OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

o]
=5
o
=
=
]
=5
o
A

Packet Input Processor (PIP) and
Input Packet Data (IPD) Units

Revision History

Revision2 - Nov. 19, 2010
1. Changed chapter number from 4 to 6.

2. Changed references to the Configuration and Advanced Topics chapter: these are two
separate chapters now.

3. Added references to new Essential Topics and Advanced Topics chapters.
4. Added Revison History.

TABLE OF CONTENTS

TABLE OF CONTENTS ..ottt it et s e ettt sttt et eentens 1
LIST OF TABLES ... oot e bttt ettt et e et e bt et e estenbeentesneesneenseenee 4
LIST OF FIGURES ..ottt it ittt et bttt ettt ettt ettt enten 5
R 012 (T L1 o1 T) s FO O SO SOUP USRI 7
2 Simple Executive Configuration and APIS.............cocii i 11
2.1 Simple Executive Configuration.............c.iiveieeiiiniieeieestionsiereeereeseesseesseessveenseesseesseenns 13
2.1.1 ADBOUL FPA POOIS ..ottt ettt e 14

2.2 Helper FUNCHONS.cciiiiiiiiie ettt ittt et bbb senaeeseeesseeseeesseenseeenseennes 17
2.3 PIP FUNCHIONS ...ttt et et e e b ettt et et et e et e e bt e snaeeseesnnean 19
2.4 PIP Data Structures and DefiNes .. cce.eeueriiie s iieiieeieee sttt 20
24.1 The cvmx. pip port cfg. t Data Structure 20
242 The cvmx _pip port tag cfg t Data Structure...........ccoooiiiiiiiiiiiiininns 20
2.43 The cvmx_pip parse mode_ t Defines (Parse Modes for Incoming Packets).... 20
244 Thecvmx pip tag mode t Defines (control the initial SSO Tag Value)........... 20
245 ~Thecvmx pow tag type t Defines (control the initial SSO Tag Type)............ 21
2:4.6 The cvmx pip port status t Data Structure............coiiiiiiiniininnnnn 22
2.477. The cvmx_pip err t Data Structure ..., 23
2.4.8 The Packet Instruction Header Data Structureccoccueevieniienienieerieeieeceeeeee 23
2.4.9 LI1/L2 Receive Error Codes (WQE WORD2[RE] ==1)...cccccceevuiieiiiiiiiecieeeieeeee 23
2.4.10 L3 (IP) Error Codes (WQE WORD2[IE]==1) .cc.coiriiiiiiiiiiiienieneneeeeeeeeene 24
2.4.11 L4 Error Codes (WQE WORD2[LE]==1) .ccuviioiiiiiieeeeeeee e 24

2.5 IPD FUNCLIONS ...ttt ettt ettt et e et e bt e siteebeesanean 25
2.6 IPD DEIINES uvieieniiiieiieeteeee ettt ettt st 26

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-1

-]
[
)
&
=
(="
=
)
=

g CAVIUM OCTEON Programmer’s Guide

NETWORKS

2.6.1 The cvmx_ ipd mode t Defines (How data is stored)..........ccccoovviiiiiiiiiiiinnns 26

2.7 Beyond the SDK: Custom SOftWarecocevieviriinieiinicniciececeeeeceeee e 26

T o B 0 001011 o) SRR 26
3.1 CN56XX and CNS7XX IPD INput POItS.....covevuiiiiiiiniiiiieicnitciercseceeeeeee e 27
3.2 CN54XX and CNSSXX IPD Input POrtS.....ceeeeieeeiiieeiieeieeeeeeeeeee e e 34

4 Incoming Packet FOIMALSccoiiiiiiiiiiiiiie e e 38
4.1 Overall Processing GOlc.cccuiieiiiiiieiiiieiieeieeiee ettt et ebeesae et e saeebeeseseeneens 38
4.2 Parsing MOAEScooueiiiiiiiieiiee ettt ettt ettt ettt et b e s e b e sneeenne 38
4.2.1 Optionally removing the CRC (FCS) (CRC Stripping)ccceevveeevrerieeveereeeereerreene 40

4.3 Optional Packet Instruction Headerscccoviiviiiiniiiiniiniiicicecccecece e 40
43.1 The cvmx pip inst hdr t Data Structure ..., 43
432 RAW, RAWFULL, RAWSCH......ccciiitiitieiiiieseeeetet ettt 43

