootargs - if set, bootloader does not process any further arguments and only passes the arguments
 that follow to the application. If not set, the application gets the entire command line as arguments.

Continued in the next table… Notes 1-4 are in the next table.

Download the Bootloader and Run the Bootloader

Elf File Download and Boot Commands Quick Reference, Part 1

Run the ELF Image File

Reset the Board

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-135

Table 51: ELF File Download and Boot Commands Quick Reference, Part 2

bootoctlinux elf_address [coremask=mask_to_run | numcores=core_cnt_to_run]
[forceboot] [skipcores=core_cnt_to_skip] [endbootargs] [app_args...]

elf_address - address of ELF image to load. If 0, default load address is used.
coremask - mask of cores to run on. Anded with coremask_override environment
 variable to ensure only working cores are used
numcores - number of cores to run on. Runs on specified number of cores, taking into
 account the coremask_override.
skipcores - only meaningful with numcores. Skips this many cores (starting from 0) when
 loading the numcores cores. For example, setting skipcores to 1 will skip core 0
 and load the application starting at the next available core.
forceboot - if set, boots application even if core 0 is not in mask
endbootargs - if set, bootloader does not process any further arguments and only passes
 the arguments that follow to the kernel. If not set, the kernel
 gets the entire command line as arguments.

Over PCI: oct-pci-bootcmd "<command> " # be sure to add quotes around the command
Target Console: Used to boot some operating systems other than Linux.

Note 1: For PCI commands, to specify the which OCTEON board attached to the same host the command is directed to, set the
environment variable OCTEON_PCI_DEVICE=<number> . The number 0 is the first OCTEON PCI target. The command
/sbin/lspci enumerates the PCI targets.

Note 3: To test a with a simple file, use examples/hello. This is a SE-S application only, it cannot be compiled as a Linux SE
UM application.

Note 2: "Target Console" means: type the command at in the Minicom screen.

Note 4: Whichever image is running on core 0 should be downloaded and booted last.

Elf File Downloand and Boot Commands Quick Reference, Part 2
Target Console: Linux: bootoctlinux

Notes

-

31 Appendix G: Null Modem Serial Cable Information
The evaluation board is shipped with null modem cables. The following technical information is
included for reference in case the cables are missing.

The lines that need to be crossed are TXD <-> RXD, and RTS <-> CTS. The connections for
DTR, RTS, and DSR are not used, so their specific connections are not important.

Most null-modem serial cables (which can be purchased off-the-shelf) are wired as follows:

TXD <-> RXD
RXD <-> TXD
RTS <-> CTS
CTS <-> RTS
DSR <-> DTR
DCD <-> DTR
DTR <-> DCD
DTR <-> DSR

32 Appendix H: Query EEPROM to get Board Information
Evaluation boards contain a serial EEPROM which is configured at the factory. This EEPROM
contains the board type, clock rate information, the serial number, and the assigned MAC
addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-136 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note: These values should not be altered without the help of a Cavium Networks
representative. The board is only tested with the programmed values; other values are not
guaranteed to work.

To query the EEPROM for board information, use the following bootloader command:

target# tlv_eeprom display
==
CLOCK_DESC_TYPE (0x1) tuple found: at addr 0x0
type: 0x1, len: 0xe, csum: 0x197, maj_ver: 1, min_ver: 0
DDR clock: 266 Mhz (raw: 0x10a)
CPU ref clock: 50 Mhz (raw: 0x190)
SPI clock (deprecated): 1000 Mhz (raw: 0x3e8)
==
CHIP_CAPABILITY_TYPE (0x3) tuple found: at addr 0xe
type: 0x3, len: 0xe, csum: 0x2fd, maj_ver: 1, min_ver: 0
Coremask: 0x7fff, voltage_x100: 120, cpu_freq_mhz: 500
==
BOARD_DESC_TYPE (0x2) tuple found: at addr 0x1c
type: 0x2, len: 0x24, csum: 0x2e5, maj_ver: 1, min_ver: 0
Board type: EBT3000 (0x2)
Board revision major:3, minor:1
Chip type (deprecated): OCTEON_SAMPLE (0x2)
Chip revision (deprecated) major:1, minor:3
Board ser #: 2005-00087-3.1
==
MAC_ADDR_TYPE (0x4) tuple found: at addr 0x40
type: 0x4, len: 0x10, csum: 0x1e1, maj_ver: 1, min_ver: 0
MAC base: 00:0f:b7:10:03:e2, count: 14
==

In this example, the DDR frequency is 266 MHz, the CPU frequency is 500 MHz, and the board
type is EBT3000.

Another example output, in slightly different form is:

==
CLOCK_DESC_TYPE (0x1) tuple found: at addr 0x0
type: 0x1, len: 0x10, csum: 0xf2, maj_ver: 2, min_ver: 0
DDR clock: 333 Mhz (raw: 0x14d)
CPU ref clock: 50 Mhz (raw: 0x190)
DFA ref clock: 0 Mhz (raw: 0x0)
SPI clock (deprecated): 0 Mhz (raw: 0x0)
==
VOLT_MULT_TYPE (0x5) tuple found: at addr 0x10
type: 0x5, len: 0xc, csum: 0x6e, maj_ver: 1, min_ver: 0
Voltage: 1100 millivolts
CPU multiplier: 12
==
BOARD_DESC_TYPE (0x2) tuple found: at addr 0x1c
type: 0x2, len: 0x24, csum: 0x2ea, maj_ver: 1, min_ver: 0
Board type: EBH5200 (0x13)
Board revision major:1, minor:0
Chip type (deprecated): NULL (0x0)
Chip revision (deprecated) major:0, minor:0

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-137

Board ser #: 2008-1.0-00084
==
MAC_ADDR_TYPE (0x4) tuple found: at addr 0x40
type: 0x4, len: 0x10, csum: 0x1a4, maj_ver: 1, min_ver: 0
MAC base: 00:0f:b7:10:53:60, count: 6
==

In the example above, the CPU frequency is (CPU Ref Clock Rate * CPU Multiplier) = (50 MHz *
12) = 600 MHz.

32.1 Detecting a Problem with the EEPROM
If nothing is returned from the U-Boot command, the EEPROM needs to be reprogrammed. U-
boot will also display “Warning: Board descriptor tuple not found in eeprom, using defaults”. The
customer should contact a Cavium Networks Field Application Engineer (FAE) for how to
reprogram it. The following text shows an example where the EEPROM is corrupted.

U-Boot 1.1.1 (U-boot build #: 205) (SDK version: 1.8.0-275) (Build time: Aug 13 2008 -
20:11:19)

EBH5200 board revision major:1, minor:0, serial #: unknown
OCTEON CN5230-SCP pass 1.0, Core clock: 600 MHz, DDR clock: 199 MHz (398
Mhz data rate)
Warning: Board descriptor tuple not found in eeprom, using defaults
DRAM: 2048 MB
Flash: 8 MB
Clearing DRAM........ done
BIST check passed.
Net: octmgmt0, octmgmt1, octeth0, octeth1, octeth2, octeth3
Bus 0 (CF Card): OK

 ide 0: Model: CF 1GB Firm: 20071116 Ser#: TSS20037080507104533
 Type: Hard Disk
 Capacity: 967.6 MB = 0.9 GB (1981728 x 512)

33 Appendix I: Updating U-Boot on a Standalone Board
These directions describe installing the pre-built newer version of U-Boot on an OCTEON board
via tftpboot. More information may be found in the SDK document “OCTEON Bootloader”.

Note: If possible, contact a Cavium Networks FAE before doing this step. It is critical to
identify the correct bootloader for your OCTEON board.

Note: Do NOT try to modify the failsafe bootloader on the board. If the failsafe needs to be
modified, contact a Cavium Networks FAE.

33.1 Locating the Correct Bootloader
The various U-Boot files are located in $OCTEON_ROOT/target/bin.
The following U-Boot files are available in SDK 1.7.3 (omitting failsafe ELF files). Items marked
with a “*” are planned, but not yet released as of SDK 1.7.3. Note that this list will become out of
date as new boards are released. It is not intended to be a complete list, merely a guideline.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-138 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Note that the board type can be determined from the EEPROM. See Section 32 – “Appendix H:
Query EEPROM to get Board Information”.

Table 52: SDK 1.7.3 Boards and Bootloader File Names, Part 1

Chip Board Stand-alone Bootloader Name PCI Target Bootloader Name

CN38XX OCTEON XL CPB
Coprocessor Board N/A u-boot-octeon_thunder_pciboot.bin

CN38XX OCTEON XL NIC
Network Interface Card N/A u-boot-octeon_thunder_pciboot.bin

CN38XX OCTEON XL NICPro
Network Interface Card N/A u-boot-octeon_thunder_pciboot.bin

CN58XX OCTEON XL NICPro2 -
Network Interface Card N/A u-boot-octeon_nicpro2_pciboot.bin

CN58XX OCTEON XL NICPro2 -
Network Interface Card -
Pro 2 version

N/A
u-boot-octeon_nicpro2_pciboot.bin

CN56XX OCTEON XL NIC
Express Network
Interface Card - PCIe
version *

N/A u-boot-octeon_nic_xle_4g_pciboot.bin

CN54XX

OCTEON XL NIC
Express Network
Interface Card - PCIe
version *

N/A u-boot-octeon_nic_xle_4g_pciboot.bin

Accelerator Boards (PCI Target Only)

Notes
Note: Items marked with a "*" were planned, but not yet released as of SDK 1.7.3.
Note: N/A stands for "Not Applicable".

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-139

Table 53: SDK 1.7.3 Boards and Bootloader File Names, Part 2

Chip Board Stand-alone Bootloader Name PCI Target Bootloader Name

CN3010 CN3010 Evaluation
Board

u-boot-octeon_cn3010_evb_hs5.bin N/A

CN31XX CN3100 Evaluation
Board

u-boot-octeon_ebh3100.bin N/A

CN38XX CN3800 Evaluation
Board - host only

u-boot-octeon_nac38.bin N/A

CN38XX CN3800 Evaluation
Board - target only

N/A u-boot-octeon_ebt3000_pciboot.bin

CN50XX CN5000 Evaluation
Board

u-boot-octeon_cn3010_evb_hs5.bin N/A

CN52XX CN5200 Evaluation
Board

u-boot-octeon_ebh5200.bin N/A

CN54XX CN5400 Evaluation
Board

u-boot-octeon_ebh5600.bin N/A

CN55XX CN5500 Evaluation
Board (54xx + RAID)

u-boot-octeon_ebh5600.bin N/A

CN56XX CN5600 Evaluation
Board - host only

u-boot-octeon_ebh5600.bin N/A

CN57XX CN5700 Evaluation
Board (56xx + RAID)

u-boot-octeon_ebh5600.bin N/A

CN58XX CN5800 Evaluation
Board

u-boot-octeon_ebt5800.bin u-boot-octeon_ebt5800_pciboot.bin

Notes
Note: N/A stands for "Not Applicable".

Evaluation Boards (unless otherwise noted, these are dual boards which can be configured as either Stand-
alone or PCI target)

33.2 Save the old Bootloader Environment
Print the old bootloader environment, and save the output to a file by cut-and-pasting the data
shown on the screen into a file.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
R

IA
L

 OCTEON Programmer’s Guide

4-140 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

O

target# printenv
bootdelay=0
baudrate=115200
download_baudrate=115200
bootloader_flash_update=protect off 0xbf430000 0xbf47ffff;erase 0xbf430000
0xbf)
linux_cf=fatload ide 0 $(loadaddr) vmlinux.64;bootoctlinux $(loadaddr)
burn_app=erase bf480000 +$(filesize);cp.b $(fileaddr) bf480000 $(filesize)
ls=fatls ide 0
bf=bootoct bf480000 forceboot numcores=$(numcores)
nuke_env=protect off BFBFE000 BFBFffff; erase BFBFE000 BFBFffff
autoload=n
ethact=octeth0
loadaddr=0x20000000
coremask_override=0xffff
numcores=16
stdin=serial
stdout=serial
stderr=serial
bootfile=u-boot-octeon_ebt3000.bin
gatewayip=192.168.51.254
netmask=255.255.255.0
ipaddr=192.168.51.174
serverip=192.168.51.1

Environment size: 715/8188 bytes

33.3 Updating the Bootloader on the Board

33.3.1 Download U-Boot to a PCI Target
When using a PCI target, a new bootloader may be downloaded over PCI. Simply type oct-
pci-boot to download the new bootloader from the SDK, or a custom bootloader may be
specified on the command line.

33.3.2 Download U-Boot to a Standalone Target
When using a standalone board, a new bootloader may be downloaded using tftpboot. In this
example the board is an ebt3000.

33.3.2.1 Copy the Bootloader to the /tftpboot Directory
host$ sudo cp u-boot-octeon_ebt3000.bin /tftpboot
host$ ls -l /tftpboot
total 296
-rwxr-xr-x 1 root root 296736 Aug 1 14:54 u-boot-octeon_ebt3000.bin
The exact command line will depend on which bootloader is currently
running on the board.

33.3.2.2 Boot the New Bootloader
On a bootloader built before SDK 1.7:

target# tftpboot 0x100000 u-boot-octeon_ebt3000.bin

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-141

For bootloaders built for SDK 1.7 and higher:

target# tftpboot 0 u-boot-octeon_ebt3000.bin

Using octeth0 device
TFTP from server 192.168.51.254; our IP address is 192.168.51.174
Filename 'u-boot-octeon_ebt3000.bin'.
Load address: 0x20000000
Loading: ###
done
Bytes transferred = 296736 (48720 hex), 10349 Kbytes/sec

33.3.3 Update the Bootloader
An alias called bootloader_flash_update has been defined by default. The alias can be
seen using the bootloader command printenv:
bootloader_flash_update=protect off 0xbf430000 0xbf47ffff;erase 0xbf430000
0xbf)

In the target console, type:

target# run bootloader_flash_update
Un-Protected 5 sectors

..... done
Erased 5 sectors
Copy to Flash...done

(This process takes about 7 seconds.)

Then push the reset button. The header is now updated:

U-Boot 1.1.1 (U-boot build #: 194) (SDK version: 1.7.3-264) (Build time: Jun
13)

EBT3000 board revision major:4, minor:0, serial #: 2006-00257-4.0
OCTEON CN3860-NSP pass 2.X, Core clock: 500 MHz, DDR clock: 266 MHz (532 Mhz
da)
PAL rev: 2.01, MCU rev: 2.11, CPU voltage: 1.20
DRAM: 2048 MB
Flash: 8 MB
*** Warning - bad CRC, using default environment

IPD backpressure workaround verified, took 29 loops
Clearing DRAM........ done
BIST check passed.
Net: octeth0, octeth1, octeth2, octeth3
 Bus 0 (CF Card): not available

33.3.4 Erase the Prior Environment Settings
If the old bootloader on the board was bootloader 1.6 or lower, an additional step is needed to erase
the prior environment settings.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-142 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

A script, nuke_env, has been defined (the script is visible using printenv):

target# printenv
nuke_env=protect off $(env_addr) +$(env_size); erase $(env_addr) +$(env_size)

Run nuke_env to load the new default environment:

target# run nuke_env
Un-Protected 1 sectors

. done
Erased 1 sectors

33.3.5 Verify the New Default Environment has Been Loaded
The new default environment should now have been loaded:

target# printenv
bootdelay=0
baudrate=115200
download_baudrate=115200
bootloader_flash_update=protect off $(uboot_flash_addr)
+$(uboot_flash_size);erv
burn_app=erase $(flash_unused_addr) +$(filesize);cp.b $(fileaddr)
$(flash_unuse)
bf=bootoct $(flash_unused_addr) forceboot numcores=$(numcores)
nuke_env=protect off $(env_addr) +$(env_size); erase $(env_addr)
+$(env_size)
linux_cf=fatload ide 0 $(loadaddr) vmlinux.64;bootoctlinux $(loadaddr)
ls=fatls ide 0
autoload=n
loadaddr=0x20000000
coremask_override=0xffff
numcores=16
stdin=serial
stdout=serial
stderr=serial
env_addr=0xbfbfe000
env_size=0x2000
flash_base_addr=0xbf400000
flash_size=0x800000
uboot_flash_addr=0xbf430000
uboot_flash_size=0x50000
flash_unused_addr=0xbf480000
flash_unused_size=0x77e000
ethact=octeth0

Environment size: 889/8188 bytes

The following table shows an example of how the original environment may be different from the
new default environment.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-143

Table 54: Example Bootloader Environment File Changes due to Upgrade
Original Bootloader Environment Bootloader Environment Restored from Default after

Upgrade
bootdelay=0 bootdelay=0

baudrate=115200 baudrate=115200

download_baudrate=115200 download_baudrate=115200

bootloader_flash_update=protect off
0xbf430000 0xbf47ffff;erase 0xbf430000
0xbf)

bootloader_flash_update=protect off
$(uboot_flash_addr)
+$(uboot_flash_size);erv

linux_cf=fatload ide 0 $(loadaddr)
vmlinux.64;bootoctlinux $(loadaddr)

linux_cf=fatload ide 0 $(loadaddr)
vmlinux.64;bootoctlinux $(loadaddr)

burn_app=erase bf480000
+$(filesize);cp.b $(fileaddr) bf480000
$(filesize)

burn_app=erase $(flash_unused_addr)
+$(filesize);cp.b $(fileaddr)
$(flash_unuse)

ls=fatls ide 0 ls=fatls ide 0

bf=bootoct bf480000 forceboot
numcores=$(numcores)

bf=bootoct $(flash_unused_addr)
forceboot numcores=$(numcores)

nuke_env=protect off BFBFE000
BFBFffff; erase BFBFE000 BFBFffff

nuke_env=protect off $(env_addr)
+$(env_size); erase $(env_addr)
+$(env_size)

autoload=n autoload=n

ethact=octeth0 ethact=octeth0

loadaddr=0x20000000 loadaddr=0x20000000

coremask_override=0xffff coremask_override=0xffff

numcores=16 numcores=16

stdin=serial stdin=serial

stdout=serial stdout=serial

stderr=serial stderr=serial

bootfile=u-boot-octeon_ebt3000.bin

env_addr=0xbfbfe000

env_size=0x2000

flash_base_addr=0xbf400000

flash_size=0x800000

uboot_flash_addr=0xbf430000

uboot_flash_size=0x50000

flash_unused_addr=0xbf480000

flash_unused_size=0x77e000

Note 1: The gatewayip, netmask, ipaddr, and serverip environment variables will no longer be set after
he upgrade. These IP addresses are set by either the dhcp command or setenv commands.t

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-144 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

33.3.6 Reset IP Information
To restore the gatewayip, netmask, ipaddr, and serverip configuration variables, either
use dhcp to reset the information, or set the variables individually. If static IP addresses are used,
after setting them, saveenv to save them.

target# dhcp
Interface 1 has 4 ports (RGMII)
BOOTP broadcast 1
octeth0: Up 1000 Mbps Full duplex (port 16)
DHCP client bound to address 192.168.51.161

34 Appendix J: TFTP Boot Assistance (tftpboot)
The following documentation is provided for persons unfamiliar with TFTP, who need help getting
tftpboot to work. The tftpboot utility is used to download an application to a standalone
target board. Target boards which support CompactFlash may use a flash card instead of
tftpboot to download the application, but tftpboot is faster.

In addition to being faster, tftpboot can be more convenient than loading via a flash
card. Before inserting the flash card into the target, the target should be powered off.

34.1 TFTP Server Firewall
The tftpboot command will not work if the server’s firewall is on. Be sure the firewall is off
before beginning.

If the server’s firewall is on, tftpboot will not work, but will not supply a convenient error
message. This is particularly annoying to debug.

34.2 Verify that the TFTP Server RPM is Installed on the TFTP Server
Ensure that the tftp-server RPM is installed on the TFTP server and is running:

On the TFTP server, type:

host$ sudo rpm -qa | grep -i tftp

Expect to see the tftp-server package in the reply:
tftp-server-0.33-3

If the RPM package containing the tftp server is not installed, install it before continuing to the
next step.

34.3 Verify the TFTP Server is Currently Enabled
Run the commands in this section after TFTP is installed to ensure the TFTP server is enabled
properly. C

av
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-145

34.3.1 Enable and Start the TFTP Server
TFTP configuration is stored in the TFTP startup file. In the example below, the startup file is
/etc/xinetd.d/tftp. The exact startup file on your system can be determined by looking at
the TFTP manual page.

Look at the configuration information in the TFTP startup file:

host$ cat /etc/xinetd.d/tftp
default: off
description: The tftp server serves files using the trivial file
transfer \
protocol. The tftp protocol is often used to boot diskless \
workstations, download configuration files to network-aware
printers, \
and to start the installation process for some operating systems.
service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot
 disable = yes # <<< HERE IS THE KEY DIFFERENCE
 per_source = 11
 cps = 100 2
 flags = IPv4
}

34.3.2 Turn on the TFTP Server
If the TFTP server is set to disable = yes, then turn on the TFTP server:

host$ /sbin/chkconfig tftp on
<no reply if all is well>

34.3.3 Verify the TFTP Server is Now Enabled
Look at the contents of the tftp startup file and look for “disable = no”.

host$ cat /etc/xinetd.d/tftp
default: off
description: The tftp server serves files using the trivial file
transfer \
protocol. The tftp protocol is often used to boot diskless \

workstations, download configuration files to network-aware
printers, \
and to start the installation process for some operating systems.
service tftp
{
 disable = no # <<< HERE IS THE KEY DIFFERENCE
 socket_type = dgram
 protocol = udp
 wait = yes

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-146 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot
 per_source = 11
 cps = 100 2
 flags = IPv4
}

34.4 About the TFTP Download Directory on the TFTP Server
Note the contents of the tftp file shown above includes a line specifying the download directory:

server_args = -s /tftpboot

If a different download directory is specified on this line, for instance /home, then downloads
must occur relative to /home, not relative to /tftpboot. For instance, if /home is specified,
then it is okay to create a sub-directory testname/dl inside of /home:

host$ mkdir /home/testname/dl

This is recommended if multiple users are sharing the same development host, because each user
will then have a separate download directory.

Then, when typing the tftpboot command line in the target console, specify the download
directory relative to /home:

For example, for bootloaders built with SDK 1.7 and higher:

target# tftpboot 0 testname/dl/hello

34.4.1 Tftpboot Directory Permissions
If the /tftpboot directory and the files inside it are not readable to world, then the tftp server
will not be able to read the files. To resolve the directory permissions, either use a different
directory, such as /home, or change the permissions on the /tftpboot directory:

In the following command, the "1" will set the "sticky bit",
so users may only delete their own files
host$ chmod 1777 /tftpboot

See Section 26.4.1 – “File Basics” for an introduction to file permissions.

34.5 Verify serverip is set Correctly on the OCTEON Target Board
Ensure that the server IP variable, serverip is correctly set in the bootloader environment
variables on the OCTEON target board.

34.5.1 If a DHCP Server is Available
If a DHCP Server is available, then in the target console, type:

target# dhcp

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-147

34.5.2 If a DHCP Server is Not Available
To set the bootloader’s serverip variable to the IP of the TFTP server, first run the
/sbin/ifconfig utility on the TFTP server to find out the TFTP server’s IP address:

host$ /sbin/ifconfig

Then run the following commands from the target console for the OCTEON board (bootloader
commands on the target board):

target# setenv serverip <host IP> # Use your host IP address
target# saveenv

For example:

target# setenv serverip 192.168.51.1 # use your TFTP Server’s IP address
target# saveenv

34.5.3 Verify the Server IP Address and Physical Ethernet Connection
Check that the connection is good: In the target console, type:

target# ping <host IP> # Use your host IP address

For example:

target# ping 192.168.51.1
Using octeth0 device
host 192.168.51.1 is alive

34.6 Test tftpboot: Boot hello on the OCTEON Target Board
For a quick test, use the example application hello. If hello has not yet been built, see Section
11 – “Hands-on: Build and Run a SE-S Application (hello)”.

Copy the example application hello to the /tftpboot folder. This folder should have been
created when the tftp-server RPM was installed. (Note that on some systems the default
tftpboot directory is /var/lib/tftpboot. The exact directory can be determined by
looking at the server_args value in the TFTP startup file.)

host$ cd $OCTEON_ROOT/examples/hello
host$ sudo cp hello /tftpboot

Note that the folder is only writable by the owner, root:
host$ cd /tftpboot
host$ ls -ld .
drwxr-xr-x 2 root root 4096 Feb 17 2004 .

Run the following command in the target console:

target# tftpboot 0 hello

If tftpboot is installed and configured correctly, expect to see:

Using octeth0 device
TFTP from server 192.168.16.41; our IP address is 192.168.16.61
Filename 'hello'.
Load address: 0x20000000
Loading: ### <<<< tftpboot will print more “#” as data is downloaded

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-148 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

done
Bytes transferred = 315148 (4cf0c hex), 12823 Kbytes/sec

Otherwise, timeouts will occur.

If the serverip was not yet set, the following error will occur:

target# tftpboot 0 hello
Interface 1 has 4 ports (RGMII)
*** ERROR: 'serverip' not set
WARNING: Data loaded outside of the reserved load area, memory corruption
may occur.
WARNING: Please refer to the bootloader memory map documentation for more
information.

34.7 Further Information
For more information:
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch16_:_Telnet,_TFTP,
_and_xinetd#TFTP

35 Appendix K: Downloading Using the Serial Connection
Downloading over the serial connection is slow. This method is sometimes used to upgrade the
bootloader on a standalone board. The instructions given here may be used for a bootloader, but
hello is used in this example.

35.1 Kermit
The program kermit must have been installed on the development host. To check whether
kermit has been installed type:

host$ which kermit

Expect to see:
/usr/bin/kermit

This document does not include instructions to install Kermit. Check a Linux System
Administration manual for help if Kermit is not already installed on the development host.

Configure Minicom to use Kermit (these instructions assume the Minicom configuration was saved
as ttyS0):

host$ sudo minicom –s ttyS0

Select “Filenames and paths”, and set the path for “Kermit program” to /usr/bin/kermit,
then save the new configuration.

35.2 Copy hello to /tmp
Copy the application $OCTEON_ROOT/examples/hello/hello to /tmp. This step
assumes it was already built.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch16_:_Telnet,_TFTP,_and_xinetd%23TFTP
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch16_:_Telnet,_TFTP,_and_xinetd%23TFTP

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-149

35.3 Set up the .kermrc File
Create a ~/.kermrc file. This file will contain the following information, assuming the
development host’s serial port is /dev/ttyS0:

set modem type none
set line /dev/ttyS0
set speed 115200
set streaming off
set prefixing all
set flow xon/xoff
set carrier-watch off
robust

35.4 Start Minicom
1. Start Minicom (minicom –w).
2. Then, reset the board as needed to get a bootloader prompt.
3. Give the bootloader command:

 target# loadb
4. Then call Kermit (Ctrl-A K).

You should see something like:
C-Kermit 8.0.209, 17 Mar 2003, for Red Hat Linux 8.0
 Copyright (C) 1985, 2003,
 Trustees of Columbia University in the City of New York.
Type ? or HELP for help.
(/home/testname/sdk/examples/hello/) C-Kermit>

5. Give the Kermit Commands in the Minicom Session (the download will take about 20

seconds):
(/home/testname/sdk/examples/hello/) C-Kermit> send /tmp/hello
(/home/testname/sdk/examples/hello/) quit

6. After quitting Kermit, type in the command to run the downloaded ELF file:

target# bootoct 0 coremask=0x1
Bootloader: Booting Octeon Executive application at 0x20000000, core
mask: 0x1,0
Bootloader: Done loading app on coremask: 0x1
PP0:~CONSOLE->
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run successfully.

36 Appendix L: Simple Executive Configuration
Ninety percent of users can use the Simple Executive, after making the minor configurations
described in this section. This is the easiest way to speed your application to market.

The following items may be configured:

1. FPA Pools including: Packet Data Buffers, Work Queue Entry Buffers, PKO Command
Queues, Timer Buffers, DFA Buffers, ZIP Buffers, and custom buffers.

2. Scratchpad (used for IOBDMA operations).
3. FAU Resources

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-150 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

For details on how to configure FPA Pools, see the FPA Chapter. For details on how to configure
FAU Buffers, see the FAU Chapter.

37 Appendix M: Changing the ABI Used for Linux
Note that the kernel is always built for 64-bits. This section only applies to Linux example
applications which may be compiled with either the default N64 ABI, or the N32 ABI.

Notice that in sdk-examples.mk, the exact make line depends on the variable ABI. This
comes from the environment variable TOOLCHAIN_ABI.

To change this, go to the $OCTEON_ROOT/linux/kernel_2.6/linux directory. Type
make menuconfig and select the desired ABI.

 Global Options --->
 [*] device-files
 [*] busybox
 [*] Include the Busybox testsuite
 [*] init-scripts
 NFS Root filesystem --->
 [*] module init tools
 --- libpcap
 [*] libraries-n32
 [] libraries-uclibc
 --- libraries-64

 <text omitted>

Select Global Options. The next menu will look similar to:
 Toolchain ABI and C library (N64 ABI with GNU C Library (glibc))
 [] Override the Linux Kernel configuration
 [*] Include all kernel modules built in the kernel tree
 [*] Enable IPV6 support

Select Toolchain ABI and C Library. The next menu will look similar to:
() N32 ABI with GNU C Library (glibc)
 (X) N64 ABI with GNU C Library (glibc)
 () N32 ABI with uClibc

 Select the ABI to be used for the examples, then exit, saving the new configuration, and re-make
the kernel target in $OCTEON_ROOT/linux.

Note you may have to remove the file
$OCTEON_ROOT/linux/embedded_rootfs/.root_complete to force a filesystem
rebuild on the next make.

38 Appendix N: Contents of the Embedded Root Filesystem
The 2.6 Linux vmlinux.64 ELF files contain a gzipped cpio-format archive, which is used to
populate the in-memory root filesystem when the kernel boots up. This cpio file contains the
busybox utilities, the example code, the init program, and other key files.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-151

There are two files in $OCTEON_ROOT/linux/embedded_rootfs: rootfs.cpio and
rootfs.cpio.gz. The rootfs.cpio.gz file is the gzipped version embedded into the
vmlinux.64 file.

To see the contents of the root filesystem before it is booted on the target, either look at the
/tmp/root_rootfs directory, or examine the rootfs.cpio file.

The contents of the rootfs.cpio file can be seen using the cpio command.

host$ cd $OCTEON_ROOT/linux/embedded_rootfs

host$ ls –l rootfs.cpio
-rw-r--r-- 1 root root 42831360 Jan 22 14:14 rootfs.cpio

host$ cat rootfs.cpio | cpio –itv >/tmp/junk.txt

host$ head /tmp/junk.txt
drwxrwxrwx 20 root root 0 Jan 22 14:10 .
drwxr-xr-x 2 root root 0 Jan 22 14:14 sbin
lrwxrwxrwx 1 root root 12 Jan 22 14:01 sbin/e2fsck ->
/bin/busybox
lrwxrwxrwx 1 root root 12 Jan 22 14:01 sbin/klogd ->
/bin/busybox
-rwxr-xr-x 1 root root 62000 Jan 22 14:14 sbin/ifconfig
lrwxrwxrwx 1 root root 12 Jan 22 14:01 sbin/hdparm ->
/bin/busybox
lrwxrwxrwx 1 root root 12 Jan 22 14:01 sbin/fdisk ->
/bin/busybox
-rwxr-xr-x 1 root root 49408 Jan 22 14:14 sbin/arp
-rwxr-xr-x 1 root root 932 Jan 22 14:01 sbin/rc
-rwxr-xr-x 1 root root 49968 Jan 22 14:14 sbin/route

To look for a specific application, such as a custom application, use the following command. Note:
substitute your search string for examples/fpa. (In the case, the FPA example has been
successfully added as an example of a custom application. See Section 23.1 – “Adding
Applications to the Embedded Root Filesystem”.)

host$ cat rootfs.cpio | cpio -itv | grep examples/fpa
-rwxr-xr-x 1 root root 696296 Jan 30 10:35 examples/fpa
84904 blocks

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-152 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

39 Appendix O: Getting Ready to Use a Flash Card
A flash card can be used to:

1. Boot an ELF file (a SE-S application or the Linux kernel).
2. Provide the Debian root filesystem

Before using the flash card, some minor system administration must be done on the development
host, and the flash card must be correctly formatted. This section describes these steps.

39.1 System Administration Steps
First attach the USB-connected CompactFlash reader/writer to the development host, and insert the
flash card.

39.1.1 Determine the Flash Card’s Device Name
When the USB CompactFlash reader/writer is plugged into a USB port on the development host,
the Linux kernel will send information about it to the kernel log. After plugging in the
reader/write, use dmesg to view the log. Look for an entry similar to the one below, near the end
of the log. The device name is after the “Attached scsi removable disk” message. In this example,
it is sdb:

usb 1-5: new high speed USB device using ehci_hcd and address 3
scsi3 : SCSI emulation for USB Mass Storage devices
usb-storage: device found at 3
usb-storage: waiting for device to settle before scanning
 Vendor: Generic Model: STORAGE DEVICE Rev: 0128
 Type: Direct-Access ANSI SCSI revision: 00
SCSI device sdb: 2001888 512-byte hdwr sectors (1025 MB)
sdb: assuming Write Enabled
sdb: assuming drive cache: write through
SCSI device sdb: 2001888 512-byte hdwr sectors (1025 MB)
sdb: assuming Write Enabled
sdb: assuming drive cache: write through
 sdb: sdb1
Attached scsi removable disk sdb at scsi3, channel 0, id 0, lun 0
Attached scsi generic sg1 at scsi3, channel 0, id 0, lun 0, type 0
usb-storage: device scan complete

Warning: It is possible to lose all data on the host root filesystem if the wrong device is
specified! Before taking these steps, use the information above to verify the flash card device
name (such sdb), so that the flash card is partitioned, not another filesystem on the
development host!

39.1.2 Create the Mount Directories
The first partition is mounted on /mnt/cf1, the second is mounted on /mnt/cf2. The
/mnt/cf1 directory configuration is required by $OCTEON_ROOT/linux/Makefile when
downloading a kernel to flash, so we will use that convention to simplify the system administration
directions:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-153

host$ sudo mkdir –p /mnt/cf1
host$ sudo mkdir –p /mnt/cf2

39.1.3 Prevent Automount of the Device
To prevent the device from being automounted, add the following entry to /etc/fstab :
/dev/sdb1 /mnt/cf1 auto noauto,noatime,user 0 0
/dev/sdb2 /mnt/cf2 ext3 noauto,noatime,user 0 0

After the /etc/fstab entry is made, the command mount /mnt/cf1 will look in
/etc/fstab, determine the correct device (/dev/sdb1), and mount it, simplifying the
command line and helping prevent errors.

39.1.4 Protect Yourself By Setting Up an Environment Variable
Because specifying the wrong device on the command line used to partition the device can destroy
the data on that device, it is prudent to put the device name in an environment variable, then use
that environment variable in the command line.

Specify the correct flash card device name in the bash command line below:

be careful to substitute the correct device in the next step!
host$ export DISK=/dev/sdb

39.1.5 Partition the Flash card
If the flash card is already formatted, and the Debian root filesystem will not be used, this step can
be skipped: only one FAT partition is required.

Flash cards are normally formatted with a single DOS FAT partition. Debian requires a flash card
with two partitions: FAT and EXT3.

For simplicity, these instructions use the Debian Makefile to partition the flash even if the Debian
root filesystem will not be used. Using this Makefile automates the system administration.

The steps here will erase all data on the flash card and repartition it to have these two partitions.

39.1.5.1 Debian Root Filesystem
If you are using the Debian root filesystem, the card is not formatted at this time. See Section 41 –
“Appendix Q: Using the Debian Root Filesystem”.

39.1.5.2 ELF File
When using a flash card to simply copy an ELF file, such as an SE-S application or the Linux
kernel, the first partition on the flash card is used. In order to simplify formatting the flash card,
the Debian Makefile is used. This automates the system administration steps.

Warning: This step will delete all data on the flash card.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

 OCTEON Programmer’s Guide

4-154 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

R
IA

L

host$ cd $OCTEON_ROOT/linux/Debian
add the directory /sbin to your path to get fdisk, mkfs, etc.
host$ PATH=$PATH:/sbin
the DISK environment variable was set up during the
System Administration step
host$ sudo make DISK=$DISK env-check safety-banner partition mkfs

After the flash card is partitioned, this step does not need to be repeated.

40 Appendix P: Booting an ELF File From a Flash Card
A CompactFlash device is usually available for standalone target boards, and is sometimes
available for PCI target boards. Either an SE-S application or vmlinux.64 ELF file may be
copied to a flash card, loaded into memory, and booted.

To use the Debian root filesystem from a flash card, see Section 41 – “Appendix Q: Using the
Debian Root Filesystem”, otherwise follow the directions in this section.

40.1 System Administration Steps
Before using the flash card for the first time, see Section 39 – “Appendix O: Getting Ready to Use
a Flash Card”.

40.2 Copying the ELF File to the Flash Card
There are two different directions: one for SE-S applications, and another for vmlinux.64.

40.2.1 Copy a SE-S Application to the Flash Card
In the following example, hello is copied to the flash card:

host$ cd $OCTEON_ROOT/examples/hello
host$ sudo mount /mnt/cf1 # mount the flash card
host$ cp hello /mnt/cf1
host$ sudo umount /mnt/cf1 # unmount the flash card

40.2.2 Copy the Kernel with Embedded Rootfs Onto the Flash Card
Note that the Makefile requires the flash card partition to be mounted on /mnt/cf1 before
calling make flash:

host$ cd $OCTEON_ROOT/linux
host$ sudo mount /mnt/cf1 # mount the flash card
host$ sudo make kernel flash
host$ sudo umount /mnt/cf1 # unmount the flash card

40.3 Moving the Flash Card to the Target
Power off the development target, and then insert the flash card into the target board.

Warning: When inserting the flash card into the OCTEON development target, first power
OFF the development target. The boot bus does not support hot plugging of devices. When
hot plugging the flash card, there is a risk (low, but not zero) of damaging the board. To
power off an OCTEON PCI target, power off the PCI host.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-155

Note: If you are ignoring the safety warning above (at your own risk), so that the board
has not been powered off, be sure to reset the board after inserting the flash card. If the
development target is not reset, the bootloader will not detect the flash card. The
bootloader command ide reset can also be used to cause the bootloader to recognize
the flash card.

40.4 Loading the ELF File From the Flash Card into Memory
Remove the flash card from the development host.

To load an ELF file from the flash card (using bootloader version 1.7 and higher) use the following
command, substituting the name of the ELF file for vmlinux.64.

target# fatload ide 0 0 vmlinux.64

40.5 Booting the ELF File From the Flash Card
Booting an SE-S Application:

target# bootoct 0 coremask=<coremask>

Booting Linux:

target# bootoctlinux 0 coremask=<coremask>

For more information on running Linux from a flash card, see the SDK document “Linux on the
OCTEON”. For information on running the Debian root filesystem, See Section 41 – “Appendix
Q: Using the Debian Root Filesystem”.

41 Appendix Q: Using the Debian Root Filesystem
This section provides a brief introduction to using the Debian root filesystem. For more
information on the Debian root filesystem, see the SDK document “Running Debian GNU/Linux
on OCTEON”.

Note: The oncpu utility may not be in the Debian root filesystem. If it is missing, the copy it
from the development host to the Debian root filesystem.

41.1 System Administration Steps
Before using the flash card for the first time, see Section 39 – “Appendix O: Getting Ready to Use
a Flash Card”.

Warning: This step will delete all data on the flash card.

41.2 About the Debian Root Filesystem
When using the Debian root filesystem, the Linux kernel is compiled without the embedded root
filesystem. The Debian root filesystem is on a flash card. The Makefile command which installs
the Debian root filesystem also installs the kernel onto the flash card. The user may either use the
kernel on the flash card, or a separate kernel.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-156 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

41.3 Install Kernel Plus Debian Onto the Flash card
The Debian root filesystem is located in the $OCTEON_ROOT/linux/debian directory. The
Debian files are pre-packaged in the file debian_octeon.tgz.

To create the two partitions and their contents, use the linux/debian/Makefile:

host$ cd $OCTEON_ROOT/linux/debian
add the directory /sbin to your path to access fdisk, mkfs, etc.
host$ PATH=$PATH:/sbin
the DISK environment variable was set up during the
System Administration step
host$ sudo make DISK=$DISK compact-flash

The first partition will have the kernel, and the second partition contain the root filesystem:
host$ sudo mount /mnt/cf1
host$ sudo mount /mnt/cf2
host$ /bin/ls -CF /mnt/cf1
vmlinux.64*
host$ /bin/ls -CF /mnt/cf2
bin/ etc/ lib/ lost+found/ opt/ sbin/ tmp/ var/
boot/ home/ lib32@ media/ proc/ srv/ uclibc@
dev/ initrd/ lib64@ mnt/ root/ sys/ usr/

In detail, the Makefile target compact-flash will partition the flash card, then copy a stripped
version of vmlinux.64, extract the debian_octeon.tgz, file onto /dev/sdb, and add
Cavium Networks additions (such as the Cavium Networks tool chain).

41.4 Moving the Flash Card to the Target
Power off the development target, and then insert the flash card card into the target board.

Warning: When inserting a flash card card into an OCTEON development target, first
power OFF the development target. The boot bus does not support hot plugging of devices.
When hot plugging the flash card, there is a risk (low, but not zero) of damaging the board.
To power off an OCTEON PCI target, power off the PCI host.

Note: If you are ignoring the safety warning above (at your own risk), so that the board
has not been powered off, be sure to reset the board after inserting the flash card. If the
development target is not reset, the bootloader will not detect the flash card. The
bootloader command ide reset can also be used to cause the bootloader to recognize
the flash card.

41.5 Load the Kernel from the Flash Card into Memory
Load the kernel from the flash card into memory:

target# fatload ide 0 0 vmlinux.64

41.6 Boot the Kernel
When booting the kernel, two changes are essential:

1. Specify root=/dev/cfa2 to use the Debian root filesystem on the flash card. If this
step is omitted, Debian will fail with the message:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-157

VFS: Unable to mount root fs via NFS, trying floppy.
VFS: Cannot open root device "<NULL>" or unknown-block(2,0)
Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on
unknown-block(2,0)

2. When booting Debian Linux, do not specify 0 as the load address. Debian will interpret the
0 to be the run level (0=shutdown), and Linux will shutdown immediately, giving a
message similar to the following:

INIT: Entering runlevel: 0
Asking all remaining processes to terminate...done.
Killing all remaining processes...done.
Stopping portmap daemon....
<text omitted>
System halted.

The correct boot command line is:
using the value of loadaddr which was returned by the printenv command
target# bootoctlinux 0x20000000 coremask=1 root=/dev/cfa2

41.7 Upgrading the Kernel on the Flash Card
Use the $OCTEON_ROOT/linux/Makefile target kernel-deb to create a kernel without
the embedded root filesystem. Then use the target flash to copy the kernel to the flash card
without disturbing the Debian root filesystem on the second partition:

host$ cd $OCTEON_ROOT/linux
The Makefile requires the flash card partition be mounted
on /mnt/cf1 before calling make flash
host$ sudo mount /mnt/cf1 # mount the flash card
host$ sudo make kernel-deb flash
host$ sudo umount /mnt/cf1 # unmount the flash card

42 Appendix R: About oct-pci-console
On OCTEON PCI targets, the PCI host command oct-pci-console may be used to view the
development target console output. This command is only useful when using flash boot, not PCI
boot (see note below), and an initial Minicom connection is required to configure the bootloader to
send console messages over the PCI bus.

Note: When using oct-pci-console, early bootloader messages will not be visible.
These messages are sent to the serial console before the PCI console is enabled by the
bootloader.