4.4 Optional PCle Instruction Headers...........cocviieriiieiiieeiie e 46
4.5 Registers to Configure Input Packet Formatccooeeiiiiiniiiininceeeieecceees 48

5 The Work Queue Entry Data Structure (WQE).......coocuiiiiiiiiieiiiiee it it 49
5.1 Work Queue Entry Data StrUCTUIE.coeiviiiiiriiiieicnteieecec st 49
5.2 Software WQE Data StrUCIUIEScoeiiiiiiiieiiiie et 51
5.2.1 WQE The cvmx wge t Data Structure..........ccoooooieiiiiin i 52
522 WQE WORD2: The cvmx pip wge word2 Data Structure..........ccccceveienene, 52
523 WQE WORD3: The cvmx buf ptr t datastructureccccoceeeviiiiicninnnnee, 55

6 How Parse Mode Affects WQE WORD?2 Data Structur€ ...c.......cueeeeveeeeerieeeirieeeiee e 55
6.1 All Parse Modes 1f L1/L2 Error OCCULSciiiieeiiieeeieneie e ifee ittt 56
6.2 Parse Mode = SKIp-10-L2......ccoiiiiiiiiiiie ittt et i sttt ettt 58
6.3 Parse Mode = SKIP-10-IP ...ccuviiiiiiciie ittt 63
6.4 Parse Mode = Uninterpreted.......... o e iiisiueeueesciiene iaeeesieesreeieesteeseesveenseesaseeseesnnas 66
6.5 Registers to Configure WQE WORD2 Content..........ccccueeviieriiieeniiieeniie e 71
6.6 Where to Find More Information About Parsingc.........c..cuteiitenininnininiecneneene 71

7 Scheduling (WQE WORDI) ..ot sh s et esaeesaeeaseeseesnnas 72
7.1 Work Group Assignment (WQE WORD1 Group Field)cccooeeviniininiiniiiiienee. 72
7.1.1 Registers to Configure Group ASSIZNMENL....... 0 uiiterieeiiiueeesieeenieeesieeesreeesveeesaeeens 75

7.2 QOS ASSIZNIMENTeutiiiiiiteneeeeeeete ettt a8 bt St et s sotnad et e eate bt eatesbe e st eatesbeenaeeaeene 75
7.2.1 Registers to Configure QOS ASSIZNMENLecueererierreesliniiienieeteeereerieesreesseeeaeeseenenes 79

7.3 Tag Type ASSIZNIMIENT.c.eiiiieuiettieieit e ittty e ettt ettt et et sbe et saeesaeenee e 81
7.3.1 WQE WORDI Tag TYPe..cceieietieieriiesiteiieeitess bttt sttt st sae et s sae e 81
7.3.2 Registers to Configure Tag Type ASSIZNMENt..........ccceriirirriiniinenrienieneeieneenee e 83

7.4 Tag Value ASSIZNMENTcccveeiuiiriieitieeieeitieeieeteeeve et e eaeebeessaeetaessseesseessseeseessseeseensnes 83
7.4.1 Registers to Configure Tag Value ASSIZNMENtcccuereiruirriinieneniienienieeieneenieeeenne 93

7.5 Using Watchers to Set Q0S and GIOUPcccvvevieiiieiieiiieieeeie et 95

B I CUITEY t1 ettt ettt h et et b ettt a e ettt b et e as 97
9 Error Check COnfiGUIAtiONc.eeeiieiiierieeiieiieeteeseie et esteeteesteeeaeeaeessseeseessseesaessseenseessnas 98
9.1 CRC Check Configuration.........coceeeeerierieniieiiinienieeie ettt sttt 101
L0 PACKEE STOTAZE ..oeevvieiiieiieeieeiee ettt ettt ettt et e eae e bt e stbeesbaessbeesseessseenseessseenseessseensaens 102
10.1 The Part of the Received Data Which is Storedcccooouieiiiiiiiiiiiiiiieeeeee 103
10.2 Packet Storage in Packet Data BUffersccccoeviiiiiiiiiiiiiiiiceeeeeee e 104
10.2.1 Storing WQE in Packet Data Buffer instead of WQE Buffercccccoeeiiae 108

10.3 Choices for Writing Packet Data Buffer(s) to L2/ DRAM.......c.cccoeveviiiiieniieieecieeiens 109

6-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

10.4 Packet Data Storage in WQE WORDA4-15oooiiiiiiiiiiiieieeeeee et 110
10.4.1 Finding the Start of an IP Packet in the WQEcccoiiiiiiiiiie e, 113
10.4.2 Dynamic Short Storage in WQE.........ccocoiiiiiiiiiiiiiiieeeeeee e 114

10.5 Accessing Packet Data When Some Packets are Dynamic Shorts..........ccceevveeennennee. 115
10.6 Configuring Packet StOTage........cccviiiiiiiiiiiieiii ettt 117
11 Statistics (Performance, Debugg@ing)cccceviiieiiieiiieeiiie ettt 121
12 Congestion Control (Backpressure, Packet Drop, RED, WRED)cccccccviiiiiiiiiiniiniieene 123
12.1 System-Level View of Congestion: Causes and Preventionc.ccceeveuveerieeenneennee. 123
12.1.1 Congestion Management Design ISSUES:cccceeviiiiiieniieniiieniecieeee e 123
12.1.2 NOrmMal CONGESTIONceeiuiieeiiieeiiieeieeeeieeeeieeesieeesereeessreeesaeesaeeessseeessseeesnseesnssens 123
12.1.3 Unexpected CONZESTIONccueeeuierieeiieniieeiieniieeteesieeeteesieesreenseesnseenseessseeseesnseenns 124

12.2 Overview of Congestion-Control Mechanisms Provided by PIP/IPD 127
12.3 Critical Backpressure (Buffer EXhaustion)...........ccccueeviieriiiiieiiieiieeieece st 128
12.4 PIP/IPD Congestion-Control Configuration...........ccceeccveeerieeeiieeeiieeeeieeeeeiieeeee e 129
12.4.1 Basic QoS RED Configuration: cvmx_helper setup_ red (). 130
12.4.2 Basic QoS WRED Configuration: cvmx helper setup red queue () ..130
12.4.3 Custom ConfigUrationcc.eeeeiieiiiiieiiiieeriie e eieee et eaee e et e e ereeesbeeesaseeenaeeas 130

12.5 Per-QoS Admission Control (RED and WRED) (PQ-RED)......ccccueeiiiiiiiiiiiiiieeies 130
12.5.1 The Simplest Case: Snapshot Value (Recommended)ccceeeevvevieriienirennnnnne. 134
12.5.2 More Complex: MOVING AVETAZE.......cceriirieriiiieeniineeeeenieeieeiee sttt eee e 137

12.6 Per-Port Congestion Control (Backpressure, Packet Drop) (PP-B, PP-PD) 139
12.6.1 Per-Port Backpressure (PP-B)ccc.ooiiiineeiie et 140
12.6.2 Per-Port Packet Drop (PP-PD)........ioiiiiiiiiii i 144

12.7 Per-POrt RED ...t st e e b h e ettt e e e st e e e e nnaeeeeenraeaeeennes 149
13 Per QoS/Port Buffer TraCKingc.ccoiieeeiiin i et eiieesde e tie e sreeieeeveeteeseveesseeseveeseessseenneens 149
14 Appendix A: PIP/IPD Registers and Register Fields ..cc....oveviiiiniiiiniiniiniiiiiiccciceeee, 149
15 Appendix B: Industry-Standard Reference Information..............ccccieeienciienienciienienieenens 150
15.1 L2 Header FOrmMAatsoouie ittt ittt he ettt e st e saae e e sneeenseans 151
15.1.1 L2 Header Type Field Values (EtherType)....c.....ccciviinniiiiiiiiiieeceeeee, 152
15.1.2 L2 Header VLAN, VLAN 1 Field Details.....cocciviininnibiinienieienicceeeee 152