In the following command the number 1 specifies one PCI console.

target# setenv pci_console_count 1
PCI console init succeeded, 1 consoles, 1024 bytes each
Using PCI console, serial port disabled.

(After changing the bootloader to send messages over PCI, the target console in the Minicom
screen will no longer reply to the Enter key.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-158 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Either exit Minicom (Ctrl-A X) or go to another terminal session, and connect to the target console
over the PCI bus. Notice that the console is specified as 0 in the following command:

host$ oct-pci-console 0
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Connecting to PCI console 0
Using raw terminal mode, escape character is ^A, use ^A D to exit, ^A A
to send ^A

Save the value of oct-pci-console so it will be set when the board comes up the next time:

target# saveenv
(This step is done after the PCI console connection is verified to be okay.)

Note: The oct-pci-console command cannot be used effectively with PCI boot because
there is no way to save the number of PCI consoles: After every reset, the number of
consoles would have to be reconfigured. The only way to reconfigure them is via the serial
connection (Minicom) to the target console, so that the serial console must always be
connected.

The following error will occur when attempting to save environment variables when using PCI
boot:

target# saveenv
Environment updates not supported

To exit oct-pci-console use Ctrl-A D (hold down control key (Ctrl) while pressing the letter
“a”), then let go of the Ctrl-A and then press the letter “d”.

See the SDK document “Developing with OCTEON as a PCI Target” for more information.

43 Appendix S: About oct-pci-reset and oct-pci-csr
The oct-pci-* commands are used from a PCI host to an OCTEON PCI development target.

43.1 Reset: oct-pci-reset
This command will only reset the board. If the board is configured to boot from flash, the board
will boot after the reset, otherwise it will be held in reset until the oct-pci-boot command is
typed on the development host.

After oct-pci-reset, if the board is not configured to boot from onboard flash, then there will
not be any response at the Minicom console, however the board’s reset state may be viewed using
oct-pci-csr as shown in Section 43.2 –“Access Control and Status Registers (CSRs): oct-
pci-csr”.

43.2 Access Control and Status Registers (CSRs): oct-pci-csr
The oct-pci-csr command can be used to examine OCTEON Command and Status Registers.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-159

In the example below, oct-pci-csr is used to examine the board’s reset state. The reset state is
stored in the CIU_PP_RST Central Interrupt Unit Command and Status Register.

host$ oct-pci-csr CIU_PP_RST
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
CIU_PP_RST(0x0001070000000700) = 0x000000000000ffff << Board is in reset
 RESERVED_16_63 = 0 (0x0)
 RST = 32767 (0x7fff)
 RST0 = 1 (0x1)

The low N bits of this register correspond to the N cores available on the OCTEON model, with
core 0 in bit position 0. As shown above, the value of the register, when a 16-core OCTEON
processor is reset, is 0xFFFF. Bits <63:16> should read as zero. The value of the register
(0x000000000000ffff) is displayed. The values of three fields in the register (RESERVED_16_63,
RST, and RST0) are displayed separately.

Per the Hardware Reference Manual:

• When the external pin PCIBOOT is asserted, all cores are held in reset after any OCTEON
processor hard or soft reset (i.e. on a 16-core OCTEON processor, CIU_PP_RST resets to
0xFFFF).

• When the external pin PCIBOOT is de-asserted, core 0 is not held in reset after any
OCTEON processor hard or soft reset, but other cores are (i.e. CIU_PP_RST resets to
0xFFFE).

Cores are taken out of reset by writing a 0 to the corresponding bit in CIU_PP_RST. This can be
done either by a core or by a remote PCI host.

44 Appendix T: Multiple Embedded Root Filesystem Builds
If multiple users are sharing the same system, then a problem can occur during the embedded root
filesystem build.

One of the steps in the embedded root filesystem build is to create a temporary directory:

/tmp/root-rootfs

The directions in this tutorial assume there is only one user on a system. If that is the case, then
this problem will not occur. However, if multiple users are all doing this build on the same system,
then they will over-write each other's work in this temporary directory.

The solution is to modify the sudoers file to add the NOPASSWD option:

testname ALL = NOPASSWD: ALL

When this option is specified, sudo will not prompt for a password. This will allow the users to
type make kernel without the preceding sudo. The temporary directory name will now be
unique for each user: /tmp/<username>-rootfs.

For example, the user testname will use the directory:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-160 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

/tmp/testname-rootfs

Warning: Setting the NOPASSWD option presents a security issue: If someone gets access
to the system as a normal user, they now have root permission. Similarly, if the user walks
away from the computer leaving the login session open, anyone who walks up has root
permission.

Note: if you have been building Linux as root, and then switch to this NOPASSWD option, even if
you first perform sudo make clean, build problems may occur from prior files owned by root
which are not cleaned up.

For example, the following fatal error occurred (visible in
$OCTEON_ROOT/linux/make.out):

make -C ../linux SUBDIRS=`pwd` modules;
make[5]: Entering directory `/home/testname/sdk18/linux/kernel_2.6/linux'
 CC [M] /home/testname/sdk18/linux/kernel_2.6/intercept-example/intercept.o
 LD [M] /home/testname/sdk18/linux/kernel_2.6/intercept-example/intercept-
example.o
/bin/sh: line 1:
/home/testname/sdk18/linux/kernel_2.6/intercept-example/.intercept-
example.o.cmd: Permission denied

An investigation shows a hidden file from the prior build which was not removed by the sudo
make clean command:
host$ cd kernel_2.6/intercept-example
host$ ls -al
total 236
drwxr-xr-x 3 testname root 4096 Feb 22 14:18 .
drwxr-xr-x 4 testname root 4096 Jan 28 10:48 ..
-rw-r--r-- 1 root root 5901 Jan 28 10:48 intercept.c
-rw-r--r-- 1 root root 375 Feb 18 16:18 .intercept-example.ko.cmd
-rw-r--r-- 1 root root 12655 Feb 18 16:18 .intercept-example.mod.o.cmd
-rw-r--r-- 1 testname software 77975 Feb 22 14:18 intercept-example.o
-rw-r--r-- 1 root root 287 Feb 18 16:18 .intercept-example.o.cmd
-rw-r--r-- 1 testname software 77624 Feb 22 14:18 intercept.o
-rw-r--r-- 1 testname software 19233 Feb 22 14:18 .intercept.o.cmd
-rw-r--r-- 1 root root 2562 Jan 28 10:48 Makefile
-rw-r--r-- 1 root root 0 Jan 28 10:48 Module.symvers
-rw-r--r-- 1 root root 3997 Jan 28 10:48 README.txt
drwxr-xr-x 2 testname root 4096 Feb 22 14:18 .tmp_versions
Fix the problem by removing the .intercept* files
host$ rm .intercept*

Another make error:
cp: cannot create regular file
`/home/testname/sdk18/linux/embedded_rootfs/../kernel_2.6/linux/usr/initramfs_data.cpio':
Permission denied

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-161

Remove this file also. In kernel 2.6, these were all the changes required to allow the build to
complete.

45 Appendix U: How to Find the Process’s Core Number
When running Linux, it is possible to determine which core is running which process by the
following technique.

In Section 22 – “Hands-on: Run linux-filter as a SE-UM Application on Multiple Cores”,
linux-filter was started on cores 1 and 2 by using the command oncpu 0x6 linux-
filter.

Use the ps command to get their Process IDs (PIDs):

host$ ps
 PID Uid VmSize Stat Command
 1 root 836 S init
 <text omitted>
 741 root 640 S syslogd
 743 root 336 S telnetd -l /bin/ash
 745 root 940 S /bin/sh
 759 root 324 S /examples/linux-filter
 760 root 184 S /examples/linux-filter
 <text omitted>

For each process, there is a stat file which contains the process information: the fourth-to-last
item in the information is CPU number.

target# cat /proc/759/stat
 759 (linux-filter) S 745 759 745 1088 768 4194304 485 0 0 0 0 0 0 0 15 0 1 0
120
70 1290240 81 18446744073709551615 4831838208 4832438864 1099503726112
109950372
4976 4832217600 0 0 0 0 18446744071563596012 0 0 18 2 0 0 0

target# cat /proc/760/stat
1 1290240 46 18446744073709551615 4831838208 4832438864 1099503726112
1099503724
976 4832217600 0 0 0 0 18446744071563596012 0 0 18 1 0 0 0

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

SD
K

 T
U

T
O

R
IA

L

 OCTEON Programmer’s Guide

4-162 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-1

Software Debugging Tutorial

TABLE OF CONTENTS

TABLE OF CONTENTS ... 1
LIST OF TABLES .. 4
LIST OF FIGURES .. 5
1 Introduction ... 6

1.1 Where to Get More Information ... 7
2 Getting Started Debugging ... 7

2.1 Types of Software Which May be Debugged ... 7
2.2 Different Debuggers ... 7
2.3 Runtime Environments ... 8
2.4 Cross-Debugging versus Native Debugging .. 9

2.4.1 Native Debugging Using the Debian Root Filesystem ... 9
2.4.2 Native Debugging Using the Embedded Root Filesystem ... 10
2.4.3 Native Debugging Using NFS .. 11

2.5 Cross-Debugging Connection Types .. 11
2.5.1 SE-S Applications and the Linux Kernel .. 11
2.5.2 Linux User-Mode Applications .. 12
2.5.3 Summary: Connection Choices ... 14

2.6 Hardware Configuration for Debugging ... 15
2.7 The First Breakpoint in the Application ... 15
2.8 The First Breakpoint in the Kernel ... 16
2.9 Multithread Debugging ... 16
2.10 Multicore Debugging .. 16
2.11 PCI Debugging GDB Commands ... 16
2.12 SDK Documentation ... 16

2.12.1 SE-S Application Debugging ... 16
2.12.2 Linux Kernel Debugging .. 17
2.12.3 Linux User-Mode Debugging ... 17
2.12.4 OCTEON Simulator Debugging ... 18

3 Building Applications and the Linux Kernel for Debugging ... 18
3.1 Building Applications for Debugging .. 18

3.1.1 Add the Debugging Flag (-g) .. 18
3.1.2 Adjust the Optimization Level (-O0) ... 19

3.2 Building the Linux Kernel for Debugging .. 20
4 Debugging Applications in the Embedded Root Filesystem .. 20

4.1 Verify Correct Installation .. 22

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

4.2 About Building the Embedded Root Filesystem .. 22
5 Hands-On: Debug a SE-S Application: hello .. 22
6 About Debugging SE-S Applications or the Linux Kernel .. 29

6.1 Quick Summary of mipsisa64-octeon-elf-gdb ... 29
6.2 Hardware Configuration for SE-S Applications and the Linux Kernel 30
6.3 Multicore Debugging Commands ... 30
6.4 Multicore Debugging and Barrier Sync .. 36
6.5 PCI Debugging Commands .. 36

6.5.1 Changes to Hands-On Steps When Using PCI Debugging .. 37
6.5.2 Multiple PCI Development Targets .. 40
6.5.3 Attaching to a Program Which is Already Running ... 40

6.6 Other Special Commands: spawn-sim .. 41
6.7 Summary: Directions for Different Connection Types .. 42
6.8 Software Breakpoints and Multicore Debugging ... 45

6.8.1 Race Condition: Cores Can Bypass the Breakpoint Without Stopping 45
6.8.2 Race Condition: Multiple Cores Stopped on the Same Breakpoint 46

6.9 Hardware Breakpoints .. 46
6.10 Hardware Watchpoints ... 47
6.11 Performance Counters .. 47
6.12 Finding the Cause of an Exception ... 48

7 Hands-On: Debug the Linux Kernel .. 48
7.1 Building the Linux Kernel for Debugging .. 49

7.1.1 Kernel Configuration .. 49
7.1.2 Rebuild Linux, Enable Frame Pointers ... 51
7.1.3 About the make clean Command .. 52

7.2 Debug the Linux Kernel ... 52
7.3 Example: Multicore Debugging and the Linux Kernel ... 57

8 About Debugging the Linux Kernel ... 58
8.1 Cavium Networks Proprietary GDB Protocol .. 58
8.2 The Standard Open Source Kernel Debugger .. 59
8.3 SMP Synchronization and step-all .. 59
8.4 The Kernel File Name: vmlinux vs vmlinux.64 ... 59

9 Hands-On: Debug a SE-UM Application: named-block ... 59
10 About Linux User-Mode Application Debugging .. 66

10.1 Quick Summary of mips64-octeon-linux-gnu-gdb .. 66
10.2 Hardware Configuration for Linux User-Mode Debugging ... 67
10.3 Summary: Directions for Different Connection Types .. 68
10.4 The Management Port Ethernet Interface ... 69

11 EJTAG (Run-Control) Tools .. 71
12 About Debugging on the OCTEON Simulator ... 72

12.1 Debugging SE-S Applications on the Simulator .. 72
12.1.1 About printf() and the Simulator ... 76
12.1.2 Separating Console Output from Simulator Output ... 76
12.1.3 Using simprintf() .. 77

12.2 Simulator Magic Functions ... 78
12.3 Debugging Linux on the OCTEON Simulator ... 78

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-3

12.3.1 Building vmlinux to Run on the Simulator ... 78
12.3.2 Starting Linux on the Simulator ... 78
12.3.3 Running Linux User-Mode Applications on the Simulator 84

13 Appendix A: Common GDB Commands .. 84
14 Appendix B: Connecting Using a Terminal Server ... 86

14.1 Terminal Servers and “Garbage” Characters .. 87
15 Appendix C: How to Simplify the Command Lines ... 88

15.1 Script Files .. 88
15.2 Using an Alias to Simplify Start-Up ... 88
15.3 The .gdbinit file .. 89
15.4 Environment Variables ... 89

16 Appendix D: Graphical Debugger ... 89
17 Appendix E: Core Files ... 90

17.1 Core File Names ... 90
17.2 Example Core Dump .. 91
17.3 Example of Using ftpput to Transfer a Core File ... 91
17.4 Analyze Core File with GDB ... 92
17.5 The Executable Name is Required on GDB Command Line ... 93

18 Appendix F: The oct-debug Script ... 94
19 Appendix G: Debian and the Cavium Networks Ethernet Driver .. 95

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

 LIST OF TABLES
Table 1: Different Debuggers Available .. 8
Table 2: Software Type and Cross or Native Debugging Availability .. 9
Table 3: Cross-Debugging Connection Types for SE-S and Linux Kernel 11
Table 4: Cross-Debugging Connection Types for Linux User-Mode Applications 13
Table 5: Connection Choices, Summarized ... 15
Table 6: SE-S Debugging - SDK Documentation ... 17
Table 7: Linux Kernel Debugging - SDK Documentation .. 17
Table 8: Linux User-Mode Debugging - SDK Documentation ... 18
Table 9: OCTEON Simulator Debugging - SDK Documentation .. 18
Table 10: Debug hello (SE-S) over Serial Connection, Part 1 .. 25
Table 11: Debug hello (SE-S) over Serial Connection, Part 2 .. 26
Table 12: Debug hello (SE-S) over Serial Connection, Part 3 .. 27
Table 13: Debug hello (SE-S) over Serial Connection, Part 4 .. 28
Table 14: Multicore Debugging Commands, Part 1 .. 31
Table 15: Multicore Debugging Commands, Part 2 .. 32
Table 16: PCI Debugging Commands ... 37
Table 17: Running GDB with PCI Development Targets, Part 1 .. 39
Table 18: Running GDB with PCI Development Targets, Part 2 .. 40
Table 19: Debug SE-S or Linux Kernel over PCI Bus .. 43
Table 20: Debug SE-S or Linux Kernel over Serial Connection ... 44
Table 21: Debug SE-S or Linux Kernel Using a Terminal Server .. 44
Table 22: Debug SE-S or Linux Kernel on the OCTEON Simulator .. 45
Table 23: Debug the Linux Kernel – Part 1 ... 53
Table 24: Debug the Linux Kernel – Part 2 ... 54
Table 25: Debug the Linux Kernel – Part 3 ... 55
Table 26: Debug the Linux Kernel – Part 4 ... 56
Table 27: Debug the Linux Kernel – Part 5 ... 57
Table 28: Debug named-block (SE-UM) over TCP Sockets, Part 1 .. 61
Table 29: Debug named-block (SE-UM) over TCP Sockets, Part 2 .. 62
Table 30: Debug named-block (SE-UM) over TCP Sockets, Part 3 .. 63
Table 31: Debug named-block (SE-UM) over TCP Sockets, Part 4 .. 64
Table 32: Debug named-block (SE-UM) over TCP Sockets, Part 5 .. 65
Table 33: Native Debugging of Linux User-Mode Applications .. 68
Table 34: Debugging Linux User-Mode Applications over Serial Connection 68
Table 35: Debug Linux User-Mode Applications over Ethernet ... 69
Table 36: Run Linux on the OCTEON Simulator, Part 1 .. 81
Table 37: Run Linux on the OCTEON Simulator, Part 2 .. 82
Table 38: Run Linux on the OCTEON Simulator, Part 3 .. 83
Table 39: Run Linux on the OCTEON Simulator, Part 4 .. 84
Table 40: A Few Common GDB Commands .. 85

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-5

 LIST OF FIGURES
Figure 1: SE-S Applications or the Linux Kernel: Cross-Debugging .. 12
Figure 2: Linux User-Mode Applications: Cross or Native Debugging ... 14
Figure 3: Debug Hello on One Core .. 23
Figure 4: Hardware Configurations for SE-S and Linux Kernel Debugging 30
Figure 5: Debug hello on Two Cores .. 33
Figure 6: The set focus Command ... 33
Figure 7: The set active-cores Command .. 34
Figure 8: Active Cores All Stop when One Hits a Breakpoint .. 34
Figure 9: Effect When step-all is on .. 35
Figure 10: Effect When step-all is off ... 35
Figure 11: Race Condition: Cores Can Bypass Breakpoint .. 46
Figure 12: Debug the Linux Kernel ... 49
Figure 13: Debug named-block .. 60
Figure 14: Hardware Configurations for Linux User-Mode Debugging ... 67
Figure 15: Debugging SE-S Applications on the OCTEON Simulator .. 73
Figure 16: Debugging Linux on the OCTEON Simulator ... 80
Figure 17: Terminal Server - SE-S or Linux Kernel Debugging ... 87

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

1 Introduction
This chapter provides an introduction to debugging on the OCTEON processor, and introduces
debugging SE-S applications, the Linux kernel, and Linux user-mode applications, including SE-
UM applications.

This tutorial assumes the development target has already booted to a bootloader prompt, and can
correctly run both SE-S and SE-UM applications.

The hands-on sections in this tutorial are:

• Section 5 – “Hands-On: Debug a SE-S Application: hello”
• Section 7 – “Hands-On: Debug the Linux Kernel”
• Section 9 – “Hands-On: Debug a SE-UM Application: named-block”
• Section 12.1 – “Debugging SE-S Applications on the Simulator”
• Section 12.3 – “Debugging Linux on the OCTEON Simulator”

It is recommended that the reader follow the hands-on directions for debugging hello to make
sure the hardware setup is correct before moving on to more complex debugging configurations.

This chapter assumes the reader will use either an evaluation or a reference development target to
follow the steps provided in the chapter. To maximize understanding of this chapter, the reader
will need:

- An i386 or x86_64 development host, running Linux
- An OCTEON reference or evaluation development target
- The Cavium Networks OCTEON SDK
- Root privilege on the development host

Before reading this chapter, please read the Packet Flow, Software Overview, and the SDK Tutorial
chapters. This chapter depends on the reader having correctly performed all the steps in the SDK
Tutorial chapter.

Because this chapter is a tutorial, hands-on sections are labeled “Hands-On”. Discussion sections
are labeled “About”. The chapter should be read in order, and the steps executed in order except
for the reference section.

Note: In the text below,

• host$ represents the development host command prompt. Execute the command as a
normal user on the development host. Commands which require root privilege will be
preceded by sudo, which is used to obtain the root privilege. When typing in the
command as shown in the tutorial, omit the “host$” text.

• target# means to type in the terminal session connected to the development target (the
minicom window). This prompt may represent either the U-Boot command prompt, or

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-7

the Linux command prompt. Target Linux commands should be executed as root. When
typing in the command as shown in the tutorial, omit the “target#” text.

• gdb> means the GDB prompt. When typing in the command as shown in the tutorial, omit
the “gdb>” text.

• The text which should be typed is shown in boldface.

1.1 Where to Get More Information
In addition to the material contained in this chapter, each API chapter in the OCTEON
Programmer’s Guide, such as the FPA chapter (Volume 2), contains essential information to avoid
bugs. For example, the most common bug we see is freeing the same FPA buffer multiple times by
accident. The FPA chapter includes the following sections:

1. Basic Code Review Checklist
2. Debugging (including a Common Mistakes section)
3. Performance Tuning Checklist
4. Advanced Code Review Checklist

Other resources include the extensive documentation which is supplied with the SDK, and the
Hardware Reference Manual (HRM) for the specific OCTEON model used in your application.

2 Getting Started Debugging
The tool used in debugging depends on the type of software to be debugged. To avoid being lost in
the complexity of choices, the reader should start by answering the following questions, in order:

1. The type of software to be debugged (determines choice of debugger).
2. Whether native debugging is available and desired (depends on type of software)
3. If cross-debugging, the type of runtime environment used (determines cross-debugging

connection types for chosen debugger).

2.1 Types of Software Which May be Debugged
Several types of software may be debugged:

1. SE-S applications
2. Linux kernel
3. Linux user-mode applications, including SE-UM applications
4. Bootloader

2.2 Different Debuggers
There are two different debuggers:

1. The mipsisa64-octeon-elf-gdb debugger is used to debug SE-S applications and
the Linux kernel. Cavium Networks-specific multicore GDB commands have been added
to enable multicore debugging. These enhancements are mentioned in Section 2.10 –
“Multicore Debugging”, and discussed in detail in Section 6.3 – “Multicore Debugging
Commands”. Cavium Networks-specific enhancements have also been added to simplify
debugging when using a PCI development target. These enhancements are discussed in
detail in Section 6.5 – “PCI Debugging Commands”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2. The mips64-octeon-linux-gnu-gdb debugger is used to debug Linux user-mode
applications, including SE-UM applications. This debugger can only debug one process at
a time (see Section 2.9 – “Multithread Debugging”).

Both of these debuggers will identify themselves as a Cavium Networks version in response to the
gdb –v command.

host$ mipsisa64-octeon-elf-gdb -v
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
<text omitted>
This GDB was configured as "--host=i686-pc-linux-gnu --target=mipsisa64-
octeon-elf".

host$ mips64-octeon-linux-gnu-gdb -v
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
<text omitted>
This GDB was configured as "--host=i686-pc-linux-gnu --target=mips64-
octeon-linux-gnu".

In addition to these debuggers, EJTAG (run-control) tools are supplied by Cavium debugger tool
partners. A brief introduction to debugging using EJTAG is provided in Section 11 – “EJTAG
(Run-Control) Tools”.

Table 1: Different Debuggers Available
Software Type Debugger Choices

SE-S applications mipsisa64-octeon-elf-gdb EJTAG

Linux kernel mipsisa64-octeon-elf-gdb EJTAG

Linux user-mode applications,
including SE-UM applications mips64-octeon-linux-gnu-gdb EJTAG

Bootloader EJTAG

2.3 Runtime Environments
There are 3 different runtime environments:

1. PCI development target
2. Stand-alone development target
3. Simulated development target (OCTEON simulator)

Debugging on the OCTEON simulator is covered Section 12 – “About Debugging on the
OCTEON Simulator” and the SDK document “OCTEON Simulator”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-9

2.4 Cross-Debugging versus Native Debugging
The term cross-debugging refers to running the debugger (gdb) on the development host and
connecting to the development target. The exact connection methods available depend on the type
of software being debugged and the runtime environment (PCI, stand-alone, or simulator). If a
Linux user-mode application is being debugged, then gdbserver is run on the development
target, otherwise gdbserver is not needed.

The term native debugging refers to running the debugger on the development target. Native
debugging is only supported for Linux user-mode applications. (Note: SDK 1.9 introduces new
capabilities not available when this chapter was written.) Native debugging can be used with
embedded_rootfs, or Debian Linux on CompactFlash. In the case of native debugging, gdb and
gdbserver can be run on the development target as needed.

Table 2: Software Type and Cross or Native Debugging Availability

Software Type Cross
Debugging

Native
Debugging

SE-S applications Yes No
Linux kernel Yes No
Linux user-mode applications,
including SE-UM applications Yes Yes

2.4.1 Native Debugging Using the Debian Root Filesystem
When running the Debian filesystem on an OCTEON core, the Cavium Networks tool chain is
located in /usr/local/Cavium_Networks/OCTEON-SDK/tools/usr/bin on the
development target. The compiler is named gcc (without the
mips64-octeon-linux-gnu-* prefix). The PATH environment variable must be modified
to use the Cavium Networks toolchain instead of the standard toolchain that is part of the Debian
filesystem:

target# PATH=/usr/local/Cavium_Networks/OCTEON-SDK/tools/usr/bin:$PATH

Use the command gcc –v to see if the PATH variable was set up correctly. If it is correct, the
gcc version will include the string “Cavium Networks Version”.

Native tools run on the Debian root filesystem create an efficient debugging environment: the
source code can modified, re-compiled, and re-tested using native tools.

When debugging Linux user-mode applications which reconfigure the hardware units, see Section
19 – “Appendix G: Debian and the Cavium Networks Ethernet Driver” for directions on how to
disable the automatic loading of the Ethernet driver.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2.4.2 Native Debugging Using the Embedded Root Filesystem
The GDB utility is installed in the embedded root filesystem in the /usr/bin directory, and can
be used from there, as shown in the following example:

target# find . -name gdb -print
./usr/bin/gdb
target# cd /examples
target# ls
busybox-testsuite fpa named-block testsuite
cause_core linux-filter openssl-testsuite zip
crypto low-latency-mem passthrough
target# gdb -v
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "mips64-octeon-linux-gnu".
target# gdb named-block
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "mips64-octeon-linux-gnu"...Using host
libthread_db l
ibrary "/lib64/libthread_db.so.1".

gdb> b appmain
Breakpoint 1 at 0x120003acc: file named-block.c, line 39.
gdb> run
Starting program: /examples/named-block
CVMX_SHARED: 0x1201a0000-0x1201b0000
Active coremask = 0x1

Breakpoint 1, appmain () at named-block.c:39
39 named-block.c: No such file or directory.
 in named-block.c

Note that, for source-level debugging, the source code must be also copied to the embedded root
filesystem. Also, the code cannot be recompiled using native tools (gcc is not present in the
embedded root filesystem). Because of this limitation, native debugging on the embedded root
filesystem is not as efficient as using the Debian root filesystem.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-11

2.4.3 Native Debugging Using NFS
Native debugging can also be done on a root filesystem which is NFS-mounted from the
development host onto the development target. Because NFS relies on Ethernet, this method
cannot be used with applications which reconfigure hardware units which are needed by Ethernet.
The Management Port Ethernet Interface, which is available on some models, is a good choice for
native debugging using NFS. The driver for this interface does not use the hardware units.
Debugging over NFS is not discussed in detail in this chapter.

2.5 Cross-Debugging Connection Types
The cross-debugging connection types available depend on the type of software being debugged
and the runtime environment.

2.5.1 SE-S Applications and the Linux Kernel
The following table shows the connection types available for SE-S applications and the Linux
kernel:

Table 3: Cross-Debugging Connection Types for SE-S and Linux Kernel
SE-S Applications and Linux Kernel
(mipsisa64-octeon-elf-gdb)

Software Type SE-S Linux Kernel

Board Type PCI Board Standalone
Board PCI Board Standalone

Board

Connection Type Serial Connection 9 9 9 9

 PCI Connection 9 --- 9 ---

Note 1: Serial Connection means an RS-232 cable to
UART1.

Note: Debugging over PCI is supported for SE-S applications and the Linux kernel. See Section
6.5 – “PCI Debugging Commands” for more information.

GDB runs on the development host and connects to the development target, as shown in the
following figure.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 1: SE-S Applications or the Linux Kernel: Cross-Debugging

2.5.2 Linux User-Mode Applications
The following connection types are available for Linux user-mode applications, including SE-UM
applications:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-13

Table 4: Cross-Debugging Connection Types for Linux User-Mode
Applications

Linux User-Mode Applications (including SE-UM applications)
(mips64-octeon-linux-gnu-gdb)

Software Type Linux User-Mode Including
SE-UM

Board Type PCI
Board

Standalone
Board

Connection Type Serial Connection 9 9

 Native Debugging
9

(Preferred if
CF is

available)

9

 TCP Sockets
9

(Limited
usefulness -
See Note 2)

9
(Limited

usefulness -
See Note 2)

Note 1: Serial Connection means an RS-232 cable to UART1.
Note 2: TCP Sockets cannot be used with SE-UM applications that
re-initialize OCTEON hardware. The Ethernet driver has already
initialized the hardware. Re-initializing the hardware will cause the
Ethernet driver to stop working. An exception to this rule occurs
when the management port Ethernet interface is used. This interface
is available on some OCTEON models.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

T

U
T

O
L

 OCTEON Programmer’s Guide

5-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 2: Linux User-Mode Applications: Cross or Native Debugging

OCTEON Development Target
The cores being debugged run Linux and

gdbserver, which connects to
mips64-octeon-linux-gnu-gdb

on the development host.

Cross-Debugging Linux User-Mode
Applications

Development Host
Run the debugger here:

mips64-octeon-linux-gnu-gdb

OCTEON Development Target
Boot Linux, using the Debian root

filesystem (on a flash card). The Linux
user-mode application is debugged using

native gdb (gdb is run on the
development target, not cross from a

development host).

The native tools are located in /usr/
local/Cavium_Networks/

OCTEON_SDK/tools/usr/bin in
the Debian root filesystem.

Native Debugging Linux User-Mode
Applications

No Development Host needed

Linux User-Mode Application Debugging: Cross-Debugging or Native Debugging

Connect over serial
cable or TCP sockets

G
IN

R
IA 2.5.3 Summary: Connection Choices

The following table summarizes the connection choices.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-15

Table 5: Connection Choices, Summarized
The best connection choice is highlighted for each category.

(9if available; "---" if not available)

Software Type SE-S SE-UM Linux Kernel Notes

Board Type PCI
Board

Stand-
alone
Board

PCI
Board

Stand-
alone
Board

PCI
Board Standalone Board

C
o
n
n
e
c
t
i
o
n

T
y
p
e

Serial
Connecti

on
9 9 9 9 9 9

Connect the null-modem serial cable
to the debugging port, UART1, on

target board.
PCI

Connecti
on

9 --- --- --- 9 --- For SE-S and Linux Kernel debugging,
PCI is easiest to use.

Native
Debuggin

g
--- ---

9
(Preferre
d if CF

is
available

)

9 --- ---

GDB is provided in the Debian root
filesystem on CompactFlash (CF), and
in the embedded root filesystem. Note

that CompactFlash is not provided
with all PCI boards.

TCP
Sockets --- ---

9
(limited

use-
fulness)

9
(limite
d use-
fulness

)

--- ---

Note this option has limited usefulness
because it cannot be used to debug

applications such as passthrough
which re-initialize hardware units that

are used by the Ethernet driver. An
exception to this rule occurs when the
management port Ethernet interface is

used. This interface is available on
some OCTEON models.

2.6 Hardware Configuration for Debugging
Hardware Configuration is discussed in the following sections:

• SE-S Applications: See Section 6.2 – “Hardware Configuration for SE-S Applications and
the Linux Kernel”.

• Linux Kernel: See Section 6.2 – “Hardware Configuration for SE-S Applications and the
Linux Kernel”.

• Linux User-Mode Applications: See Section 10.2 – “Hardware Configuration for Linux
User-Mode Debugging”.

2.7 The First Breakpoint in the Application
For SE-S applications, the first breakpoint is usually set at main().

For Linux user-mode applications (including SE-UM applications), the first breakpoint is usually
set at appmain().

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2.8 The First Breakpoint in the Kernel
The routine r4k_wait() is a convenient first breakpoint in the kernel.

2.9 Multithread Debugging
The mips64-octeon-linux-gnu-gdb debugger is used to debug Linux user-mode
applications, including SE-UM applications. GDB’s multithread debugging capability is standard
for GDB.

Note that while gdb can be used to debug multiple threads, it can only debug one process at a
time. When SE-UM applications are started on multiple cores under Linux, each core runs a
different SE-UM process.

2.10 Multicore Debugging
The mipsisa64-octeon-elf-gdb command can be used to debug an SE-S application or the
Linux kernel. Cavium Networks has added multicore debugging commands to this version of gdb.
These commands are used when the same application (or the Linux kernel) has been loaded on
multiple cores. See Section 6.3 – “Multicore Debugging Commands” for details about the
commands.

Debugging SE-S applications is focused on the core, instead of the process. When using multicore
debugging, the same image file (such as hello) must be loaded on multiple cores, and must be in
the same load set.

From the perspective of the debugger, the Linux kernel is an SE-S application. Multicore
debugging of the Linux kernel using mipsisa64-octeon-elf-gdb is the same as debugging
an SE-S application, and multicore commands are supported. See Section 8 – “About Debugging
the Linux Kernel” for more information.

2.11 PCI Debugging GDB Commands
PCI debugging is supported when debugging SE-S applications and the Linux kernel when using
an OCTEON PCI target and the mipsisa64-octeon-elf-gdb debugger. See Section 6.5 –
“PCI Debugging Commands” for more information.

2.12 SDK Documentation

2.12.1 SE-S Application Debugging
The following SDK documentation provides more information on SE-S application debugging:
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-17

Table 6: SE-S Debugging - SDK Documentation
Debugging SE-S Applications

Connection Type SDK Document
PCI Developing with OCTEON as a PCI Target
Serial Line Simple Executive Debugger
Terminal Server Simple Executive Debugger

Note: A terminal server is a remote host which has a direct serial connection to the
development target's debug port. This direct connection is identified by a server port
number on the terminal server. Typically a terminal server is connected to multiple
development targets.

2.12.2 Linux Kernel Debugging
The following SDK documentation provides more information on Linux kernel debugging:

Table 7: Linux Kernel Debugging - SDK Documentation
Debugging Linux Kernel

Connection Type SDK Document
PCI Linux on the OCTEON
Serial Line Linux on the OCTEON
Terminal Server Simple Executive Debugger

Note: A terminal server is a remote host which has a direct serial connection to the
development target's debug port. This direct connection is identified by a server port
number on the terminal server. Typically a terminal server is connected to multiple
development targets.

2.12.3 Linux User-Mode Debugging
The following SDK documentation provides more information on debugging Linux user-mode
applications, including SE-UM applications:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

T

U
T

O

 OCTEON Programmer’s Guide

5-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

G
IN

R
IA

L

Table 8: Linux User-Mode Debugging - SDK Documentation
Debugging Linux User-Mode Applications

Cross-Connection
Type SDK Document

Serial Connection
Linux Userspace Debugging: includes how to use native
gdbserver to connect to gdb on a host system over Serial
connection connected at the Debug Port (UART1).

TCP Sockets
Linux Userspace Debugging: includes how to use native
gdbserver to connect to gdb on a host system over TCP
sockets.

Native Debugging

1. Linux on the OCTEON, Running Linux on the EBT3000
Hardware: includes directions for copying vmlinux to a flash
card, and using the Debian root filesystem.
2. Linux Userspace Debugging: includes native debugging.

2.12.4 OCTEON Simulator Debugging
The following SDK documentation provides more information on debugging on the OCTEON
simulator:

Table 9: OCTEON Simulator Debugging - SDK Documentation
Debugging on Simulated Hardware

SE-S Simulator Simple Executive Debugger
Linux Kernel on
simulator Linux on the OCTEON - Running Linux on the Simulator

The Bootloader and
the Simulator OCTEON Bootloader - Simulator Specific Usage

3 Building Applications and the Linux Kernel for Debugging

3.1 Building Applications for Debugging
The application must be compiled to include debugging information. It is also recommended that
the optimization level be changed to simplify debugging.

3.1.1 Add the Debugging Flag (-g)
Before debugging an application, it must be compiled with the –g flag. The –g flag causes the
compiler to add symbol information needed by the debugger.

Note that this flag is on by default in the examples.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-19

3.1.2 Adjust the Optimization Level (-O0)
If seeing exact line numbers is needed when debugging, then change the optimization level to 0
(-O0). By default, the optimization level is set to 2 in
$OCTEON_ROOT/executive/cvmx.mk:

host$ cd $OCTEON_ROOT/executive
use grep to find out where –O2 is set
(use \ to escape the – character)
host$ grep –n "\-O2" *.mk
119:$(OBJS_$(d)): CFLAGS_LOCAL := -I$(d) -O2 -g -W -Wall -Wno-unused-parameter
-Wundef
143:CFLAGS_SPECIAL := -I$(d) -I$(d)/cvmx-malloc -O2 -g -DUSE_CVM_THREADS=1
-D_REENTRANT

To change the optimization level when building the examples, change the value in
$OCTEON_ROOT/executive/cvmx.mk to the new optimization level:

$(OBJS_$(d)): CFLAGS_LOCAL := -I$(d) –O0 -g -W -Wall -Wno-unused-parameter
–Wundef
<text omitted>
CFLAGS_SPECIAL := -I$(d) -I$(d)/cvmx-malloc –O0 -g -DUSE_CVM_THREADS=1
-D_REENTRANT

In the case of the named-block example, it may also be necessary to edit the local Makefile.
The grep command can be used to locate Makefile which set the –O2 flag:

host$ cd $OCTEON_ROOT/examples/named-block
use grep to find out where –O2 is set
(use \ to escape the – character)
host$ grep "\-O2" Makefile
CFLAGS_LOCAL = -g -O2 -W -Wall -Wno-unused-parameter

Note: After editing the local Makefile, you may need to use the vi command w! to write out the
file. The Makefile permissions are:

-rw-r--r-- 1 root root 1535 Mar 19 13:52 Makefile

After w!, the Makefile owner and group are:
-rw-r--r-- 1 testname software 1535 Mar 19 13:56 Makefile

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Then build the application with the correct optimization level showing in the make output:
host$ cd $OCTEON_ROOT/examples/named-block
host$ make clean OCTEON_TARGET=linux_64
host$ make OCTEON_TARGET=linux_64
mips64-octeon-linux-gnu-gcc -I/home/testname/sdk/target/include -Iconfig
-DUSE_RUNTIME_MODEL_CHECKS=1 -DCVMX_ENABLE_PARAMETER_CHECKING=0
-DCVMX_ENABLE_CSR_ADDRESS_CHECKING=0 -DCVMX_ENABLE_POW_CHECKS=0
-DOCTEON_MODEL=OCTEON_CN38XX -DOCTEON_TARGET=linux_64 -mabi=64 -march=octeon
-msoft-float -Dmain=appmain -I/home/testname/sdk/executive -O0 -g -W -Wall
-Wno-unused-parameter -Wundef -MD -c -o obj-linux_64/cvmx-bootmem.o
/home/testname/sdk/executive/cvmx-bootmem.c

(Note the “magic” which happens in the command line just shown (-Dmain=appmain). This
text changes the string “main” into “appmain” in the code when building a Linux SE-UM target.)

The difference can be seen in the size of the ELF file:

When compiled with –O2:
host$ ls -l named-block-linux_64
-rwxr-xr-x 1 testname software 3400228 Mar 18 16:02 named-block-linux_64

When compiled with –O0:
host$ ls -l named-block-linux_64
-rwxr-xr-x 1 testname software 3417201 Mar 18 15:53 named-block-linux_64

3.2 Building the Linux Kernel for Debugging
See Section 7.1 – “Building the Linux Kernel for Debugging” for directions.

4 Debugging Applications in the Embedded Root Filesystem
If the SE-UM application will be installed in the embedded root filesystem, then configure the
embedded root filesystem Makefile to not strip the file. Otherwise, the Makefile will call the
strip command, and strip will remove the debugging information from the ELF file.

For example programs, the strip command is located in the Makefiles in the
embedded_rootfs directory.

In SDK 1.8, the strip command is called from
$OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/final-cleanup.mk:

ifdef CFG_STRIP_BINARIES
 for f in `find ${ROOT}/bin ${ROOT}/sbin ${ROOT}/usr/bin
${ROOT}/usr/sbin
 ${ROOT}/examples -not -type l -and -not -type d`; \
 do if sh -c "file $$f | grep -q ELF"; then ${STRIP} $$f; fi; done
endif

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-21

For SDK 1.6, the strip command is called from
$OCTEON_ROOT/linux/embedded_rootfs/pkg_makefiles/sdk-examples.mk:

ifdef SDK_EXAMPLES_NAMED_BLOCK
 ${STRIP} -o ${ROOT}/examples/named-block ${OCTEON_ROOT}/examples/named-
block/named-block-${ABI}
endif

For example (SDK 1.8), in the make.out file (created by the sudo make kernel
>make.out 2>&1 command), strip will be called for all the examples:

for f in `find /tmp/root-rootfs/bin /tmp/root-rootfs/sbin \
/tmp/root-rootfs/usr/bin /tmp/root-rootfs/usr/sbin /tmp/root-rootfs/examples -
not -type l -and -not \
-type d`; \
do if sh -c "file $f | grep -q ELF"; then mips64-octeon-linux-gnu-strip $f; fi;
done

For SDK 1.8, to prevent the strip step from happening, reconfigure the embedded root
filesystem build:

host$ cd $OCTEON_ROOT/linux/embedded_rootfs
host$ sudo make menuconfig

The first embedded root filesystem menuconfig screen looks similar to this:

 Global Options --->
 [*] device-files
 [*] busybox
 [*] Include the Busybox testsuite
 <text omitted>
 [*] final-cleanup
 [*] Strip debugging information from kernel modules
 [] Strip debugging information from binaries <<< DESIRED SETTING
 [*] Strip debugging information from libraries
 () Directory to copy extra files from

To navigate this screen, use the arrow keys on the keyboard. Highlight the option “Strip debugging
information from binaries” by selecting the option. If the option is set (*), then press Enter to clear
the option.

Select Exit to exit menuconfig. When prompted “Do you wish to save your new
configuration?” select Yes.

The output of the make menuconfig command is the file .config:

host$ ls -ld .config
 -rw-r--r-- 1 root root 2245 Mar 18 13:14 .config

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

G
G

IN
T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

B
U

G

Then remove the .root_complete file. Removing this file will cause the embedded root
filesystem to rebuild when the make kernel command is executed in the
$OCTEON_ROOT/linux directory.

host$ sudo rm .root_complete
host$ cd ..
the following build command can take about 15 minutes to complete
host$ sudo make kernel >make.out 2>&1 &

In the make.out file, expect to see:

cp /home/testname/sdk/examples/named-block/named-block-linux_64 /tmp/root-
rootfs/examples/named-block

4.1 Verify Correct Installation
To verify the file was correctly installed in the embedded root filesystem:

show the size of the compiled file
host$ cd $OCTEON_ROOT/examples/named-block
host$ ls –l named-block-linux_64
-rwxr-xr-x 1 testname software 3417201 Mar 18 15:53 named-block-linux_64

verify the file was copied properly (not stripped)
cd /tmp/root-rootfs/examples
check the size of the installed file
host$ ls –l named-block
-rwxr-xr-x 1 root root 3417201 Mar 18 16:02 named-block

In the example above, the file sizes match (3417201), verifying correct installation.

4.2 About Building the Embedded Root Filesystem
If any file in the embedded root filesystem is modified:

1. If the file needs to be built, type make clean in
$OCTEON_ROOT/linux/embedded_rootfs, or use the following command in the
$OCTEON_ROOT/linux directory:

host$ make -s -C embedded_rootfs clean
2. If the file is already built, and simply needs to be added to the root filesystem, remove the

$OCTEON_ROOT/linux/embedded_rootfs/.root_complete file

Then type make kernel (or make sim) in $OCTEON_ROOT/linux directory.