152 L3: TPVA HeEAdeT......oo ittt it Sttt e 153
15.2.1 IPv4 Protocol Field Values it 155
153 L3: TPVO HeAdCTot it e ettt ettt et 156
154 L4: TCP HEACTccueeiieiieeiieieeet et bttt sttt ettt ettt e as 158
15.5 LA4: UDP HEAACTeeiieiiieiiie ettt ettt ettt e et e e et e e s aae e e bae e s aeeesnseeennseeennns 159
16 Appendix C: Input Packet Parsing Detailsccccoevieriiieiiieiiiieiiecie e 160
17 Appendix D: A Note about Configuring GMX Backpressure...........cccoeeveereuveerieeeniveeenneenns 163
18 Appendix E: Example Code (1inUx—f11teT) ittt 164
19 ~Appendix F: Input Port Configuration............ccccoceriiiiriiiniiniiiinieeeeeeseee e 168
19.1 Fast Links for Input Port FIUIES........ccccuviriiiiiiiiieiiececeeeeeee e e 181

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-3

=
A
)
o=
=
«
A
e
A

g CAVIUM OCTEON Programmer’s Guide

NETWORKS

=

&

2 LIST OF TABLES

@ Table 1: Summary of Relevant FUNCHONSccoooviieiiiniiiiieieeicecece e 11
Table 2: Simple Executive PIP/IPD Configuration Variables.........c..ccocoevenieniniinicnenicnicniennne 13
Table 3: Default FPA Pool Configurationc..cccueeevieriieiiienieeiiece ettt 15
Table 4: Packet Data Buffers INformation............cccoooeuiiiiiieiiiieeieeeeeeeeeee e 15
Table 5: Work Queue Entry Buffers Information............ccccoecvveriieiiieniieiieiecieeeeeeeee e 16
Table 6: Helper FUNCHONScccuiiiiiiiieie ettt sttt et st 17
Table 7: PIP FUNCHONS.cotiiiiiiiieeiestete ettt ettt sttt e bt entesaeenbeenee e 19
Table 8: IPD API FUNCHONSeiiiiiiiciiiceiie ettt ettt eve e e eveeeeaseeesaseeenneeenens 25
Table 9: CN56XX and CN57XX Packet Input Configuration Optionscceeeeeveeeneenieeneeennen. 28
Table 10: CN54XX and CN55XX Packet Input Configuration Optionsccccceeevitieerneeennneenne. 34
Table 11: Registers to Configure Input Packet Formatccceeeeiieniiiiiiniiniie it 48
Table 12: Registers to Configure Work Queue Entry Details.......c.coooveereieiiiniiiiii it 49
Table 13: Fields: WQE WORD?2 Fields if L1/L2 Error (CASE 3C).....ccciviiniiiiniiiniiiinienenne. 57
Table 14: WQE WORD2 Fields for Skip-to-L2 and Is IP (CASE 2A).......cccoeeiviiiieiiieieeee, 60
Table 15: WQE WORD?2 Fields for Skip-to-L2 and NOT IP (CASE 3A) ...ccocevviviiniiiinieieeene 62
Table 16: WQE WORD2 Fields for Skip-to-IP (CASE 2B)cocioimmiiniieeeeceeee e 64
Table 17: WQE WORD?2 Fields for RAWFULL (CASE 1A and CASE 1B).....cccccceviiiinienennene. 68
Table 18: WQE WORD2 Fields for Uninterpreted and not RAW (CASE 3B)coocvvveviieinnennee. 69
Table 19: Registers to Configure Work Queue Entry WORD2ccocoiiiiiiiiiiniiiiiieiecieeeee, 71
Table 20: Registers to Configure WQE WORD1 Group AsSIZNMENt .i...cueeeeveeeeveeeriveeerveeenveeene 75
Table 21: Registers to Configure WQE WORDI QoS ASSignmentccieecueeeeeeneeeieenienieeieenne. 79
Table 22: Registers to Configure WQE WORD1 Tag Type Assignment..........cccceeeeeveeerreeeneveenne 83
Table 23: Registers to Configure WQE WORDI1 Tag Value Assignment.............ccccueevveeveeneennen. 93
Table 24: Registers to Configure WatCheTrSiueuiiirireeieiiiie it ciee e eree e e eevee e 96
Table 25: Registers to Configure IP SECULILY ...c....oovuieiiiiiiii i e 98
Table 26: Registers To Configure Error Checking...........cc.eeeviieiiiueeiiuieenieeeie et 98
Table 27: Registers Used to Configure CRC Checko.iteiieniiiiniiiiieeeceeceeee e 102
Table 28: Packet Data Buffer Write to L2/DRAM Choices (Global Option)...........cccceeevveernrennns 109
Table 29: Registers to Configure Packet Storageciieiiiieiienciinid i 117
Table 30: Statistics Register Fields (Read Only)........ccccooviireriiieii i 122
Table 31: Overview of PIP/IPD Congestion Control MechaniSms.............cccceccveevverieenieenneennnens 127
Table 32: Critical BackpreSsure OVEIVIEWccccueiieieeerieeiebeeeieeeeieeesneeesseeesveeessseeessseesnsseeens 129
Table 33: Overview of Per-QoS RED and WRED..........ccccocooiiiiiiiieeeeeeeecee e 132
Table 34: Registers to Configure Per-QoS RED/WRED — Snapshot...........cccceeeeiiinciieiniieeninn, 136
Table 35: Registers to Configure Per-QoS RED/WRED — Moving Average..........coceveveeveennen. 138
Table 36: Per-Port Backpressure OVEIVIEWcccuvierieeerieeeiieeeiieeeieeeereeesneeesaeeeseseeesnveesnsseeens 142
Table 37: Registers to Configure Per-Port Backpressureoc.eeviieiieiiienienieeiiecieeieeeie e 142
Table 38: Per-Port Packet DIop OVEIVIEWceeciiieiiieeiiieeiee ettt evee e e eeaveeen 146
Table 39: Registers to Configure Per-Port Packet Drop.........ccceceeviieiieiiieiieniieiieeieeeeeie e 147
Table 40: L2 Header Type Field Values (EtherType)......cccoccuveeviiriieiiieiieieeeieeee e 152
Table 41: TPv4 Header FIldScoouoiiiiiiiiieecee et 153
Table 42: TPV4 PrOtOCOLSuviiiiiieciie ettt ettt e e e e e te e e s baeesabeeesssaeesaseeesnseeesseeans 155
Table 43: TPv6O Header FIeldsoc.oiiiiiiiiieeceeeee et 157
Table 44: Overview of GMX Registers Used to Configure Backpressure...........cccccevenerienennnens 163