5 Hands-On: Debug a SE-S Application: hello
The SE-S example hello is debugged in this hands-on step. A serial connection is used for cross-
debugging because it works on both PCI and stand-alone development targets. This step should
not be done until the prior steps in this chapter have been successfully completed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-23

Figure 3: Debug Hello on One Core

The step-by-step directions are provided in the tables below. A brief explanation precedes the
tables. Detailed information is provided in Section 6 – “About Debugging SE-S Applications or
the Linux Kernel”.

In this example, the development host serial port /dev/ttyS1 is connected to the debug port on
the development target (UART1). If a different serial port is used, modify the directions to use the
correct value.

In this example, debugging over a serial connection will require two different sessions on the
host: one to connect to the target console port, and one to connect to the target debugging
port.

The development target configuration is illustrated in Figure 4 – “Hardware Configurations for SE-
S and Linux Kernel Debugging”. The only addition to the configuration used in the SDK Tutorial
chapter is the null-modem serial cable connection to the target’s debug port.

In the following table, the GDB prompt is shown as gdb>. In reality, the prompt looks more like
(Core#0-gdb). The focus core is shown in the prompt (Core#0). (The focus core is the core
which gdb is interacting with. Focus core is explained in more detail in Section 6.3 – “Multicore
Debugging Commands”.

The directions in the following table are the hands-on instructions for debugging hello. After
this section, more detailed information will be provided.

After compiling the program with the debug flag and the optimization level set appropriately,
follow the instructions below. In this example, serial debugging is used to simplify the
instructions.

When booting the application, specify debug=<debug_port> on the boot command line, as in:

target# bootoct 0 coremask=<coremask> debug=1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The debug=1 command-line option sets the development target’s debug port to UART1, and will
cause the program enter the debug exception handler
(__octeon_trigger_debug_exception()) when it begins to run:

Sending bootloader command: bootoct 0x20000000 coremask=3 debug
Program received signal SIGTRAP, Trace/breakpoint trap.
0x10000388 in __octeon_trigger_debug_exception ()

Note: The default UART used is UART1. Because UART1 is the defaut, the command line above
can be entered as:

target# bootoct 0 coremask=<coremask> debug

Note: If UART0 is specified (debug=0), debugging and console output will use the same
UART. It is important to close the minicom session to UART0 before beginning
debugging in this case. Note that this configuration is not recommended because gdb
can lock up.

At this point, the user can set the first breakpoint at main().

Note: After the program stops in __octeon_trigger_debug_exception(), the
continue command is used to resume execution; the run command is not used because the
program is already running.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-25

Table 10: Debug hello (SE-S) over Serial Connection, Part 1
Steps N

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide. Note:
The Ethernet cable is not needed to run hello on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not
disturb the office network.

Connect the target debug port to the host using a serial cable. GDB will communicate with the target using this
connection.

Power on or reset the target board. The word Boot should appear on the red LEDs on
the board. If not, the board is not configured to boot
from flash, or something is wrong with the board, or
the board does not have alpha LEDs.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to
connect to the OCTEON target board if it is not
ttyS0. Minicom will provide a connection to the
target console. You should see the bootloader
prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(
time: Jun 13)

f the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

host$ cd $OCTEON_ROOT/examples/hello
host$ make clean
host$ make OCTEON_CFLAGS_GLOBAL_ADD=-O0

The make command will create the executable file
hello. The OCTEON_CFLAGS_GLOBAL_ADD
will override default -O2 optimization level set in
the Makefile. The debugging flag (-g) is already set
in the Makefile.

host$ sudo cp hello /tftpboot See SDK Tutorial directions for tftpboot.
Continued in the next table…

1. Connect the Hardware

2. Reset the board

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

6. Build the Application

7. Copy the ELF file to the tftpboot Directory

ote

I

SDK version: 1.7.3-264) (Build

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 11: Debug hello (SE-S) over Serial Connection, Part 2
Steps Note

f a DHCP server is available, then selecting the target IP
address is handled by the server. Otherwise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic with
your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

Note: serverip is the IP address of the TFTP
server. In this example the DHCP server is the same
as the TFTP server.

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

Use tftpboot to download the application.
target# tftpboot 0 hello

See the SDK Tutorial directions for tftpboot. If
this step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

Continued in the next table…

11. Download the Application to the Development Target

8. Select Target IP Address, if Needed

9. Set the Development Target's IP Address
9a. No DHCP Server

9b. DHCP Server Available

10. Test the Ethernet Connection to the Host

I

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-27

Table 12: Debug hello (SE-S) over Serial Connection, Part 3
Steps N

target# bootoct 0 coremask=0x1 debug This command will run hello on core 0.
Expect to see:
setting debug flag!
Bootloader: Booting Octeon
Executive application at
0x20000000, core mask: 0x1,
stack size: 0x100000, heap size:
0x300000
Bootloader: Done loading app on
coremask: 0x1

13. Start GDB on the Host; Debug the Application
host$ cd $OCTEON_ROOT/examples/hello Go to the directory where the hello source is

located on the host.
start gdb
host$ mipsisa64-octeon-elf-gdb hello

Use -q (quiet) for fewer start-up messages.
Expect to see:
GNU gdb 6.5 Cavium Networks
Version: 1_8_0, build 64
Copyright (C) 2006 Free Software
Foundation, Inc.
GDB is free software, covered by

ote

the GNU General Public License, and
you are
welcome to change it and/or
distribute copies of it under
certain conditions.
Type "show copying" to see the
conditions.
There is absolutely no warranty for
GDB. Type "show warranty" for
details.
This GDB was configured as
"--host=i686-pc-linux-gnu
--target=mipsisa64-octeon-elf".

connect to the debug port (substitute your tty port
for /dev/ttyS1)
gdb> target octeon /dev/ttyS1

Expect to see:
Remote target octeon connected to
/dev/ttyS1

set a breakpoint in main()
gdb> b main

Expect to see:
Breakpoint 1 at 0x100004fc: file
hello.c, line 44.

Continued in next table…

12. Boot the Application

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 13: Debug hello (SE-S) over Serial Connection, Part 4
Steps N

13. Debug the Application, continued
continue to the breakpoint
gdb> c

Expect to see:
Continuing.

Breakpoint 1, main () at hello.c:44
44 printf("\n");

show 10 source lines at the breakpoint
gdb> list

Expect to see:
39
40 /* printf() provides
maximum flexibility, but is slow
due to
41 ** the format string
being processed in simulated code.
Normal

ote

42 ** buffering is done by
the C library.
43 */
44 printf("\n");
45 printf("\n");
46 printf("Hello
world!\n");
47
48 #if 0

continue the program to the end
gdb> c

Expect to see:
Continuing.
Program exited normally.
(Core#0-gdb)

The output of hello will appear in the target console:
PP0:~CONSOLE->
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run
successfully.

To re-run the program, start over by resetting the board and downloading the application again.
14. Run the Application Again

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-29

6 About Debugging SE-S Applications or the Linux Kernel
In the prior section, hello was used as an example of debugging a SE-S application. This section
provides more details about this debugging environment.

6.1 Quick Summary of mipsisa64-octeon-elf-gdb
The mipsisa64-octeon-elf-gdb debugger is used to debug:

• SE-S applications
• Linux kernel

Type of debugging available:
• Cross-Debugging

Debugger cross-connection types available:
• PCI bus (if using a PCI development target)
• Serial connection

Special features:
• Multicore debugging commands
• Hardware breakpoints (on some models)
• Hardware watchpoints (on some models)
• Performance counters
• Attach to a running program
• Backtrace from an exception handler
• Special PCI debugging commands

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

6.2 Hardware Configuration for SE-S Applications and the Linux
Kernel

The hardware configuration choices are shown in the following figures.

Figure 4: Hardware Configurations for SE-S and Linux Kernel Debugging

Development Host Running Linux

OCTEON Development
Target

UART0
Console

UART1
Debug

Port

Serial
Port

Target C
onso

le

Eth
Port 0

Eth
Port 1

PCI SLOT

PCI FINGERS

PCI Development Target

Serial
Port

A.
 D

eb
ug

 P
or

t

B

Choices for connection between GDB and the
program running on the target board:

A. Serial cable connected from the
development host to the debug port on the
development target

B. PCI connection (preferred)
Note: if PCI debugging is used, connection
(A) is not needed.

Eth
Port 0 Development Host Running Linux

OCTEON Development
Target

UART0
Console

UART1
Debug
Port

Serial
Port

Eth
Port 0

Eth
Port 1

Standalone Development Target

Serial
Port

A.
 D

eb
ug

 P
or

t

Choice for connection between GDB and
the program running on the target board:

A. Serial cable connected from the
development host to the debug port on the
development target

Eth
Port 0

Targ
et

Con
so

le

C
F

Note: The debug connections are shown in red. The development target console connection is
shown as a dotted blue line to distinguish it from the debug connections.

Hardware Configuration for SE-S and Linux Kernel Debugging

The serial port on the host should be configured identically for both the console and the debug port:
115200, 8, N, 1.

6.3 Multicore Debugging Commands
The following debugging commands are used to control multicore debugging. All cores to be
debugged must be running the same image file (such as hello). More information may be found
in the SDK document “Simple Executive Debugger”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-31

These commands control which core the debugger is interacting with, which cores stop when a
breakpoint is hit, and which cores continue after the breakpoint.

Note: In the tables below, the prompt is shown as gdb> . The actual prompt looks
similar to (Core#0-gdb). The full prompt is not shown to allow the command text to
fit into the column width of the tables.

Table 14: Multicore Debugging Commands, Part 1

Command Description Example
set focus Specify which core is directly interacting with

the debugger. This is a number from 0-N
where N is the maximum number of cores in
the system minus one. The focus core is set
automatically when a core hits a breakpoint.
Data operations (memory or register reads and
writes) are performed relative to the focus
cores. Only a core currently stopped in a
debug exception may become the focus core.
(To make a non-active core the focus core
requires a breakpoint, or changing the active-
cores to include the core of interest.) The
GDB prompt will show which core is the
focus core. Note that the focus core may
change if another core hits a breakpoint. The
first core to hit a breakpoint becomes the
focus core.

gdb> set focus 1
#0 0x10000388 in
cvmx_write_csr
(csr_addr=373292656,
val=1844674407156281
9048)
 at
/home/testname/sdk/t
arget/include/cvmx.h
:817
817 {
(Core#1-gdb)

show focus Show which core is the current focus core. gdb> show focus
Expect to see:
The currently
debugged core is 1

* Note these commands do not work until after the target octeon command!

m
i
p
s
i
s
a
6
4
-
o
c
t
e
o
n
-
g
n
u
-
g
d
b

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 15: Multicore Debugging Commands, Part 2

Command Description Example
set active cores Specify which cores are under active control

of the debugger. All cores in this list will stop
if one core in the list hits a breakpoint,
allowing the debugger to control the set of
active cores together. All cores which are not
in this list (non-active cores) will continue
(but they will suffer a performance hit). A
non-active core will only stop when the core
itself hits a breakpoint. The set of active cores
are specified in a comma-separated list of
cores. Setting the list to the NULL string is
interpreted as setting all cores to active.

type the following text on
one line:
gdb> set active
 cores 0,1
Expect to see:
(no reply from gdb)

show active cores Show which cores stopped on the breakpoint. # type the following text on
one line:
gdb> show active
 cores
Expect to see (example):
The cores stopped on
execution of a
breakpoint by
another core is
"0,1".

set step-all Specify which cores are affected by action
commands (continue, step, or next).
By default, step-all is off, so only the
focus core performs the operation. Note that
step-all also affects cores which are not in
the active-cores list if they are currently
stopped.

gdb> set step-all on
Expect to see:
(no reply from gdb)

show step-all Show the current value of step-all (on or
off.

gdb> show step-all
Expect to see (example):
Step commands affect
all cores is on.

m
i
p
s
i
s
a
6
4
-
o
c
t
e
o
n
-
g
n
u
-
g
d
b

* Note these commands do not work until after the target octeon command!

The hello example can be run on multiple cores to test out the multicore commands. Simply
boot it with the coremask=0x3 to boot hello on 2 cores.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-33

Figure 5: Debug hello on Two Cores

The following figures illustrate these commands.

Figure 6: The set focus Command

One Load Set

Data-plane (Fast Path)Control-plane (Slow Path)

Core 0
SE-S

Control Path

Core 2
SE-S

Data Path

Core 3
SE-S

Data Path

The set focus Command
Use the set focus command to specify which core is directly interacting
with the debugger. Note in the second GDB prompt, core1 is specified in
the GDB command prompt, not core0. Cores number 0-N where N is the
maximum number of cores in the system minus 1.

The set focus command is not the only way the focus core can be
changed. When a core hits a breakpoint, the focus core is automatically set to
that core.
(Core#0-gdb) set focus 1
(Core#1-gdb)

Core 1
SE-S

Control Path

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 7: The set active-cores Command

One Load Set

Data-plane (Fast Path)Control-plane (Slow Path)

Core 0
SE-S

Control Path

Core 2
SE-S

Data Path

Core 3
SE-S

Data Path

Core 1
SE-S

Control Path

The set active-cores Command
Use set active-cores to specify which cores will stop when one of the
cores in the set hits a breakpoint. In this example, the data plane cores
continue running while software running on the control plane cores all stop
when the breakpoint is hit by one core. Cores are specified in a comma-
separated list.
(Core#0-gdb) set active-cores 0,1

When one of the active cores hits a breakpoint, all the active cores stop.

Figure 8: Active Cores All Stop when One Hits a Breakpoint

One Load Set

Data-plane (Fast Path)Control-plane (Slow Path)

Core 0 – also
stops Core 2

SE-S
Data Path

Core 3
SE-S

Data Path

Core 1 - hits a
breakpoint

One of the Active Cores Hits a Software Breakpoint
When one of the active cores hits a breakpoint, it stops and the other active
cores also stop.

STOP STOP

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-35

Figure 9: Effect When step-all is on
set step-all on

If step-all is on, the step, next, and continue commands apply to
all cores which are currently stopped (usually the active cores, but will also
affect cores which are not active, but have stopped on their own breakpoints).
single step cores 0 and 1
(Core#1-gdb) s

One Load Set

Data-plane (Fast Path)Control-plane (Slow Path)

Core 0
SE-S

Control Path

{ }

Core 2
SE-S

Data Path

Core 3
SE-S

Data Path

Core 1
SE-S

Control Path

{ }

When step-all is OFF, only the focus core responds to the step, next, and continue commands.

Figure 10: Effect When step-all is off
set step-all off

If step-all is off, the step, next, and continue commands apply
only to the focus core. The focus core is automatically set to the core which
hit the breakpoint.
single step core 1 only
(Core#1-gdb) s

One Load Set

Control-plane (Slow Path) Data-plane (Fast Path)

Core 0
SE-S

Control Path
Core 2
SE-S

Data Path

Core 1
SE-S

Control Path

{ }

Core 3
SE-S

Data Path
STOP

After the application begins to run, it will stop automatically in the debug exception handler. To
debug a set of cores as an active set, before continuing execution, set the desired breakpoints, then:

gdb> set active-cores <core-list>
gdb> set step-all on

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

When the first core hits the breakpoint, all cores in the active set will stop. As execution is
resumed (step, next, continue), all active cores will obey the commands.

Note: All cores to be debugged must be running the same image file (such as hello). They
should also all be in the same load set (loaded using the same bootoct command). (Cores
running the same image file but loaded in different load sets may not work. This configuration has
not been tested.)

6.4 Multicore Debugging and Barrier Sync
When using barrier synchronization (cvmx_coremask_barrier_sync) to synchronize the
cores, place the first breakpoint after the barrier sync, set step all on, and then continue
until after the barrier sync.

If the breakpoint is before the barrier sync, using next to single step will result in all cores
hanging. An alternative is to set a breakpoint before the barrier sync, continue to that point, then
set another breakpoint after the barrier sync and continue to that point.

Technical Note: The barrier sync is implemented using the load-link and store-conditional MIPS
instruction pair. Load-link returns the value of a memory location. The store-conditional will only
store a new value to that location if no updates have occurred since the load-link, or if no exception
was taken. When using next, the debug exception will occur between the load-link and the store-
conditional, causing the store-conditional to fail. The barrier sync condition will never be met, so
the cores will hang.

6.5 PCI Debugging Commands
Debugging over PCI is very convenient. The debugger supports several PCI-only commands,
including commands to reset the development target from inside the debugger and re-run the
program.

When debugging over PCI, the command target octeonpci bootoct
<load_address> coremask=<coremask> will reset the development target before loading
the program. For development targets which don’t boot from flash (or are not configured to boot
from flash) the bootloader needs to be downloaded from the development host after reset.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-37

Three debugging commands are only supported when debugging over PCI:

Table 16: PCI Debugging Commands
Command Description Example
set pci-bootcmd Set to either oct-pci-boot

(to download the bootloader after
reset) or oct-pci-reset (if the
bootloader is booted from flash). The
default value is oct-pci-reset.

type the following text on one line
gdb> set pcibootcmd
 oct-pci-boot

show pci-bootcmd Show the current value of pci-
bootcmd.

gdb> show pci-bootcmd

show core-state Displays the state of the core by
dumping all the general-purpose
registers, COP0 registers, and 32 TLB
entries.

gdb> show core-state

m
i
p
s
i
s
a
6
4
-
o
c
t
e
o
n
-
g
n
u
-
g
d
b

Note: If pci-bootcmd is not set, then the following error may occur:

(Core#0-gdb) target octeonpci bootoct 0x20000000 coremask=1
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]

Sending bootloader command: bootoct 0 coremask=1 debug

ERROR: Bootloader not ready for command.
Sending bootcmd failed

6.5.1 Changes to Hands-On Steps When Using PCI Debugging
The instructions are changed when debugging over PCI.

1. There is no need to start the program from the bootloader prompt: the target command will
load the program

2. Start the debugger using the sudo command
3. Specify the pci-bootcmd in the debugger
4. Specify target octeonpci in the debugger
5. To run the application again, simply type r

To use PCI debugging, the debugger must be started with the sudo command. Without it, the
following error will occur:

host$ mipsisa64-octeon-elf-gdb -q hello
(Core#0-gdb) target octeonpci bootoct 0 coremask=1
/proc/bus/pci/03/0d.0: Permission denied
Unable to open PCI connection to Octeon

When using PCI debugging, running the program again is easy. The debugger will reset the
development target, download the application, boot it, and the test is ready to begin again:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

gdb> run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/testname/sdk/OCTEON-SDK/examples/hello/hello
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]

Sending bootloader command: bootoct 0x20000000 coremask=1 debug

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-39

These changes are shown in the table below. Note that this table does not include the correct
commands for debugging the Linux kernel. See Section 7.2 – “Debug the Linux Kernel” for
command information.

Table 17: Running GDB with PCI Development Targets, Part 1

Steps for Debugging Note

host$
 cd $OCTEON_ROOT/examples/hello

Go to the directory where the hello source is located
on the host.

type the following text on one line
host$ ipsisa64-octeon-elf-gdb
 hello

Note that sudo is needed to start the debugger when
using PCI debugging. Without sudo, the target
octeonpci command will fail.

gdb> set pci-bootcmd oct-pci-reset Use either oct-pci-boot or oct-pci-reset,
depending on whether the board will boot from flash or
over PCI. The oct-pci-reset command is used to
boot from flash.

type the following text on one line
gdb> target octeonpci bootoct
 0x20000000 coremask=0x3

Use the load address received from the bootloader
namedprint command. Specify the desired
coremask. In this case, the load address is
0x20000000. (Do not specify a load address of 0x0).
Note that the debug option is not added to the command
line: the debug option is automatically passed to the
bootoct command.
Expect to see:
(Core#0-gdb) target octeonpci bootoct
0x20000000 coremask=0x3
Found Octeon on bus 3 in slot 13.
BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Found Octeon on bus 3 in slot 13.
BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Using bootloader image:
/home/testname/sdk/target/bin/u-boot-
octeon_ebt3000_pciboot.bin
Initialized 2048 MBytes of DRAM

Sending bootloader command: bootoct
0x20000000 coremask=0x3 debug

0x100005c0 in
__octeon_trigger_debug_exception ()

Continued in next table…

Start GDB on the Host; Debug the Application

New and changed commands are highlighted in pale blue.

sudo m

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 18: Running GDB with PCI Development Targets, Part 2

Steps for Debugging Note

simply type r for "run"
gdb> r
enter when prompted to start the program over

Expect to see:
The program being debugged has been
started already.
Start it from the beginning? (y or n)

Starting program:
/home/testname/sdk/examples/hello/hello
Found Octeon on bus 3 in slot 13.
BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Found Octeon on bus 3 in slot 13.
BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Using bootloader image:
/home/testname/sdk/target/bin/u-boot-
octeon_ebt3000_pciboot.bin
Initialized 2048 MBytes of DRAM

Sending bootloader command: bootoct
0x20000000 coremask=0x3 debug

Program received signal SIGTRAP,
Trace/breakpoint trap.
0x100005c0 in
__octeon_trigger_debug_exception ()

Run the Application Again

New and changed commands are highlighted in pale blue.

y
y

6.5.2 Multiple PCI Development Targets
When using PCI debugging, the utilities access the first OCTEON board found on the PCI bus.

To access a different OCTEON device, set the OCT_PCI_DEVICE environment variable to a
different PCI device index. For example, if the variable is set to “1”, the second OCTEON on the
PCI bus is accessed.

set the value, exporting it to any sub-shells spawned by the
current shell
host$ export OCTEON_PCI_DEVICE=1
confirm the value is now correct
host$ env | grep OCTEON_PCI_DEVICE
OCTEON_PCI_DEVICE=1

6.5.3 Attaching to a Program Which is Already Running
When using mipsisa64-octeon-elf-gdb and debugging over PCI, it is possible to attach to
a program which is already running.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-41

After the program is running, start the debugger. Once the target octeonpci command is
entered, the cores are stopped and the debugger is connected to the program. Note that the
target octeonpci command must be used without other arguments (no “bootoct…”).

Using either the detach command or exiting GDB resumes execution of the program.

First, start the Linux kernel running from the bootloader prompt. Don’t add the debug flag, on the
boot command, just let Linux run. Then connect to it with the debugger:

host$ sudo mipsisa64-octeon-elf-gdb vmlinux
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=mipsisa64-octeon-
elf"...
(Core#0-gdb) set pci-bootcmd oct-pci-boot
(Core#0-gdb) target octeonpci
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
0xffffffff80121bc4 in arch_ptrace (child=0xffffffff81b30000,
 request=<value optimized out>, addr=<value optimized out>,
 data=-2141257904) at arch/mips/kernel/ptrace.c:471
471 wake_up_process(child);
(Core#0-gdb) list
466 }
467 else {
468 clear_tsk_thread_flag(child,
TIF_SYSCALL_TRACE);
469 }
470 child->exit_code = data;
471 wake_up_process(child);
472 ret = 0;
473 break;
474 }
475
(Core#0-gdb) detach
(Core#0-gdb)

Remember to use sudo when starting gdb, or the following error will occur:

(Core#0-gdb) target octeonpci
/proc/bus/pci/03/0d.0: Permission denied
Unable to open PCI connection to Octeon

6.6 Other Special Commands: spawn-sim
The mipsisa64-octeon-elf-gdb debugger also supports a special command spawn-sim.

The spawn-sim command is used to simplify debugging on the OCTEON simulator by starting
the simulator from the debugger. If spawn-sim is on and the target is specified as target
octeon tcp: (as in target octeon tcp::2021), then the debugger starts the OCTEON

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

simulator, using X to create a new terminal session. The simulator will run in the new terminal
session. (Remember to set xhost + on the development host to allow the new terminal
session to open.)

Note: When the application stops running (for instance, at the end), the simulator’s
terminal window will close. The data shown on the screen in that terminal session will be
lost. If this is not desired behavior, start the simulator separately from gdb.

The tcp target is used in two cases:

1. When using gdb to connect to the OCTEON simulator:
gdb> target octeon tcp::<tcp_port_number>

2. When using gdb to connect to a development target through a terminal server:
gdb> target octeon
tcp:<IP_address_of_terminal_server>:<server_port>

The spawn-sim command should be on when:

• The user wants gdb to start the OCTEON simulator

The spawn-sim command should be off when:

• The simulator has already been started
• X is not available
• A terminal server is being used to connect to actual hardware

If the simulator has already been started using the same TCP port number or X is not available, a
warning will occur, which can be ignored. The only time when it is essential to make sure
spawn-sim is off is when using a terminal server.

In some SDK versions, spawn-sim is on by default (in SDK 1.9 it is off). Use the command
show spawn-sim to determine the value:

gdb> show spawn-sim
Whether the simulator would be spawned upon the target command is on.

To set spawn-sim to off:
gdb> set spawn-sim off
gdb> show spawn-sim
Whether the simulator would be spawned upon the target command is off.

6.7 Summary: Directions for Different Connection Types
The following tables summarize the commands to use for the different connection methods for
mipsisa64-octeon-elf-gdb.

Note that these tables do not include the correct commands for debugging the Linux kernel. See
Section 7.2 – “Debug the Linux Kernel” for command information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-43

Table 19: Debug SE-S or Linux Kernel over PCI Bus
PCI Bus

This method is highly preferred if PCI target board is available. Only a bootloader console
and PCI connection are needed. Program can be run over and over from the debugger: the
debugger will reboot board, initialize, and run program again.
A. On host:
 host$ <filename>
 Specify:
 gdb>

 # type the following text on one command line. (Note the debug option is not
 # needed on the bootoct command line.)

 gdb> b main
 gdb> c
Note that tmp_download_address cannot be 0. At the bootloader console, use
namedprint to see the start address of the temporary download block. In the following
example, namedprint returns an address of 0x20000000 .
 target# namedprint
 List of currently allocated named bootmem blocks:
 Name: __tmp_load, address:
 0x0000000006000000, index: 0
 Name: __tmp_reserved_linux, address: 0x0000000000100000,

 size: 0x0000000008000000, index: 1

When debugging over PCI, it is easy to run the program multiple times because the debugger
reboots the board automatically in response to the run command.

sudo mipsisa64-octeon-elf-gdb

set pci-bootcmd <oct-pci-reset | oct-pci_boot>

 gdb> target octeonpci bootoct <tmp_download_address>
coremask=<coremask>

0x0000000020000000, size:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 20: Debug SE-S or Linux Kernel over Serial Connection
Serial Connection

Used for stand-alone target boards. Requires a serial connection from host to Debugging Port
(UART1) on the target board. Specify the host side of the debugging connection as
<serial_port_on_host> (such as /dev/ttyS1) in the command line below.
A. Boot the target board, then download the file to the board.
B. On Target: Boot the file using the command:
 target# bootoct 0 coremask=<coremask> debug
C. On host:
 host$ mipsisa64-octeon-elf-gdb <filename>
 Specify:
 gdb>
 gdb> b main
 gdb> c

target octeon <serial_port_on_host>

Table 21: Debug SE-S or Linux Kernel Using a Terminal Server
Serial Connection Through a Terminal Server

Used for stand-alone target boards where access is through a terminal server. Requires a
serial connection from terminal server to Debugging Port (UART1) on the target board.
A. Boot the target board, then download the file to the board.
B. On Target: Boot the file using the command:
 target# bootoct 0 coremask=<coremask> debug
C. On host:
 host$ mipsisa64-octeon-elf-gdb <filename>
 Specify:
 gdb> set spawn-sim off
 # type the following text on one command line
 gdb>

 gdb> b main
 gdb> c
When using some terminal serviers, there is no way to fully disable telnet negotiations. In this
case, the initial characters sent by GDB can be misinterpreted and taken for a negotiation
response. If, after the target command, GDB prints "garbage" characters, and then nothing
more, see the SDK document "Simple Executive Debugger" in the section "Debugging via a
terminal server" for assistance.

target octeon
tcp:<IP_address_of_terminal_server>:<server_port>

If a terminal server is used, see Section 6.6 – “Other Special Commands: spawn-sim”, and
Section 14 – “Appendix B: Connecting Using a Terminal Server”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-45

Table 22: Debug SE-S or Linux Kernel on the OCTEON Simulator
Connecting When Using the OCTEON Simulator

A. Start two terminal interfaces on the development host. One will be used to start the
OCTEON simulator. Output from the program will be seen in this terminal session. The other
terminal session is used to start the debugger.
B. In development host terminal session 1:
 # type the following text on one command line
 hostT1$

C. In development host terminal session 2:
 hostT2$ mipsisa64-octeon-elf-gdb <filename>
 Specify:
 gdb> set spawn-sim off
 # type the following text on one command line
 gdb>

 gdb> load
 gdb> b main
 gdb> c

oct-sim <filename> -quiet -noperf
-numcores=<numcores> -uart1=2021 -debug

target octeon tcp::2021 -noperf -quiet
-numcores=<numcores>

For more information on debugging on the OCTEON simulator, see Section 12 – “About
Debugging on the OCTEON Simulator”.

6.8 Software Breakpoints and Multicore Debugging
When using mipsisa64-octeon-elf-gdb, when a software breakpoint is set, the breakpoint
applies to all the cores using the same load set.

6.8.1 Race Condition: Cores Can Bypass the Breakpoint Without Stopping
This condition is rare. Software breakpoints are implemented by replacing the instruction at the
breakpoint with the sdbbp instruction. All cores in the load set share the same code in memory.
Once execution reaches this point, GDB will replace the sdbbp instruction with the original
program instruction. The breakpoint will not be reinserted until the core that hit the sdbbp steps
past the breakpoint. When the active-cores execute a single step, the non-focus core may single
step before the focus core. If this happens, the sdbbp instruction will not be there, allowing the
non-focus core to move past the expected breakpoint. This problem is rare. If avoiding this
possibility is essential, the focus core must be stepped at least once with step-all off before
any other cores are allowed to execute.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 11: Race Condition: Cores Can Bypass Breakpoint
A B C

Code after breakpoint is set, but
before breakpoint is hit.

Code when breakpoint is hit,
before step instruction. (This
is when the race condition
could occur. If the non-focus
core executes now, the
breakpoint is missing.)

Code when focus core steps
past the breakpoint: sdbbp
instruction restored.

instruction 5 instruction 5 instruction 5
sdbbp instruction 6 sdbbp
instruction 7 instruction 7 instruction 7
instruction 8 instruction 8 instruction 8

When a group of cores single steps together, the non-focus core might execute before the focus
core, using the instructions as they appear in column B. By settingstep-all off , the non-

focus core cannot execute when the sdbbp instruction is missing.

6.8.2 Race Condition: Multiple Cores Stopped on the Same Breakpoint
This condition is rare. When debugging multiple cores, it is possible to have two or more cores hit
a breakpoint on the same instruction. If step-all doesn’t move one of the cores forward, verify
that it isn’t stopped on the same breakpoint as the focus core. If a non-focus core has stopped on a
breakpoint, change the focus to the stopped core, and step past the breakpoint.

6.9 Hardware Breakpoints
Currently (SDK 1.8) hardware breakpoints are only supported in the mipsisa64-octeon-
elf-gdb debugger. Unlike software breakpoints, which change the instructions which will be
executed, hardware breakpoints do not modify the instructions. Because of this, hardware
breakpoints are especially useful when debugging non-writable (or difficult to write) memory such
as flash or EEPROM.

Hardware breakpoints may be set by using the GDB hbreak command. There are a maximum of
four hardware breakpoints per application. The hbreak command is applied to the focus core,
unlike software breakpoints which apply to all cores in the same load set.

Setting a hardware breakpoint is similar to the command to set a software breakpoint:

(Core#0-gdb) list
39
40 /* printf() provides maximum flexibility, but is slow due to
41 ** the format string being processed in simulated code.
Normal
42 ** buffering is done by the C library.
43 */
44 printf("\n");
45 printf("\n");
46 printf("Hello world!\n");
47

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-47

48 #if 0
(Core#0-gdb) hbreak 46
Hardware assisted breakpoint 2 at 0x10000514: file hello.c, line 46.
(Core#0-gdb) c
Continuing.

Breakpoint 2, main () at hello.c:46
46 printf("Hello world!\n");
(Core#0-gdb)

6.10 Hardware Watchpoints
Currently (SDK 1.8) hardware watchpoints are only supported in the mipsisa64-octeon-
elf-gdb debugger. Both read and write watchpoints are supported. Hardware watchpoints are
inserted into the program using the GDB watch, rwatch, and awatch commands. Watchpoints
are applied to the focus core, unlike software breakpoints which apply to all cores in the same load
set. There are a maximum of four hardware watchpoints per application. Hardware watchpoints
do not significantly slow down program execution.

Watchpoints are useful for notification if the memory location is read (rwatch), or changed
(watch). The awatch command is used if either the rwatch or watch conditions are met.
Read watchpoints may not be implemented for all products or all releases. Check product-specific
information such as the HRM for details.

6.11 Performance Counters
The OCTEON processor supports two performance counter registers. Commands to enable and
read performance counters are applied to the focus core.

Each performance counter can be enabled by specifying an event. The GDB command set
perf-event[0|1] will display the list of events supported for the OCTEON processor, for
instance set perf-event0.

To initialize an event, type set perf-event[0|1] <event> at the GDB prompt.

To check the value of the performance counter register, type show perf-event[0|1] at the
GDB prompt.

Use set perf-event[0|1] none to turn off the performance counter, which will also reset
its value to zero.

For example:

(Core#0-gdb) set perf-event0 sissue
(Core#0-gdb) show perf-event0
Performance counter0 for "sissue" event is 0
(Core#0-gdb) list
41 ** the format string being processed in simulated code.
Normal
42 ** buffering is done by the C library.
43 */

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

T

U
T

O
R

 OCTEON Programmer’s Guide

5-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

IN
G

IA
L

44 printf("\n");
45 printf("\n");
46 printf("Hello world!\n");
47
48 #if 0
49 /* simprintf() passes the format string and up to 7 arguments
to the
50 ** simulator and is much faster than standard printfs. It is
limited
(Core#0-gdb) s
puts (s=0x1000ac50 "Hello world!")
 at
/usr/local/Cavium_Networks/toolchain/src/newlib/libc/stdio/puts.c:103
103
/usr/local/Cavium_Networks/toolchain/src/newlib/libc/stdio/puts.c: No
such file or directory.
 in
/usr/local/Cavium_Networks/toolchain/src/newlib/libc/stdio/puts.c
(Core#0-gdb) show perf-event0
Performance counter0 for "sissue" event is 7
(Core#0-gdb) set perf-event0 none
(Core#0-gdb) show perf-event0
Performance counter0 for "none" event is 0
(Core#0-gdb) show perf-event1
Performance counter1 event is not set.

6.12 Finding the Cause of an Exception
Because SE-S applications cannot provide a core dump, but it is possible to find the cause of an
exception using the debugger.

Set a breakpoint in the default exception hander
(__cvmx_interrrupt_default_exception_handler()), or in a custom exception
handler. Then run the program in the debugger. When the exception occurs, the debugger
backtrace command can be used to locate the cause of the exception. A detailed example is
provided in the SDK document “Simple Executive Debugger”.

7 Hands-On: Debug the Linux Kernel
The Linux kernel may be debugged using the mipsisa64-octeon-elf-gdb debugger. This
debugger provides features not available with standard kgdb. In particular, multicore debugging
and debugging over PCI are available. See Section 6 – “About Debugging SE-S Applications or
the Linux Kernel” for more information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-49

Figure 12: Debug the Linux Kernel

7.1 Building the Linux Kernel for Debugging
The following steps are needed to build kernel with debugging support, without the watchdog, and
with frame pointers enabled. These directions are for kernel 2.6.21, SDK 1.8.

Precise information can be found in the SDK document “Linux on the OCTEON”. Note that the
“Optimize for size” menuconfig option mentioned in the SDK documentation appears to be
unnecessary.

7.1.1 Kernel Configuration
Set the kernel configuration needed for kernel debugging by running make menuconfig in the
$OCTEON_ROOT/linux/kernel_2.6/linux directory.

When running make menuconfig, the configuration options are accessed via the “Machine
selection”, and “Kernel hacking” sub-menus.

The first kernel menuconfig screen looks similar to this:

Machine selection --->
Endianess selection (Big endian) --->
CPU selection --->
Kernel type --->
Code maturity level options --->
General setup --->
Loadable module support --->
Block layer --->
Bus options (PCI, PCMCIA, EISA, ISA, TC) --->
Executable file formats --->
Networking --->
Device Drivers --->
File systems --->
Profiling support --->
Kernel hacking --->
Security options --->
Cryptographic options --->
Library routines --->

Load an Alternate Configuration File
Save an Alternate Configuration File

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
IN

G

T
U

T
IA

L

 OCTEON Programmer’s Guide

5-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

U
G

G
O

R

To navigate this screen, use the arrow keys on the keyboard. The bottom of the screen provides
some options that can be selected with the TAB key. In the first screen, these options are “Select,
Exit, and Help”. To select a highlighted option, press Enter when the option “Select” (at the
bottom of the screen) is highlighted.

7.1.1.1 Turn off Watchdog
The watchdog will reset the system if the kernel does not respond to it about every 5 seconds. If
the debugger has stopped the kernel, then it cannot respond to the watchdog exception. Before
beginning debugging, remove the watchdog.

To configure Linux for debugging, select “Machine selection”. The Machine selection screen will
look similar to this:

Select the machine
System type (Support for the Cavium Networks Octeon reference
 [*] Enable Octeon specific options
 [*] Enable RI/XI extended page table bits
 [] Build the kernel to be used as a 2nd kernel on the same chip
 [*] Enable support for Compact flash hooked to the Octeon Boot Bus
 [*] Enable hardware fixups of unaligned loads and stores
 [*] Enable fast access to the thread pointer
 [*] Support dynamically replacing emulated thread pointer accesses
 <text omitted>
 <M> POW based internal only ethernet driver
 <*> Management port ethernet driver (CN5XXX)
 < > Octeon watchdog driver <<< DESIRED SETTING
 < > Octeon trace buffer (TRA) driver
 [] Enable enhancements to the IPSec stack to allow procotol offload.
 [] Enable Cavium Octeon ip-offload module

Highlight “Octeon watchdog driver” by selecting the item. If the option is set (*), then press Enter
to clear the option. Then select Exit to go up one menu.

7.1.1.2 Enable Remote Debugging
Select the next sub-menu, “Kernel hacking”. The Kernel hacking screen will look similar to this:
[] Show timing information on printks
 [*] Enable __must_check logic
 [] Magic SysRq key
 [] Enable unused/obsolete exported symbols
 [] Debug Filesystem
 [] Run 'make headers_check' when building vmlinux
 [*] Kernel debugging
 [] Debug shared IRQ handlers
 <text omitted>
 [] Enable stack utilization instrumentation
 [] Remote GDB kernel debugging
 [*] Remote GDB debugging using the Cavium Networks Multicore GDB <<<
DESIRED SETTING
 [] Enable run-time debugging

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-51

Highlight “Remote GDB debugging using the Cavium Networks Multicore GDB” by selecting the
item. If the option is clear (), then press Enter to set the option. Then select Exit to go up one
menu.

This option will define CONFIG_CAVIUM_GDB=y in the kernel’s .config file.

7.1.1.3 Save and Exit
Select Exit to exit menuconfig. When prompted “Do you wish to save your new kernel
configuration?” select Yes.

The output of the make menuconfig command is the file .config:

host$ ls -ld .config
-rw-r--r-- 1 root root 20640 Jan 23 11:58 .config

(Note: Saving a copy of the .config file is useful. The
$OCTEON_ROOT/linux/Makefile clean target will remove the
$OCTEON_ROOT/linux/kernel_2.6/linux/.config file.)

7.1.2 Rebuild Linux, Enable Frame Pointers
Then build the kernel with frame pointers enabled, packaging it along with the embedded root
filesystem into vmlinux:

host$ cd ../..
host$ sudo ls # enter password now so it is stored for the next command
this build will take about 10 minutes
host$ sudo make –s CONFIG_FRAME_POINTER=y kernel >make.out 2>&1 &

Note: If the .config file has changed, the build will rebuild the kernel appropriately.
There is no need to do a make clean prior to the new build.

Note: If there is any need to do a clean on the kernel, be sure to change to
$OCTEON_ROOT/linux/kernel_2.6 before executing make clean. If make clean is
executed in $OCTEON_ROOT/linux, then the kernel’s .config file
($OCTEON_ROOT/linux/kernel_2.6/linux/.config) will be removed, and the
make menuconfig step will have to be repeated.

Note: If the sudo command is omitted when using the make –s command line, then
the following cryptic error message will occur:

*** Error during writing of the kernel configuration.

make[4]: *** [silentoldconfig] Error 1
make[3]: *** [silentoldconfig] Error 2
make[2]: *** [include/config/auto.conf] Error 2
make[1]: *** [linux] Error 2
make: *** [kernel] Error 2

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

7.1.3 About the make clean Command
If the make clean command is executed in the $OCTEON_ROOT/linux directory, then the
kernel’s $OCTEON_ROOT/linux/kernel_2.6/linux/.config file will be deleted. On
the next build, if the $OCTEON_ROOT/linux/kernel_2.6/linux/.config file is
missing, then the pristine (original kernel.config supplied with the release) is copied to
.config. This is done to allow the user to restore the original working kernel configuration.

This can be inconvenient if the user would like to save the .config file. The .config file can
be saved to another name, such as .config.save. After the clean step, this file can be copied to
.config.

To clean the kernel directory without removing the .config file, cd to
$OCTEON_ROOT/linux/kernel_2.6 before executing make clean, or use the following
command in the $OCTEON_ROOT/linux directory:

host$ make -s -C kernel_2.6 clean

7.2 Debug the Linux Kernel
The debugger used for the Linux kernel (mipsisa64-octeon-elf-gdb) is the same as for
SE-S applications, such as hello. This debugger supports multicore debugging and debugging
using PCI as a connection.

Significant differences from SE-S application debugging directions:

1. The kernel is booted with the command:
 bootoctlinux 0 coremask=<coremask> debug

2. The kernel will come up until just after “SMP Linux” is displayed in the LEDs on the
development target

3. The kernel stops at prom_init().
4. A reasonable first breakpoint is r4k_wait()

See Section 6 – “About Debugging SE-S Applications or the Linux Kernel” for more information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-53

Table 23: Debug the Linux Kernel – Part 1
Steps N

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide. Note:
The Ethernet cable is not needed to run hello on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not
disturb the office network.

Connect the target debug port to the host using a serial cable. GDB will communicate with the target using this
connection.

Power on or reset the target board. The word Boot should appear on the red LEDs on
the board. If not, the board is not configured to boot
from flash, or something is wrong with the board, or
the board does not have alpha LEDs.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to
connect to the OCTEON target board if it is not
ttyS0. Minicom will provide a connection to the
target console. You should see the bootloader
prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(
time: Jun 13)

f the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

6. Configure the Kernel for Debugging If this step was already done, no need to repeat it!

type the following text on one line
host$ cd
 $OCTEON_ROOT/linux/kernel_2.6/linux
see note for menuconfig options
host$ make menuconfig

Select the menuconfig options:
* Machine selection: Octeon
 watchdog driver -
* General setup: optimize for
 size -
* Kernel hacking: Remote GDB
 debugging using the Cavium
 Networks Multicore -

Continued in the next table…

1. Connect the Hardware

2. Reset the board

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

ote

I

SDK version: 1.7.3-264) (Build

off

on

on

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 24: Debug the Linux Kernel – Part 2
Steps N

7. Build the Kernel with Embedded Root Filesystem If this step was already done, no need to repeat it!

host$ cd ../..
the directory should now be $OCTEON_ROOT/linux
enter password now so it is stored for the next command
host$ sudo ls
type the following text on one line
host$ sudo make –s

 >make.out 2>&1 &

Note: This step can take up to 20 minutes. When it has
completed successfully, the kernel_2.6/linux/vmlinux
file will have been created.

Note: The sudo ls command is merely used to set
the root password. The root password will be
stored for about 5 minutes for use in the next
command (sudo make...).

verify the build is complete before continuing
host$ wait
go to the created vmlinux file
host$ cd kernel_2.6/linux
host$ sudo cp vmlinux /tftpboot

See SDK Tutorial directions for tftpboot.

f a DHCP server is available, then selecting the target IP
address is handled by the server. Otherwise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic
with your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

Note: serverip is the IP address of the TFTP
server. In this example the DHCP server is the same
as the TFTP server.

8. Copy the ELF file to the tftpboot Directory

9. Set the Development Target's IP Address

9a. No DHCP Server

9b. DHCP Server Available

Continued in the next table…

ote

I

CONFIG_FRAME_POINTER=y kernel

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-55

Table 25: Debug the Linux Kernel – Part 3
Steps N

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

Use tftpboot to download the application.
target# tftpboot 0 vmlinux

See the SDK Tutorial directions for tftpboot. If
this step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

type the following text on one line
target# bootoctlinux 0 coremask=0x3
 debug

This command will run Linux on cores 0 and 1.
Expect to see:
argv[2]: coremask=0x3
argv[3]: debug
ELF file is 64 bit
Attempting to allocate memory for
ELF segment: addr:
0xffffffff80100000 (adjusted to:
0x0000000000100000), size 0x1a99d58
<text omitted>
Bootloader: Done loading app on
coremask: 0x3
<Linux will stop here>
Expect to see "SMPLinux" on the board's LEDs
at this point.

Continued in the next table…

11. Download the Application to the Development Target

12. Boot the Application

10. Test the Ethernet Connection to the Host
ote

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 26: Debug the Linux Kernel – Part 4
Steps Note

13. Start GDB on the Host; Debug the Application
type the following text on one line
host$
 cd $OCTEON_ROOT/linux/kernel_2.6/linux

Go to the directory where the vmlinux source is
located on the host.

start gdb
host$ mipsisa64-octeon-elf-gdb vmlinux

Use -q (quiet) for fewer start-up messages.
Expect to see:
GNU gdb 6.5 Cavium Networks
Version: 1_8_0, build 64
Copyright (C) 2006 Free Software
Foundation, Inc.
GDB is free software, covered by
the GNU General Public License, and
you are
welcome to change it and/or
distribute copies of it under
certain conditions.
Type "show copying" to see the
conditions.

There is absolutely no warranty for
GDB. Type "show warranty" for
details.
This GDB was configured as
"--host=i686-pc-linux-gnu
--target=mipsisa64-octeon-elf"...

connect to the debug port
gdb> target octeon /dev/ttyS1

Expect to see:
Remote target octeon connected to
/dev/ttyS1

set a breakpoint in r4k_wait()
gdb> b r4k_wait

Expect to see:

Breakpoint 1 at 0xffffffff801214b8:
file arch/mips/kernel/cpu-probe.c,
line 57.

continue to the breakpoint
gdb> c

Expect to see:
Continuing.
Breakpoint 1, r4k_wait () at
arch/mips/kernel/cpu-probe.c:57
57 wmb();

Continued in the next table…

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-57

Table 27: Debug the Linux Kernel – Part 5
Steps Note

13. Debug the Application, continued
show 10 source lines at the breakpoint
gdb> list

Expect to see:
52 * a non-enabled interrupt
is requested.
53 */
54 static void r4k_wait(void)
55 {
56 #ifdef
CONFIG_CPU_CAVIUM_OCTEON
57 wmb();
58 #endif
59 __asm__("
.set mips3 \n"
60 "
wait \n"
61 "
.set mips0
\n");

r4k_wait() is called by the idle loop, so clear the
breakpoint in order to continue to the prompt
gdb> clear

Expect to see:
Deleted breakpoint 1

continue to run the program
gdb> c

Expect to see:
Continuing.

The Linux prompt will now come up on the target console.

To reset the development target, reboot Linux, or:
 * for stand-alone boards: power on or reset the board.
 * for PCI boards: host$ oct-pci-reset

To run Linux again, the board must be rebooted and
vmlinux downloaded again.

14. Run Linux Again

7.3 Example: Multicore Debugging and the Linux Kernel
The following example shows using the multicore debugging commands on the Linux kernel.
Boot the kernel as shown in the above tables, then follow try out these gdb commands:

host$ cd $OCTEON_ROOT/linux/kernel_2.6/linux
host$ mipsisa64-octeon-elf-gdb vmlinux
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

T

U
T

O

 OCTEON Programmer’s Guide

5-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

G
IN

R
IA

L

There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=mipsisa64-
octeon-elf"...
(Core#0-gdb) target octeon /dev/ttyS1
Remote target octeon connected to /dev/ttyS1
(Core#0-gdb) b r4k_wait
Breakpoint 1 at 0xffffffff801214b8: file arch/mips/kernel/cpu-probe.c,
line 57.
(Core#0-gdb) set step-all on
(Core#0-gdb) c
Continuing.
Core 1 taking focus. << Note the automatic focus change

Breakpoint 1, r4k_wait () at arch/mips/kernel/cpu-probe.c:57
57 wmb();
(Core#1-gdb) list
52 * a non-enabled interrupt is requested.
53 */
54 static void r4k_wait(void)
55 {
56 #ifdef CONFIG_CPU_CAVIUM_OCTEON
57 wmb();
58 #endif
59 __asm__(" .set mips3 \n"
60 " wait \n"
61 " .set mips0 \n");
(Core#1-gdb) c
Continuing.

Breakpoint 1, r4k_wait () at arch/mips/kernel/cpu-probe.c:57
57 wmb();
(Core#1-gdb) clear
Deleted breakpoint 1
(Core#1-gdb) c
<The kernel now comes up to the interactive prompt in the target
console.>

8 About Debugging the Linux Kernel
When debugging the Linux kernel, there are three choices:

1. Cavium Networks proprietary multicore debugger.
2. The standard open source kernel debugger
3. EJTAG

8.1 Cavium Networks Proprietary GDB Protocol
The kernel may be debugged using the Cavium Networks proprietary GDB protocol provided by
mipsisa64-octeon-elf-gdb. This debugger supports multicore debugging of all kernel
code, including interrupts and exceptions. This debugger does not handle TLB misses and other
corner cases as well as the standard open source debugger.

When the kernel is booted with the debug option, it will enter the debug exception handler in
prom_init() (setup.c):

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-59

#ifdef CONFIG_CAVIUM_GDB
 /* When debugging the linux kernel, force the cores to enter the debug
 exception handler to break in. */
 if (octeon_get_boot_debug_flag()) {
 cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
 cvmx_read_csr(CVMX_CIU_DINT);
 }
#endif

From here, the first logical breakpoint is r4k_wait().

8.2 The Standard Open Source Kernel Debugger
The standard open source debugger can debug the kernel assuming the gdb stub is built into the
kernel. The gdb stub is called kgdb in the kernel. This debugger works for debugging most
kernel code but not exception and interrupt handlers. After kgdb is build into the kernel, use the
mips64-octeon-linux-gnu-gdb to debug the kernel. (Note that other versions of gdb will
also work.)

Directions are in the SDK Document “Linux on the OCTEON”, in the section “Debugging the
Kernel with KGDB”.

8.3 SMP Synchronization and step-all
The kernel uses smp_call_function() to synchronize operations across all cores. This
function will hang forever if a core is currently stopped in the debug exception. Make sure step-
all is on whenever SMP operations are expected.

8.4 The Kernel File Name: vmlinux vs vmlinux.64
In the SDK documentation, the name vmlinux.64 is used instead of vmlinux. Both files have
the same content, so when the directions specify vmlinux.64, it is okay to use vmlinux
instead.

The presence of two files is for historical reasons. At one point in the past there was a difference
between vmlinux and vmlinux.64. The kernel build process made a 32-bit binary and then
changed it into a 64-bit binary. This is no longer the case, but the vmlinux.64 name was kept
for backwards compatibility.

9 Hands-On: Debug a SE-UM Application: named-block
The SE-UM example named-block is debugged in this hands-on step. A serial connection is
used for cross-debugging because it works on both PCI and stand-alone development targets. This
step should not be done until the prior steps in this chapter have been successfully completed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-60 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 13: Debug named-block

Detailed information will be provided in Section 10 – “About Linux User-Mode Application
Debugging”.

In this example, the development host serial port /dev/ttyS1 is connected to the debug port on
the development target (UART1). If a different serial port is used, modify the directions to use the
correct value.

Debugging over serial connection will require two different sessions on the host: one to
connect to the target console port, and one to connect to the target debugging port.

The development target configuration is illustrated in Figure 4 – “Hardware Configurations for SE-
S and Linux Kernel Debugging”. The only addition to the prior configuration is the serial cable to
the target’s debug port.

The directions in the following table are the hands-on instructions for debugging named-block.
After this section, more detailed information will be provided.

After compiling the program with the debug flag, and optimization level set appropriately, follow
the instructions below. Select the debug method in the table below, and follow the instructions.
For more information, see the SDK document for the type of debugging chosen.

The first breakpoint is usually set at appmain(). Note that there is no symbol named main().

In the default configuration, example applications are stripped of debugging information when
they are installed in the embedded root filesystem. For information on how to disable the strip
step, see Section 4 – “Debugging Applications in the Embedded Root Filesystem” for details.

Note: When invoking mips64-octeon-linux-gnu-gdb to debug example code, be sure to
add the –linux_64 suffix. Without the executable name, gdb assumes the ABI is O32 ABI (32-
bit registers). GDB will then issue an error message (bad register size):

../../src/gdb/mips-tdep.c:606: internal-error: bad register size
A problem internal to GDB has been detected,
further debugging may prove unreliable.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-61

Table 28: Debug named-block (SE-UM) over TCP Sockets, Part 1
Steps No

Connect serial cable to target console. Connect the Ethernet
cable.

Follow directions in the Quick Start Guide . Note:
The Ethernet cable is not needed to run Linux on a
PCI target board, but will be needed later in the SDK
Tutorial . Be careful to isolate the test network from
the office network so that experiments will not disturb
the office network.

For stand-alone boards: power on or reset the board.
For PCI boards: host$ oct-pci-reset

The word Boot should appear on the red LEDs on the
board. If not, the board is not configured to boot
from flash, or something is wrong with the board, or
the board does not have alpha LEDs.

host$ minicom -w ttyS0 Substitute the serial port actually used on the host to
connect to the OCTEON target board if it is not
ttyS0. Minicom will provide a connection to the
target console. You should see the bootloader
prompt.

target# version The bootloader should reply with text similar to:
U-Boot 1.1.1 (U-boot build #: 194)
(SDK version: 1.7.3-264) (Build
time: Jun 13)

f the bootloader's SDK version is not at least 1.7, then before
continuing, upgrade the bootloader to a newer version.

Directions for upgrading the bootloader are included
in the SDK Tutorial .

6. Build the Application for Debugging If this step was already done, no need to repeat it!
host$ cd $OCTEON_ROOT/examples/named-block
edit the Makefiles as needed to
change the optimization level to -O0
host$ make clean OCTEON_TARGET=linux_64
host$ make OCTEON_TARGET=linux_64

7. Mofify Embedded Root Filesystem to Not Call Strip If this step was already done, no need to repeat it!
type the following text on one line
host$ cd
 $OCTEON_ROOT/linux/embedded_rootfs
change the configuration to not strip the files
host$ sudo make menuconfig
deselect

Directions are for SDK 1.8.

1. Connect the Hardware

2. Reset the board

3. Connect to the Target Console

4. Verify Bootloader Prompt is Visible

5. Verify Bootloader Version is at Least SDK 1.7

Continued in the next table…

te

I

Strip debugging information from binaries

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-62 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 29: Debug named-block (SE-UM) over TCP Sockets, Part 2
Steps Note

8. Build Linux If this step was already done, no need to repeat it!
host$ cd $OCTEON_ROOT/linux

enter password now so it is stored for the next command
host$ sudo ls

Note: The sudo ls command is merely used to set
the root password. The root password will be stored
for about 5 minutes for use in the next command
(sudo make...).

host$ sudo make kernel >make.out 2>&1 & Build the kernel and embedded root filesystem in the
background. Use tail -f to see the output. The
make command will create the executable file
vmlinux.

verify the build is complete before continuing
host$ wait
go to the created vmlinux file
host$ cd kernel_2.6/linux
host$ sudo cp vmlinux /tftpboot

The vmlinux file is located in the kernel_2.6/linux
directory.
See SDK Tutorial directions for tftpboot.

If a DHCP server is available, then selecting the target IP
address is handled by the server. Othewise, select a target IP
address.

In this example, the target IP address is
192.168.51.159 .

First, set the IP address of the target (replace items in italic with
your IP addresses).
Use your IP addresses instead of the example values!
target# setenv gatewayip 192.168.51.254
target# setenv netmask 255.255.255.0
target# setenv ipaddr 192.168.51.159
target# setenv serverip 192.168.51.1
save the values so they will still be set after a reset
target# saveenv

Note: serverip is the IP address of the TFTP
server.

 If a DHCP server is available substitute the following step:
target# dhcp

Note: serverip is the IP address of the TFTP
server. In this example the DHCP server is the same
as the TFTP server.

9. Copy the ELF file to the tftpboot Directory

Continued in the next table…

10. Set the Development Target's IP Address

10a. No DHCP Server

10b. DHCP Server Available

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-63

Table 30: Debug named-block (SE-UM) over TCP Sockets, Part 3
Steps Note

use your host IP address instead of the example value!
target# ping 192.168.51.254

Expect to see:
Using octeth0 device
host 192.168.51.254 is alive
Note that the development target will not reply to a
ping from the development host. Note: to see the
development host’s IP address, use the
/sbin/ifconfig command on the development
host.

Use tftpboot to download the application.
target# tftpboot 0 vmlinux

See the SDK Tutorial directions for tftpboot. If
this step does not work, check the
/etc/xinetd.d/tftp file on the host to verify
that server_args = -s /tftpboot .

target# bootoctlinux 0 coremask=0x1 This command will run vmlinux on core 0. Note:
Linux will now run, and output a prompt on the target
console. Type ls to verify Linux is up and running.

target# modprobe cavium-ethernet

If a DHCP server is available, then selecting the target IP
address is handled by the server. Othewise, select a target IP
address.

First, set the IP address of the target (replace items in italic with
your IP addresses).
Use your IP addresses instead of the example values!
type the following command on one line
target# ifconfig eth0 192.168.51.159
 netmask 255.255.255.0

In this example, the target IP address is
192.168.51.159 .

 If a DHCP server is available substitute the following step:
target# udhcpc -i eth0

Note: serverip is the IP address of the TFTP
server. In this example the DHCP server is the same
as the TFTP server.

11. Test the Ethernet Connection to the Host

12. Download Linux to the Development Target

15b. DHCP Server Available

14. Start Ethernet on the Development Target

Continued in the next table…

13. Boot Linux

15. Set the Development Target's IP Address

15a. No DHCP Server

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 31: Debug named-block (SE-UM) over TCP Sockets, Part 4
Steps Note

target# cd examples Go to the directory where named-block is located.

target# gdbserver : d-block Expect to see:
/examples # gdbserver :2349 named-
block
GNU gdbserver 6.5 Cavium Networks
Version: 1_6_0, build 34
Process named-block created; pid =
737
Listening on port 2349

type the following command on one line
host$ cd $OCTEON_ROOT/examples/named-block

Go to the directory where the named-block source is
located on the host.

type the following command on one line
host$ mips64-octeon-linux-gnu-gdb
 named-block

Use -q for quiet

type the following command on one line
(substitute the your target IP address for the example
value)
gdb> target remote
 192.168.51.159:

Expect to see:
Remote debugging using
192.168.51.159:2349
0x0000000120003910 in _ftext ()

set a breakpoint in appmain()
gdb> b appmain

Expect to see:
Breakpoint 2 at 0x120003acc: file
named-block.c, line 39.

continue to the breakpoint
gdb> c

Expect to see:
Continuing.
Breakpoint 1, appmain () at named-
block.c:39
39 cvmx_user_app_init();

16. Start gdbserver on the Target

17. Start GDB on the Host; Debug the Application

Continued in the next table…

2349 name

-linux_64

2349

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-65

Table 32: Debug named-block (SE-UM) over TCP Sockets, Part 5
Steps Note

show 10 source lines at the breakpoint
gdb> list

Expect to see:
34 {
35
cvmx_bootmem_named_block_desc_t
*block_desc;
36 int status;
37 void *block_ptr;
38
39 cvmx_user_app_init();
40 if
(!cvmx_coremask_first_core(cvmx_sysi
nfo_get()->core_mask))
41 return 0;
42
43 printf("INFO: Size of
pointer is %llu bytes\n",
(ULL)sizeof(void*));
(gdb)

let the program run to completion
gdb> c

Expect to see:
Continuing.
Program exited normally.

When the steps above are followed correctly, the
target console should show:
/examples # gdbserver :2349 named-
block
GNU gdbserver 6.5 Cavium Networks
Version: 1_8_0, build 64
Process named-block created; pid =
775
Listening on port 2349
Remote debugging from host
192.168.51.254
CVMX_SHARED: 0x1201a0000-0x1201b0000
Active coremask = 0x1
INFO: Size of pointer is 8 bytes
PASS: All tests passed
Child exited with retcode = 0
Child exited with status 0

GDBserver exiting

17. Debug the Application, continued

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10 About Linux User-Mode Application Debugging
In the prior section, named-block was used as an example of debugging a Linux user-mode
application (in this case, a SE-UM application). This section provides more details about this
debugging environment.

10.1 Quick Summary of mips64-octeon-linux-gnu-gdb
The mips64-octeon-linux-gnu-gdb debugger is used to debug:

• Linux user-mode applications, including SE-UM applications
Type of debugging available:

• Cross-Debugging
• Native debugging

Debugger cross-connection types available:
• Serial connection
• TCP sockets

Notes
• This debugger cannot debug a multicore SE-UM application because gdb can only debug

one process at a time, and SE-UM applications are processes, not threads.
• TCP Sockets cannot be used with SE-UM applications that re-initialize OCTEON

hardware. The Ethernet driver has already initialized the hardware. Re-initializing the
hardware will cause the Ethernet driver to stop working. It is possible to use TCP Sockets
if the Ethernet connection is to the management port Ethernet interface. This interface is
available on some OCTEON models. See Section 10.4 – “The Management Port Ethernet
Interface”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-67

10.2 Hardware Configuration for Linux User-Mode Debugging
The hardware configuration is shown in the following figures.

Figure 14: Hardware Configurations for Linux User-Mode Debugging

Development Host Running Linux

OCTEON Development
Target

Running Linux

UART0
Console

UART1
Debug

Port

Serial
Port

Eth
Port 0

PCI SLOT

PCI FINGERS

Linux User-Mode PCI Board Debug Choices

Serial
Port

A.
 D

eb
ug

 P
or

t

Choices for cross-connection between GDB and the program running on the target board:
A. Serial cable connected from development host to the debug port on the development target
B. TCP Sockets. The target must run the Cavium Networks Ethernet driver. This method has limited usefulness

because it cannot be used to debug programs such as passthrough which re-initialize OCTEON hardware
that the Ethernet driver is using.

Native debugging is also available using either the embedded root filesystem, NFS, or CompactFlash (CF) with Debian
Linux (preferred if CF is available).

Note: No PCI debugging is available.

Eth
Port 0 Development Host Running Linux

OCTEON Development
Target

Running Linux

UART0
Console

UART1
Debug

Port

Serial
Port

Eth
Port 0

Linux User-mode Standalone Board Debug Choices

Serial
Port

A.
 D

eb
ug

 P
or

t

Eth
Port 0

Target C
onso

le

Target C
onso

le

B.
 E

th
er

ne
t

B.
 E

th
er

ne
t

C
FC

F

C
. C

o
m

p
a
ctF

la
sh

C
. C

o
m

p
a
ctF

la
sh

Hardware Configuration for Linux User-Mode Debugging

Note: The debug cross-connections and native debugging using Debian root filesystem are shown in red. The
development target console connection is shown as a dotted blue line to distinguish it from the debug connections.

The serial port on the host should be configured identically for both the console and the debug port:
115200, 8, N, 1.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

10.3 Summary: Directions for Different Connection Types
The following tables summarize the commands to use for the different connection methods.

Table 33: Native Debugging of Linux User-Mode Applications
Native Debugging (preferred)

Requires Compact Flash drive running Debian Linux.
A. Install Debian Linux on a flash card, then copy the application from the development host to
the flash card. Boot Linux using the Debian root filesystem on the flash card.
B. On the target:
 Add the /usr/local/Cavium_Networks/OCTEON_SDK/tools/usr/bin directory
to the start of the PATH environment variable:
 # type the following text on one command line
 target#

PATH=/usr/local/Cavium_Networks/OCTEON_SDK/tools/usr/bin:$PATH
 Use gdb -v to verify the correct version of GDB is running. If it is correct, the gdb version
will include the string “Cavium Networks Version".
 target# gdb -v
 target# gdb <filename>
 Specify:
 gdb> b appmain
 gdb> c
With this method, the application may be run over and over, and can be re-compiled on the
target using native tools.

Table 34: Debugging Linux User-Mode Applications over Serial Connection

Serial Port
Requires a serial connection from host to Debugging Port on the target board.
A. On the host, configure Linux to enable the second serial port, and rebuild the Linux kernel.
The directions for this step are in the SDK document "Linux on the OCTEON".
B. On the target:
 target# gdbserver <serial_port> <filename>
C. On the host:
 # be sure to add the suffix to the filename for example applications
 host$ mipsisa64-octeon-linux-gnu-gdb <filename>
 Specify:
 gdb>
 gdb> b appmain
 gdb> c

-linux_64

target remote <serial_port_on_host>

Note: The SDK documentation may contain the instruction to set the remotebaud rate
to 9600 when using the serial connection to gdbserver. This information applied to

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-69

an older version of the debugger and is no longer true. The baud rate is now set by
default to 115200 for both serial and USB converter devices, and does not need to be
changed when connecting to gdbserver.

Note: To exit gdbserver, use the disconnect GDB command.

Table 35: Debug Linux User-Mode Applications over Ethernet

Ethernet/TCP Sockets
Note: This method cannot be used to debug SE-UM applications (such as passthrough)
which initialize OCTEON hardware: the Ethernet driver will stop working.
A. On the target:
 Boot Linux, then start the Ethernet driver:
 target# modprobe cavium-ethernet
 set Ethernet address of target
 # if dhcp is available:
 target# udhcpc -i eth0
 # otherwise:
 target# ifconfig eth0 address <TARGET_IP_ADDRESS> netmask
255.255.255.0
 # then start gdbserver, specifying the tcp port number 2349 :
 target# gdbserver :
B. On the host:
 # be sure to add the suffix to the filename for example applications
 host$ mipsisa64-octeon-linux-gnu-gdb <filename>
 Specify:
 gdb>
 gdb> b appmain
 gdb> run

2349 <filename>

-linux_64

target remote <IP_ADDRESS_OF_TARGET>:2349

Warning: TCP Sockets cannot be used with SE-UM applications that re-initialize OCTEON
hardware. The Ethernet driver has already initialized the hardware. Re-initializing the
hardware will cause the Ethernet driver to stop working.

Note: The best choice for debugging over Ethernet, if available, is to use the management
port Ethernet interface. The driver for this interface does not configure the hardware units.
This interface is available on some OCTEON models.

10.4 The Management Port Ethernet Interface
Some OCTEON models support the management port Ethernet interface. This interface is useful
for debugging Linux user-mode applications over Ethernet because the driver does not configure
the hardware units. (Their interface names are "mgmt0" and "mgmt1”.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-70 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

If the OCTEON model supports this interface, it can be configured into the kernel by running
make menuconfig in the $OCTEON_ROOT/linux/kernel_2.6/linux directory.

When running make menuconfig, the configuration option is accessed via the “Machine
selection” sub-menu.

The first kernel menuconfig screen looks similar to this:

Machine selection --->
Endianess selection (Big endian) --->
CPU selection --->
Kernel type --->
Code maturity level options --->
General setup --->
Loadable module support --->
Block layer --->
Bus options (PCI, PCMCIA, EISA, ISA, TC) --->
Executable file formats --->
Networking --->
Device Drivers --->
File systems --->
Profiling support --->
Kernel hacking --->
Security options --->
Cryptographic options --->
Library routines --->

Load an Alternate Configuration File
Save an Alternate Configuration File

To navigate this screen, use the arrow keys on the keyboard. The bottom of the screen provides
some options that can be selected with the TAB key. In the first screen, these options are “Select,
Exit, and Help”. To select a highlighted option, press Enter when the option “Select” (at the
bottom of the screen) is highlighted.

Select “Machine selection”. The Machine selection screen will look similar to this:

Select the machine
System type (Support for the Cavium Networks Octeon reference
 [*] Enable Octeon specific options
 [*] Enable RI/XI extended page table bits
 [] Build the kernel to be used as a 2nd kernel on the same chip
 [*] Enable support for Compact flash hooked to the Octeon Boot Bus
 [*] Enable hardware fixups of unaligned loads and stores
 [*] Enable fast access to the thread pointer
 [*] Support dynamically replacing emulated thread pointer accesses
 <text omitted>
 <M> POW based internal only ethernet driver
 <*> Management port ethernet driver (CN5XXX) <<< DESIRED SETTING
 < > Octeon watchdog driver
 < > Octeon trace buffer (TRA) driver
 [] Enable enhancements to the IPSec stack to allow procotol offload.
 [] Enable Cavium Octeon ip-offload module

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-71

Then follow the usual steps to save the configuration and rebuild the kernel. (See Section 7.1 –
“Building the Linux Kernel for Debugging”.)

11 EJTAG (Run-Control) Tools
Enhanced JTAG (EJTAG) is a MIPS standard based on the IEEE Joint Test Action Group (JTAG)
standard. EJTAG allows direct control of the cores via a special serial test/access (JTAG) port on
the development target.

Run-control tools and probes (EJTAG tools) use EJTAG to debug/probe the hardware. EJTAG
tools are particularly useful during board bring-up and bootloader debugging. (The development
target must have Linux running well enough to provide a prompt before GDB can be used for
debugging.) EJTAG tools can also be used to debug the Linux kernel and SE-S applications.

Run-control tool vendors may also provide an Integrated Development Environment (IDE)
software product which runs on the development host. The IDE can be a simple command-line
interface, or a GUI.

EJTAG allows a user to:

• Set instruction and data breakpoints which are monitored by hardware within the chip
• Dump memory contents
• Read and write registers (peek and poke)
• Step over single instructions

Run control tools typically provide special features to help speed debugging on new hardware
platforms, including:

• Built-in memory testing
• ROM-less booting
• Start-up files which can pre-configure and test OCTEON communications before any

software is running on the processor

The ability to perform these operations on a new board is extremely powerful when:

• The boot flash content has not been verified to be correct
• The DDR controller initialization has not been proven to provide a reliable memory

interface

This capability is extremely powerful in shortening the time needed to identify whether the board
bring-up issue is related to hardware or software issues, and to find the root cause of the problem.

EJTAG provides both a non-intrusive (target continues to run when connecting) and intrusive
(target is reset on connect) means of interactively debugging software.

EJTAG-based debugging tools for OCTEON are available from several vendors. A current list of
EJTAG vendors is located at http://www.caviumnetworks.com/. Please contact the EJTAG
vendors for more information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.caviumnetworks.com/

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

12 About Debugging on the OCTEON Simulator
Either SE-S applications or the Linux kernel may be debugged on an i386 or x86_64 development
host, running the OCTEON simulator.

When using the OCTEON simulator, the debugger connection is made via TCP sockets using
telnet.

Note: The debugger may launch the OCTEON simulator by default when the target
octeon tcp… command is entered on the command line. See Section 6.6 – “Other
Special Commands: spawn-sim” for more information.

12.1 Debugging SE-S Applications on the Simulator
The SE-S application hello will be used to illustrate debugging SE-S applications on the
OCTEON simulator.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-73

Figure 15: Debugging SE-S Applications on the OCTEON Simulator

Development Host Running Linux

SIMULATED
OCTEON Target

UART0
Console

UART1
Debug
Port

Debugging SE-S Applications on the OCTEON Simulator

Choice for connection between GDB and the program running on the
simulated target board:

A. From TCP Port on Host to Simulated
UART1 on Simulated OCTEON board.

Note: Usually only 1 or 2 cores are simulated.

Terminal Session 2:
Start the debugger; Connect to the
simulated debug port.

Terminal Session 1:
Start the simulator.

Note: Console output will appear in the same
terminal session as the simulator program output.

A.
 S

im
ul

at
ed

 D
eb

ug
 P

or
t

Si
m

ul
at

ed
 C

on
so

le

Note: The debug connection is shown in red. The simulated
development target console connection is shown as a dotted blue line
to distinguish it from the debug connection.

Two terminal sessions are needed for debugging: one to start the simulator, and one to run the
debugger.

A TCP socket is used as the simulated UART. To determine whether the desired TCP socket
(socket 2021, in this case) is already in use, use the Linux command netstat:

host$ netstat –an | grep :2021

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-74 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

If the socket is in use, then pick an unused number. (Similarly, netstat -a --inet will
display only the raw, UDP, and TCP protocol sockets.)

Terminal session #1: start the simulator:

hostT1$ cd $OCTEON_ROOT/examples/hello
hostT1$ oct-sim hello –quiet –noperf –numcores=1 –uart1=2021 -debug

Note: Target console output is routed to this terminal session. See Section 12.1.2 –
“Separating Console Output from Simulator Output” for help separating the OCTEON
simulator output from the console output.

Terminal session #2, start the debugger:
hostT2$ cd $OCTEON_ROOT/examples/hello
hostT2$ mipsisa64-octeon-elf-gdb hello
the spawn-sim command must be off before the target command
gdb> set spawn-sim off
gdb> target octeon tcp::2021
Remote target octeon connected to tcp::2021
gdb> b main
Breakpoint 1 at 0x100004fc: file hello.c, line 44.
gdb> c
Continuing.

Breakpoint 1, main () at hello.c:44
44 printf("\n");
gdb> next
45 printf("\n");
gdb> list
40 /* printf() provides maximum flexibility, but is slow due to
41 ** the format string being processed in simulated code.
Normal
42 ** buffering is done by the C library.
43 */
44 printf("\n");
45 printf("\n");
46 printf("Hello world!\n");
47
48 #if 0
49 /* simprintf() passes the format string and up to 7 arguments
to the
gdb> c
Continuing.

Program exited normally.
gdb>

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-75

The output of hello will be seen on the first terminal session, where the simulator was started:

Simulating past cycle (approximate instruction) 62.5M ()

Simulating past cycle (approximate instruction) 63.0M ()

Simulating past cycle (approximate instruction) 63.5M ()

Simulating past cycle (approximate instruction) 64.0M ()

Simulating past cycle (approximate instruction) 64.5M ()

Simulating past cycle (approximate instruction) 65.0M ()

Simulating past cycle (approximate instruction) 65.5M ()

Simulating past cycle (approximate instruction) 66.0M ()
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run successfully.
PP0: stopping due to BREAK instruction

SIMULATION COMPLETE at cycle (approximate instruction) 66416751 (0 global
stop phases)

Note: If spawn-sim is on, and X is not available, the target tcp… command will
return the following error message (which can be ignored):
gdb> target tcp::2021
xterm Xt error: Can’t open display:

Note: If spawn-sim is on, and the simulator has already been started, then the TCP
port is already in use. A warning will be issued, and gdb will continue without problem.
In SDK 1.9 and above, spawn-sim is off by default.

The Simple Executive libraries are built with debugging information, but the source for the
libraries is not available. If the command step is used instead of next in the example above,
then the following information will be printed. This happens because gdb has stepped into the
library function printf() (printf() is simply a putchar() at this point). Without the
toolchain source, gdb cannot show the source file:

gdb> step
putchar (c=10)
 at
/usr/local/Cavium_Networks/toolchain/src/newlib/libc/stdio/putchar.c:95
95
/usr/local/Cavium_Networks/toolchain/src/newlib/libc/stdio/putchar.c: No
such file or directory.
 in
/usr/local/Cavium_Networks/toolchain/src/newlib/libc/stdio/putchar.c

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-76 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

12.1.1 About printf() and the Simulator
For SE-S applications, the printf() function calls different console output functions depending
on the runtime environment. The different console types are: UART, PCI console, or simulated
console. The simulated console type is automatically set when the application is run on the
simulator, causing the output to go to the simulator program’s standard output (stdout). Because
of this, the application output appears in the same terminal session as the simulator output, not a
separate connection to a simulated UART.

Note: This is not true when running the Linux kernel on the simulator. Linux does not
use a different print function depending on the runtime environment; Linux always
sends the output to the UART. When Linux is run on the simulator, the target console
(UART) is simulated. The user must connect to the simulated target console to see the
Linux prompt.

12.1.2 Separating Console Output from Simulator Output
When running SE-S applications on the simulator, the console output comes out on the same screen
as the simulator output. The application output is always labeled “CONSOLE”. By using the
Linux command grep, the console output can be separated from the simulator output

In the following example, the debug option is not used:
type the following command on one line
host$ oct-sim hello -quiet -noperf -numcores=1 | grep CONSOLE
PP0:~CONSOLE->
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!
PP0:~CONSOLE-> Hello example run successfully.

Or try this command to create a log file, look at it as it is created, then filter it later:
type the following text on one line
host$ oct-sim hello -quiet -noperf -numcores=1 -uart1=2021 –debug >my_logfile
2>&1 &

host$ tail -f my_logfile
after exiting the tail command, pick out the CONSOLE lines
host$ grep CONSOLE my_logfile

The contents of my_logfile will look similar to:

No -memsize argument provided, using default of 128 Megabytes
mem size is 128 Megabytes
Using simulator: cn38xx-simulator
Loading hello to boot bus address 0x1000000
Starting simulator....
<text omitted>
Simulating past cycle (approximate instruction) 39.0M ()

Simulating past cycle (approximate instruction) 39.5M ()
WARNING: use of the magic write function is only supported in the
simulation environment
PP0:~CONSOLE->
PP0:~CONSOLE->
PP0:~CONSOLE-> Hello world!

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-77

PP0:~CONSOLE-> Hello example run successfully.
PP0: stopping due to BREAK instruction

SIMULATION COMPLETE at cycle (approximate instruction) 39875606 (0 global
stop phases)

12.1.3 Using simprintf()
The simprintf() function is a special function which can only be used when running SE-S
applications on the simulator (there is no library support for this function when building Linux
user-mode applications).

When the normal printf() function is called by an application which is running on the
simulator, even though the output does not go to the simulated UART, the normal string processing
and argument conversion is simulated. (See Section 12.1.1 – “About printf() and the
Simulator”.) This simulation consumes many simulator cycles, slowing down simulation. By
using simprintf(), the printf() simulation is bypassed. The simprintf() function
simply calls the development host’s printf() function run on the host to output to the
simulator’s standard output (stdout). The result is that the simulator runs much faster because
printf() is not simulated. Details about the simprintf() function can be found in the SDK
document “OCTEON Simulator”.

Note that simprintf() is limited: it can only take seven arguments. Each argument must be of
type integer, and use the %llx format.

For example, the hello.c example includes a call to simprintf() which can be easily
enabled:
#if 1
 /* simprintf() passes the format string and up to 7 arguments to the
 ** simulator and is much faster than standard printfs. It is limited
 ** to 7 arguments of integer types, and all must use long long (%llx)
 ** formats in order to be processed properly by the host.
 ** No buffering is done - output of each simprintf call is immediate.
 ** See README in the 'runtime' directory for more info.
 */
 simprintf("Hello again - a big number is 0x%llx\n", 0x1234567887654321ULL);
#endif

The simprintf() function is discussed in more detail in the SDK document “OCTEON
Simulator”, in the section “Simulator “Magic””.

12.1.3.1 Do Not Use simprintf() When Running on Hardware
For SE-S applications, the simprintf() function should not be used when running the
application on hardware because the application will hang.

When running SE-S applications, the simprintf() function address is hard-coded to an address
which is illegal when running on actual hardware. When simprintf() is run on actual
hardware, the program will hang.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-78 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

This is easy to see with the debugger:

1. Build hello.c with the simprintf() enabled.
2. Set a breakpoint at main(), continue to the breakpoint, then
3. Use n to step over the printf() function calls until the simprintf() function would

be executed.
4. Expect: When the simprintf() function is stepped over, the program will hang (there

is no simprintf() code at that address when running on actual hardware). The gdb
prompt will return in response to Ctrl-C, but the program cannot be continued. The
development target must be reset.

12.2 Simulator Magic Functions
The simprintf() function is one of several simulator “magic” functions. These functions,
when run on the simulator, do not consume simulation cycles. Instead, their tasks are performed
by executing directly on the development host, using operations native to the development host.

Other magic functions are: open(), close(), read(), and write(). Using these calls on
stdout, stderr, or stdin is not supported.

The simulator magic functions are discussed in more detail in the SDK document “OCTEON
Simulator”, in the section “Simulator “Magic””.

12.3 Debugging Linux on the OCTEON Simulator
This section provides an overview and then hands-on directions for running Linux on the
OCTEON simulator.

12.3.1 Building vmlinux to Run on the Simulator
First configure Linux for debugging as described in Section 7.1 – “Building the Linux Kernel for
Debugging”.

Then build vmlinux to run on the simulator.

host$ cd $OCTEON_ROOT/linux
host$ sudo ls
host$ sudo make sim >make.out 2>&1 &

Technical Note: Although the same kernel is used for both the kernel and sim targets, the root
filesystem is different. In the kernel case, the root filesystem is a compressed initramfs
filesystem packaged with the kernel into vmlinux. In the sim case, the root filesystem is an
uncompressed ext3 filesystem which is not packaged into vmlinux. Instead, it is loaded at a
fixed location in memory by the simulator.

12.3.2 Starting Linux on the Simulator
A script, oct-linux, is used to start the simulator with the options needed by the Linux kernel.
The contents of the oct-linux script are:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-79

#!/bin/bash

memory=384
uart=2020
packet_port=2000

oct-sim linux/vmlinux.64 -envfile=u-boot-env -memsize=${memory} -uart0=${uart}
-serve=${packet_port} -ld0x40000000:../embedded_rootfs/rootfs.ext3 $*

(Note: The files vmlinux.64 and vmlinux are identical.)

Running vmlinux on the OCTEON simulator will require three terminal sessions: one to start the
simulator, one to run the debugger, and one to connect to the simulated target console.

The tables below contain the directions. Here are a couple of notes which accompany the
instructions in the tables:

1. To exit the simulator, type Ctrl-C in the terminal session where it was started, or exit gdb.
2. Once Linux boots to the interactive shell prompt, it can be useful to change telnet to

character mode instead of line mode. In the telnet session, press Ctrl-] and enter mode
char at the prompt. Then hit Enter a few times. Shell tab completion and other
interactive aspects should now work.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-80 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 16: Debugging Linux on the OCTEON Simulator

Development Host Running Linux

SIMULATED
OCTEON Target

UART0
Console

UART1
Debug
Port

Debugging Linux on the OCTEON Simulator

Choice for connection between GDB and the program running on
the simulated target board:

A. From TCP Port on Host to Simulated
UART1 on Simulated OCTEON board.

Note: Usually only 1 or 2 cores are simulated.

Terminal Session 3:

Terminal Session 2:

Start the debugger; Connect to the simulated
debug port using telnet.

Connect to the simulated target console
(UART0) using telnet. The Linux prompt
will appear here.

Terminal Session 1:
Start Linux on the simulator using the
oct-linux command.

Sim
ula

ted
 C

on
so

le

A.
 T

o
Si

m
ul

at
ed

 U
AR

T1

Note: The debug connection is shown in red. The simulated
development target console connection is shown as a dotted blue
line to distinguish it from the debug connection.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-81

Table 36: Run Linux on the OCTEON Simulator, Part 1
Steps N

1. Configure the Kernel for Debugging If this step was already done, no need to repeat it!

type the following text on one line
host$ cd
 $OCTEON_ROOT/linux/kernel_2.6/linux
see note for menuconfig options
host$ make menuconfig

Select the menuconfig options:
* Machine selection: Octeon
 watchdog driver -
* General setup: optimize for
 size -
* Kernel hacking: Remote GDB
 debugging using the Cavium
 Networks Multicore -

2. Build the Kernel with Embedded Root Filesystem If this step was already done, no need to repeat it!

host$ cd ../..
the directory should now be $OCTEON_ROOT/linux
enter password now so it is stored for the next command
host$ sudo ls
type the following text on one line
host$ sudo make –s
 CONFIG_FRAME_POINTER=y
 >make.out 2>&1 &

Note: This step can take up to 20 minutes. When it has
completed successfully, the kernel_2.6/linux/vmlinux

ote

off

on

on

sim

file will have been created.

Note: The sudo ls command is merely used to set
the root password. The root password will be
stored for about 5 minutes for use in the next
command (sudo make...).

verify the build is complete before continuing
host$ wait

Create three terminal sessions on the
host, for these three purposes:
1. run the simulator
2. connect to the target console
3. run the debugger

3. Create a Total of Three Terminal Sessions on the Development Host

Continued in the next table…

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-82 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 37: Run Linux on the OCTEON Simulator, Part 2
Steps N

First Terminal Session (hostT1$):
host$ cd $OCTEON_ROOT/linux/kernel_2.6
type the following text on one line
hostT1$ oct-linux -noperf -quiet
 -numcores=1 -uart1=

Note: The following error will occur if the make sim step
was omitted:
Error: Unable to open binary file:
../embedded_rootfs/rootfs.ext3

This command will run Linux on the OCTEON
simulator.
Expect to see:
Loading u-boot environment from
file: u-boot-env
mem size is 384 Megabytes
Using simulator: cn38xx-simulator
Loading linux/vmlinux.64 to boot
bus address 0x1000000
Starting simulator....
<text omitted>
Live Packet Listening at
pak.caveonetworks.com, port 2000
(0x7d0)
Uart Listening at
pak.caveonetworks.com, port
(0x7e4)
Uart Listening at
pak.caveonetworks.com, port
(0x7e5)
waiting for a connection to uart 0
1
waiting for a connection to uart
<text omitted>

Second Terminal Session (hostT2$):
hostT2$ telnet localhost

Note: The following error will occur if the telnet to 2020
s started before the simulator "waiting for a connection to

uart 0 1" message appears:
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1:
Connection refused

This command will connect to the simulated target
console. Note: Wait until "waiting for a connection
to uart 0 1" appears in the simulator output, but don'
wait too long.