6-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

2=, CAVIUM
< NETWORKS

LIST OF FIGURES

Overview Of PIP/IPD ProCeSSINGcceevuiriiriiriinieieeienieeieeeseeete ettt 10
CN56XX and CNS7XX IPD INPUt POILSccvieiiieiieiiicieeiie et 29
CN56XX and CN57XX QLM Configuration ChoiCescocueveevierieneinienienieeieneene. 31
PCIe Rings: PCle Port Connection to IPD Input Ports...........ccccoeevviiiiniiiiniiiiieeiee 33
CN54XX and CNSSXX IPD Input POTES ..c..eoveiiiiniiiiieiiniicieccecccce e 35
CN54XX and CN55XX QLM Configuration ChoiCescccvvervieeivieniieeieenieeeieeeeeeenes 37
Parsing Mode Choices Without Packet Instruction Headerc.ccooeviiniiiinicnnnnenn. 39
Input Packet FOrmat OPtionscccieruieriieriieiiieiieeie et eite e eee e ebee e eseeeeee e 41
Packet Instruction Header — Hardware VIewc.ccoooiiiiiniiiiiiiiiiie e 42

WQE Information Copied From the Packet Instruction Headercceeiiuenienicnnnne. 45
PCle Instruction Header Conversion to Packet Instruction Header..............c.cccue....e. 47
Work Queue Entry Data Structure — Hardware View...........ccciieeniiiiieiiiniiciecieee 50
ParSING CaASES ...veeeiiiieiiieciie ettt ettt et e et e e et e e et aae s sbae e s sabeesbeeeenseeeensaeennaeeennneas 56
WORD2 if LI/L2 Error (CASE 3C) cauviiiiiiieeee ettt e e 57
WORD?2 if PM=Skip-to-L2, No L1/L2 Errors (CASE 2A, CASE 3A)....ccccccevvvevrennnn. 59
WORD?2 if PM=Skip-to-IP and No L1/L2 Errors (CASE 2B)ccccoveviiiviienienieeinens 64
WORD?2 if PM=Unint., RAW, No L1/L2 Errors (CASE 1A, CASE 1B).....cccco........ 67