Expect to see:
argv[2]: coremask=0x1
argv[3]: debug
ELF file is 64 bit
Attempting to allocate memory for
ELF segment: addr:
0xffffffff80100000 (adjusted to:
0x0000000000100000), size 0x1a99d58
<text omitted>
Bootloader: Done loading app on
coremask: 0x1
<Linux will stop here>

4. Boot the Kernel on the OCTEON Simulator

5. Connect to the target console

Continued in the next table…

ote

i

t

2021 -debug

2020

2021

2020

The simulator will timeout after
about 45 seconds if no console connection is
made.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-83

Table 38: Run Linux on the OCTEON Simulator, Part 3
Steps N

6. Start GDB on the Host; Debug the Kernel
Third Terminal Session (hostT3$):
type the following text on one line
hostT3$ cd
 $OCTEON_ROOT/linux/kernel_2.6/linux

Go to the directory where the vmlinux source is
located on the host.

start gdb
host$ mipsisa64-octeon-elf-gdb vmlinux

Use -q (quiet) for fewer start-up messages.
Expect to see:
GNU gdb 6.5 Cavium Networks
Version: 1_8_0, build 64
Copyright (C) 2006 Free Software
Foundation, Inc.
GDB is free software, covered by

ote

the GNU General Public License, and
you are
welcome to change it and/or
distribute copies of it under
certain conditions.
Type "show copying" to see the
conditions.
There is absolutely no warranty for
GDB. Type "show warranty" for
details.
This GDB was configured as
"--host=i686-pc-linux-gnu
--target=mipsisa64-octeon-elf"...

don't start the simulator from the debugger; it is already
started
gdb>

This step is only needed if spawn-sim is set to
on by default.

connect to the debug port
gdb> target octeon tcp::

Expect to see:
Remote target octeon connected to
tcp::

set a breakpoint in r4k_wait()
gdb> b r4k_wait

Expect to see:

set spawn-sim off

2021
2021

Breakpoint 1 at 0xffffffff801214b8:
file arch/mips/kernel/cpu-probe.c,
line 57.

continue to the breakpoint
gdb> c

Expect to see:
Continuing.
Breakpoint 1, r4k_wait () at
arch/mips/kernel/cpu-probe.c:57
57 wmb();

Continued in the next table…

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

IN
G

T

U
T

A
L

 OCTEON Programmer’s Guide

5-84 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 39: Run Linux on the OCTEON Simulator, Part 4
Steps N

6. Debug the Kernel, continued
show 10 source lines at the breakpoint
gdb> list

Expect to see:
52 * a non-enabled interrupt
is requested.
53 */
54 static void r4k_wait(void)
55 {
56 #ifdef
CONFIG_CPU_CAVIUM_OCTEON
57 wmb();
58 #endif
59 __asm__("
.set mips3 \n"
60 "
wait \n"
61 "
.set mips0
\n");

r4k_wait() is called by the idle loop, so clear the
breakpoint in order to continue to the prompt
gdb> clear

Expect to see:
Deleted breakpoint 1

continue to run the program
gdb> c

Expect to see:
Continuing.

The Linux prompt will now come up on the simulated target
console.

ote

G
G

O
R

I 12.3.3 Running Linux User-Mode Applications on the Simulator
Eventually, an interactive shell will appear in the simulated target console. The amount of time
before the prompt appears can be 5-20 minutes, depending on the speed of the host processor, the
amount of memory installed, and the number of cores requested.

Once the interactive shell prompt appears, a SE-UM application, such as named-block, can be
run on the simulator.

Linux user-mode applications cannot be debugged on the simulator. There is no facility for GDB
to connect to the target application.

13 Appendix A: Common GDB Commands
The following table provides a few of the commonly-used GDB commands. All of these
commands are standard commands provided with GDB.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-85

When using mipsisa64-octeon-elf-gdb, additional commands are available, including
multicore and PCI commands. These commands are documented in Section 6 – “About
Debugging SE-S Applications or the Linux Kernel”.

Table 40: A Few Common GDB Commands
Command Notes
awatch expr Set a watchpoint for the memory location specified by expr . The watchpoint

will trigger if the memory location is changed, or the contents of the memory
location is changed (a combination of watch + rwatch).

file [filename] File name to debug. GDB can also be started using the gdb filename
command.

b [file:]line (break) Set a software breakpoint in file at the specified line number.

bt (backtrace) Print trace of all frames in stack.
c [count] (continue) continue running. If count is specified, ignore this breakpoint

the next count times.
detach Release target from GDB control. Useful to get gdbserver to exit on the

target.
dir name Add directory name to front of source path.
hbreak [file:]line Set a hardware breakpoint in file at the specified line number.
help List classes of commands. Can also specify help class or help

command to get more help.
info break Show defined breakpoints.
info watch Show defined watchpoints.
list Show next 10 lines of source.
n (next) Execute next source line, stepping over function calls.
ni (next instruction) Execute next machine instruction, rather than next source line.
quit Exit GDB.
p [/f] [expr] (print) Show value of expression. Optionally, formatting is specified with /f ,

for instance /x for hexadecimal.
run [arglist] Run the program from the beginning. If connection is PCI, board will be

rebooted, program downloaded and run.
rwatch expr Set a watchpoint for the memory location specified by expr . The watchpoint

will trigger if the memory location is read.
s (step) Execute next source line, stepping into function calls.
si (step instruction) Execute next machine instruction, rather than next source line.
source script Read and execute GDB commands from file script .
target octeon Connect to SE-S application on the target over serial connections. This

command is also used with the simulator to connect to the simulated debug port.
target octeonpci Connect to SE-S application on the target over PCI.
target remote Connect to gdbserver running on the target.
watch expr Set a watchpoint for the memory location specified by expr . The watchpoint

will trigger if the contents of the memory location are changed.

When booting the program, specify debug on the load command line. The debug option causes
the bootloader to load and run the program, but the program will be stopped in the debug exception

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-86 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

handler. Note that the GDB command to continue is usually used in the examples below instead of
run, because the program is already running (it is waiting in the debug exception handler). Using
run after the program has begun (instead of continue) will result in this message:

gdb> run
The program being debugged has been started already.
Start it from the beginning? (y or n) n

An exception to this rule occurs when native gdb is used to debug a Linux user-mode application.
In this instance, the r (run) gdb command is used instead of c (continue).

14 Appendix B: Connecting Using a Terminal Server
A terminal server is a remote host which has a direct serial connection to the development target’s
debug port. This direct connection is identified by a server port number on the terminal server.
Typically a terminal server is connected to multiple development targets.

The following figures illustrate using a terminal server to connect to the OCTEON processor. This
connection can be used with the mipsisa64-octeon-elf-gdb debugger.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-87

Figure 17: Terminal Server - SE-S or Linux Kernel Debugging

Development Host Running Linux

OCTEON Development
Target

UART0
Console

UART1
Debug
Port

Eth
Port 0

Eth
Port 1

SE-S Or Linux Kernel Debugging Through Terminal Server

A.
 D

eb
ug

 P
or

t

Choice for connection between GDB and the program
running on the target board:

A. Serial cable connected from the serial port on
development host to the debug port on the
development target.

Eth
Port 0

Terminal Server

Serial
Port

Serial
Port

Serial
Port

Serial
Port

Serial
Port

Serial
Port

Eth
Port 0

B.
 E

th
er

ne
t

Con
so

le

14.1 Terminal Servers and “Garbage” Characters
There may be a problem where “garbage” characters appear in the gdb command window after the
target command, and then nothing further is printed. This may be caused by the terminal server
misinterpreting the initial characters sent by gdb.

On some terminal servers, there is no way to fully disable telnet negotiations. In this case, the
initial characters sent by GDB can be misinterpreted by the terminal server and interpreted as a
negotiation response.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-88 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Inserting a delay before GDB sends the first packet can help. The GDB variable
transmit-delay is used to specify how many seconds GDB should wait before sending the
first packet. Set this delay to 2 seconds before typing in the target command.

gdb> set transmit-delay 2
gdb> target octeon tcp:<ip_address_of_terminal_server>:<server_port>

15 Appendix C: How to Simplify the Command Lines

15.1 Script Files
Instead of typing each command on the command line, a script can be used for the start-up
commands. After the script is run, GDB will still respond to typed commands on the command
line.

The following text is in the file gdb_script:

file hello
set pci-bootcmd oct-pci-reset
target octeonpci bootoct 0x20000000 coremask=3
set step-all on
b main

One option is to invoke the script on the GDB command line (in this example, the script is in the
user’s home directory):

host$ mipsisa64-octeon-elf-gdb –x ~/gdb_script

Another option is to source the script once GDB is started (in this example, the script is in the
current directory):

host$ sudo mipsisa64-octeon-elf-gdb -q
(Core#0-gdb) source gdb_script
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]
Found Octeon on bus 3 in slot 13. BAR0=0xd8000000[0x1000],
BAR1=0xd0000000[0x8000000]

Sending bootloader command: bootoct 0x20000000 coremask=3 debug

0x10000388 in __octeon_trigger_debug_exception ()
Breakpoint 1 at 0x100002e0
(Core#0-gdb)

15.2 Using an Alias to Simplify Start-Up
The debugging command lines can be difficult to type (mipsisa64-octeon-elf-gdb …).
The command can be made into an alias, such as:

host$ alias pcidbg="mipsisa64-octeon-elf-gdb –x ~/gdb_script"

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-89

After the alias is created, simply type:

host$ pcidbg

15.3 The .gdbinit file
In addition to script files, a per-project .gdbinit file can be used. This file is located in the
user’s home directory, and is executed each time gdb is started.

The following text is in the file ~testname/.gdbinit:

file hello
set pci-bootcmd oct-pci-reset
target octeonpci bootoct 0x20000000 coremask=3
set step-all on
b main
c
list

To run it, simply cd to the $OCTEON_ROOT/examples/hello directory, and start gdb:

host$ sudo mipsisa64-octeon-elf-gdb -q

15.4 Environment Variables
To create a simpler tools prefix name, add two environment variables to the ~/.bash_profile
file:

use lt to reference tools used to build Linux SE-UM applications
export lt=mips64-octeon-linux-gnu
use st to reference tools used to build SE-S applications and the Linux
Kernel)
export st=mipsisa64-octeon-elf

Source in the file to set the environment variables into the shell’s environment:

host$ source ~/.bash_profile

To use the new environment variable, type:

host$ cd $OCTEON_ROOT/examples/hello
host$ make hello
host$ $st-size hello
 text data bss dec hex filename
 49928 4104 768 54800 d610 hello

16 Appendix D: Graphical Debugger
The graphical tool, mipsisa64-octeon-elf-ddd, can be used to invoke graphical debugging
for SE-S applications and the Linux Kernel. Directions are provided at
http://www.gnu.org/software/ddd/ .

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://www.gnu.org/software/ddd/

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-90 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The graphical debugger provides drop-down menus which simplify finding the right command to
display the content of data variables and registers.

The script oct-debug can be used to start ddd as described in Section 18 – “Appendix F: The
oct-debug Script”.

17 Appendix E: Core Files
Linux user-mode applications will generate core files as usual, but will not include any OCTEON-
specific features such as special registers.

The following information is standard Linux:

1. Make sure the directory the program is executed in is writable.
2. The program must not have the setuid or setgid bits set.
3. Set the ulimit large enough to accommodate the core file, for example:

target# ulimit -c unlimited

To recover the core file, use either the CompactFlash, or ftpput from the embedded root
filesystem to a FTP server connected on the same network. Note that recovering the file can be
difficult because:

• ftpput requires the Ethernet driver which collides with programs which initialize the
hardware units, so this may not be the best way to copy a core file back to the development
host

• flash disks should not be inserted or removed while the development target is powered on

17.1 Core File Names
Standard Linux allows the core file to be named according to user-supplied specifications:

%% output one '%'
%p pid
%u uid
%g gid
%s signal number
%t UNIX time of dump
%h hostname
%e executable filename

Put the core filename specification into the /proc/sys/kernel/core_pattern file.

For example:
target# echo core.%e.%t > /proc/sys/kernel/core_pattern

In addition to the core file naming conventions shown above, the PID can be included in the core
file name. The /proc/sys/kernel/core_uses_pid file is used to suffix the core filename
with the process PID. This will only happen if the file contains a non-zero value.

For example:

target# echo 1 > /proc/sys/kernel/core_uses_pid

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-91

17.2 Example Core Dump
The following directions will create a separate example application which will cause a core dump.

Note: If necessary, a faster way to see core file creation is to simply edit an existing
example, so that the example is already part of the embedded root filesystem. In this
case, a separate example is created, using the fpa_simplified code as the starting point
because it has nested function calls.

To see an example core dump:

1. Copy the fpa_simplified example to a new directory:
$OCTEON_ROOT/examples/cause_core

2. Change the file name (fpa.c to cause_core.c)
3. Edit the Makefile to change the file name: OBJS = $(OBJ_DIR)/cause_core.o
4. Add the new example to the embedded root filesystem as shown in the SDK Tutorial

chapter.

Then add the following function to cause_core.c:

static void cause_core(void)
{
 volatile char *bad_address = 0x0;

 printf("ATTEMPTING TO CAUSE CORE DUMP...\n");
 // write to bad_address, causing a core dump
 bad_address[0]='b';
}

To cause the coredump, this function can be executed in populate_one_fpa_pool():

 <text omitted>
 result = cvmx_fpa_setup_pool(pool_num, pool_name, memory,
buffer_size,
 num_buffers);

 // Cause the core dump now
 cause_core();

 return result;
}

Then build cause_core for debugging. Ensure that cause_core is not stripped when it is
copied to the embedded root filesystem. Boot the new vmlinux file, and run cause_core to
create the core dump.

17.3 Example of Using ftpput to Transfer a Core File
In the following example, the Ethernet driver is configured, and then ftpput is used to transfer
the core file to the FTP server.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-92 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

target# modprobe cavium-ethernet
target# udhcpc -i eth0
udhcpc (v1.2.1) started
Jan 1 00:05:51 (none) local0.info udhcpc[753]: udhcpc (v1.2.1) started
Sending discover...
Jan 1 00:05:51 (none) local0.debug udhcpc[753]: Sending discover...
Sending select for 192.168.51.173...
Jan 1 00:05:51 (none) local0.debug udhcpc[753]: Sending select for
192.168.51.1
73...
Lease of 192.168.51.173 obtained, lease time 86400
Jan 1 00:05:51 (none) local0.info udhcpc[753]: Lease of 192.168.51.173
obtained
, lease time 86400
deleting routers
SIOCDELRT: No such process
adding dns 192.168.51.254
target# ifconfig

eth0 Link encap:Ethernet HWaddr 00:0F:B7:10:03:E2
 inet addr:192.168.51.173 Bcast:192.168.51.255 Mask:255.255.255.0
 inet6 addr: fe80::20f:b7ff:fe10:3e2/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:447 errors:0 dropped:0 overruns:0 frame:0
 TX packets:639 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:38864 (37.9 Kb) TX bytes:858458 (838.3 Kb)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

note that your password is transmitted in clear text
type the following text on one line, entering your data where <> is specified
target# ftpput -v -u <username> -p <password> <development_host_IP_address>
core core

back on the host, the core file is now located in your home directory (if
username was your login name).

17.4 Analyze Core File with GDB
Once the core file has been copied to the development host, the core file can be analyzed with
GDB as usual. Note that GDB sometimes is unable to give an accurate back trace for MIPS core
files.

Note: Be careful to specify the ELF filename on the GDB command line. Without the ELF
filename, GDB assumes the ELF file is compiled for the O32 ABI. The O32 ABI only supports
32-bit registers. Without the ELF file name, GDB will crash while reading the register
information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-93

In this example, the ELF file is correctly specified on the command line:
host$ mips64-octeon-linux-gnu-gdb cause_core-linux_64 -c core
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=mips64-octeon-
linux-gnu"...

warning: core file may not match specified executable file.
Core was generated by `./cause_core'.
Program terminated with signal 11, Segmentation fault. << The fault is shown
#0 0x0000000120003e60 in populate_one_fpa_pool (pool_num=5,
 buffer_size=32768, num_buffers=33,
 pool_name=0x12008ed20 "This is my THIRD pool") at cause_core.c:63
63 bad_address[0]='b';

The GDB command bt can now be used to view the stack back trace:

gdb> bt << The stack backtrace, below, shows the function call sequence
#0 0x0000000120003e60 in populate_one_fpa_pool (pool_num=5,
 buffer_size=32768, num_buffers=33,
 pool_name=0x12008ed20 "This is my THIRD pool") at cause_core.c:63
#1 0x0000000120004680 in appmain (argc=<value optimized out>,
 argv=<value optimized out>) at cause_core.c:234
#2 0x000000012001039c in main (argc=1, argv=0xffff9dde18)
 at /home/testname/sdk/executive/cvmx-app-init-linux.c:418

17.5 The Executable Name is Required on GDB Command Line
Note that the executable name (cause_core-linux64, in the example) is required on the
command line along with the core filename. Without the executable name, gdb assumes the ABI
is O32 ABI (32-bit registers). GDB will then issue an error message (bad register size), and the bt
command will not work, as shown below:

host$ mips64-octeon-linux-gnu-gdb -c core
GNU gdb 6.5 Cavium Networks Version: 1_8_0, build 64
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=mips64-octeon-
linux-gnu".
Core was generated by `./cause_core'.
Program terminated with signal 11, Segmentation fault.
../../src/gdb/mips-tdep.c:606: internal-error: bad register size
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n) n
../../src/gdb/mips-tdep.c:606: internal-error: bad register size
A problem internal to GDB has been detected,

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-94 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

further debugging may prove unreliable.
Create a core file of GDB? (y or n) n
(gdb) bt
../../src/gdb/mips-tdep.c:606: internal-error: bad register size
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n) y

When the executable filename is included on the command line, gdb reads the file and determines
the correct ABI.

18 Appendix F: The oct-debug Script
The oct-debug script can be used with either SE-S applications or the Linux kernel.

The different command-line options are:

host$ oct-debug <executable> <serial_device>
host$ oct-debug <executable> pci [PCI_BOOTCMD=pci_bootcmd] <pci-options>
host$ oct-debug <executable> <simulator_options>

Depending on the command line options, this script will start either:

1. The mipsisa64-octeon-elf toolchain debugger (if either a serial device or pci is
the second argument)

a. either the graphical debugger DDD as a front-end to GDB
b. or if DDD is not present on the system, the command-line debugger GDB is started

2. The OCTEON simulator (if neither a serial device or pci is specified as the second
argument on the command line

When the oct-debug script is used to start the debugger, if mipsisa64-octeon-elf-ddd
is found on the system, then it will be invoked, along with the debugger, mipsisa64-octeon-
elf-gdb. Otherwise, the command-line debugger, mipsisa64-octeon-elf-gdb, will be
invoked without the graphical front-end.

When the debugger is started, by default DDD is started. DDD is a graphical front-end used with
gdb, therefore DDD requires X.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-95

If X is not available, the following error message will occur:

host$ oct-debug hello -quiet -noperf -numcores=1
Error: Can't open display:

To start GDB without DDD, either remove DDD from the system, or comment out the line which
starts DDD in the file $OCTEON_ROOT/host/bin/oct-debug, as shown below:
#if mipsisa64-octeon-elf-ddd -v &> /dev/null
#then
debugCmd="mipsisa64-octeon-elf-ddd --debugger mipsisa64-octeon-elf-gdb --
command ${cmdfile} ${program}"
#else
echo "**"
echo "The \"ddd\" debugger isn't installed. Defaulting to the command
line"
echo "**"
 debugCmd="mipsisa64-octeon-elf-gdb -x ${cmdfile} ${program}"
#fi

19 Appendix G: Debian and the Cavium Networks Ethernet
Driver

By default, when the Debian root filesystem comes up, the Cavium Networks Ethernet driver
module is loaded.

This is only a problem when both of the following conditions occur:

1. Debian is used for native debugging
2. The application being debugged is a Linux user-mode application which reconfigures

hardware units also used by the Cavium Networks Ethernet driver

If the Ethernet driver is loaded as a module:
After Debian is installed on the compact flash, mount the second partition and remove the
cavium-ethernet.ko file from the /lib/modules directory.

first mount partition 2 of the CompactFlash on the
development host (in this case the mount directory is /mnt/cf2)
Note that the kernel directory will vary. In this
case, it is 2.6.21.7-Cavium-Octeon
type the following text on one line
host$ cd /mnt/cf2/lib/modules/2.6.21.7-Cavium-Octeon/drivers/net/cavium-
ethernet
Then remove the module:
host$ rm cavium-ethernet.ko

If the Ethernet drive is compiled into the kernel:
Remove the driver from the kernel by using the kernel menuconfig option. Select “Device
Drivers”, “Networking Device Support”, “Ethernet (1000 Mbit)”, and then unselect “Cavium
Networks Octeon Ethernet Support”. (These directions are for the 2.6.27 kernel.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

D
E

B
U

G
G

IN
G

T

U
T

O
R

IA
L

 OCTEON Programmer’s Guide

5-96 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-1

OCTEON Application Performance
Tuning Whitepaper

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 4
LIST OF FIGURES .. 4
1 Introduction ... 5

1.1 References ... 5
2 Performance Tuning Overview ... 6

2.1 Test Setup ... 6
2.2 Evaluating whether Performance Tuning is Appropriate ... 7
2.3 Start with the Minimum Set of Cores, then Scale Up ... 7
2.4 Locate the Bottleneck in the Code .. 9
2.5 Performance Testing Tools ... 10

2.5.1 Performance Tools on Simple Executive ... 10
2.5.2 Performance Tools on Linux .. 11
2.5.3 A Note about the Simulator and Viewzilla ... 11

2.6 Instrumenting the Code and Using Performance Counters ... 12
2.6.1 Cycle Counters .. 12
2.6.2 CP0 Performance Counters ... 12

2.6.2.1 Sample Code: Enable and Read CP0 Counters ... 13
2.6.3 L2 Cache Performance Counters .. 16
2.6.4 DRAM Utilization Information .. 17

2.7 When Is Performance Optimization Complete? ... 18
3 Performance Tuning Checklist ... 18
4 Hardware Architecture Overview ... 20
5 Software Architecture for High Performance ... 22

5.1 L2 Cache configuration: Aliased Cached Indexing ... 22
5.1.1 Unaliased Caching Indexing Algorithm ... 22
5.1.2 Aliased Cache Indexing Algorithm .. 23

5.2 Configuring the Right Amount of Packet Data Buffers and WQE Buffers 23
5.3 Simple Executive versus Linux or other OS ... 24
5.4 Concurrent Programming Techniques .. 24

5.4.1 Critical Regions and Locks ... 25
5.4.2 Minimize use of Shared Data ... 25
5.4.3 Minimize Critical Regions .. 25

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5.5 Pipelined versus Run-to-Completion Software Architecture ... 25
5.6 Event-driven Loop versus Interrupt Handling for Packet Processing 26

6 Tuning the Minimum Set of Cores ... 26
6.1 Compiler Choice ... 26
6.2 Compiler Optimization (-O3) ... 26
6.3 Re-Configuring the Right Amount of Packet Data Buffers and WQE Buffers 26
6.4 Memory Alignment .. 26

6.4.1 Align Data on Natural Address Boundaries ... 26
6.4.2 Simple Executive Facilities to Support Memory Alignment .. 28
6.4.3 Pad Structures to Align on Natural Boundaries .. 28

6.5 Data Structure Compaction (packing), Re-arranging Structures 28
6.5.1 Packing: Space versus Speed Tradeoff .. 28
6.5.2 Re-Arrange Structure Fields to Save Space .. 29

6.6 Large Data Structures: Working with Cache-line Size .. 30
6.7 Group Common Data Together .. 30
6.8 Loop Unrolling ... 31

6.8.1 Sample Code: Loop Unrolling ... 31
6.9 Replace memset() and memcpy() when Needed ... 32

6.9.1 Sample Code: Replacing memcpy() and memset() .. 32
6.10 Using Free Pool Allocator (FPA) Memory Pools to Manage Free Buffers 33
6.11 Cache Prefetch .. 33

6.11.1 Sample Pseudo code: Prefetch ... 34
6.12 Prepare-For-Store ... 35
6.13 Scratchpad: Core-local Storage ... 36
6.14 Asynchronous FPA Allocation ... 37
6.15 Don't Write Back (DWB) Commands .. 37

6.15.1 DWB Commands from the Core .. 37
6.15.2 DWB Commands from other Hardware Units ... 39

6.16 Hardware CRC Engine ... 40
6.16.1 Sample Code: Using the OCTEON Processor CRC Engine 40
6.16.2 Performance Comparison: Hardware versus Software CRC 42

6.17 Hardware Hash Engine ... 43
6.17.1 Sample Code: Using the OCTEON Processor HASH Engine 43
6.17.2 Performance Comparison: Hardware versus Software Hashing 45

6.18 Hardware Timers .. 45
6.19 Hardware Fetch and Add (FAU) Unit .. 46
6.20 Asynchronous Fetch and Add Operations .. 46
6.21 Work prefetch: Asynchronous get_work ... 46
6.22 Interleaving Prefetch with Computational Instructions .. 46

6.22.1 Sample Code: Interleaving Prefetch .. 46
6.23 Hardware TCP/UDP Checksum Calculation .. 47
6.24 Use Functions Wisely ... 47
6.25 Update Bit-Fields Wisely ... 47

6.25.1 Sample Code: Updating Bit-Fields Wisely .. 49
6.26 Read After Write ... 49

6.26.1 Sample Code: Read after Write .. 51

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-3

7 Tuning Multi-core Applications (Scaling) .. 51
7.1 Re-Configuring the Right Amount of Packet Data Buffers and WQE Buffers 51
7.2 Tune Initial Tag Values to Separate Flows ... 51
7.3 Set Initial Tag Type to ORDERED if Possible .. 51
7.4 Switch Tag Type to ORDERED or NULL when Possible ... 51
7.5 Use Asynchronous Switch Tag Operations .. 51
7.6 Critical Regions .. 52
7.7 Replace Spinlocks with Packet-Linked Locks When Possible ... 52

7.7.1 Spinlocks ... 52
7.7.2 The Scheduling / Synchronization / Order Unit and ATOMIC Tag Type 53
7.7.3 Example of Spinlock versus SSO ATOMIC Locking .. 54

7.7.3.1 Sample Pseudo code: Using Spinlock .. 54
7.7.3.2 Sample Pseudo Code: Using SSO / ATOMIC Tag Type 54

7.8 Arena-based Memory Allocation ... 55
7.9 L2 Cache Configuration: Way Partitioning and Cache-Block Locking 56

8 Linux-specific Tuning .. 56
8.1 TLB Exceptions and Huge Page Size ... 56
8.2 Use CPU Affinity for Processes/Threads ... 56
8.3 Direct all Packet RX Interrupts to the Same Core .. 56

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

LIST OF TABLES
Table 1: CP0 Performance Counter Events ... 14
Table 2: L2 Performance Counter Events ... 16
Table 3: PERFORMANCE TUNING CHECKLIST .. 18
Table 4: Performance Comparison: Hardware versus Software CRC .. 42
Table 5: Performance Comparison: Hardware versus Software Hashing 45
Table 6: Spinlock versus SSO Packet-Linked Locking ... 54

LIST OF FIGURES
Figure 1: Physical Test Configuration ... 6
Figure 2: Logical Test Configuration .. 7
Figure 3: Start with One Core or Minimum Set of Cores .. 8
Figure 4: Scaling up to Full Number of Cores .. 9
Figure 5: Isolate the Function which is causing the Bottleneck .. 10
Figure 6: Hardware Architecture Overview .. 21
Figure 7: Bits 7-17 in Address Used to Index into L2 cache ... 22
Figure 8: Limited L2 Cache Index Choices When Data is Aligned on 2K Boundary 23
Figure 9: Align Data on Natural Boundaries ... 27
Figure 10: Pad Structures as Needed for Alignment ... 28
Figure 11: Packed Data Structures (Space versus Speed Tradeoff) .. 29
Figure 12: Re-arrange the Fields in the Data Structure to Save Space .. 29
Figure 13: Large Data Structure Alignment .. 30
Figure 14: Group Common Data Together .. 31
Figure 15: Prefetch Choices ... 35
Figure 16: Don’t Write Back (DWB) Commands from the Core ... 38
Figure 17: DWB Commands sent by IOB on Behalf of other Hardware Units 40
Figure 18: Graph of Hardware Versus Software CRC – 750 MHz Processor 43
Figure 19: Cache Miss When Doing Bit-field Writes ... 48
Figure 20: Read after Write Performance Penalty ... 50
Figure 21: Arena Memory Allocation Reduces Contention .. 55

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-5

1 Introduction
This document describes common areas where changes can bring big performance improvements.
Many of the performance improvement techniques presented in this document are industry-
standard; others take advantage of Cavium Networks-specific hardware acceleration.

This document addresses both designing for high performance, and post-development performance
tuning. Both single core and multiple-core (scaling) issues are addressed.

Performance tuning issues are separated into four sections:

1. Software Architecture for High Performance

2. Tuning the Minimum Set of Cores

3. Tuning Multi-core Applications (Scaling)

4. Linux-Specific Tuning

Within each section, performance tuning choices are presented from the easiest to most difficult to
implement.

Information is also provided on performance evaluation tools.

Performance tuning is both an art and a science. This document does not attempt to cover all the
possibilities, only some of the more common ones.

For OCTEON white papers on other topics, please contact your Cavium Networks representative.

1.1 References
The following references provide additional information:

• Definition of spinlock:
o http://en.wikipedia.org/wiki/Spin_lock

• Concurrent programming:
o Ben-Ari, M. Principles of Concurrent and Distributed Programming. ISBN: 0-13-

711821
o Butenhof, David. Programming With Posix Threads. ISBN: 0201633922

• OCTEON Hardware Reference Manual (HRM)
• OCTEON Programmer’s Guide
• The documentation set provided with the OCTEON processor Software Development Kit

(SDK)
• Hardware Simulator: See the SDK documentation
• Viewzilla: See the SDK documentation
• Perfzilla: See the SDK documentation
• Oprofile: See the SDK Documentation and

o Oprofile Website - http://oprofile.sourceforge.net/
o Oprofile Manual - http://oprofile.sourceforge.net/doc/index.html

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

http://en.wikipedia.org/wiki/Spin_lock
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/doc/index.html

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

• Profile-Feedback Optimization – See the SDK Documentation
• Oct-Profile – See the SDK Documentation

2 Performance Tuning Overview
Knowing where the different units are located relative to the buses is useful in avoiding and
detecting bottlenecks. Some performance changes can improve performance in one area, while
creating a problem elsewhere. It is important to understand the overall system hardware
architecture before making changes. After making changes, verify that the performance change
actually improved performance.

If possible, design and code for high performance. After the application is running and debugged,
then use this technique to tune it for the highest possible performance:

1. Set up a performance-tuning test bed.

2. Reduce the number of cores to the smallest set: only one if at all possible.

3. Tune the system for the highest performance with the smallest set.

4. Scale up the system. The resultant performance should be the minimum set performance
times the scaling factor: linear improvement. If not, then performance issues relative to
scaling need to be addressed.

Stay alert to the possibility that, for your application, a performance tuning change may worsen
performance because of application-specific issues.

Note: If possible, make changes one at a time, checking the performance before and after
the change to verify that the change improved performance.

2.1 Test Setup
Typically, performance testing is done by using a third-party Traffic Generator connected to the
OCTEON processor. The Traffic Generator can transmit/receive at different speeds, and report the
actual measured speed which results when OCTEON is “in the middle” (as shown in the logical
view of the test bed, below).

Figure 1: Physical Test Configuration

 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-7

Figure 2: Logical Test Configuration

2.2 Evaluating whether Performance Tuning is Appropriate
The first step in testing is to hook up the test bed and measure actual performance. If the actual
performance is close to the desired performance, the performance tuning will be sufficient to close
the gap. For instance if you want 10 Gigabit and have 8 Gigabit of throughput, then try
performance tuning. If the performance is much farther off target, then the design should be re-
evaluated: performance tuning will not be enough to reach the goal.

2.3 Start with the Minimum Set of Cores, then Scale Up
When tuning performance, first reduce the test to the smallest possible set of cores. After the
performance is maximized on the smaller number of cores, then add cores. At this point, check for
scaling issues.

In scaling, more cores are added with the expectation that the single core performance numbers
(N) will be multiplied by the number of added cores (X), resulting in a speed of N times X instead
of N (a linear improvement). If adding more cores does not result in the expected improvement,
the problem is one specific to a scaling issue.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 3: Start with One Core or Minimum Set of Cores
Test Configurations: Minimize Number of Cores

Test Configuration: Minimum Set of Cores

Test Configuration: One Core

OCTEON Processor

Traffic Generator:
Transmit Function

C

Traffic Generator:
Receive Function

X X X

X X X X

X X X X

X X X X X = unused core

C = core in use

OCTEON Processor

Traffic Generator:
Transmit Function

C

Traffic Generator:
Receive Function

C C C

X X X X

X X X X

X X X X X = unused core

C = core in use

OR

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-9

Figure 4: Scaling up to Full Number of Cores

2.4 Locate the Bottleneck in the Code
If performance tuning is needed, then the goal is to isolate the function containing the bottleneck.

For example: If the code consists of a loop where work comes into the software, goes through
functions F1, F2, F3, F4, and F5, and then begins the loop with new data:

1. Measure performance with all five functions.
2. Measure performance with no functions.
3. Then add the functions back one at a time, measuring performance at each step.

Using this technique, it should be possible to pick out one or two functions with problems. The
other functions can be ignored.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

P
O

R
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 5: Isolate the Function which is causing the Bottleneck
Gradually Increase the Number of Functions Running (F1 to F5)

OCTEON Processor

OCTEON Processor

OCTEON Processor

OCTEON Processor

F1 F2

F1 F2 F3

F1 F2 F3 F4

F1 F2 F3 F4 F5

OCTEON Processor

Traffic Generator:
Transmit Function

F1

Traffic Generator :
Receive Function

OCTEON Processor

Traffic Generator:
Transmit Function

Traffic Generator:
Transmit Function

Traffic Generator:
Transmit Function

Traffic Generator:
Transmit Function

Traffic Generator:
Transmit Function

Traffic Generator:
Receive Function

Traffic Generator:
Receive Function

Traffic Generator:
Receive Function

Traffic Generator:
Receive Function

Traffic Generator:
Receive Function

2.5 Performance Testing Tools
The following performance testing tools are available.

2.5.1 Performance Tools on Simple Executive
The following tools are helpful in tuning performance on Simple Executive:

• Hardware Simulator : The OCTEON hardware simulator is provided with the SDK. See
the SDK documentation for more information. E

R
F • PCI Profiling: For PCI profiling, use the oct-profile utility. This utility provides

real-time profiling of a running application over PCI. More information is provided in the
SDK documentation. M

• Perfzilla: This utility is a graphical interface wrapper for the oct-profile results. It
can also be run on the simulator output. More information is provided in the SDK
documentation.

• Profile-Feedback Optimization: This is used to guide the compiler in making optimization
choices. Profile-feedback optimization also known as Feedback-Driven Optimization
(FDO) can significantly improve the compiler's decision on what optimizations would be
beneficial in which parts of the program. More information is provided in the SDK
documentation.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-11

• Viewzilla: This program processes the simulator’s output. It provides profiling
information. More information is provided in the SDK documentation.

2.5.2 Performance Tools on Linux
The following tools are helpful in tuning performance on Linux:

• Hardware Simulator: Simulates the hardware. Useful in finding the number of TLB
Exceptions.

• oprofile utility: This utility uses the internal core counters to provide a wide range of
performance statistics. Counters may be used to statistically find ICACHE and DCACHE
misses, branch misses, unaligned memory accesses, as well as the more common cycle
counts.

• top utility: This utility provides updates in real-time to show system versus user time.
The most important information is the percent of CPU (core) utilization. This tool can also
show if processes or threads are bound to particular core. Note that there is big
performance impact if threads/processes are not bound to specific cores.

• time utility: This utility shows amount of time spent in different parts: real time, user
time, system time.

• prof utility: The commonly-used profile utility.
• gprof utility: The GNU version of the commonly-used profile utility.

2.5.3 A Note about the Simulator and Viewzilla
Viewzilla is the best tool to analyze the code and optimize the performance, but this tool only runs
along with the simulator (on the output of the simulator).

When writing code for the Simple Executive, the programmer should try to make sure the code
also runs on the simulator throughout the entire development process. It is common to abandon the
simulator when the actual hardware becomes available. Then, when performance testing becomes
important near the end of the project, the code may no longer work on the simulator. This means
the key performance analysis tool, Viewzilla, will not work.

There are a couple of reasons why code will not run on the simulator. Some of them are simple,
while the others may be more complicated.

First, make sure the software can be configured to a minimal configuration. When doing
performance testing with the simulator, use a minimal setup (limited number of ports, etc), which
can pass packets. This minimal setup can then be analyzed with the simulator and Viewzilla.
The most common issue is a hardware setup which is difficult to replicate under the simulator
(more ports, PCI etc). The simulator does not support PCI. To simulate PCI, modify the code to
mimic PCI messages.

If PCI is used for initialization, provide some hard-coded initialization values which could be used
under the simulator instead. This solution is very application specific.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2.6 Instrumenting the Code and Using Performance Counters
The code may be instrumented to use per-core (CP0) or L2 counters to help with performance
testing. Performance counters, such as DRAM Controller registers, may also be used to detect
bottlenecks.

Note: Remove the instrumentation before final test and ship, since the instrumentation
hurts performance.

Note that tools such as Oprofile, Simulator, and Viewzilla use/interpret the performance counters.
This may be more convenient to use than instrumenting the code.

2.6.1 Cycle Counters
Use the Simple Executive function cvmx_get_cycle() to record the cycle count at various
points in the code. The programmer can define an array of these cycle values, and during can
collect the cycle count at various stages of packet processing.

These values can be collected over a large set of packets (accumulated or averaged values), and the
results can be dumped once a specific criteria is met (for example, dump the cycles after one
million packets).

The function cvmx_get_cycle() reads the cycle count from hardware register 31. Note that
the full 64-bit CvmCount value is provided when 64-bit operations are enabled, and only the lower
32 bits of CvmCount are provided (sign-extended) when 64-bit operations are enabled.

In the SDK, the passthrough example contains cvmx_get_cycle() function calls.

2.6.2 CP0 Performance Counters
There are two 64-bit CP0 performance counters per core that can simultaneously count events. To
select the event to count, write to CP0 Register 25, select 0 or 2. To read, select 1 or 3 in the same
register (see code sample, below). The list of selectable events, as shown in Table 1 – “CP0
Performance Counter Events” and Table 2 – “L2 Performance Counter Events”, below.

There are four 36-bit L2 performance counters that can simultaneously count events. Each
counter’s even is selected via the corresponding CNTxSEL field. The list of selectable events is
shown in Table 1 – “CP0 Performance Counter Events” and Table 2 – “L2 Performance Counter
Events”.

The CP0 performance counters are most commonly used.

Performance counters can be used to locate areas where performance improvement is needed. For
example to determine the Icache or Dcache miss for each core, examine the PERF_CNT_CIMISS
and PERF_CNT_DMLDS events.

The most useful CP0 events are PERF_CNT_CLK, PERF_CNT_CIMISS,
PERF_CNT_UULOAD, PERF_CNT_UUSTORE, and PERF_CNT_DMLDS.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-13

2.6.2.1 Sample Code: Enable and Read CP0 Counters
The following macros can be used to configure and read the performance counters:
/* write to COP0, register 25, select 0 (perf 0) */
#define CVMX_MT_PERF0 (val) asm volatile ("mtc0 %[rt],$25,0" : : [rt] "d"
(val))

/* write to COP0, register 25, select 2 (perf 1) */
#define CVMX_MT_PERF1 (val) asm volatile ("mtc0 %[rt],$25,2" : : [rt] "d"
(val))

/* read from COP0, register 25, select 1 (perf 0) */
#define CVMX_MF_PERF0 (val) asm volatile ("dmfc0 %[rt],$25,1" : [rt] "=d"
(val):)

/* read from COP0, register 25, select 3 (perf 1) */
#define CVMX_MF_PERF1 (val) asm volatile ("dmfc0 %[rt],$25,3" : [rt] "=d"
(val):)

/* setup perf control word */
#define PERF_WORD(exl,k,s,u,ie,event,w,m)((((uint64_t)exl) << 0) | \
 (((uint64_t)k) << 1) | \
 (((uint64_t)s) << 2) | \
 (((uint64_t)u) << 3) | \
 (((uint64_t)ie) << 4) | \
 (((uint64_t)(event & 0x3f)) << 5) | \
 (((uint64_t)w) << 30) | \
 (((uint64_t)m) << 31))

Setup the performance counters to be monitored (once only; should be setup by each core):

/* perf control */
uint64_t perf_config;

perf_config = 0;
perf_config = PERF_WORD(1,1,1,1,0,29,1,0); /* 29 is CIMISS */
CVMX_MT_PERF0 ((uint32_t)perf_config);

perf_config = 0;
perf_config = PERF_WORD(0,1,1,1,0,46,1,0); /* 46 is DMLDS */
CVMX_MT_PERF1 ((uint32_t)perf_config);

Now each core can read its performance counter. Note that these counters will provide the
accumulated values from the start of the code execution. You have to maintain the deltas in the
code.

uint64_t perf_val1 = 0;
uint64_t perf_val2 = 0;

CVMX_MF_PERF0 (perf_val1); /* using the macro to read the register */
CVMX_MF_PERF1 (perf_val2); /* using the macro to read the register */

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Table 1: CP0 Performance Counter Events
Num Item Meaning (The most useful items are highlighted.)

0 Reserved

1 PERF_CNT_CLK
Conditionally clocked cycles (as opposed to count/cvm_count
which counts even with no clocks)

2 PERF_CNT_ISSUE Instructions issued but not retired

3 PERF_CNT_RET
Instructions retired (retired means you fetched the instruction and
executed it)

4 PERF_CNT_NISSUE Cycles no issue
5 PERF_CNT_SISSUE Cycles single issue
6 PERF_CNT_DISSUE Cycles dual issue
7 PERF_CNT_IFI Cycle ifetch issued (but not necessarily commit to pp_mem)

8 PERF_CNT_BR
Branches retired (equals branches taken - retired means you
fetched the instruction and executed it)

9 PERF_CNT_BRMIS Branch mispredicts (fetches but not taken)
10 PERF_CNT_J Jumps retired (jumps taken)
11 PERF_CNT_JMIS Jumps mispredicted (fetched but not taken)
12 PERF_CNT_REPLAY Mem Replays
13 PERF_CNT_IUNA Cycles idle due to unaligned_replays
14 PERF_CNT_TRAP trap_6a signal
15 Reserved

16 PERF_CNT_UULOAD Unexpected unaligned loads (REPUN=1)
17 PERF_CNT_UUSTORE Unexpected unaligned store (REPUN=1)
18 PERF_CNT_ULOAD Unaligned loads (REPUN=1 or USEUN=1)
19 PERF_CNT_USTORE Unaligned store (REPUN=1 or USEUN=1)
20 PERF_CNT_EC Exec clocks (must set CvmCtl[DISCE] for accurate timing)
21 PERF_CNT_MC Mul clocks (must set CvmCtl[DISCE] for accurate timing)
22 PERF_CNT_CC Crypto clocks (must set CvmCtl[DISCE] for accurate timing)
23 PERF_CNT_CSRC Issue_csr clocks (must set CvmCtl[DISCE] for accurate timing)
24 PERF_CNT_CFETCH Icache committed fetches (demand+prefetch)
25 PERF_CNT_CPREF Icache committed prefetches
26 PERF_CNT_ICA Icache aliases
27 PERF_CNT_II Icache invalidates
28 PERF_CNT_IP Icache parity error

29 PERF_CNT_CIMISS
Cycles idle due to imiss (must set CvmCtl[DISCE] for accurate
timing)

30 Reserved

31 Reserved

32 PERF_CNT_WBUF Number of Write Buffer entries created

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-15

Num Item Meaning (The most useful items are highlighted.)