WORD?2 if PM=Unint., NOT RAW, No L1/L2 Errors (CASE 3B)......cccccecvvvieviennenne. 69
Group Assignment FIOW Chartoociioiiiiiiee e i 74
Deriving QoS From VLAN PriOTitYcieeiiiioeeiieeieeeie et iet et eiee e eseee e eseesneeneee s 76
QoS Assignment Flowchart, part ©.....ic..cciieiieriieeniieeteee e 77
QoS Assignment Flowchart, part 2. ..ottt 78
Tag Type Assignment FIOWChATt.....cc....oooviiieeiiiiieee e 82
Tag Value Data SIrUCTUTE...... et sie e et faee s s et eeaeesaeeeebeeseeenseeseeas 84
Using Tag Mask to Include/Exclude Bytes in Mask Tagccccevevveevciienciieceieeeen. 85
Tag Mask Register Bits Correspondence to Packet Data Bytesccccocevieiiiiennenne. 86
Tag Value FIOW Chart......occ.cooiiiiiiieie i et a e e evee e e e e v e e saeeeenneas 88
Flowchart for hw_tuple tag() Function ..., &9
Flowchart for hw ipv4 hash () Functionc... 90
Flowchart for hw_ipv6 hash () FUnCtion........ciiiiiiiiccceee 91
Flowchart for hw mask tag () Function ... 92
Overview of Storing Received Dataccoooiiiiiiiiiiniiiiiieceeceecee e 104
Next Buffer Pointer (Next Buf Ptr) Data Structurecocoovvviiiiiiiiininnnnnn 105
Packet Storage Using Multiple Packet Data Buffers (MBUFS).........cccccocevvienienennnene 107
Write Packet Data to L2/DRAM ChoOiCeS.....cc.ueiiiiiiiiiiiiieeiieieeeee e 110
Format of Packet Data Stored in WQE WORD4-WORDI1S5coooviieiiiieiiie, 111
Format of Packet Data in WQE if PIP IP OFFSET [OFFSET]==0 ...cccecevurrune 112
Locating the Start of an IP Packet in the WQE...........cccoooiiiiiiiiiiiiieeee, 114
System View of Backpressure/Congestion, part 1......c..cccceeeeveenieniienenieneeneenieneene. 125
System View of Backpressure/Congestion, Part 2...........cccceevvieviieiiienieeiiieieeieeiens 126
Critical Backpressure Situation, Backpressure on All Ports..........coceeveviiicniencnnene 128
Per-QoS Weighted Random Early Drop (WRED).......cccccoieiiiiiiiiiiiciieieceeeee, 131
Per-QoS Admission Control (RED/WRED) Optionscccceeiievienieeniienieeieeeeeee 133

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-5

=
=5
o
=
=
<
=9
ot
A

g CAVIUM OCTEON Programmer’s Guide

- NETWORKS

o

;U Figure 44: Per-QoS RED — Using Snapshot Valueccccoeoiiiiiiiiiiniiiieeceee e 134

2 Figure 45: Configuring WRED: Different Watermarks for Each QoS Queue..........c.cccccvveenneen. 135

= Figure 46: Per-Port In-Use Buffer Limit (Threshold)cccooiiiiiiiniiiiieieieeeeeeeee 140