33 PERF_CNT_WDAT
Number of Write Buffer data cycles used (may need to set
CvmCtl[DISCE] for accurate counts)

34 PERF_CNT_WBUFLD Number of Write Buffer entries forced out by loads

35 PERF_CNT_WBUFFL

Number of cycles that there was no available Write Buffer entry
(may need to set CvmCtl[DISCE] and CvmMemCtl[MCLK] for
accurate counts)

36 PERF_CNT_WBUFTR Number of stores that found no available Write Buffer entries

37 PERF_CNT_BADD
Number of address bus cycles used (may need to set
CvmCtl[DISCE] for accurate counts)

38 PERF_CNT_BADDL2
Number of address bus cycles not reflected (i.e. destined for L2)
(may need to set CvmCtl[DISCE] for accurate counts)

39 PERF_CNT_BFILL
Number of fill bus cycles used (may need to set CvmCtl[DISCE]
for accurate counts)

40 PERF_CNT_DDIDS Number of Dstream DIDs created (trying to load Dcache)
41 PERF_CNT_IDIDS Number of Istream DIDs created (trying to load Icache)

42 PERF_CNT_DIDNA

Number of cycles that no DIDs were available (may need to set
CvmCtl[DISCE] and CvmMemCtl[MCLK] for accurate counts)

43 PERF_CNT_LDS Number of load issues
44 PERF_CNT_LMLDS Number of local memory load issues
45 PERF_CNT_IOLDS Number of I/O load issues

46 PERF_CNT_DMLDS
Number of loads that were not prefetches and missed in the
cache

47 Reserved

48 PERF_CNT_STS Number of store issues
49 PERF_CNT_LMSTS Number of local memory store issues
50 PERF_CNT_IOSTS Number of I/O store issues
51 PERF_CNT_IOBDMA Number of IOBDMAs
52 Reserved

53 PERF_CNT_DTLB Number of dstream TLB refill, invalid, or modified exceptions
54 PERF_CNT_DTLBAD Number of dstream TLB address errors

55 PERF_CNT_ITLB
Number of istream TLB refill, invalid, or address error
exceptions

56 PERF_CNT_SYNC
Number of SYNC stall cycles (may need to set CvmCtl[DISCE]
for accurate counts)

57 PERF_CNT_SYNCIOB
Number of SYNCIOBDMA stall cycles (may need to set
CvmCtl[DISCE] for accurate counts

58 PERF_CNT_SYNCW Number of SYNCWs or SYNCWSs
59-63 Reserved

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

See the HRM for more details on how to use the CP0 performance counter events.

2.6.3 L2 Cache Performance Counters
To detect whether the L2 cache is thrashing, look at the L2 performance counters. For example, at
the instruction and data hit and miss counters.

 L2 Performance Events

Num Event
1 L2 Instruction Miss
2 L2 Instruction Hit
3 L2 Data Miss
4 L2 Data Hit
5 L2 Miss I/D – Sum of events 1 and 3
6 L2 Hit I/D – Sum of events 2 and 4

In the table below:
XMC = ADD bus
XMD = STORE bus
RSC = COMMIT bus
RSD = FILL bus

Table 2: L2 Performance Counter Events
Num Item (The most useful items are highlighted.)

0 Cycles
1 L2 Instruction Miss
2 L2 Instruction Hit
3 L2 Data Miss
4 L2 Data Hit
5 L2 Miss (I/D) (sum events 1 and 3)
6 L2 Hit (I/D) (sum events 2 and 4)
7 L2 Victim Buffer Hit (Retry Probe)
8 LFB-NQ Index Conflict
9 L2 Tag Probe (issued - could be VB-Retried)
10 L2 Tag Update (completed - note: some CMD types do not update)
11 L2 Tag Probe Completed (beyond VB-RTY window)
12 L2 Tag Dirty Victim
13 L2 Data Store NOP
14 L2 Data Store READ
15 L2 Data Store WRITE
16 Memory Fill Data valid (1 strobe/32B)
17 Memory Write Request
18 Memory Read Request
19 Memory Write Data valid (1 strobe/32B)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-17

Num Item (The most useful items are highlighted.)
20 XMC NOP (XMC Bus Idle)
21 XMC LDT (Load-Through Request)
22 XMC LDI (L2 Load I-Stream Request)
23 XMC LDD (L2 Load D-stream Request)
24 XMC STF (L2 Store Full cacheline Request)
25 XMC STT (L2 Store Through Request)
26 XMC STP (L2 Store Partial Request)
27 XMC STC (L2 Store Conditional Request)
28 XMC DWB (L2 Don't WriteBack Request)
29 XMC PL2 (L2 Prefetch Request)
30 XMC PSL1 (L1 Prefetch Request)
31 XMC IOBLD
32 XMC IOBST
33 XMC IOBDMA
34 XMC IOBRSP
35 XMD Bus valid (all)
36 XMD Bus valid (DST=L2C) Memory Data
37 XMD Bus valid (DST=IOB) REFL Data
38 XMD Bus valid (DST=PP) IOBRSP Data
39 RSC NOP
40 RSC STDN
41 RSC FILL
42 RSC REFL
43 RSC STIN
44 RSC SCIN
45 RSC SCFL
46 RSC SCDN
47 RSD Data Valid
48 RSD Data Valid (FILL)
49 RSD Data Valid (STRSP)
50 RSD Data Valid (REFL)
51 LRF-REQ (LFB-NQ)
52 DT RD-ALLOC (LDD/PSL1 Commands)
53 DT WR-INVAL (ST* Commands)

See the HRM for more details on how to use the L2 performance counter events.

2.6.4 DRAM Utilization Information
The DRAM Controller (LMC) performance registers can be used to check for bottlenecks in
accesses to DRAM.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

For instance, to calculate DRAM utilization, use LMC_OPS_CNT__HI, LMC_OPS_CNT_LO,
LMC_DCLK_CNT_HI, and LMC_DCLK_CNT_LO registers. (The “HI” and “LO” are the upper
and lower bits of the 64-bit performance counter.):

Bus utilization = (LMC_OPS_CNT_HI, LMC_OPS_CNT_LO) /
 (LMC_DCLK_CNT_HI, LMC_DCLK_CNT_LO)

If DRAM utilization is 70% or more, then the DRAM interface is very busy.

See the HRM for more details on how to use the LMC performance counter registers.

2.7 When Is Performance Optimization Complete?
Performance optimization is complete when you satisfy your system requirements.
Note that if you measure the Instructions Per Cycle (IPC). For cnMIPS cores, the maximum
Instructions Per Cycle is two (dual issue pipeline). Given pipeline stalls, the average will be less:

• IPC = 1 (one) is good
• IPC > 1 (one) is very good
• IPC approximately 2 (two) is excellent

3 Performance Tuning Checklist
The following checklist can be used to select and prioritize the performance improvements you
make.

Table 3: PERFORMANCE TUNING CHECKLIST

Linux,
Simple Exec,

Both, or
Architecture H

ar
dw

ar
e

A
ss

is
t Item to Check (Ordered in the same order presented

in this document. Within each section, the items are
ordered from easiest to hardest to implement.)

Possible
Improvement
(Big, Medium,

Small)

Software Architecture for High Performance
Simple Exec

X
L2 Cache Configuration: Aliased Cache Indexing Medium

(See Note 1)
Both

X
Configuring the Right Amount of Packet Data Buffers
and WQE Buffers Big

Architecture Choosing Simple Executive versus Linux or other OS Big
Both Concurrent Programming Techniques Medium

Architecture

Pipelined versus Run-to-Completion Software
Architecture Big

Architecture

Event-driven loop versus Interrupt Handling for Packet
Processing Big

Tuning the Minimum Set of Cores
Both Compiler Choice Medium
Both Compiler Optimization (-O3) Medium

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-19

Linux,
Simple Exec,

Both, or
Architecture H

ar
dw

ar
e

A
ss

is
t Item to Check (Ordered in the same order presented

in this document. Within each section, the items are
ordered from easiest to hardest to implement.)

Possible
Improvement
(Big, Medium,

Small)

Both
X

Re-Configuring the Right Amount of Packet Data
Buffers and WQE Buffers Medium

Both X Memory Alignment Medium
Both

Data Structure Compaction (packing), Re-arranging
Structures Big

Both Large Data Structures: Working with Cache-line Size Big
Both Group Common Data Together Medium
Both Loop Unrolling Medium/Small
Both Replace memset() and memcpy() When Needed Medium

Simple Exec
X

Use Free Pool Allocator (FPA) Memory Pools to
Manage Free Buffers Small

Both X Cache Prefetch Big (See Note 1)
Both X Prepare for Store Big

Simple Exec X Scratchpad: Core-local Storage Small
Simple Exec X Asynchronous FPA Allocation Medium

Both
X

Don't Write Back (DWB) Commands Small
(See Note 1)

Both X Hardware CRC Engine Medium
Both X Hardware Hash Engine Medium

Simple Exec X Hardware Timers Medium
Simple Exec X Hardware Fetch and Add (FAU) Unit Medium
Simple Exec X Asynchronous Fetch and Add Operations Medium

Both X Work prefetch: Asynchronous get_work Medium
Both X Interleaving Prefetch with Computational Instructions Small
Both X Hardware TCP/UDP Checksum Calculation Medium
Both Use Functions Wisely Medium
Both Update Bit-fields Wisely Medium
Both Read after Write Medium

Tuning Multi-core Applications (Scaling)
Both

X
Re-Configuring the Right Amount of Packet Data
Buffers and WQE Buffers Medium

Simple Exec X Tune Initial Tag Values to Separate Flows Small
Simple Exec X Set Initial Tag Type to ORDERED if Possible Medium
Simple Exec

X
Switch Tag Type to ORDERED or NULL when
Possible Medium

Simple Exec X Use Asynchronous Tag Switch Operations Small

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Linux,
Simple Exec,

Both, or
Architecture H

ar
dw

ar
e

A
ss

is
t Item to Check (Ordered in the same order presented

in this document. Within each section, the items are
ordered from easiest to hardest to implement.)

Possible
Improvement
(Big, Medium,

Small)

Both Minimize Critical Regions Medium
Simple Exec

X
Replace Spinlocks with ATOMIC Tag Types when
Possible Medium

Both Arena-based Memory Allocation Medium
Both

X
L2 Cache Configuration: Way Partitioning and Cache-
Block Locking

Medium
(See Note 1)

Linux-specific Tuning
Linux

X
TLB Exceptions and Huge Page Size

Big (See Note 1)

Linux Use CPU Affinity for Processes/Threads Big
Linux Direct all Packet RX Interrupts to the Same Core Small

Note 1: This may have a large positive or a large negative effect, depending on the
application/code.

4 Hardware Architecture Overview
Knowing where the different units are located relative to the buses is useful in avoiding and
detecting bottlenecks. Some performance changes can improve performance in one area, while
creating a problem elsewhere. It is important to understand the overall system architecture before
making changes, and to be careful to verify that the performance change actually improved
performance.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-21

Figure 6: Hardware Architecture Overview
OCTEON® and OCTEON® Plus Architecture Superset

On-Chip Hardware Units

TCP/IP Acceleration
Block

Up to 16 Cores

Simplified Packet
Interface Block
(XAUI*, SPI-4.2*,

PCIe*, PCI/PCI-X*,
SGMII*, RGMII*,

GMII*, MII*)

PKI: Packet Input
Block

FPA: Free Pool
Allocator: Buffer

management

SSO: Schedule/
Synchronization

/Order

IPD:
Input

Packet
Data

PIP:
Packet
Input

Processor

PKO: Packet Output
Unit

IOB:
I/O Bridge

Interface
RX Port

Interface
TX Port

DRAM

Bus KEY
Buses without
arrows are full
duplex.
Buses with only
one arrow are
uni-directional.

Packet Input
(Packet-
Management Accel.)

Schedule /
Synchronization /
Order (Packet-
Management Accel.)

Core Processing

Packet Output
(Packet-
Management Accel.)

Memory

Pseudo blocks

Controllers

L2 Cache Controller
(L2C)

L2
CACHE

DRAM
Controller

(LMC)

Pattern Matching and Regular
Expression Engine* (DFA): Pattern

matching, content inspection, regular
expressions

RNG: Random
Number Generator

KEY*: Key Memory
(Secure Vault)

TIM: Timer Unit

ZIP*: Compression /
Decompression Unit

FAU: Fetch and
Add Unit

PCI DMA Engines*

IOBI and
IOBO

CORE

L1 Dcache

L1 Icache

Write Buffers

Security Co-
processor*

MIO: UARTs, USB*,
TDM/PCM*, TWSI,
SMI/MDIO, MII*,
Boot Bus, GPIOs,

LEDs

Pattern
Memory

Application
Accelerators

Security
Accelerators

Specialized
Accelerators

CMB

Miscellaneous I/O

PCI DMA (DMA to/
from PCI host
memory)

Note: OCTEON model-specific hardware components are marked with an asterisk (*).

IP
D

B

P
K

O
B

POB

Receive

Transmit

Pattern
Memory

Controller*

Color/Pattern KEY

MIPS64r2
integer

RAID Engine*

I/O Bridge

FPA (Packet
Management,
Application Accel.)

CRC Engine

PCIe / PCI /PCI-X
CTL*

IOBI /
IOBO

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

5 Software Architecture for High Performance
When designing an application or tuning at the design level, the following items can affect
performance. Note that it is best to design the application so it can be scaled up or down easily.
This helps performance testing, and also allows the application to flexibly meet customer needs.

5.1 L2 Cache configuration: Aliased Cached Indexing
The high-end OCTEON L2 cache is 8-way set associative consisting of 2048 sets. There are two
different set indexing algorithms. It is very simple to change the algorithm, so try both choices and
see which performs best for your application.

5.1.1 Unaliased Caching Indexing Algorithm
Normally, a cache line is indexed with address bits 7 to 17 (shown as 17:7). This index selects one
of the 2048 sets:

Index<10:0> = address<17:7>

Figure 7: Bits 7-17 in Address Used to Index into L2 cache

This unaliased algorithm may not be ideal for packet processing. For example, if the Packet Data
Buffers are 2 KB and always naturally-aligned, AND only the first 256 bytes are used, the
unaliased algorithm can only use (2*128) sets out of 2048 (only 1 out of every 8 sets is used).
Because fewer sets are used, it is more likely that a needed cache block will be evicted: the cache
appears to be smaller than it really is.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-23

Figure 8: Limited L2 Cache Index Choices When Data is Aligned on 2K
Boundary

5.1.2 Aliased Cache Indexing Algorithm
When the index aliasing option is enabled, the cache line index is computed as the exclusive or of
address bits <17:7> and <27:17>.

Index<10:0> = (address<17:7> XOR address<28:18>)

The aliased algorithm can spread cache blocks across more sets. If the program is accessing the
first part of many different 2KB blocks, then the aliased algorithm will provide a larger number of
sets.

There is no rule to decide when aliasing improves system performance. The best way to evaluate it
is by prototyping the intended algorithm and evaluating performance using both modes.

Configuration of the caching algorithm must be done prior to any block being loaded into the L2
cache. Given this restriction, the OCTEON evaluation board bootloader has an environment
variable to control this called disable_l2_index_aliasing. Setting this variable via the
setenv command will disable setting the L2C_CFG[IDXALIAS] bit during the board
initialization sequence. The code that sets this bit can be found in the function
init_ebt3000_dram() in the bootloader/u-boot/lib_mips/board.c file located
in the OCTEON SDK directory tree.

5.2 Configuring the Right Amount of Packet Data Buffers and WQE
Buffers

It is important to configure in sufficient numbers of Packet Data Buffers and Work Queue Entry
Buffers so that the system does not run out of this resource. If the system does not have enough of
these buffers, the PIP/IPD will not be able to receive new packets.

Note: The SSO has a limited number of Work Descriptors (internal memory it uses to hold both
in-flight and pending work). It uses these Work Descriptors to create Cached Input Queues inside
the SSO (pending work). When there are no more available Work Descriptors, the SSO will put

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

F
M

A
N

C
E

T

U
N

IN
G

 OCTEON Programmer’s Guide

6-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

O
R

new work in Overflow Input Queues located in DRAM. As internal space becomes available,
work from the Overflow Input Queues are brought from DRAM into the Cached Input Queues.
The process of bringing in work from the Overflow Input Queues slows down the average latency
between the get_work request and the satisfaction of the request when work is returned to the
core. The net result is a slightly reduced overall system throughput. There are many factors that
affect the magnitude of the performance reduction. One sure way to avoid this issue is to allocate
the number of Work Queue Entries and Packet Data Buffers to be less than or equal to the number
of SSO Work Descriptors.

5.3 Simple Executive versus Linux or other OS
When designing the system, the Simple Executive should be used for data-plane applications. The
Simple Executive is optimized for the highest possible performance. When using Linux, the
following items add processing overhead:

• Exception and context switch
• Copy of data between user and kernel space
• TLB management
• Scheduling timer overhead

It is possible to run Linux on some cores and Simple Executive on others. Often, Linux is used for
the control-plane and Simple Executive is used for data-plane.

Also note that Linux SMP scales performance up to a limited number of cores. Some designs run
multiple Linux SMP instances: the cores are divided into two groups, each running a different
instance of Linux SMP.

Other operating systems (OS) are also available. Ask your Cavium Networks representative for
more information.

5.4 Concurrent Programming Techniques
Since the OCTEON processor has multiple cores, one should be aware of concurrent programming
techniques. There are many books available on this subject. For engineers without extensive
experience in this area, see the concurrent programming references provided in Section 1.1 –
“References”. This section will provide a brief introduction a key issue in concurrent
programming: shared data.

Data can be shared by:

• All threads in a process (global, static, C++ objects, core-local shared memory, or Cavium
Networks core-shared memory)

• All processes on a core (core-local shared memory, or Cavium Networks core-shared
memory)

• Processes on different cores (Cavium Networks core-shared memory)

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-25

The problem with unprotected shared data structures is data corruption from multiple
reader/writers. The classic example is a read-modify-write where the function increments a
counter:

1. Process1 reads the value (read=0)
2. Process2 does a quick read-modify-write (read=0, 0+1=1, write 1)
3. Process1 modifies its stored value and writes it back (0+1=1, write 1).
4. As a result, the value goes from 0 to 1 to 1 instead of 0 to1 to 2. The counter is now

incorrect.

If a linked list is being modified, then chaos may result, for instance when “next” pointers are
corrupted.

5.4.1 Critical Regions and Locks
It is important to know whether data is shared when writing code to access it. If it is shared, then
use a locking mechanism to protect it.

When possible, use Cavium Networks-specific locking mechanisms. This will be addressed in
Section 7.6 – “Critical Regions”.

5.4.2 Minimize use of Shared Data
Eliminate global, static, and unnecessary shared C++ objects. They not only cause reentrancy
problems, they also make debugging difficult because it is difficult to see which process/thread
modified the data. It is better to pass information by reference (provide a pointer to the data) as an
argument to functions accessing the data.

5.4.3 Minimize Critical Regions
The section of code which modifies a locked shared data structure is a critical region. Functions
must use a locking mechanism before entering the critical region.

Make sure each critical region is as short as possible. Remove unnecessary code from inside the
locked section. This will speed up processing because processes wanting the lock will not have an
unneeded delay.

The purpose of any lock is data and data structure integrity. The lock only needs to be held while
traversing the data structure, while changing the data structure in such a way that would disrupt
traversal (the “next” pointer, for instance), or changing a particular data item (in which case only
the item should be locked, not the whole structure).

The lock should only be held for the minimum time needed to do the few manipulations that affect
the entire structure. For example, in a linked list insertion, all of the processing to set up the new
node should be handled first. When everything is ready, lock the list, determine the right place to
insert the new node, insert it, and unlock the list.

5.5 Pipelined versus Run-to-Completion Software Architecture
The OCTEON processor has no per-core instruction-size limitation. It is not necessary to use
pipeline software architecture; however the OCTEON processor supports both pipeline and run-to-

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
O

R
M

A
N

C
E

U

N
IN

G

 OCTEON Programmer’s Guide

6-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

R
FT

completion software architectures. In pipeline architecture, each processor handles one function
and the packet moves through the pipeline, changing processors as needed to pass through the
series of functions. In run-to-completion architecture, one processor handles all the functions, and
the packet stays on the processor as it moves through the series of functions.

If possible, designing your application to use run-to-completion will result in higher-performance
code because time is not spent on unnecessary switches to other processors.

5.6 Event-driven Loop versus Interrupt Handling for Packet
Processing

If you choose to implement your application on Linux, you choose to use interrupt-driven packet
processing. If you choose to implement your application on Simple Executive, then polling is used
for packet processing. Polling is a higher performance processing architecture.

6 Tuning the Minimum Set of Cores
After the application is running and debugged, reduce it to run on the smallest possible set of cores.
If possible, run on only one core. Optimize the performance on this sub-set before scaling up the
number or cores. This will help you isolate where the performance problem is located, because
scaling issues related to performance are different than those related to single-core performance.

6.1 Compiler Choice
Use the OCTEON SDK compiler, which is supplied with the Software Development Kit. It makes
use of the Cavium Networks-specific instruction set, which will greatly improve performance.

6.2 Compiler Optimization (-O3)
Turn on compiler optimization using the –O3 option to the compiler.

6.3 Re-Configuring the Right Amount of Packet Data Buffers and WQE
Buffers

Review the system requirements and verify that sufficient numbers of Packet Data Buffers and
Work Queue Entry Buffers have been configured into the Free Pool Allocator pools.

6.4 Memory Alignment

6.4.1 Align Data on Natural Address Boundaries
On RISC architectures, memory operations are most efficient when data is aligned on natural
address boundaries. For instance, 4-byte types should reside on even 4-byte addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-27

Figure 9: Align Data on Natural Boundaries
Address Bits Which Must be 0

8 bytes

4 bytes4 bytes

Align Character (8-bit data)
on 1-Byte Boundary

2 bytes2 bytes2 bytes2 bytes

Align 16-bit data on
2- Byte Boundary

Alignment = 8 bits:
1-byte alignment
(Address ends in 0 or 1,
a multiple of 1.)

Alignment = 16 bits:
2-byte alignment
(Address is always
even, a multiple of 2).

Alignment = 32 bits: 4-byte
alignment
(Address is a multiple of 4.)
(32 bits / 8 bits per byte =
4- byte alignment)

Alignment = 64 bits: 8-byte
alignment
(Address is a multiple of 8.)
(64 bits / 8 bits per byte =
8-byte alignment)

Alignment = 128

Desired Boundary

bytes
128-bytes alignment
(Address is a multiple of 32.)
This is the same as the
cache line size.
((128 bytes * 8 bits per byte)
/ 8 bits per byte = 128-byte
alignment.)

Align 32-bit data on
4- Byte Boundary

Align 64-bit data on
8-Byte Boundary

128 Bytes

Align 128-Byte data on
128-Byte Boundary

Address Bits

1 or 0

0

Address Bits

2, 4, 6...

0 0

0 00

0 00 00 0

4, 8, 12...

8, 16, 24...

128, 256, 384, 512...

Address Bits

0

Address Bits

0

Address Bits

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

6.4.2 Simple Executive Facilities to Support Memory Alignment
To support aligned memory allocation, Simple Executive has such facilities and can be used as
follows:

uint64_t *ptr;
uint64_t size = 256;
uint64_t alignment = 128;
// Allocate a 256-byte chunk of memory aligned on 128-byte boundary.
ptr = cvmx_bootmem_alloc (size, alignment);

This will allocate a 256-byte chunk of memory aligned to 128 bytes (cache line). Additionally, the
physical address returned by this facility can be shared across all OCTEON cores.

6.4.3 Pad Structures to Align on Natural Boundaries
When creating arrays of structures, pad the structures so that each starts on a natural boundary:

Figure 10: Pad Structures as Needed for Alignment
Pad Structures as Needed for Alignment

Use an unpacked array
of structures, with
padding to start each
structure on the natural
boundary.

Pad

Used Space
Unused Space

Color Key

Pad

Pad

Pad

Array
Index

0

1

2

3

6.5 Data Structure Compaction (packing), Re-arranging Structures

6.5.1 Packing: Space versus Speed Tradeoff
Because using natural memory alignment can speed performance, review whether packed data
structures (which save space) are the best choice. There may be places where using unpacked data
structures can improve performance and be worth the speed/space trade-off.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-29

Figure 11: Packed Data Structures (Space versus Speed Tradeoff)

Packed data structures
do not allow aligned

memory access: space
is more important than

speed

Unpacked data
structures allow aligned
memory access: speed
is more important than

space

Align on 4-byte
boundary

Align on 4-byte
boundary

Used Space
Unused Space

Color Key

Packed Versus Unpacked Data Structures

6.5.2 Re-Arrange Structure Fields to Save Space
Re-arranging elements in the structure may save wasted space by filling in the gaps with useful
data instead of wasted gaps.

Figure 12: Re-arrange the Fields in the Data Structure to Save Space

BEST: Re-arrange fields
to save space.

Align on 4-byte
boundary

Align on 4-byte
boundary

Unpacked data structure
allows aligned memory
access: speed is more
important than space

Align on 4-byte
boundary

Align on 4-byte
boundary

Used Space
Unused Space

Color Key

Re-Arrange Fields in Data Structure to Save Space and Retain
Alignment

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

6.6 Large Data Structures: Working with Cache-line Size
If the data being manipulated exceeds the cache line size (128 bytes), then make sure it is aligned
to the start of the cache block. This will cause it to use the smallest possible number of cache
blocks. The Simple Executive function which will allocate aligned memory is discussed in Section
6.4 – “Memory Alignment”.

Also, if the data object is larger than one cache block, prefetch the entire data object prior to
processing it. See Section 6.11 – “Cache Prefetch”.

Figure 13: Large Data Structure Alignment

DATA CORRECTLY
ALIGNED – Only two cache

blocks required

128 Bytes (cache line size)

Correct: Start
data structure at
start of 128-byte

block. Two Cache
blocks are
required.

DATA INCORRECTLY
ALIGNED – Three cache

blocks required.

Incorrect: Don’t
start at beginning
of 128-byte block.

Three cache
blocks are
required.

128 Bytes (cache line size)

128 Bytes (cache line size)

128 Bytes (cache line size)

Three Available
Cache Blocks

Align Large Data Structures on Cache-Line Boundary
B

lo
ck

 1
B

lo
ck

 2
B

lo
ck

 3

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

Used Space
Unused Space

Color Key

6.7 Group Common Data Together
If the data is not in the cache when it is needed, the system will stall while waiting for it to be
fetched into the cache. Group data objects which are needed together into the same area of
memory, so a minimal number of cache blocks need to be fetched to get all the necessary data.
Also, remember that the L1 cache size is limited: if the data is scattered over many cache blocks,
the different fetches may cause eviction of still-needed data from the cache. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-31

Figure 14: Group Common Data Together

128 Bytes (cache line size)

Correct: Group
data together:
only one cache
block required.

Incorrect: Don’t
Group data

together: three
cache blocks are

required.

128 Bytes (cache line size)

128 Bytes (cache line size)

128 Bytes (cache line size)

Three Cache
Blocks

128 Bytes (cache line size)

128 Bytes (cache line size)

128 Bytes (cache line size)

DATA 1

DATA 2

DATA 3

128 Bytes (cache line size)

DATA 1

DATA 2

DATA 3

Used Space
Unused Space

Color Key

Group Common Data Into the Same Cache Line

6.8 Loop Unrolling
This optimization is most useful in situations where a loop is used to perform multiple operations
on arrays. Unrolling part of the loop to take advantage parallel operations can increase
performance considerably.

There is also a compiler option, “funroll-loops”, that signals the GCC optimizer to
automatically unroll loops in some cases.

6.8.1 Sample Code: Loop Unrolling
The loop:

char *src, *dst; // Here we use a character
int i;

// 32 operations, 8 bits at a time
for (i = 0; i < 32; i++) {
 dst[i] = src[i];
}

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

The above code fragment can be unrolled, as shown in the next code fragment:
uint64_t *src, *dst; // Note instead of char, the type is unit64_t

// 4 operations, 64 bits at a time
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];

Not only does this remove the loop overhead, it also takes advantage of the CPU’s natural 64-bit
word size in that the load and store instructions utilize 64-bit operations per cycle. In the case of
the char data types, the instructions will move only 8 bits per cycle.

A larger example of code which uses loop unrolling can be found in Section 6.16 – “Hardware
CRC Engine”.

6.9 Replace memset() and memcpy() when Needed
When operating on large blocks of data which is aligned on a word boundary, memset() or
memcpy() are not efficient. Both of these routines use byte-by-byte copy which does not take
advantage of the 64-bit word size.

The following code is an example of code used to replace the memset() function. Similar code
can be use to replace the memcpy() function. The exact code will depend on your data size. In
this example, entire cache lines are written, and the data aligned on the 128-byte boundary (cache
line size).

6.9.1 Sample Code: Replacing memcpy() and memset()
The following code avoids the use of memcpy() and memset(). It will zero out a cache line.

// p is assumed to be cache-line aligned and a valid pointer
// p must also be a multiple of cache line size (fill a whole cache line)
// anything else will cause memory corruption errors

static inline void buffer_init_fast(void *p, uint64_t num_cache_lines)
{
 uint64_t *ptr = (uint64_t *) p;

 while(num_cache_lines-- > 0) { // write one cache line at a time
 *ptr++ = 0x0L; // via 16 64-bit writes
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-33

 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 *ptr++ = 0x0L;
 };
}

The following code will simply write 64-bits at a time:

// p is assumed to be word-aligned and a valid pointer
// p is also assumed to be a multiple of word (fill a whole word)
// anything else will cause memory corruption errors
static inline void buffer_init_fast(void *p, uint64_t size)
{
 uint64_t num_words = (size >> 3);
 uint64_t *ptr = (uint64_t *) p;

 while(num_words-- > 0)
 {
 *ptr++ = 0x0L; // write 64-bits at a time
 };
}

6.10 Using Free Pool Allocator (FPA) Memory Pools to Manage Free
Buffers

The Free Pool Allocator (FPA) provides a mechanism to pre-allocate and manage pools of free
memory. These pools consist of chunks of memory, usually divided into equal-sized buffers. The
memory is pre-allocated at system initialization. Because it is pre-allocated and is not fragmented
(because all the buffers in a pool are usually the same size), it is more likely that a request for
memory will succeed. The time to fill the request is also deterministic: there is no need for the
system to search a linked list of free fragments of memory looking for one large enough to fill the
request.

Core software may allocate and free these buffers. The buffers may also be asynchronously
allocated which can speed processing and prevent the core from stalling while waiting for a buffer
(see Section 6.14 – “Asynchronous FPA Allocation”).

6.11 Cache Prefetch
The action of loading data from DRAM into either L1 or L2 cache (fetch) takes a certain number of
system cycles. To avoid stalling the core during the fetch delay, the Simple Executive API
provides functions which prefetch data into the L1 cache, L2 cache, or both.

Note that more than one prefetch operation can occur at the same time.

There are two key reasons to use prefetch:

1. Keep the core busy: Software starts the prefetch, and then does other processing. This can
improve performance because the core stays busy, and data is in L1 data cache when it is
needed.

2. Optimize use of space in L2 cache: The L2 cache size is limited. The optimal use of the
space is for data needed by multiple cores. A prefetch can bypass the L2 cache, and bring

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

the data directly into the L1 cache. Saving space in L2 can also prevent eviction of cache
blocks which are still needed. Software needing the evicted cache block will stall because
of the cache miss and the re-fetch. This also adds more work to the bus. Cache misses
cause a large performance penalty.

There are two key things to consider before adding prefetches to the code:
1. Don’t over-use prefetch: Over-using prefetch can either fail to improve or hurt system

performance. This is because L1 cache size is limited. Prefetched data may evict other
prefetched data needed sooner, causing extra work and stalling the core while it waits for
the data. For instance, if data A, B, and C are prefetched, and needed in that order, C may
evict B from the L1 cache. When the software needs B, it is not available.

2. Add prefetch to the correct location in the code: The best place to put a prefetch in the
code depends on the structure of the code. After starting a prefetch, the code needs to have
something to do until the prefetch completes. It is best to start the prefetch as early as
possible to ensure the data is in the cache when needed.

The best solution is to prototype without prefetching, and then run tests to determine the code
locations which will most benefit from prefetch.

Two situations where prefetch can be particularly useful are:

1. If the data object is larger than one cache block, prefetch the entire data object prior to
processing it.

2. When operating on elements in a linked list, prefetch the next element before it is needed.

The Simple Executive API provides three different prefetch modes:
1. CVMX_PREFETCH(address, offset) - The block will be read into the L1 cache and

the L2 cache.
2. CVMX_PREFETCH_NOTL2(address, offset) - The block will be read into the L1

cache, but will not be put into the L2 cache.
3. CVMX_PREFETCH_L2(address, offset) - The block will be read into the L2 cache

without putting it into the L1 cache.

The hardware instruction is PREF (prefetch).

6.11.1 Sample Pseudo code: Prefetch
The following pseudo code illustrates prefetching the next element in a linked list before it is
needed. In this example, the “next” record is prefetched into L1, bypassing L2.

linked_list_t *this = list_to_search;
while (this) {
 CVMX_PREFETCH_NOTL2(this->next, 0);
 if (process_current_record (this) == DONE) {
 break;
 }
 this = this->next;
}

A larger example using prefetch can be found in the code in Section 6.16 – “Hardware CRC
Engine”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-35

Figure 15: Prefetch Choices

CVMX_PREFETCH_NOTL2
(address, offset)

(Bypass L2 Cache)

CVMX_PREFETCH
(address, offset)

(Normal Prefetch)

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

L
O
AD

L
O
A
D

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

L
OA
D

CVMX_PREFETCH_L2
(address, offset)

(Fetch only to L2, not L1)

CORE

Level-2 Cache
Controller (L2C)

L1 Dcache

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

LO
A
D

Prefetch Commands Used to Bypass Some Caches

6.12 Prepare-For-Store
The prepare-for-store operation is used when all of the old data in the cache block can be thrown
away.

In a typical write, if the cache block is not in L2 (a cache miss occurs), the prior data is loaded into
L2 cache from DRAM. Then the new data is written to the cache block (often only a subset of the
cache block is modified), and then the new cache block data is written out.

When using the prepare-for-store operation, the prior contents of the cache block will be discarded.

When the core stores stored to L2/DRAM (store operation):

1. Prepares a Write Buffer for the write.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

2. If the memory is not in L2 cache (a cache miss occurs), the prior data is loaded into L2
cache from DRAM.

All of this takes system overhead.

Prepare-for-store operations can be used to avoid unnecessary DRAM reads for memory locations
whose prior value does not matter.

The prepare-for-store function provides two performance-enhancing operations:

1. Creates the Write Buffer in advance of the actual write operation.
2. Prevents reading the old data into L2 cache if there is a cache miss.

Note: Prepare to store is only used if the old data in the cache block can be “thrown
away”. The entire cache block must be overwritten by the write. The contents of the cache
block in L2 cache must not be relied on in any way.

The Simple Executive prepare-for-store function is: CVMX_PREPARE_FOR_STORE(address,
offset).

The hardware instruction is “PREF” (prefetch).

6.13 Scratchpad: Core-local Storage
Part of the core’s L1 data cache may be reserved to as core-local “scratchpad” memory. The
scratchpad can be used to store local variables that are accessed frequently but do not need to be
stored in DRAM.

Because the scratchpad is local memory, the data does not have to be written to L2/DRAM. This
reduces the Write Buffer traffic on the coherent memory bus (CMB).

The OCTEON Simple Executive provides a configuration interface to reserve scratchpad storage
via the executive-config.h header file. Within this file, there are declarations that define
macro names and reserve space for these variables, for example:

#ifdef CAVIUM_COMPONENT_REQUIREMENT
 cvmxconfig
 {
 scratch LOCAL_8_BYTE_SCRATCH
 size = 8
 description = "A local 8 byte scratch area";
 }
#endif

This code snippet will reserve an eight-byte location in the scratchpad and define the macro
LOCAL_8_BYTE_SCRATCH, specifying which location it was assigned. The code can then
merely dereference this address to use the scratchpad storage.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-37

The Simple Executive functions to access the scratchpad are:
• cvmx_scratch_read8()
• cvmx_scratch_read16()
• cvmx_scratch_read32()
• cvmx_scratch_read64()
• cvmx_scratch_write8()
• cvmx_scratch_write16()
• cvmx_scratch_write32()
• cvmx_scratch_write64()

Detailed information about this configuration facility is in the documentation set included with the
OCTEON SDK.

6.14 Asynchronous FPA Allocation
The Free Pool Allocator (FPA) buffers may be fetched asynchronously. In the Simple Executive
API the function is cvmx_fpa_async_alloc(). While waiting for the operation to complete,
the core can do other processing.

Note that this operation requires configuration of a scratchpad location for the FPA to store the
returned pointer.

6.15 Don't Write Back (DWB) Commands
Don’t Write Back (DWB) commands can be issued from the core or from other hardware units.

6.15.1 DWB Commands from the Core
Writes from the core which are destined for L2/DRAM are buffered in the core’s Write Buffer.
From there, they are sent to the L2 Cache. The L2 cache controller sets the “dirty bit” and later
writes the dirty cache block to DRAM (flush).

The Don’t-Write Back (DWB) operation can be used to avoid unnecessary write backs from the L2
cache (to DRAM) for memory locations which were used, but the data may now be discarded.

When Don’t Write Back (DWB) is used, the core issues commands to clear the cache block’s dirty
bit. The L2 cache controller clears the dirty bit so when the block is evicted, the L2 cache
controller will not write back data to DRAM.

Depending on the exact moment of the write to DRAM, the command to clear the dirty bit might
prevent a write from L2 to DRAM. There is no guarantee, since the exact moment of the flush
varies.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 16: Don’t Write Back (DWB) Commands from the Core

C
M

B

Wr
it
e
da
ta
 t
o
L2

Ca
ch
e

C
M

B

Do
n’
t
w
ri
te
 b
ac
k

co
mm
an
ds

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-39

Guidelines:
• If the bus connecting the DDR Controller to the DRAM is overloaded (it is much narrower

than the CMB), then Don’t Write Back (DWB) can improve system performance. If this
bus is not overloaded, do not use DWB.

• If the CMB is overloaded, then DWB might hurt performance, because of the added DWB
commands sent on the CMB.

The Simple Executive function CVMX_DONT_WRITE_BACK(address, offset) is used to
specify DWB.

The hardware instruction is “PREF” (prefetch).

6.15.2 DWB Commands from other Hardware Units
In addition to the core DWB commands, other units can cause DWB commands to be issues. For
these units, the IOB Controller actually issues the commands, using its DWB Engine.

For instance, to enable DWB to prevent writing the contents of the Packet Data Buffer back to
memory when the buffer is freed, set the register: PKO_REG_CMD_BUF[ENA_DWB].

Other hardware units, such as DFA, PCI, TIM, and ZIP also support DWB.

As noted in the section above, DWB commands add a load to the CMB, while potentially
offloading the DDR Controller. DWB commands will not prevent the data from being written
back; the exact timing of the dirty-bit clear and the L2 flush to DRAM are not predictable.
See the Hardware Reference Manual for details.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 17: DWB Commands sent by IOB on Behalf of other Hardware Units

L2 Cache Controller (L2C)

IOB

Don’t Write Back (DWB)
Engine

L2 Cache
Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

Clear Dirty Bit

Clear D
irty Bi

t

Cl
ea
r
Di
rt
y
Bi
t

DDR Buffer
(DRAM)

DRAM Controller
(LMC)

NO: DON’T WRITE BACK
TO DRAM

DWB Commands from IOB

6.16 Hardware CRC Engine
OCTEON has a powerful general purpose CRC engine built into each core. There are many
applications that can benefit from such hardware acceleration. For instance, software that creates a
hash value by combining several discrete data items can use this engine to compute the hash much
faster than software-alone implementations.

A very good description of the CRC algorithm can be found at:
http://en.wikipedia.org/wiki/Cyclic_redundancy_check.

A good description of the Adler-32 algorithm can be found at: http://en.wikipedia.org/wiki/Adler-
32.

6.16.1 Sample Code: Using the OCTEON Processor CRC Engine
As an example, the Adler-32 algorithm specified in RFC 3309 (SCTP) can be implemented using
the OCTEON CRC unit as follows:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-41

#define POLY 0x1EDC6F41 // CRC Polynomial
#define POLY_WIDTH 32 // Bit width of the CRC Polynomial
// Note: the initial value “iv” is 0xffffffff
// The “REFLECT” operations are used to reverse the shift of the bits
// into the CRC engine. Both MSB first and LSB first are available
// The Adler-32 algorithm uses LSB first

uint32_t corecrc(uint32_t iv, uint64_t *data, int size) {
 uint64_t my_iv;
 uint64_t t1, t2; // Notice the data is 64-bit aligned

 CVMX_MT_CRC_POLYNOMIAL(((uint64_t) POLY) << (32 - POLY_WIDTH));
 CVMX_MT_CRC_IV(((uint64_t) iv) << (32 - POLY_WIDTH));

 size /= sizeof(uint64_t);

 while (size > 15) { // Notice the loop unrolling (16 64-bit operations)
 t1 = *data++; // Notice the interleaving
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 t1 = *data++;
 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 CVMX_PREFETCH(data,128); // Notice the prefetch here
 size -= 16;
 }

 while (size > 1) {
 t1 = *data++;

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

 t2 = *data++;
 CVMX_MT_CRC_DWORD_REFLECT(t1);
 CVMX_MT_CRC_DWORD_REFLECT(t2);
 size -= 2;
 }

 if (size) {
 CVMX_MT_CRC_DWORD_REFLECT(*data++);
 }

 CVMX_MF_CRC_IV_REFLECT(my_iv);
 return((uint32_t) (my_iv >> (32 - POLY_WIDTH)));
}

Notice that there are several previously discussed optimizations utilized in this function. The main
loop is unrolled for a single cache line (128 bytes processed per loop) and utilizes a prefetch of the
next cache line. This substantially improves performance for large blocks. Additionally, memory
access occurs on 64-bit boundaries and is interleaved to minimize pipeline stalling.

6.16.2 Performance Comparison: Hardware versus Software CRC
Each core has a dedicated security coprocessor which can be used to accelerate security
applications and CRC or hash generation. Once the core issues an instruction to the coprocessor,
the core can continue to do other work while the coprocessor completes the instruction, or the core
can wait for the coprocessor to complete the task.

Hardware CRC or hashing provides a strong performance improvement over using software to
perform these functions.

For example, using security hardware acceleration, CRC generation for a 1024-byte block
consumes only 358 cycles versus 13,720 cycles for software CRC, as shown in the table below.

Table 4: Performance Comparison: Hardware versus Software CRC
Block Size 128 256 512 1024 2048 4096

Hardware CRC
(cycles/block) 106 142 214 358 646 1,222

Software CRC
(cycles/block) 1,918 3,604 6,976 13,720 27,208 54,448

In the following graph, the comparison between hardware and software CRC is converted from
cycles to Mbytes/second, using a 750 MHz processor. The black line on the bottom in the graph is
the software CRC performance: low throughput and independent of the packet size. The red line
on the top is the hardware CRC performance: much higher throughput than software, even at small
packet sizes. As the packet size increases, the hardware CRC performance increases, especially
between 128 bytes and 1024 bytes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-43

Figure 18: Graph of Hardware Versus Software CRC – 750 MHz Processor

128, 863.71

256, 1,289.48

512, 1,711.27

1024, 2,045.87

2048, 2,267.56
4096, 2,397.45

12
8,

 4
7.

73

25
6,

 5
0.

81

51
2,

 5
2.

50

10
24

,
53

.3
8

20
48

,
53

.8
4

40
96

,
53

.8
1

0

500

1,000

1,500

2,000

2,500

3,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

M
By

te
s

/ S

Packet Size

Performance Comparison: Hardware CRC vs Software CRC
Maximum hardware throughput much larger than software, even at small packet sizes.

HW CRC

SW CRC

6.17 Hardware Hash Engine
All OCTEON cores have a built-in hash unit that performs MD5 and SHA hashing algorithms.
Software needing to implement such processing-intensive operations should be modified to take
advantage of this hardware acceleration.

6.17.1 Sample Code: Using the OCTEON Processor HASH Engine
RFC 1321 specifies the MD5 algorithm and has an implementation that computes the MD5 hash of
an arbitrary memory buffer called MD5String. This same functionality can be implemented on
OCTEON cores using the built-in hash unit as shown below.

#include "cvmx.h"
/**
 * Calculate the MD5 hash of a block of data
 *
 * @param md5 Filled with the 16 byte MD5 hash
 * @param buffer Input data
 * @param buffer_len Inout data length
 */
static void hash_md5(uint8_t *md5, const uint8_t *buffer, int buffer_len)
{
 const uint64_t bits = swap64(buffer_len * 8); /* MD5 expects
 Little Endian */

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

 const uint64_t *ptr = (const uint64_t *)buffer;
 uint8_t chunk[64];

 /* Set the IV to the MD5 magic start value */
 CVMX_MT_HSH_IV(0x0123456789abcdefull, 0);
 CVMX_MT_HSH_IV(0xfedcba9876543210ull, 1);

 /* MD5 input is in the following form:
 1) User data
 2) Byte 0x80
 3) Optional zero padding
 4) Original Data length in bits as an 8 byte unsigned integer
 Zero padding is added to make the 1-4 an even multiple of 64
 bytes */

 /* Iterate through 64 bytes at a time */
 while (buffer_len >= 64)
 {
 CVMX_MT_HSH_DAT(*ptr++, 0);
 CVMX_MT_HSH_DAT(*ptr++, 1);
 CVMX_MT_HSH_DAT(*ptr++, 2);
 CVMX_MT_HSH_DAT(*ptr++, 3);
 CVMX_MT_HSH_DAT(*ptr++, 4);
 CVMX_MT_HSH_DAT(*ptr++, 5);
 CVMX_MT_HSH_DAT(*ptr++, 6);
 CVMX_MT_HSH_STARTMD5(*ptr++);
 buffer_len-=64;
 }

 /* The rest of the data will need to be copied into a chunk */
 if (buffer_len > 0)
 memcpy(chunk, ptr, buffer_len);

 chunk[buffer_len] = 0x80;
 memset(chunk + buffer_len + 1, 0, sizeof(chunk) - buffer_len - 1);

 ptr = (const uint64_t *)chunk;
 CVMX_MT_HSH_DAT(*ptr++, 0);
 CVMX_MT_HSH_DAT(*ptr++, 1);
 CVMX_MT_HSH_DAT(*ptr++, 2);
 CVMX_MT_HSH_DAT(*ptr++, 3);
 CVMX_MT_HSH_DAT(*ptr++, 4);
 CVMX_MT_HSH_DAT(*ptr++, 5);
 CVMX_MT_HSH_DAT(*ptr++, 6);

 /* Check to see if there is room for the bit count */
 if (buffer_len < 56)
 CVMX_MT_HSH_STARTMD5(bits);
 else
 {
 CVMX_MT_HSH_STARTMD5(*ptr);
 /* Another block was needed */
 CVMX_MT_HSH_DATZ(0);
 CVMX_MT_HSH_DATZ(1);
 CVMX_MT_HSH_DATZ(2);
 CVMX_MT_HSH_DATZ(3);
 CVMX_MT_HSH_DATZ(4);

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-45

 CVMX_MT_HSH_DATZ(5);
 CVMX_MT_HSH_DATZ(6);
 CVMX_MT_HSH_STARTMD5(bits);
 }

 /* Get the final MD5 */
 CVMX_MF_HSH_IV(((uint64_t*)md5)[0], 0);
 CVMX_MF_HSH_IV(((uint64_t*)md5)[1], 1);
}

6.17.2 Performance Comparison: Hardware versus Software Hashing
Using the OCTEON MD5 hashing hardware acceleration increases the performance of this
functionality significantly for all block sizes and is shown in the table below. The numbers
indicate the number of CPU cycles required to perform the hash over the block of data.

Table 5: Performance Comparison: Hardware versus Software Hashing
Block Size 128 256 512 1024 2048 4096

OCTEON MD5
Hardware (cycles per
block)

724 817 1,446 2,706 5,226 10,266

RFC1321 Software
(cycles per block) 5,242 6,513 10,661 18,971 35,595 68,843

The OCTEON hardware MD5 hashing unit yields six to seven times performance improvement
over optimized software implementations.

6.18 Hardware Timers
The OCTEON processor provides 16 timer rings. The Simple Executive Timer API configures one
timer ring per core, eliminating the need to lock the timer ring data structure. Software configures
the timer ring’s interval.

Software can create a timer event by allocating a Work Queue Entry (WQE) Buffer from the FPA
Timer pool, and initializing it. It adds the WQE pointer to the timer ring’s to-do list corresponding
to how far in the future the event needs to be processed.

The hardware Timer unit will traverse the timer ring data structure, processing one to-do list per
interval. For each Timer Entry in the to-do list, the Timer unit adds the Work Queue Entry pointer
to the SSO’s Input Queue using the add_work operation. Software will receive the Work Queue
Entry in response to a get_work operation, and then process the Work Queue Entry.
After traversing the to-do list, hardware zeroes the list. These timers are one-shot timers.
The Timer unit traverses up to 80 million timer entries per second.

An example of utilizing the hardware Timer unit is the TCP acknowledgement timer. When a
packet is sent out, the TCP stack expects to receive an acknowledgement for the packet from the
receiver. If the stack does not receive the acknowledgment within a certain amount of time, it
retransmits the packet. Software can create a hardware timer entry with a specific time interval. If

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
T

U
N

IN

 OCTEON Programmer’s Guide

6-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

A
N

C
E

G

the acknowledgment arrives with in this time, software cancels the timer; otherwise the Timer unit
schedules the Work Queue Entry. On receiving the Work Queue Entry (in response to a getwork
operation), software knows that it has to re-transmit the packet.

6.19 Hardware Fetch and Add (FAU) Unit
Collecting global statistics with multiple cores can be expensive and requires locking operations to
protect the integrity of the statistics. The Fetch and Add (FAU) unit provides atomic update
operations and can be used for these types of operations. Using the FAU to do these operations
will offload software.

Example code is available in the SDK. One example which uses the FAU unit is linux-
filter.

6.20 Asynchronous Fetch and Add Operations
The Fetch and Add (FAU) unit supports both synchronous and asynchronous mode of operation.
In synchronous mode, an update request is sent to the FAU unit and the core waits for the response
to come back. For certain operations (for example updating statistics) the value of the count is not
required at the point it is being updated. For these types of operations, an asynchronous fetch-and
add-operation can be used, which is very fast. In this mode, an update request is sent and the core
does not wait for the response. The value of the statistics can be extracted from the FAU later.

Note that both the synchronous and asynchronous operations require configuration of a scratchpad
location for the SSO to store the returned pointer.

6.21 Work prefetch: Asynchronous get_work
The get_work operation may also be done asynchronously. The core can continue doing
processing while waiting for the asynchronous get_work to return the next work to do (usually
this corresponds to a packet to process). The Simple Executive API call is
cvmx_async_get_work.

Note that this operation requires configuration of a scratchpad location for the SSO to store the
returned pointer.

6.22 Interleaving Prefetch with Computational Instructions
Interleaving is requesting the data slightly before it is actually used. This can reduce the amount of
time the core spends waiting for the data to arrive (minimize pipeline stalling). Ideally, prefetch is
interleaved with computational instructions.

6.22.1 Sample Code: Interleaving Prefetch
An example of interleaving is seen in the sample code in Section 6.16 – “Hardware CRC Engine”.
The following code, taken from that example, uses interleaving:

t1 = *data++; // start the fetch of t1
t2 = *data++; // start the fetch of t2 (delay before using t1)

CVMX_MT_CRC_DWORD_REFLECT(t1); // use t1
CVMX_MT_CRC_DWORD_REFLECT(t2); // use t2

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-47

6.23 Hardware TCP/UDP Checksum Calculation
The Packet Output (PKO) Unit can add the TCP Checksum, which improves performance. The
software does not need to calculate the checksum.

If WORD0[IPoffp1]of the command to the PKO is non-zero, the PKO hardware will generate
and insert the TCP/UDP checksum.

See the Hardware Reference Manual for details.

6.24 Use Functions Wisely
When doing small operations, especially in a time-critical loop, stay alert to the overhead added by
a function call. If the operation is small, it may be that a function call is not the best choice: it may
cost many instructions versus only a few.

For example, when copying six bytes of data (for instance, MAC addresses), is it more efficient to
use six assignment statements instead of memcpy().

6.25 Update Bit-Fields Wisely
When updating bit fields, be alert to whether the data being updated is still in the L1 Dcache. If it
is then there will be no performance issue from the operation.

If the data is no longer in L1 Dcache then it is important to know that the OCTEON processor can
only do loads and stores on bytes or words, not on bits. To write the bit-field, the processor will
need to load the byte or word into L1 Dcache, modify it, and then write it out. The performance is
slowed by the cache miss penalty.

By contrast, if the entire byte or word is stored, it does not need to be loaded into Dcache first: the
write goes from the Write Buffer to L2 cache without a load into L1 Dcache.

Note that if you know that the data is already present in the L1 cache, you can do the usual
individual structure bit field update (first case mentioned above) without paying the price of a
cache miss.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Figure 19: Cache Miss When Doing Bit-field Writes
Incorrect: Write Bits in Byte Only: Read/Modify/

Write – Cache miss if data is not in Dcache

CORE

Level-2 Cache
Controller (L2C)

Write Buffers

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

f
lu
s
h

L1 Dcache

Lo
a
d

t
o

D
c
a
c
h
e

lo
ad

f
l
us
h

Software

w
r
i
t
e

re
a
d 1

7

3

4
5

6

2

If L2 cache
miss, then

flush to
DRAM

r
e
ad

-

m
i
s
s

Correct: Write Whole Byte: Write without
need to read data into Dcache: no cache

miss.

CORE

Level-2 Cache
Controller (L2C)

Write Buffers

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

wr
i
t
e

L1 Dcache

Software

1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-49

6.25.1 Sample Code: Updating Bit-Fields Wisely
To order to avoid the cache miss penalty, update the individual bit fields locally and write them
back as a complete byte or a word. For example, you may have a structure like:

typedef union
{
 uint16_t u16;
 struct {
 uint16_t bit_15: 1;
 uint16_t bit_14: 1;
 uint16_t bit_13: 1;
 uint16_t bit_12: 1;
 uint16_t unused: 12;
 } s;
} bit_struct;

The following code will cause a cache miss:

bit_struct bstr;

uint16_t bit_15_value = 1;
uint16_t bit_14_value = 0;
uint16_t bit_13_value = 0;
uint16_t bit_12_value = 0;
uint16_t unused_value = 0;

bstr.s.bit_15 = bit_15_value; // this line will cause a data cache miss
bstr.s.bit_14 = bit_14_value;
bstr.s.bit_13 = bit_13_value;
bstr.s.bit_12 = bit_12_value;
bstr.s.unused = unused_value;

The following code will avoid the cache miss:
bit_struct bstr;
uint16_t bit_15_value = 1;
uint16_t bit_14_value = 0;
uint16_t bit_13_value = 0;
uint16_t bit_12_value = 0;
uint16_t unused_value = 0;
uint16_t local_val = 0;

local_val = ((bit_15_value << 15) |
 (bit_14_value << 14) |
 (bit_13_value << 13) |
 (bit_12_value << 12) |
 (unused_value << 11)) & 0xffff;

bstr.u16 = local_val; // this will write the complete 16 bits without
 // a cache miss penalty

6.26 Read After Write
If a write is being done on data which is not present in L1 Dcache, the writes will go through the
Write Buffers without touching Dcache. If we read the data after the write, the data may not be in

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Dcache. If the data is not in Dcache, the system will need to flush the writes to L2/DRAM, and
then bring the cache line into L2 Dcache. There is a big performance penalty for this. It is better
to save a local copy of the data and read that copy as needed, than to read the copy just written.

Figure 20: Read after Write Performance Penalty
Correct: Write without subsequent read.
Use a local copy if you need to access

the data during write.

CORE

Level-2 Cache
Controller (L2C)

Write Buffers

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

Incorrect: If data is no longer in Dcache, read
after write requires the data to be flushed, then

brought into Dcache.

CORE

Level-2 Cache
Controller (L2C)

Write Buffers

DRAM Controller
(Local Memory

Controller (LMC))

DDR2 SDRAM

L2 Cache

L1 Dcache L1 Dcache

SoftwareSoftware

Local
Variable

1
2

1
7

3

4
5

6

2

If L2

cache
miss,

flush to
DRAM

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-51

6.26.1 Sample Code: Read after Write
Here is an example (assuming that “swp” is not in L1 Dcache):

swp->len = 40;
swp->packet_ptr.s.i = 1;
swp->packet_ptr.s.addr += CVM_TCP_BU EFF R_START_SKIP;
swp->packet_ptr.s.size = swp->len; // Here we READ the value just
 // written: inefficient
swp->word2.s.not_IP = 0;

In order to avoid this problem, use a local variable for the value needed later in the code, as shown
in the following code sample:

int tlen = 40; // local variable for later use: efficient

swp->len = tlen;
swp->packet_ptr.s.i = 1;
swp->packet_ptr.s.addr += CVM_TCP_BUFFER_START_SKIP;
swp->packet_ptr.s.size = tlen;
swp->word2.s.not_IP = 0;

7 Tuning Multi-core Applications (Scaling)

7.1 Re-Configuring the Right Amount of Packet Data Buffers and WQE
Buffers

Review the system requirements and verify that sufficient numbers of Packet Data Buffers and
Work Queue Entry Buffers have been configured into the Free Pool Allocator pools.

7.2 Tune Initial Tag Values to Separate Flows
The packet’s initial tag value is set on ingress by the PIP/IPD. The initial tag value is used to
separate flows. More unique flows will improve scaling by creating more unique Tag Tuples.
When ATOMIC locks are used, more unique Tag Tuples equates to more locks. There will be
fewer processes contending for the same lock, improving throughput.

7.3 Set Initial Tag Type to ORDERED if Possible
The packet’s initial tag type is set on ingress by the PIP/IPD. The initial tag type may be set to
ORDERED, ATOMIC, or NULL. Packets with the same tag value and an ATOMIC tag type are
processed one at a time. This creates a bottleneck. In some cases the bottleneck cannot be
avoided, but whenever possible, use the ORDERED tag type. Packets with the ORDERED tag
type may be processed in parallel by multiple cores.

7.4 Switch Tag Type to ORDERED or NULL when Possible
Whenever possible, software should use the switch_tag operation to change the tag type from
ATOMIC to ORDERED or NULL.

7.5 Use Asynchronous Switch Tag Operations
When using the switch_tag operation, the core may continue to do other processing while
waiting for the tag switch to complete. The core is notified via the Switch Complete Bit (hardware

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

register 30) that the switch has completed. By using the RDHWR instruction, the core may check on
the status of the Switch Complete Bit. When the bit is set, the switch is complete.

7.6 Critical Regions
Critical regions are areas of code where only one process may enter at a time. The
processes/threads accessing the region might be one of many on the same core (multi-
process/multi-thread), or on different cores (multi-processor). These critical regions are usually
brief. An introduction to concurrent processing issues is provided in Section 5.4 – “Concurrent
Programming Techniques”. In Section 7.7 – “Replace Spinlocks with Packet-Linked Locks When
Possible”, locking will be discussed in more detail.

An example of a critical region is modification of the TCP/IP control block, which is usually
located in shared memory. Multiple processes or multiple processors need to update it when a
packet is sent or received on that particular connection.

In a single-processor environment with multiple processes (multi-processing), mutexes are
commonly used to protect critical regions. In multi-processor environment, mutexes are
implemented by a spinlocks. Spinlocks causes the CPU to wait until the lock is granted. The CPU
cannot do anything else while waiting.

Architectural goal #1: minimize, if not eliminate “serialized processing regions” (critical regions
which only one process can enter at a time). There are Cavium Networks-specific ways to
minimize critical regions (such as improving Tuple Hash calculation (see Section 7.2 – “Tune
Initial Tag Values to Separate Flows”).

Architectural goal #2: Where critical regions exist and are highly contended, use packet-linked
locks instead of spinlocks (see Section 7.7 – “Replace Spinlocks with Packet-Linked Locks When
Possible”).

7.7 Replace Spinlocks with Packet-Linked Locks When Possible
The OCTEON processor provides packet-linked locks which can be used instead of spinlocks.
These packet-linked locks are implemented using the ATOMIC tag type. See the Packet Flow
chapter of the OCTEON Programmer’s Guide for more information.

7.7.1 Spinlocks
Spinlocks are used to protect critical regions, allowing only one process to access the region at a
time.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-53

Spinlocks can have the following problems, especially when the level of contention is high (a lot of
processes or processors want the lock):

1. They do not grant fair access, may starve some processes.
2. They do not provide access in any particular order.
3. They do not allow the process to do anything while waiting for the lock.
4. They take an indeterminate amount of time before the lock is granted (since there is no

particular order to grant – the same core may get the lock multiple times, while another core
may not get it at all).

5. They become even more problematic (higher contention) with scaling: more processes
want the lock, more overhead of trying to get it, more chance of starvation. Less
probability of winning the lock in a larger group of contenders.

7.7.2 The Scheduling / Synchronization / Order Unit and ATOMIC Tag Type
The Scheduling / Synchronization / Order (SSO) unit (also known as the Packet / Order / Work
(POW) unit) on the OCTEON chip provides an ideal locking mechanism, especially useful when
scaling applications. This mechanism is referred to as a packet-linked lock. Note that this
mechanism does not provide a general-purpose lock. This mechanism is designed to use during a
packet processing ATOMIC phase, such as locking the TCP/IP control block.

Using this hardware assistance:

• The lock is granted fairly: All packets from the same flow will receive the lock in ingress
order. This eliminates starvation, and provides fairness in granting the lock.

• Access is in ingress order: All packets from the same flow will receive the lock in ingress
order.

• The process does not wait: The core may request the lock before it is needed, continue
processing up to the point of actually needing the lock, or work on some other part of
processing, then when it gets the lock, enter the critical region. This is impossible to do
with a spinlock.

• The time before the lock is granted is deterministic: Since all packets from the same flow
receive the lock in ingress order, the delay depends only on the length of the critical region
and the number of prior packets in the flow waiting for the lock.

• Performance will not degrade when scaling. The time before the lock grant is still
determined by the length of the critical region and the number of prior packets in the flow
waiting for the lock.

• Additionally, due to the hardware assistance from the SSO, the core doesn’t spend any time
figuring out whom to grant the lock to next. All this overhead is offloaded to the SSO.

Note that a core may only request/hold one lock at a time.

This feature uses the ATOMIC tag type. When the process wants the lock, it switches the tag type
to ATOMIC, then checks later to see if the lock has been granted. More details can be found in the
SSO (POW) chapter in the Hardware Reference Manual.

The packet’s initial tag type is assigned by the PIP/IPD on ingress. The core may later switch the
tag type. For instance, the initial tag type may be ORDERED. ORDERED packets may be

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

processed in parallel, on multiple cores. When the core wants to lock a critical region, it switches
the tag type to ATOMIC.

Note that packet-linked locks are used as part of packet processing, not as general-purpose locks.
Also, since the core may have only one outstanding lock request at a time, this lock cannot be used
in situations where two locks are required.

Table 6: Spinlock versus SSO Packet-Linked Locking
Features SSO Packet-

Linked Locks Spinlock

Lock is granted fairly yes no
Processes may be starved waiting for the lock no yes
Access is in ingress order yes no
Process is idle while waiting no yes
Lock grant time is deterministic yes no
Performance will not degrade when scaling yes no
Core is offloaded, work shifted to SSO yes no

7.7.3 Example of Spinlock versus SSO ATOMIC Locking
The following two examples (in pseudo code) illustrate the CPU continuing to work while waiting
for the lock:

7.7.3.1 Sample Pseudo code: Using Spinlock
In this case, the thread of execution will remain blocked in Spinlock_lock() until it is able to
obtain the lock. If this were a highly contested spinlock, the wait period would be non-
deterministic.

Do_non_serialized_region_processing();
Spinlock_lock(); // Inefficient: Blocked while
 // waiting
Do_serialized_region_processing();
Spinlock_unlock();

7.7.3.2 Sample Pseudo Code: Using SSO / ATOMIC Tag Type
The following code uses a tag switch to the ATOMIC tag type to lock the region. While waiting
for the lock to be granted, the core does other work.

Do_some_non_serialized_region_processing();
Initiate_atomic_tag_switch();
Complete_non_serialized_region_processing();

 // waiting
// Efficient: Work while

Wait_for_atomic_tag_switch_completion();
Do_serialized_region_processing();
Initiate_tag_switch_to_some_other_tag_or_NULL();

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-55

The SSO is responsible for figuring out which process gets the lock next, and notifying the process
when the lock has been granted. Since the SSO maintains the order of the requests, the lock may
be granted in a fair order. The order in which the lock is granted depends on the tag type before the
switch, how many requesters are waiting, and how long the critical region is.

7.8 Arena-based Memory Allocation
Memory allocation of variably sized shared memory regions can be another bottleneck. Imagine
the free memory is in a memory pool. Multiple cores wish to get the free memory. To allocate
free memory, the core locks the pool, removes the needed chunk of memory, then unlocks the pool.
Multiple cores contending for the same lock can introduce a delay.

 In arena-based memory allocation, the free memory is divided into multiple free pools (arenas).
These are put into a list of arenas. Any core can allocate from or free to any arena. The system
will look for one which is unlocked, and use that one for the requesting core. The virtual addresses
returned from this allocation are mapped into all cores, and thus can be shared.

Support for arena-based memory allocation is built-into the Simple Executive API.

Note that non-shared memory (on the core-local heap), is always available by using the standard
malloc() and free() function calls. These calls provide virtual addresses private to the core.
This memory is not subject to contention.
The Simple Executive functions which support arena-based memory allocation are:
cvmx_add_arena(), cvmx_malloc(), cvmx_calloc(), cvmx_realloc(),
cvmx_memalign(), and cvmx_free().

Figure 21: Arena Memory Allocation Reduces Contention

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

PE
R

FO
R

M
A

N
C

E

T
U

N
IN

G

 OCTEON Programmer’s Guide

6-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

7.9 L2 Cache Configuration: Way Partitioning and Cache-Block
Locking

Way partitioning can prevent specific cores or I/O devices from polluting the L2 Cache. See the
Hardware Reference Manual for more information.

L2C can lock individual cache blocks into the L2 cache. A locked block is not replaced (until it is
later flushed from the cache via the procedure described in the Hardware Reference Manual, or
until the chip is reset), so fast access to the block is guaranteed when it is locked.

See the Hardware Reference Manual for more information.

8 Linux-specific Tuning
In evaluating Linux-specific performance bottlenecks, it is important to measure whether most of
the time is spent in application time versus kernel time.

The following tuning suggestions may be worth your time: in one case, the improvement was from
200 connections per second to 25,000 changes per second.

8.1 TLB Exceptions and Huge Page Size
The default page size is 4KBytes. If performance testing shows a large number of TLB exceptions,
configure the TLB to use a larger page size, such as 32KBytes.

In one specific application, a shift from 4KBytes to 32KBytes pages yielded a 30% performance
improvement. The ideal page size will depend on your application.

8.2 Use CPU Affinity for Processes/Threads
Performance will be improved if CPU affinity is used to bind a process/thread to a core. For
example, the RX process can run on one core (or a small collection of cores). For each of these
cores, the RX process can be the only process running on the core, so it will not have to context
switch and scheduling overhead is small.

8.3 Direct all Packet RX Interrupts to the Same Core
If packet RX interrupts are sent to all cores, not just those which can process the interrupt, then the
other cores will have unnecessarily degraded performance.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-1

Glossary

5-tuple
5-tuple is a common networking term which refers to classification of a packet by its IP
protocol, IP source address, IP destination address, and (if present) source port and destination
port.

address
In this document, the word address refers to a physical address.
ALU
Arithmetic Logic Unit. The part of the core which performs arithmetic operations such as add,
multiply, shift, and compare. See the HRM core block diagram for details.
API
Application Programming Interface. Typically, this is code which provides a convenient
interface to the hardware units.
ATOMIC tag type
The ATOMIC tag type is used for locking. Only one in-flight packet with the same tag tuple can
have the ATOMIC lock. ATOMIC tag tuple processing is serialized: one-at-a-time in ingress-
order. This tag type can be used to protect critical regions. This is how packet-linked locks are
implemented. The SSO will grant the lock in ingress order, not the order the request for the
ATOMIC tag type was made.

barrier sync, barrier synchronization
Barrier synchronization is used to synchronize the cores. Typically, one core performs program
initialization while the other cores wait. When initialization is complete, the initializing core
writes a value to a memory location. The other cores wait until the value is written.

base SDK
The base SDK is one of the RPM files supplied by Cavium Networks. The base SDK includes:
• The complete GNU-based tool chain including the compiler, linker, and generic libraries,
optimized to take advantage of the cnMIPS cores contained within the OCTEON processor.
• The OCTEON software simulator, which includes performance measuring tools.
• Cavium Networks Simple Executive: software that enables quick application development.
This software provides a C or C++ API to the underlying hardware.
• Several example applications.

bit field
Bit field refers to a subset of a byte or a word. Bit field accesses are common when processing
packet headers.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

bootloader
The bootloader is the program which initializes the board. This program is typically stored in
flash, but can also be downloaded and booted from a PCI host.
buffer pool
A buffer pool is a collection (pool) of free buffers used for a common purpose. Buffer pools are
managed by the FPA Unit.
bus
A bus is one specific connection with a dedicated purpose, direction(s), and bandwidth. More
than one device can be on the same bus.
Cached Input Queue
The Cached Input Queue is the portion of the SSO QoS Input Queue which fits into the SSO's
internal memory. Each Cached Input Queue is comprised of linked WD. Each WD in the list
contains a pointer to a corresponding WQE.

CMB
See Coherent Memory Bus.
CMI
Coherent Memory Interconnect. The OCTEON II enhanced version of the CMB.
cnMIPS
The term cnMIPS refers to Cavium Networks version of MIPS, which contains additional
Cavium Network-specific instructions.
code locality
Code locality refers to limiting the instructions run by a core to a small subset of code which will
fit in Icache. This is done to improve performance in some applications. Once the instructions
are loaded into Icache, the Icache misses drop as close to zero as possible. Note that this is not
the optimal design in all situations.

Coherent Memory Bus
CMB. The Coherent Memory Bus is actually an interconnect, not a bus. This interconnect
connects the cores, the L2 cache controller, and the I/O Bridge. The coherent bus is responsible
for making sure the data in Dcache is invalidated if cache block is changed in the L2 cache.

control-plane application
Application functions may be divided into two categories: control-plane (slow path), and data-
plane (fast path). The control-plane usually handles exceptions.
Coprocessor0
Coprocessor0 (Cop0) is a standard MIPS coprocessor which is used for system control, TLB,
and exception handling.
Coprocessor1
Coprocessor1 (Cop1) is a standard MIPS coprocessor which is used for floating point
processing. This coprocessor is not supported on cnMIPS.
Coprocessor 2
Coprocessor2 (Cop2) is used to provide the Security Engine and the CRC Engine.

G
L

O
SSA

R
Y

7-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-3

Core State Descriptor
Inside the SSO, there is one Core State Descriptor data structure for each core. When the core
performs a successful get_work operation, a Work Descriptor is removed from the Cached
Input Queue and assigned to the core. A pointer to the assigned Work Descriptor is stored in the
Core State Descriptor. The Work Descriptor contains a pointer to the WQE. The get_work
operation returns the WQE pointer to the core.

CRC Engine
The CRC Engine is used to accelerate Cyclic Redundancy Check (CRC) generation. There is
one CRC Engine per core.
critical region
A critical region is typically a short section of code where one-at-a-time access is critical. For
example, code which modifies shared data structures. Critical regions, such as code which
modifies shared data structures, may be protected by using packet-linked locking, which is
implemented by the ATOMIC tag type. When a core needs to access a critical region, it changes
the Work Descriptor’s tag type from ORDERED to ATOMIC.

Crypto Unit
The Crypto Unit is also called the Security Coprocessor or Security Engine.
CSR
Control and Status Register. These registers are used to configure the hardware units, and query
status.
cvmseg
Part of the per-core data cache (Dcache) may be set aside for IOBDMA operations and
scratchpad memory. This area of virtual memory is referred to as cvmseg. The amount of
Dcache used for cvmseg is set when either Simple Executive or Linux is configured. Note that
since space for cvmseg comes from Dcache, keeping the size of cvmseg to a minimum will help
system performance by leaving more Dcache blocks available for the application. The special
cvmseg memory is configured at build time for both Simple Executive applications and Linux.

cvmx
A prefix commonly found in the code, which stands for CaViuM networks eXecutive (the
Simple Executive).
cvmx_shared region
The cvmx_shared region is a special section in the ELF file which can be used for a small
amount of shared memory. This memory is shared between the members of a load set.
data cache
DCACHE. There is one data cache per core, located in the core's L1 cache area. Writes from
the core go to the Write Buffer (also in L1 cache). From there, they are written simultaneously
to the DCACHE and the L2 cache. DCACHE is both readable and writable.

data-plane application
Application functions may be divided into two categories: control-plane (slow path), and data-
plane (fast path). The data-plane handles normal packet processing.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

Dcache
See data cache.
deschedule
The core may perform an operation to deschedule the Work Descriptor, so that the Work
Descriptor is no longer assigned to the core. The SSO will reschedule the work descriptor to the
same or a different core, using the normal scheduling criteria. A descheduled work descriptor
which is runable has a higher priority than a Work Descriptor which has never been scheduled.

Descheduled-Now-Ready List
Descheduled Work Descriptors which are runable are put on the Descheduled-Now-Ready List
(DS-Now-Ready List). When a core requests more work, the scheduler will check this list
before checking the Input Queues.

development host
To avoid confusion with the term PCI host, the term development host is used to describe the
i386 or x86_64 machine which is used as a cross-development platform.
development target
The term development target refers to the OCTEON evaluation board connected to the
development host.
DFA Unit
See Pattern Matching and Regular Expression Engine.
DMA
Direct Memory Access. Hardware units can access memory independently from the CPU.
Don't Write Back
DWB. This OCTEON feature is used to avoid unnecessary L2 data writes to memory. For
example, the packet data in L2 cache can be discarded after the packet is transmitted. In a
conventional L2 cache design, all dirty data is written back to memory. The OCTEON
processor provides the option not to write back selective data.

DS-Now-Ready List
See Descheduled-Now-Ready List
dual-issue
More than one ALU instruction may be processed at a time by a core.
DWB
See Don’t Write Back
ELF executable file, ELF file
The ELF executable file, or (ELF file) is an executable ELF-format application, the output of the
linker (for example, the a.out file).
FAU
Fetch and Add Unit. This unit is used to add a number to a memory location, and can be used to
manage counters.
flow
Flow is a common networking term which refers to a uni-directional collection of packets which
share the same 5-tuple.

G
L

O
SSA

R
Y

7-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-5

FPA Unit
Free Pool Allocator Unit. This unit manages pools of free buffers, including Packet Data
Buffers. It can be used as a general buffer manager, not only as a packet buffer manager.
group (Grp)
The packet's group value is assigned by the PIP/IPD on input. Work groups are used to balance
the processing load among the different cores, providing architectural flexibility. Each group
can have from 0 to all of the cores. Cores can be in more than one group. The number of cores
in each group can easily be changed by software, allowing the application to dynamically adapt
to varying workload requirements. When a core requests more work to do, the SSO will only
schedule work from an appropriate group to the core.

HRM
Cavium Networks Hardware Reference Manual.
hybrid system
A hybrid system is a multicore OCTEON processor where more than one boot command has
been used to load the cores, such as a system with both SE-S and Linux SE-UM applications.
I/O Bridge
IOB. I/O Bridge. The bridge connecting the CMB interconnect and the I/O interconnect.
I/O Interconnect
IOI. The I/O Interconnect is a collection of buses which connect hardware units which are not
connected to the CMB. The I/O Bridge is connected to both the IOI and the CMB.
I/O Space, I/O Space Address
The I/O space contains the OCTEON configuration and status registers for the various hardware
units and also contains the PCI configuration, I/O and memory space. If physical address bit 48
is 1, the access is to I/O space.

Icache
See instruction cache.
In-Flight Queue
Once the WD has been assigned to a core, it is considered to be in-flight, even if it is pending a
tag switch or descheduled. Work with the same tag tuple is on the same In-Flight Queue. If
there are no in-flight Work Descriptors for a particular tag tuple, there is no In-Flight Queue for
that tag tuple. Note that more than one WD from the same flow can be in-flight simultaneously.
The In-Flight Queues are internal to the SSO, and maintained by the SSO. They are essential to
maintaining packet order, critical region locks, and packet serialization.

in-flight Work Descriptor
Once a Work Descriptor has been scheduled on a core, it is considered to be in-flight until it is
discarded by a subsequent get_work operation or a switch to the NULL tag type. Descheduled
Work Descriptors are also considered to be in-flight, since processing on the associated WQE
has started, but has not completed.

ingress order
The ingress order is the order that packets from the same flow arrived at the PKI and were
submitted to the SSO.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

initial In-Flight Queue
The initial In-Flight Queue is the In-Flight Queue the Work Descriptor is on when the tag switch
request begins.
in-memory image
After storing the ELF file in the Reserved Download Block, the bootloader reads the ELF file,
parses it, allocates system memory for the in-memory image, and creates the in-memory
image(s) in different system memory location(s). Note the application’s in-memory image size
is larger than the ELF file size because it includes memory allocated for the stack and heap. The
program will run from the in-memory image. There is one in-memory image per instance in a
load set; if a load set consists of 4 cores, there are 4 in-memory instances of the program.
Input Queue
The Input Queues are the QoS queues maintained by the SSO. The SSO has 8 input queues (0-
7), one per QoS value. When a new WQE is added to the SSO, the WQE goes onto the input
queue which matches its QoS value. When the WQEs are added to the SSO’s input queue, the
“Next Pointer” is used to link them into a list. The Input Queues can consist of two parts: the
Cached Input Queues and the Overflow Input Queues.

instruction cache
Icache. There is one per core, located in the core's L1 cache. The instruction cache is read-only.

interconnect
An interconnect is a group of buses with a specific common purpose, such as to connect a
specific collection of devices.
IOB
See I/O Bridge
IOBDMA
The term IOBDMA refers to an I/O Bridge DMA operation. IOBDMA operations are
asynchronous (the program does not wait for the result). When the program is ready to use the
buffer, it issues a SYNCIOBDMA operation to make sure all the IOBDMA operations for that
core have completed, and then retrieves the returned buffer address from the scratchpad.

IOBI
I/O Input Bus. One of the buses in the I/O Interconnect.
IOBO
I/O Output Bus. One of the buses in the I/O Interconnect.
IOI
See I/O Interconnect.
IPD Unit
Input Packet Data Unit: This unit works with PIP to manage packet input.
IPDB
IPD Bus. The IPDB is used to DMA received packet data from the IPD to L2/DRAM.

G
L

O
SSA

R
Y

7-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-7

KEY Unit
The KEY Unit provides and manages secure on-chip memory which can be used to store a
hardware key, and can be reset using an external pin. This unit is not present in all OCTEON
models.
kseg0
The kseg0 segment is in the kernel address space (unmapped, uncached) in the 32-bit MIPS
virtual memory address map. On cnMIPS, accesses to this segment access system memory,
which is always cached on OCTEON. SE-S 32-bit applications run in kernel mode and access
system memory through kseg0 addresses.
kseg1
The kseg1 segment is in the kernel address space (unmapped, cache attribute not defined for
generic MIPS) in the 32-bit MIPS virtual memory address map. On cnMIPS, accesses to this
segment access system memory, which is always cached on OCTEON.
kseg3
The kseg3 segment is in the kernel address space (mapped) in the 32-bit MIPS virtual memory
address map. On cnMIPS, user mode access is allowed only to cvmseg, which is inside kseg3.
L1 cache
Each core has a private L1 cache. This cache is divided into the data cache (Dcache) and
instruction cache (Icache).
L1 data cache
See data cache.
L1 instruction cache
See instruction cache.
L2 cache
The L2 cache is shared by all the cores. Different OCTEON models offer different L2 cache
sizes and features.
L2 Cache Controller
L2C. The L2 cache controller is responsible for managing the L2 cache and the interface to the
DRAM controller.
L2C
See L2 Cache Controller.
LLMEM
Low Latency Memory. Some OCTEON models use low latency memory as the pattern memory
used by the Pattern Matching and Regular Expression Engine.
LMC
Low Latency Memory Controller
Load Set
All cores booted by the same load command are in the same load set. For SE-S applications, all
cores loaded via the same bootoct command are in the same load set. For SE-UM application
started from Linux, all cores started by the same oncpu command are in the same load set.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

named block
Global boot memory can be allocated and accessed via names. These named blocks are useful
for creating memory blocks which can be shared between different load sets.
NULL tag type
NULL tag types are neither ordered nor serialized: multiple cores can process multiple packets,
and no packet order is maintained by the SSO. Examples of packets where ordering may not be
important include ICMP packets (such as ping packets), UDP packets where ordering is not
required, and non-IP packets. If a WD assigned a NULL tag type on ingress, then the SSO will
assign it on a core, but will not put it in an In-Flight Queue. The NULL tag type means that the
SSO will not keep the packets with the same tag tuple in ingress order.

ORDERED tag type
Multiple packets from the same flow with an ORDERED tag type may be processed in parallel
by multiple cores. Thus, “ORDERED” does not mean “only one packet at a time”.

Output Queue
See PKO Output Queue.
Overflow Input Queue
The Overflow Input Queue is the portion of the SSO QoS Input Queue which does not fit into the
SSO's internal memory. This queue is comprised of linked WQE Buffers.
PABITS
On MIPS, xkphys addresses are not mapped, and are never translated by the operating system or
TLB. The xkphys addresses provide a “window” into the physical address space. The high bits
are stripped off the virtual address, and the low PABITS (Physical Address BITS) are used as a
physical address. On OCTEON, PABITS is 49: bits <48:0>, matching the number of SEGBITS
(49).

Packet Data Buffer
The Packet Data Buffer is used to store packet data if the packet data will not fit in the WQE.
Packet Data Buffers are managed by the FPA, automatically allocated by the PIP/IPD, and
automatically freed by the PKO.

packet-linked lock
The ATOMIC tag type is used to provide packet-linked locks. These locks can be used instead
of spinlocks. They provide ATOMIC access to packets in ingress order, and can be used
asynchronously so that the core may continue processing while waiting for the lock to be
granted. These locks off-load the cores, because they are managed by the SSO.

pattern memory
The pattern memory is off-chip memory which is used with the Pattern Matching and Regular
Expression Engine. This memory can also be accessed via instructions from the core.
Pattern Matching and Regular Expression Engine
This unit is used to perform string matching. The unit has different names on different
OCTEON models, for example Deterministic Finite Automata (DFA). This unit is not present in
all OCTEON models.

G
L

O
SSA

R
Y

7-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-9

physical address
At the hardware level, transactions requiring addresses use physical addresses. For instance, the
“allocate” and “free” operations use the physical address of the buffer in DRAM, not a virtual
address. When accessing hardware registers directly, be aware that addresses sent and returned
are physical, not virtual addresses.

PIP Unit
Packet Input Unit. This unit is responsible for receiving, buffering, classifying, and tagging an
input packet. It then gives it to the SSO for scheduling. It may also drop the packet due to
configurable admission control.

PKI Pseudo Block
PacKet Input Pseudo Block. This pseudo block contains the PIP and IPD hardware units.
PKO Output Ports
The PKO supports up to 40 PKO Output Ports, depending on the OCTEON model. Different
ports correspond to the different hardware interfaces.
PKO Output Queue
The PKO has up to 256 PKO Output Queues, depending on the OCTEON model. The Output
Queues are mapped to the Output Ports. The Output Queues can have different priorities, which
are configured at system initialization time. To insure that all packets from the same flow are
transmitted in ingress order, send them all to the same Output Queue.

PKO Unit
Packet Output Unit. This unit manages packet output.
PKOB
PKO Bus. Used to DMA packet data from L2/DRAM to the PKO's internal memory.
POB
Packet Output Bus. Used to transfer packet data from the PKO's internal memory to the output
port.
pointer
In this document, the word pointer refers to a C or C++ data type which holds a virtual address,
NULL, or an invalid address.
POW Unit
Same as SSO Unit. The term POW is used in the HRM.
PP
Packet Processor. This term is used primarily in the HRM.
prefetch
The word prefetch is used to describe IOBDMA operations which can be used to allocate free
buffers before they are needed. See also prefetch instructions.
prefetch instructions
OCTEON processors provide multiple prefetch instructions to move data into L1 and/or L2
caches prior to the application needing the data. These instructions are used to avoid cache
misses. See also prefetch.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

processor
In this document, the word processor refers to the entire chip, with all of the different functional
hardware blocks including all of the cores on the chip. Individual cores are called cores, not
processors.
QoS Input Queues
See Input Queue.
QoS Value
See Quality of Service Value.
Quality of Service value
The Quality of Service value is a number (0-7) which represents the priority of the packet. When
packets are received, the PIP/IPD computes the QoS number for the packet, and saves the value
in the Work Queue Entry. There is no requirement for 0 or 7 to be the highest priority, and there
is no requirement for the priority to be linear.

RAID Engine
The RAID Engine provides RAID/XOR Acceleration. This unit is not available in all OCTEON
models.
RED
Random Early Dropping. If internal buffers are approaching full, packets may be dropped.
reserve32
A special region of free memory which is low enough to have 32-bit physical addresses (the
“shallow end” of the memory pool). This region is only used by 32-bit Linux processes (SE-UM
32-bit) which cannot access kseg0. Instead, they access system memory through memory
mapped into useg (the reserve32 area).

Reserved Download Block
The Reserved Download Block is an area which is reserved by the bootloader, and which is used
to download the application. This area may be seen with the bootloader command namedprint.
Reserved Linux Block
Unlike Simple Executive applications, which can be loaded anywhere in memory, Linux is
linked to run at specific physical addresses. The Reserved Linux Block is a block of memory
which is reserved by the bootloader so that when the Simple Executive application’s in-memory
image is created, the bootloader will not locate it in the area of memory Linux requires. If Linux
is not loaded, this area of memory is reclaimed. This area may be seen with the bootloader
command namedprint.

RNG Unit
Random Number Generator.
RX
Receive
scheduled
A Work Descriptor that has been assigned to a core is considered to be scheduled.

G
L

O
SSA

R
Y

7-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-11

scratchpad
Core-local memory. Part of the per-core data cache (Dcache) may be set aside for IOBDMA
operations and scratchpad memory. The scratchpad area can be accessed from the core. When
an IOBDMA operation is performed, the result of the operation is stored in the scratchpad. An
example IOBDMA operation is cvmx_fpa_alloc_async(), which starts an IOBDMA
operation. This operation will asynchronously get the address of a free buffer from the FPA, and
store the buffer’s address in scratchpad memory. See IOBDMA for more information.

SDK
Software Development Kit. The SDK is defined to be two packages: the base SDK, and
OCTEON Linux. All other RPM packages are not included in the definition of the SDK. The
SDK and other RPM files are supplied by Cavium Networks. They include the compiler,
libraries, API source files, example code, and documentation needed to develop applications for
the OCTEON processor family.

Security Coprocessor
The Security Coprocessor is a special coprocessor used to accelerate security algorithms. There
is one Security Engine per core. This unit is not available in all OCTEON models. This unit is
sometimes called the Crypto Unit.