=) Figure 47: Congestion Control: Per-Port Backpressurecccoocveeeiieeiiieiiiiecieccie e 141
Figure 48: Congestion Control: Per-Port Packet DIopcccceeeiieiiiiniiiiiieieeieeieceeeeeeee 145
Figure 49: L2 Header FOImMAtS........c.cooviiiiiiieciiiecceee ettt et sivee e e eenaeeen 151
Figure 50: L2 Header and VLAN, VLANI Field Details — CFI, VLAN ID......cccccccevvvinieniinnenne. 152
Figure S1: TPVA HEAACTcc..eiiiiieiie ettt ettt e e e ae e eaa e e ssaeeesnsaeesnseeensseeens 153
Figure 52: TPVO HEAAECT.......ccciiiiiiiiieiieeie ettt ettt et ettt sete e e snseesaeas 156
Figure 53: IPv4 Header With TCP/IP.......cccuii ittt 158
Figure 54: UDP HEAACTooiuiiiiieiieciieee ettt ettt ettt ettt e e beeesbeesseesnseenseens 159
Figure 55: Input Packet Parsing Casesc.ccecvviieiuiiieiiieiiiieciee ettt et eee e eaee e snne e sveeesnveeen 160
Figure 56: Input Packet Parsing Flowchart, Part 1..........ccccooiiiiiiiiiiniiece e 161
Figure 57: Input Packet Parsing Flowchart, Part 2..........ccccoeviiiiiiiiieiie et 162
Figure 58: LANUX-FIIteTccuoiiiiiiiiiiieiiecie ettt et e e e b ada e ebeeenseenneens 165
Figure 59: Input Ports: CIN3005oooiiiiiiie ettt ettt e e aeasis e e e aeeesreeesnseaessseeens 169
Figure 60: Input Ports: CIN30T0 ..oc.eiiiiiiiiiiieie ettt tbe e eee e eeteeeeteebeesaseeseeas 170
Figure 61: Input Ports: CIN3020ooooiiiiiiieeiiee ettt e esotbe e e s e e eeaeesnneeesnseeessseeensseeens 171
Figure 62: Input Ports: CIN3LTX X ...oiiiiiiiiiiiieie ettt et stte e steeeeteeaeesaseeseeas 172
Figure 63: Input Ports: CIN3OXX......oooiiiiiieeiiieeiie et eiee e s siae s tae e eeeaaeeeaaeesaeeesnseeessseeensseeens 173
Figure 64: Input Ports: CIN38X X .. .oiiiiiiiiiiieie et e 2ttt et beesieeeteebeesaseesee s 174
Figure 65: Input Ports: CINSOXXoooiiiiiiieeiiieeiieeeee s ie e tee et e e atan e e esaeesaeeesssaeessseeensseeens 175
Figure 66: Input Ports: CINS2X Xoiiiiiiiiiiiecie it ettt et eiee e e s ae e bt eaeeenbeenseesnseenseesaseeseens 176
Figure 67: Input Ports: CN54XX and CNSSX X ...iiii it et evee e 177
Figure 68: Input Ports: CNSO6XX and CNSTXX....ieuereiiiiieee et it ettt esiee e eieeseneenee s 178
Figure 69: Input Ports: CINSEX Xooiiiiiiiii ittt ii e st ba e aeeeseae e e saeeeaaeessaeesnseeessseeensseeens 179
Figure 70: Input Ports: CNO3XXoouiiieioieritieiieenie et e et ein et ettt et 180

6-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

1 Introduction

In the Packet Flow chapter of the OCTEON Programmer’s Guide (The Fundamentals), the actions
performed by the Packet Input Processor (PIP) and Input Packet Data (IPD) are shown with
minimal details. This chapter provides in depth detail of the processing performed by these two
units, and how to customize their configuration to optimize throughput.

=
=5
o
=
=
<
=9
ot
A

Together, PIP/IPD:
1. Parse the packet, checking for errors in L2/L3 headers
2. Provide congestion control: drop packet and/or backpressure as needed
3. Create a Work Queue Entry (WQE) for the packet if it is not dropped
4. Determine packet properties which affect subsequent scheduling actions by the SSO
(POW) (Group, QoS, Tag Type, Tag Value)
Store the packet data
6. Send the WQE to the SSO for scheduling

)]

The PIP/IPD provides a tremendous amount of configuration flexibility. Correct configuration of
the PIP/IPD requires a clear view of the desired software architecture and specifics of the target
application. Before reading this chapter, it is essential to understand the contents of the Packet
Flow chapter. It is also helpful to read the Software Overview chapter (especially the Software
Architecture section), the Essential Topics, Configuration, Advanced Topics, and the Free Pool
Allocator (FPA) chapters These chapters help the user visualize the overall system necessary to
develop a customized solution which will best fit the target application. The PIP/IPD is a central
component of that customized solution.

Because of the feature-richness flexibility of the PIP and IPD units, the chapter describing these
features is quite extensive. The chapter is designed so that readers can select the relevant section
their specific application, and ignore sections discussing unused features.

Although the PIP and IPD are separate units, they are so-closely associated that they are collected
into a pseudo-block, the Packet Input (PKI) block. This pseudo-block is only used in high-level
diagrams, and is not used in the text of this chapter.