Security Engine
Same as Security Coprocessor.
SEGBITS
In the 64-bit virtual address map, the high two bits of the virtual address (<63:62>) are used to
select one of four segments. These address bits are always translated by the hardware, not the
operating system. Of the remaining 62 bits in the virtual address, some of the high bits are
ignored if the processor does not support that many virtual address bits within a segment
(SEGBITS). On OCTEON, SEGBITS equals 49, so only bits <48:0> of the virtual address
define the address space within the segment. The remaining bits (<61:49>) are ignored.
segment
In MIPS architecture, the address space is divided into segments: it is not an undifferentiated
virtual address space. For 64-bit address space: xuseg, xsseg, xkseg, xkphys. For 32-bit address
space: useg, sseg, kseg0, kseg1, kseg3. Cvmseg is in kseg3 and xkseg.
SE-S
Simple Executive provides an API to the hardware units. Simple Executive may be run
Standalone (SE-S), which means without the support of an operating system.
SE-UM
Simple Executive provides an API to the hardware units. Simple Executive may be run
Standalone (SE-S), or as a user-mode (SE-UM) application on an operating system such as
Linux.
Simple Executive
Simple Executive is the name for the code supplied with the SDK which provides and API to the
hardware units. This code may be run as a SE-S or SE-UM application, or called from an
operating system or driver.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

spinlock
Spinlock is an industry-standard term. A spinlock is a synchronization device. A thread of
execution will remain blocked in the spinlock lock routine until it is able to obtain the lock. If
this were a highly contested spin lock, the wait period would be non-deterministic. When
possible, it is preferable to use packet-linked locks instead of spinlocks.

sseg
The sseg segment is in the supervisor address space (mapped) in the 32-bit MIPS virtual
memory address map. On cnMIPS, this segment is usually not used.
SSO Unit
Schedule/Synchronization and Order Unit. This unit manages packet scheduling and ordering.
Switch Complete Bit
The Switch Complete Bit is used for communication between the core and the SSO. When the
core performs the switch_tag operation, it requests the SSO change the Work Descriptor’s tag
tuple to the new tag tuple. The tag switch does not necessarily complete immediately. The
Cavium Networks-specific hardware register, 30, contains the status of the switch_tag
request. The RDHWR instruction is used to read this register. Note this register is not the same as
general purpose register 30. The value of this register is referred to as the Switch Complete Bit.
When the core requests a tag switch, the core’s Switch Complete Bit is set to zero. When the tag
switch is complete, the SSO sets the Switch Complete Bit to one

switch tag
A core may perform a switch_tag operation to change the Work Descriptor’s tag type, tag value,
or both. Both may be changed with the same operation. A separate operation may be performed
to change the Work Descriptor's Group value.

tag switch
See switch tag.
tag tuple
The combination of tag type and tag value is a tag tuple. Software can change the tag tuple to
move packets from the same flow through different processing phases, including ATOMIC
sections when packet-linked locking is needed.

tag type
The Work Descriptor’s tag type is one of: ORDERED, ATOMIC, or NULL. The first tag type
is set by the PIP/IPD when the packet is received.
tag value
The tag value is a 32-bit number, usually containing the port number and the tuple hash value.
The first tag value is set by the PIP/IPD when the packet is received.
target In-Flight Queue
The target In-Flight Queue is the In-Flight Queue the Work Descriptor is on when the tag switch
request completes. This queue corresponds to the requested tag tuple.
TCP/IP Acceleration Pseudo Block
The TCP/IP Acceleration Pseudo Block is a pseudo block containing the Timer Unit and the
FPA Unit, which are both used to accelerate TCP/IP packet processing.

G
L

O
SSA

R
Y

7-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

G
L

O
SS

A
R

Y

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol1A Cavium Networks Proprietary and Confidential - DO NOT COPY 7-13

TIM Unit
Timer: This unit provides timers, which can be used for TCP timeouts as well as other more
general purposes.
TLB
Translation Look-aside Buffer.
TLB hit
The requested virtual address is found in the TLB.
TLB miss
The requested virtual address to physical address mapping is not found in the TLB. A TLB miss
exception will occur. The TLB miss handler is responsible for handling the exception, usually
by looking up the virtual to physical address mapping, and loading the information into the TLB.
tuple hash value
The tuple hash value is commonly used in packet processing. A Cyclic Redundancy Check
(CRC) algorithm is used to reduce the 13-byte 5-tuple to 16 bits. The resultant 16-bit value is
referred to as the tuple hash value. The tuple hash value is used to identify the flow. The PIP is
responsible for reading the packet header and computing the tuple hash value.

TX
Transmit.
useg
The useg segment is the user address space (mapped) in the 32-bit MIPS virtual memory address
map. On cnMIPS, SE-S 64-bit applications run in kernel mode, but are mapped into useg.
virtual address
On MIPS processors, the addresses used by a program are always virtual addresses. Virtual
addresses are not the same as physical addresses, even if their 64-bit values are the same.
Virtual addresses are always interpreted differently by the hardware (segment selector, ignored
bits, and SEGBITS). C and C++ programs must therefore always use virtual addresses
(pointers), not physical addresses, when accessing memory.

way partitioning
The L2 cache ways can be partitioned among the cnMIPS cores and the I/O sub-system. This is
referred to as way partitioning. This OCTEON feature enables intelligent management of the L2
cache to minimize cache pollution and the resulting loss of performance. See the HRM for
details.
WD
See Work Descriptor.
Work Descriptor
WD. The SSO contains internal memory. Part of the internal memory has been used to create a
limited number of Work Descriptors. Each Work Descriptor contains the key information
needed by the SSO to schedule the work on a core, and to keep the packets in the correct order.
The key fields in the Work Descriptor are: WQE pointer, tag value, tag type (TT), QoS and
Group (Grp). (The Group field is not discussed in this example.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 OCTEON Programmer’s Guide

7-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol1A

G
L

O
SSA

R
Y

Work Group
See Group.
Work Queue
A QoS Input Queue is also referred to in our manuals as a work queue.
Work Queue Entry
The Work Queue Entry (WQE) is a data structure which contains the tag type, tag value, QoS
value, Group, and a pointer to the Packet Data Buffer. The IPD allocates the WQE Buffer from
the FPA. The PIP/IPD fill in the WQE fields, then sends the WQE pointer to the SSO, using the
add_work operation.

WQE
See Work Queue Entry.
Write Buffer
The Write Buffer is a special buffer located in each core. Writes from the core go to this buffer.
The Write Buffer is used to minimize the number of CMB writes. When the Write Buffer is
flushed, the buffer contents are written simultaneously to the Dcache and the L2 cache. The
Write Buffer is periodically flushed. A Write Buffer flush can also be requested by the core (for
instance, when processing on that section of data is complete). The MIPS64 ISA has a SYNC
instruction for controlling memory order. Cavium Networks added several variations which
provide finer memory order control for higher performance.

xkphys
The xkphys segment is the kernel address space in the 64-bit MIPS virtual memory address map.
It is an unmapped address space: a window into the physical address space (system memory and
I/O space). On cnMIPS, SE-UM 64-bit applications may be allowed to access xkphys addresses.
SE-S 64-bit applications always have access to xkphys addresses because they run in kernel
mode. Accesses to system memory are always cached. Accesses to I/O space are never cached.
xkseg
The xkseg segment is the kernel address space (mapped) in the 64-bit MIPS virtual memory
address map. On cnMIPS, the xkseg segment contains the OCTEON-specific cvmseg segment.
User-mode access is allowed to cvmseg.
xsseg
The xsseg is the supervisor address space (mapped) in the 64-bit MIPS virtual memory address
map. This segment is usually not used in OCTEON cnMIPS.
xuseg
The xuseg segment is the user address space (mapped) in the 64-bit MIPS virtual memory
address map. On cnMIPS, SE-S 64-bit applications run in kernel mode, but are mapped to
xuseg.
ZIP Unit
The ZIP Unit is a compression/decompression engine. This unit is not available in all OCTEON
models.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

 Networks That Think… TM

www.caviumnetworks.com

Cavium Networks, Inc.
805 East Middlefield Road
Mountain View, CA 94043
USA
Tel: 650-623-7000
Fax: 650-625-9761

Corporate Headquarters
Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/3

1/
20

12

	01-OCTEON_front_cover
	02-Title_Page
	03-Publisher_page
	04-Preface_r1_june_2009
	05-Summary_ToC
	06-Introduction_r1_june_2009
	1 Introduction
	2 Introducing the OCTEON Processor Family
	2.1 Target Applications
	2.2 Key Features

	3 Hardware-Acceleration Units
	4 Packet-Management Accelerators
	4.1 Packet Flow, Summarized
	4.2 The Scheduling/Synchronization and Order Unit (SSO)
	4.3 Architectural Advantages of Work Groups

	5 Per-Core Security Coprocessors
	6 On-Chip Interconnects
	6.1 The Coherent Memory Bus Interconnect
	6.2 I/O Interconnect

	7 Special Cavium Networks-Specific Instructions
	8 Cache Hierarchy
	9 Summary

	07-Packet_Flow_Chapter_r2_june_2009
	LIST OF FIGURES
	1 Introduction
	2 Packet Flow Overview
	3 Hardware Features to Accelerate Packet Processing
	3.1 Hardware Management of Packet Classification and Priority
	3.2 Hardware Management of Buffer Pools: The Free Pool Allocator (FPA) Unit
	3.2.1 Allocating a Buffer
	3.2.2 Freeing a Buffer

	3.3 Hardware Management of Packet-Linked Locks
	3.4 Hardware Management of Packet Order

	4 The Schedule / Synchronization / Order (SSO) Unit
	4.1 Phase 1: Packet Input
	4.1.1 Ingress Order
	4.1.2 Packet Data Buffer
	4.1.3 5-Tuple
	4.1.4 Flow
	4.1.5 Tuple Hash Value
	4.1.6 Tag Value, First Tag Value
	4.1.7 Tag Type (TT), First Tag Type
	4.1.8 Tag Tuple
	4.1.9 ORDERED Tag Type: Parallel Processing
	4.1.10 ATOMIC Tag Type: Serialized Processing: Accessing Critical Regions
	4.1.11 NULL Tag Type: Unordered, Not Serialized, Not Synchronized
	4.1.12 Quality of Service (QoS) Value
	4.1.13 Group (Grp)
	4.1.14 Work Queue Entry (WQE)
	4.1.15 The add_work Operation
	4.1.16 QoS Input Queues
	4.1.17 Phase 1 Summary:

	4.2 Phase 2: SSO Schedules New Work to the Core
	4.2.1 SSO Work Descriptors
	4.2.2 Cached Input Queues and Overflow Input Queues
	4.2.3 The get_work Operation
	4.2.4 Core State Descriptor
	4.2.5 Scheduled
	4.2.6 Descheduled
	4.2.7 In-Flight
	4.2.8 Tag Tuple
	4.2.9 In-Flight Queues
	4.2.10 ORDERED Tag Type: Parallel Processing
	4.2.11 ATOMIC Tag Type: Locking Critical Regions
	4.2.12 NULL Tag Type: Unordered
	4.2.13 Choosing the Next WD to Schedule; Skipping Un-schedulable WD
	4.2.14 Phase 2 Summary

	4.3 Phase 3: Lock Critical Region: One-at-a-time Access
	4.3.1 The switch_tag Operation (Tag Switch)
	4.3.2 Switch Tag Sequence
	4.3.3 Core’s Switch Complete Bit
	4.3.4 Initial In-Flight Queue
	4.3.5 Target In-Flight Queue
	4.3.6 Tag Switch Processing
	4.3.6.1 Tag Switch Processing Steps
	4.3.6.2 Tag Switch from ORDERED to ATOMIC
	4.3.6.3 Tag Switch from ATOMIC to ORDERED
	4.3.6.4 Tag Switch from ORDERED to ORDERED

	4.3.7 Phase 3 Summary

	4.4 Phase 4: Unlock Critical Region and Resume Parallel Processing
	4.5 Phase 5: Packet Output
	4.5.1 PKO Output Ports
	4.5.2 PKO Output Queues
	4.5.3 PKO Output Queue to Port Mapping
	4.5.4 Selecting the PKO Output Queue
	4.5.5 Freeing the WQE Buffer
	4.5.6 Locking the PKO Output Queue
	4.5.7 Transmitting Packets in Ingress Order
	4.5.8 Writing to the Output Queue, then Freeing the Lock
	4.5.9 Freeing the Work Descriptor and Releasing the Lock
	4.5.10 PKO DMAs the packet to the TX Port
	4.5.11 Freeing the Packet Data Buffer
	4.5.12 Phase 5 Summary

	4.6 Workflow Model: One Flow
	4.7 Workflow Model: Multiple Flows
	4.8 Summary

	08-Ch_3_Software_Overview_r3_June_2009
	1 Introduction
	1.1 Where to Get More Information

	2 Introducing cnMIPS (Cavium Networks MIPS)
	3 Introducing the Simple Executive API
	4 Runtime Environment Choices for cnMIPS Cores
	4.1 Performance Difference Between Simple Executive and Linux
	4.2 Simple Executive
	4.3 SMP Linux
	4.3.1 Linux: embedded_rootfs File System
	4.3.1.1 Adding Examples to embedded_rootfs

	4.3.2 Linux: Debian File System
	4.3.3 Linux Application Support
	4.3.4 Cavium Networks Ethernet Driver
	4.3.5 Simple Executive API Calls From Linux
	4.3.6 CPU Affinity
	4.3.7 Linux on Small Systems (Limited MBytes of Memory)
	4.3.8 Running Multiple Linux Kernels on the OCTEON Processor

	4.4 Hybrid Systems: Simple Executive and Linux Co-Existing
	4.5 System Initialization
	4.6 The Hardware Simulator
	4.7 Other Runtime Environments

	5 Combinations of Runtime Environments on One Chip
	5.1 One-Core Runtime Choices
	5.2 Multicore Runtime Choices
	5.2.1 Easiest Configurations to Implement
	5.2.2 Intermediate Configurations
	5.2.3 Advanced Configurations

	5.3 Application Entry Point and Startup Code
	5.4 Booting SE-S or SE-UM Applications
	5.5 Booting One ELF File on Multiple Cores: Load Sets
	5.5.1 Starting SE-S Applications With the bootoct Command
	5.5.2 Starting Linux With the bootoctlinux Command
	5.5.3 Starting SE-UM Applications With the oncpu Command

	5.6 Booting Different ELF Files
	5.7 Synchronizing Multiple Cores
	5.7.1 Synchronizing Cores in the Same Load Set
	5.7.2 Synchronizing Cores in Different Load Sets
	5.7.3 SMP Linux Synchronization
	5.7.4 Multiple SE-S or SE-UM ELF Files (Not Recommended)

	6 Software Architecture
	6.1 Control-Plane Versus Data-Plane Applications
	6.2 Event-driven Loop (Polling) Versus Interrupt-Driven Loop
	6.3 Using Work Groups in Packet Processing
	6.3.1 Work Groups
	6.3.2 Configuring the Per-Core Group Mask in the SSO Scheduler
	6.3.2.1 Passing Work From One Core to Another Core

	6.4 Pipelined Versus Run-To-Completion Software Architecture
	6.4.1 Comparing Run-To-Completion and Traditional Pipelining
	6.4.2 A Quick Look at Packet Processing Math
	6.4.3 Run-To-Completion
	6.4.4 Traditional Pipelining
	6.4.5 Modified Pipelining

	6.5 Other Software Architecture Issues
	6.5.1 Scaling
	6.5.2 Code Locality: Reducing Icache Misses
	6.5.3 Load-Balancing

	6.6 Example: linux-filter

	7 Application Binary Interface (ABI)
	7.1 ABI Choices
	7.1.1 EABI (OCTEON_TARGET=cvmx_64): SE-S 64-Bit
	7.1.2 N64 (OCTEON_TARGET=linux_64): SE-UM 64-Bit
	7.1.3 N32 (OCTEON_TARGET=cvmx_n32): SE-S 32-Bit
	7.1.4 N32 (OCTEON_TARGET=linux_n32): SE-UM 32-Bit
	7.1.5 O32 (linux_o32) (Not Recommended)
	7.1.6 Linux uclibc (linux_uclibc)
	7.1.7 Choosing the OCTEON_TARGET

	7.2 64-Bit Porting Issues

	8 Tools
	8.1 GNU Cross-Development Toolchain
	8.1.1 The Cavium Networks-Specific cvmx_shared Section
	8.1.1.1 Sections
	8.1.1.2 The cvmx_shared Section

	8.1.2 Link Addresses
	8.1.3 Simple Executive Development Tools
	8.1.3.1 C/C++ Runtime Support for Simple Executive

	8.1.4 Linux Development Tools

	8.2 Native Tools (Run on the Target)
	8.2.1 Native tools and Simple Executive
	8.2.2 Native tools and Linux
	8.2.2.1 The embedded_rootfs Native Tools
	8.2.2.2 Debian Native Tools

	9 Physical Address Map and Caching on the OCTEON Processor
	9.1 Physical Address Map
	9.2 System Memory (DRAM) Addresses
	9.3 I/O Space Addresses
	9.4 Caching
	9.5 Special L2 Cache Features: Partitioning and Locking

	10 Virtual Memory
	10.1 Virtual Address Translation
	10.1.1 Mapping
	10.1.2 The Translation Look-Aside Buffer (TLB)
	10.1.3 Wired TLB Entries

	10.2 Generic MIPS Virtual Memory Map
	10.3 MIPS Virtual Memory Address Translation
	10.3.1 Segments
	10.3.1.1 Segments: 64-Bit Virtual Address Map
	10.3.1.2 Segments: 32-Bit Virtual Address Map

	10.3.2 Privilege Level (Mode) and Segments

	10.4 Mapped and Unmapped Segments
	10.4.1 Unmapped Segments
	10.4.1.1 64-Bit Virtual Address Space: xkphys
	10.4.1.2 32-Bit Virtual Address Space: kseg0 and kseg1

	10.4.2 Mapped Segments
	10.4.3 Addresses Versus Pointers

	10.5 Virtual Memory onCavium Networks MIPS (cnMIPS)
	10.6 Cavium Networks-Specific cvmseg Segment
	10.7 Accessing Application-Private System Memory
	10.8 Summary of Virtual Address Space on cnMIPS

	11 Allocating and Using Bootmem Global Memory
	11.1 Using Global Bootmem
	11.2 The malloc() and free() Functions and FPA Buffers
	11.3 The cvmx_shared Section and FPA Buffers
	11.3.1 The cvmx_shared Section is Not Always Shared
	11.3.2 The cvmx_shared Section Should be Kept Small

	11.4 Using Named Blocks to Share Memory Between Different Load Sets

	12 Accessing Bootmem Global Memory (Buffers)
	12.1 Accessing Bootmem Global Memory From SE-S Applications
	12.1.1 SE-S 64-Bit Bootmem Access
	12.1.1.1 SE-S 64-Bit: Access Via xkphys (NO 1:1 Mapping)
	12.1.1.2 SE-S 64-Bit: Access Via xuseg (1:1 Mapping)

	12.1.2 SE-S 32-Bit Bootmem Access
	12.1.2.1 SE-S 32-Bit: Access Via kseg0 (NO 1:1 Mapping)
	12.1.2.2 SE-S 32-bit: Access Via useg (1:1 Mapping)

	12.2 Accessing Bootmem Global Memory From Linux Kernel: 64-Bit
	12.3 Accessing Bootmem Global Memory from SE-UM Applications
	12.3.1 SE-UM 64-Bit Bootmem Access
	12.3.2 SE-UM 32-Bit Bootmem Access

	12.4 Bootmem Size in Different Access Methods
	12.5 Using cvmx_ptr_to_phys() and cmvx_phys_to_ptr() Functions

	13 Accessing I/O Space
	13.1 Accessing I/O Space from SE-S Applications
	13.1.1 SE-S 64-Bit I/O Space Access
	13.1.2 SE-S 32-Bit I/O Space Access

	13.2 Accessing I/O Space from Linux Kernel: 64-Bit
	13.3 Accessing I/O Space from SE-UM Applications
	13.3.1 SE-UM 64-Bit I/O Space Access
	13.3.2 SE-UM 32-Bit I/O Space Access

	14 Simple Executive Standalone (SE-S) Memory Model
	14.1 Simple Executive Application Space
	14.2 Simple Executive System Memory Access
	14.2.1 Mapping of System Memory

	14.3 Simple Executive I/O Space Access
	14.4 Simple Executive Virtual Memory Configuration Options
	14.4.1 CVMX_USE_1_TO_1_TLB_MAPPINGS
	14.4.1.1 Changing the Value of CVMX_USE_1_TO_1_TLB_MAPPINGS

	14.4.2 CVMX_NULL_POINTER_PROTECT
	14.4.2.1 Changing the Value of CVMX_NULL_POINTER_PROTECT

	14.5 SE-S 32-Bit Applications

	15 Linux Memory Model
	15.1 Configuring Linux and the Effect on the Memory Model
	15.1.1 Linux cvmseg (IOBDMA and Scratchpad) Size
	15.1.2 SE-UM 64-Bit: Direct Access to I/O Space Via xkphys
	15.1.3 SE-UM 64-Bit: Direct Access to System Memory Via xkphys
	15.1.4 SE-UM 32-bit: Reserving a Pool of Free Memory
	15.1.4.1 Using Wired TLB Entries for reserve32

	15.2 Linux Kernel Space and Simple Executive API Calls
	15.3 Linux Memory Configuration Steps
	15.4 Linux Kernel-Mode Virtual Address Space on the OCTEON Processor
	15.5 Linux 64-bit User-Mode Virtual Address Space for OCTEON
	15.6 Linux 32-Bit Virtual Address Space for OCTEON

	16 Downloading and Booting the ELF File
	16.1 Bootloader Memory Model
	16.1.1 The Reserved Download Block
	16.1.2 ELF File Maximum Download Size
	16.1.3 The Reserved Linux Block

	16.2 Booting the Same SE-S ELF File on Multiple Cores
	16.3 Downloading and Booting Multiple ELF Files
	16.3.1 Downloading by Re-using One Reserved Download Block
	16.3.2 Downloading Using Two Different Reserved Download Blocks

	16.4 Protection from Booting Multiple Applications on the Same Core

	17 SDK Code Conventions
	17.1 Register Definitions and Accessing Registers
	17.1.1 Register Definitions
	17.1.2 Register Typedefs
	17.1.3 Accessing Registers Using Register Definitions and Data Structures

	17.2 The cvmx_sysinfo_t Typedef
	17.3 OCTEON Models

	18 Bootloader Historical Information
	18.1 Backward Compatibility for Linux ELF Files Built Under SDK 1.6

	09-Ch_4_SDK_Tutorial_r3_june_2009
	1 Introduction
	1.1 Where to Get More Information

	2 Overview
	3 Hardware and Software Requirements
	3.1 Development Target Requirements
	3.2 Development Host Requirements
	3.3 PCI Host, TFTP Server, and Test System Requirements
	3.4 DHCP Server
	3.5 Traffic Generator

	4 Hands-on: System Administration Tasks
	4.1 User Account Configuration
	4.2 Multiple Users on the Same Development Host

	5 Hands-on: Connect the Development Target
	5.1 PCI Development Target
	5.2 Standalone Development Target

	6 Hands-on: Viewing the Target Board Console Output
	6.1 Starting Minicom
	6.2 Configuring Minicom
	6.3 Minicom Basics
	6.4 Verify Connection to Target Console Works
	6.5 Minicom Line Wrap and Viewing the Bootloader Help Menu
	6.6 Scrolling Up and Down
	6.7 A Typical Minicom Error
	6.8 Troubleshooting a Missing Bootloader Prompt
	6.9 Determining the Number of Cores on the OCTEON Processor

	7 Hands-on: Gather Key Hardware Information
	7.1 Determining the OCTEON Model on the Development Target
	7.2 Determining the Number of Cores on the OCTEON Processor

	8 Hands-on: Install the SDK
	8.1 Mounting the CD
	8.2 Using the RPM Utility to Install the Packages
	8.3 Making a Copy of the Installed SDK
	8.4 The OCTEON_ROOT Environment Variable
	8.5 Setting Environment Variables on the Development Host
	8.6 Adding env-setup to Your Profile
	8.7 Viewing the Installed SDK Version

	9 Hands-on: Tour the Installed SDK
	9.1 Key Information
	9.2 Looking at the Installed Directories
	9.3 Documentation Provided with the SDK
	9.4 Development Tools
	9.4.1 Accessing the Tools from the Command Line
	9.4.2 Tools Documentation
	9.4.2.1 Tools Manual Pages
	9.4.2.2 Tools Info Files

	9.4.3 GNU Cross-development Tool Chain
	9.4.4 PCI Host Tools

	9.5 Oprofile Profiling Tools
	9.5.1 Hardware Diagnostic Tools

	9.6 Native Tools (Run on the Development Target)
	9.6.1 Linux Tools: Debian Filesystem Native Tools

	9.7 Example Applications

	10 About Building Example Applications
	10.1 Makefiles
	10.2 Makefile Targets for Example Code
	10.3 Building SE-S Examples
	10.4 Building SE-UM Examples
	10.5 Saving make Output
	10.6 Other Makefile Targets
	10.7 Using the strip Utility

	11 Hands-on: Build and Run a SE-S Application (hello)
	11.1 Run hello on a PCI Target Board
	11.1.1 Connect the Hardware
	11.1.2 Reset the Target Board
	11.1.3 Connect to the Target Console
	11.1.4 Verify Bootloader Prompt is Visible
	11.1.5 Verify Bootloader is at Least SDK 1.7
	11.1.6 Build hello
	11.1.7 Download the Application to the Development Target
	11.1.8 Boot the Application
	11.1.9 Reset the Target Board
	11.1.9.1 Reset if booting from flash
	11.1.9.2 Reset if booting over PCI

	11.1.10 Multiple OCTEON PCI Target Boards

	11.2 Run hello on a Standalone Target Board
	11.2.1 Connect the Hardware
	11.2.2 Reset the Development Target
	11.2.3 Connect to the Target Console
	11.2.4 Verify Bootloader Prompt is Visible
	11.2.5 Verify Bootloader is at Least SDK 1.7
	11.2.6 Build hello
	11.2.7 Copy Application to the /tftpboot directory
	11.2.8 Select Target IP Address, if Needed
	11.2.9 Set the Development Target’s IP Address
	11.2.9.1 Using dhcp to Set the Target IP Address
	11.2.9.2 Setting the Target IP Address without a dhcp server
	11.2.9.3 Confirm the IP Addresses are Correct

	11.2.10 Test the Ethernet Connection to the Development Host
	11.2.11 Download the Application to the Development Target
	11.2.11.1 Common tftpboot Errors
	11.2.11.1.1 dhcp Step Forgotten
	11.2.11.1.2 ELF Image File Not Found on TFTP Server

	11.2.11.2 Ethernet Cable Plugged into Wrong Ethernet Port on Target

	11.2.12 Boot the Application
	11.2.13 Reset the Development Target

	12 Hands-on: Run hello on Multiple Cores
	13 About the Bootloader
	13.1 Booting an OCTEON Board
	13.1.1 Booting from Onboard Flash
	13.1.2 Booting an OCTEON Board as a PCI Target
	13.1.3 Verifying the Bootloader is Up and Running

	13.2 Review of Bootloader Memory Use
	13.3 The Failsafe Bootloader
	13.4 Bootloader Commands
	13.5 Bootloader Environment Variables
	13.6 Upgrading the Bootloader

	14 About Downloading the Application
	15 About Booting SE-S Applications
	15.1 The Coremask
	15.2 The Boot Command

	16 About Building Linux
	16.1 The Root Filesystem
	16.1.1 The Embedded Root Filesystem
	16.1.2 The Debian Root Filesystem

	16.2 Linux Makefiles and Makefile Targets
	16.2.1 The sudo Command Needed to Configure and Build Linux

	16.3 Configuring Linux
	16.3.1 Configuring the Linux Kernel
	16.3.2 Configuring the Embedded Root Filesystem

	16.4 Building Linux
	16.4.1 Build Linux with the Embedded Root Filesystem
	16.4.2 Build the Linux Kernel Only
	16.4.3 Build Linux to Run on the Hardware Simulator

	16.5 About the make clean Command
	16.6 The Kernel File Name: vmlinux vs vmlinux.64
	16.7 The strip Utility and the vmlinux.64 ELF File

	17 Hands-on: Build and Run Linux
	17.1 Build the Kernel and Embedded Root Filesystem
	17.2 Download vmlinux.64 to the Development Target
	17.3 Boot Linux on the Development Target

	18 Hands-on: Run a SE-UM Example (named-block)
	19 About the linux-filter Example
	20 Hands-on: Run linux-filter as a SE-S Application (Hybrid System)
	21 Hands-on: Run linux-filter as a Linux SE-UM Application
	22 Hands-on: Run linux-filter as a SE-UM Application on Multiple Cores
	23 Hands-on: Creating a Custom Application
	23.1 Adding Applications to the Embedded Root Filesystem
	23.2 Example Application Which Breaks Ethernet Driver

	24 The Hardware Simulator
	24.1 Simulator Documentation
	24.2 Run SE-S Applications on the Simulator
	24.3 Specifying –noperf and –quiet to Speed Up Processing
	24.4 Running Linux on the Simulator
	24.4.1 Build Linux to Run on the Simulator
	24.4.2 Run Linux and SE-UM Applications on the Simulator

	24.5 Simulator: Download and Run Bootloader
	24.6 Using the Simulator to Optimize Performance

	25 Appendix A: Introduction to Available Products
	25.1.1 Product Files on the Installation CD
	25.1.2 Toolkits
	25.1.3 Optional Application Development Kits (ADKs)
	25.1.4 Product Updates

	26 Appendix B: Linux Basics
	26.1 Linux Commands
	26.2 Shell Scripts
	26.3 Aliases
	26.4 Linux File Information and the Set User ID Bit
	26.4.1 File Basics
	26.4.2 The Set User ID Bit and Set Group ID Bit
	26.4.3 The Effect of Copying a File (cp)
	26.4.3.1 Copy the file as root
	26.4.3.2 Copy as regular user

	26.5 Killing a Process

	27 Appendix C: About the RPM Utility
	27.1 Installing from the Support Site Instead of a CD
	27.2 Useful RPM Commands
	27.2.1 Force the RPM to Install
	27.2.2 Determine Which SDK Packages are Installed
	27.2.3 Remove a SDK Package After Installation
	27.2.4 Check Whether the Installed Files Have Changed Since Installation
	27.2.5 More Information About RPM

	27.3 RPM Commands Quick Reference Guide

	28 Appendix D: Other Useful Tools
	28.1 Cscope
	28.2 Ctags
	28.3 Tera Term, Putty, VNC
	28.3.1 Putty Tip

	29 Appendix E: U-Boot Commands Quick Reference Guide
	30 Appendix F: ELF File Boot Commands Quick Reference
	31 Appendix G: Null Modem Serial Cable Information
	32 Appendix H: Query EEPROM to get Board Information
	32.1 Detecting a Problem with the EEPROM

	33 Appendix I: Updating U-Boot on a Standalone Board
	33.1 Locating the Correct Bootloader
	33.2 Save the old Bootloader Environment
	33.3 Updating the Bootloader on the Board
	33.3.1 Download U-Boot to a PCI Target
	33.3.2 Download U-Boot to a Standalone Target
	33.3.2.1 Copy the Bootloader to the /tftpboot Directory
	33.3.2.2 Boot the New Bootloader

	33.3.3 Update the Bootloader
	33.3.4 Erase the Prior Environment Settings
	33.3.5 Verify the New Default Environment has Been Loaded
	33.3.6 Reset IP Information

	34 Appendix J: TFTP Boot Assistance (tftpboot)
	34.1 TFTP Server Firewall
	34.2 Verify that the TFTP Server RPM is Installed on the TFTP Server
	34.3 Verify the TFTP Server is Currently Enabled
	34.3.1 Enable and Start the TFTP Server
	34.3.2 Turn on the TFTP Server
	34.3.3 Verify the TFTP Server is Now Enabled

	34.4 About the TFTP Download Directory on the TFTP Server
	34.4.1 Tftpboot Directory Permissions

	34.5 Verify serverip is set Correctly on the OCTEON Target Board
	34.5.1 If a DHCP Server is Available
	34.5.2 If a DHCP Server is Not Available
	34.5.3 Verify the Server IP Address and Physical Ethernet Connection

	34.6 Test tftpboot: Boot hello on the OCTEON Target Board
	34.7 Further Information

	35 Appendix K: Downloading Using the Serial Connection
	35.1 Kermit
	35.2 Copy hello to /tmp
	35.3 Set up the .kermrc File
	35.4 Start Minicom

	36 Appendix L: Simple Executive Configuration
	37 Appendix M: Changing the ABI Used for Linux
	38 Appendix N: Contents of the Embedded Root Filesystem
	39 Appendix O: Getting Ready to Use a Flash Card
	39.1 System Administration Steps
	39.1.1 Determine the Flash Card’s Device Name
	39.1.2 Create the Mount Directories
	39.1.3 Prevent Automount of the Device
	39.1.4 Protect Yourself By Setting Up an Environment Variable
	39.1.5 Partition the Flash card
	39.1.5.1 Debian Root Filesystem
	39.1.5.2 ELF File

	40 Appendix P: Booting an ELF File From a Flash Card
	40.1 System Administration Steps
	40.2 Copying the ELF File to the Flash Card
	40.2.1 Copy a SE-S Application to the Flash Card
	40.2.2 Copy the Kernel with Embedded Rootfs Onto the Flash Card

	40.3 Moving the Flash Card to the Target
	40.4 Loading the ELF File From the Flash Card into Memory
	40.5 Booting the ELF File From the Flash Card

	41 Appendix Q: Using the Debian Root Filesystem
	41.1 System Administration Steps
	41.2 About the Debian Root Filesystem
	41.3 Install Kernel Plus Debian Onto the Flash card
	41.4 Moving the Flash Card to the Target
	41.5 Load the Kernel from the Flash Card into Memory
	41.6 Boot the Kernel
	41.7 Upgrading the Kernel on the Flash Card

	42 Appendix R: About oct-pci-console
	43 Appendix S: About oct-pci-reset and oct-pci-csr
	43.1 Reset: oct-pci-reset
	43.2 Access Control and Status Registers (CSRs): oct-pci-csr

	44 Appendix T: Multiple Embedded Root Filesystem Builds
	45 Appendix U: How to Find the Process’s Core Number

	10-Ch_5_Software_debugging_tutorial_revision_2
	1 Introduction
	1.1 Where to Get More Information

	2 Getting Started Debugging
	2.1 Types of Software Which May be Debugged
	2.2 Different Debuggers
	2.3 Runtime Environments
	2.4 Cross-Debugging versus Native Debugging
	2.4.1 Native Debugging Using the Debian Root Filesystem
	2.4.2 Native Debugging Using the Embedded Root Filesystem
	2.4.3 Native Debugging Using NFS

	2.5 Cross-Debugging Connection Types
	2.5.1 SE-S Applications and the Linux Kernel
	2.5.2 Linux User-Mode Applications
	2.5.3 Summary: Connection Choices

	2.6 Hardware Configuration for Debugging
	2.7 The First Breakpoint in the Application
	2.8 The First Breakpoint in the Kernel
	2.9 Multithread Debugging
	2.10 Multicore Debugging
	2.11 PCI Debugging GDB Commands
	2.12 SDK Documentation
	2.12.1 SE-S Application Debugging
	2.12.2 Linux Kernel Debugging
	2.12.3 Linux User-Mode Debugging
	2.12.4 OCTEON Simulator Debugging

	3 Building Applications and the Linux Kernel for Debugging
	3.1 Building Applications for Debugging
	3.1.1 Add the Debugging Flag (-g)
	3.1.2 Adjust the Optimization Level (-O0)

	3.2 Building the Linux Kernel for Debugging

	4 Debugging Applications in the Embedded Root Filesystem
	4.1 Verify Correct Installation
	4.2 About Building the Embedded Root Filesystem

	5 Hands-On: Debug a SE-S Application: hello
	6 About Debugging SE-S Applications or the Linux Kernel
	6.1 Quick Summary of mipsisa64-octeon-elf-gdb
	6.2 Hardware Configuration for SE-S Applications and the Linux Kernel
	6.3 Multicore Debugging Commands
	6.4 Multicore Debugging and Barrier Sync
	6.5 PCI Debugging Commands
	6.5.1 Changes to Hands-On Steps When Using PCI Debugging
	6.5.2 Multiple PCI Development Targets
	6.5.3 Attaching to a Program Which is Already Running

	6.6 Other Special Commands: spawn-sim
	6.7 Summary: Directions for Different Connection Types
	6.8 Software Breakpoints and Multicore Debugging
	6.8.1 Race Condition: Cores Can Bypass the Breakpoint Without Stopping
	6.8.2 Race Condition: Multiple Cores Stopped on the Same Breakpoint

	6.9 Hardware Breakpoints
	6.10 Hardware Watchpoints
	6.11 Performance Counters
	6.12 Finding the Cause of an Exception

	7 Hands-On: Debug the Linux Kernel
	7.1 Building the Linux Kernel for Debugging
	7.1.1 Kernel Configuration
	7.1.1.1 Turn off Watchdog
	7.1.1.2 Enable Remote Debugging
	7.1.1.3 Save and Exit

	7.1.2 Rebuild Linux, Enable Frame Pointers
	7.1.3 About the make clean Command

	7.2 Debug the Linux Kernel
	7.3 Example: Multicore Debugging and the Linux Kernel

	8 About Debugging the Linux Kernel
	8.1 Cavium Networks Proprietary GDB Protocol
	8.2 The Standard Open Source Kernel Debugger
	8.3 SMP Synchronization and step-all
	8.4 The Kernel File Name: vmlinux vs vmlinux.64

	9 Hands-On: Debug a SE-UM Application: named-block
	10 About Linux User-Mode Application Debugging
	10.1 Quick Summary of mips64-octeon-linux-gnu-gdb
	10.2 Hardware Configuration for Linux User-Mode Debugging
	10.3 Summary: Directions for Different Connection Types
	10.4 The Management Port Ethernet Interface

	11 EJTAG (Run-Control) Tools
	12 About Debugging on the OCTEON Simulator
	12.1 Debugging SE-S Applications on the Simulator
	12.1.1 About printf() and the Simulator
	12.1.2 Separating Console Output from Simulator Output
	12.1.3 Using simprintf()
	12.1.3.1 Do Not Use simprintf() When Running on Hardware

	12.2 Simulator Magic Functions
	12.3 Debugging Linux on the OCTEON Simulator
	12.3.1 Building vmlinux to Run on the Simulator
	12.3.2 Starting Linux on the Simulator
	12.3.3 Running Linux User-Mode Applications on the Simulator

	13 Appendix A: Common GDB Commands
	14 Appendix B: Connecting Using a Terminal Server
	14.1 Terminal Servers and “Garbage” Characters

	15 Appendix C: How to Simplify the Command Lines
	15.1 Script Files
	15.2 Using an Alias to Simplify Start-Up
	15.3 The .gdbinit file
	15.4 Environment Variables

	16 Appendix D: Graphical Debugger
	17 Appendix E: Core Files
	17.1 Core File Names
	17.2 Example Core Dump
	17.3 Example of Using ftpput to Transfer a Core File
	17.4 Analyze Core File with GDB
	17.5 The Executable Name is Required on GDB Command Line

	18 Appendix F: The oct-debug Script
	19 Appendix G: Debian and the Cavium Networks Ethernet Driver

	11-Ch_6_Performance_Whitepaper
	LIST OF FIGURES
	1 Introduction
	1.1 References

	2 Performance Tuning Overview
	2.1 Test Setup
	2.2 Evaluating whether Performance Tuning is Appropriate
	2.3 Start with the Minimum Set of Cores, then Scale Up
	2.4 Locate the Bottleneck in the Code
	2.5 Performance Testing Tools
	2.5.1 Performance Tools on Simple Executive
	2.5.2 Performance Tools on Linux
	2.5.3 A Note about the Simulator and Viewzilla

	2.6 Instrumenting the Code and Using Performance Counters
	2.6.1 Cycle Counters
	2.6.2 CP0 Performance Counters
	2.6.2.1 Sample Code: Enable and Read CP0 Counters

	2.6.3 L2 Cache Performance Counters
	2.6.4 DRAM Utilization Information

	2.7 When Is Performance Optimization Complete?

	3 Performance Tuning Checklist
	4 Hardware Architecture Overview
	5 Software Architecture for High Performance
	5.1 L2 Cache configuration: Aliased Cached Indexing
	5.1.1 Unaliased Caching Indexing Algorithm
	5.1.2 Aliased Cache Indexing Algorithm

	5.2 Configuring the Right Amount of Packet Data Buffers and WQE Buffers
	5.3 Simple Executive versus Linux or other OS
	5.4 Concurrent Programming Techniques
	5.4.1 Critical Regions and Locks
	5.4.2 Minimize use of Shared Data
	5.4.3 Minimize Critical Regions

	5.5 Pipelined versus Run-to-Completion Software Architecture
	5.6 Event-driven Loop versus Interrupt Handling for Packet Processing

	6 Tuning the Minimum Set of Cores
	6.1 Compiler Choice
	6.2 Compiler Optimization (-O3)
	6.3 Re-Configuring the Right Amount of Packet Data Buffers and WQE Buffers
	6.4 Memory Alignment
	6.4.1 Align Data on Natural Address Boundaries
	6.4.2 Simple Executive Facilities to Support Memory Alignment
	6.4.3 Pad Structures to Align on Natural Boundaries

	6.5 Data Structure Compaction (packing), Re-arranging Structures
	6.5.1 Packing: Space versus Speed Tradeoff
	6.5.2 Re-Arrange Structure Fields to Save Space

	6.6 Large Data Structures: Working with Cache-line Size
	6.7 Group Common Data Together
	6.8 Loop Unrolling
	6.8.1 Sample Code: Loop Unrolling

	6.9 Replace memset() and memcpy() when Needed
	6.9.1 Sample Code: Replacing memcpy() and memset()

	6.10 Using Free Pool Allocator (FPA) Memory Pools to Manage Free Buffers
	6.11 Cache Prefetch
	6.11.1 Sample Pseudo code: Prefetch

	6.12 Prepare-For-Store
	6.13 Scratchpad: Core-local Storage
	6.14 Asynchronous FPA Allocation
	6.15 Don't Write Back (DWB) Commands
	6.15.1 DWB Commands from the Core
	6.15.2 DWB Commands from other Hardware Units

	6.16 Hardware CRC Engine
	6.16.1 Sample Code: Using the OCTEON Processor CRC Engine
	6.16.2 Performance Comparison: Hardware versus Software CRC

	6.17 Hardware Hash Engine
	6.17.1 Sample Code: Using the OCTEON Processor HASH Engine
	6.17.2 Performance Comparison: Hardware versus Software Hashing

	6.18 Hardware Timers
	6.19 Hardware Fetch and Add (FAU) Unit
	6.20 Asynchronous Fetch and Add Operations
	6.21 Work prefetch: Asynchronous get_work
	6.22 Interleaving Prefetch with Computational Instructions
	6.22.1 Sample Code: Interleaving Prefetch

	6.23 Hardware TCP/UDP Checksum Calculation
	6.24 Use Functions Wisely
	6.25 Update Bit-Fields Wisely
	6.25.1 Sample Code: Updating Bit-Fields Wisely

	6.26 Read After Write
	6.26.1 Sample Code: Read after Write

	7 Tuning Multi-core Applications (Scaling)
	7.1 Re-Configuring the Right Amount of Packet Data Buffers and WQE Buffers
	7.2 Tune Initial Tag Values to Separate Flows
	7.3 Set Initial Tag Type to ORDERED if Possible
	7.4 Switch Tag Type to ORDERED or NULL when Possible
	7.5 Use Asynchronous Switch Tag Operations
	7.6 Critical Regions
	7.7 Replace Spinlocks with Packet-Linked Locks When Possible
	7.7.1 Spinlocks
	7.7.2 The Scheduling / Synchronization / Order Unit and ATOMIC Tag Type
	7.7.3 Example of Spinlock versus SSO ATOMIC Locking
	7.7.3.1 Sample Pseudo code: Using Spinlock
	7.7.3.2 Sample Pseudo Code: Using SSO / ATOMIC Tag Type

	7.8 Arena-based Memory Allocation
	7.9 L2 Cache Configuration: Way Partitioning and Cache-Block Locking

	8 Linux-specific Tuning
	8.1 TLB Exceptions and Huge Page Size
	8.2 Use CPU Affinity for Processes/Threads
	8.3 Direct all Packet RX Interrupts to the Same Core

	12-glossary_june_2009
	13-OCTEON_back_cover