The PIP/IPD works closely with:
e The Packet Input Interfaces
e The Free Pool Allocator (FPA)
e The Schedule Synchronization Order (SSO) unit. (The SSO unit is referred to as the Packet
Order Work unit, or POW in the Hardware Reference Manual.)

The PIP/IPD receives the packet data from a traffic ingress port (for example, GMII). By using
configuration information from PIP/IPD Configuration and Status Registers (CSRs), and from
parsing the packet header, PIP/IPD determines the essential packet scheduling information: QoS
level, Work Group ID, Tag Value, and Tag Type. The PIP/IPD creates a Work Queue Entry
(WQE) and forwards it to the SSO. PIP/IPD stores the packet data in L2/DRAM, using a dedicated
bus to the I/0 Bridge (IOB). If necessary, congestion control is managed via backpressure or RED.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-7

-]
[
)
&
=
(="
=
)
=

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

The FPA maintains two pools of buffers: the Packet Data buffer pool and the Work Queue Entry
buffers. Packet Data buffers and WQE buffers are automatically allocated from the appropriate
FPA pool by PIP/IPD. The size and quantity of buffers, and the WQE buffer pool number are
configured when Simple Executive is configured at build time. The Packet Data buffer pool is
required by hardware to be FPA pool 0. The pool number not a configurable option. See the
Essential Topics, Configuration, and FPA chapters for details.

The IPD is responsible for:

e Ifrequired by PIP/IPD congestion control mechanisms, backpressure ports

e If no backpressure, IPD is responsible for receiving the packet from the input ports

e Ifrequired by configurable congestion control mechanisms, drop the packet, otherwise
continue packet processing

e Allocating the Work Queue Entry buffer from the WQE buffer pool maintained by the FPA

e Allocating the Packet Data buffers from the Packet Data buffer pool in maintained by the
FPA

e Storing information in the Work Queue Entry, including the QoS queue, Work Group, Tag
Type, and Tag Value which are computed by the PIP

e Storing information in the Packet Data Buffer(s) as needed

e Writing the Packet Data Buffer(s) to L2/ DRAM

e Performing the add work operation to add the Work Queue Entry to the appropriate
Quality of Service (QoS) queue in the SSO

The PIP is responsible for:

Packet parsing

Perform optional checks on the packet

Compute the QoS queue, Work Group, Tag Type, and Tag Value
Provide QoS, Work Group, Tag Type, and Tag Value information to IPD

The OCTEON Software Development Kit supports the PIP/IPD units with a thin layer of software
designed to serve as a base for more complex customized development. Because of the rich
features provided by the PIP/IPD units, the API does not cover all possible uses. This chapter
provides an overview of the API and the details needed to get started with customization.

The CN54/55/56/57 Hardware Reference Manual (HRM) was used to create many of the examples
in this document. Different processors have slight differences in implementation, primarily in
ports and interfaces supported. Whenever information in the HRM conflicts with information in
this chapter, it is assumed that the HRM is more correct.

The HRM is an essential reference when writing customized software for the PIP/IPD units. This
chapter is not intended to replace the HRM.

In this chapter, most register information matches the OCTEON CN55/55/56/57XX processor
HRM, with some additions for CN63XX.

6-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Note that in most cases the format REGISTER [FIELD] in this chapter refers to a hardware
register and field combination, not a software ARRAY [INDEX].

=
A
o
=
=
]
=5
Ll
A

The following figure is from the Packet Flow chapter. This figure provides a high-level view the
packet flow through the system. Proper configuration of PIP/IPD is essential for high-performance
systems.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-9

-]
[
)
&
=
(="
=
)
=

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

Figure 1: Overview of PIP/IPD Processing

To Other Color/Pattern KEY
Devices
Packet Input FPA
— cchedule / Pseudo-
SSO - Schedule/ yO d blocks
CORE Synchronization / Order
/Order Core Processing 1/0 Bridge
- Packet Output Memory
IOB - 1/0 Bridge 5—'%3;(;— FPA - Free
Pool
% Allocator
g Unit
—~ o
S 1
g |
@ [IPD=
[| [Input A
o I Packet w B
g QQG\ = Data : | 9
o QO ‘ 7N nterface
@ O ™ || ' : <
E b‘@ "b{l x 2 s 1 (IOBI directly to IPD)’ RX Port
< 4\ !
o D‘\ Packet 1 ~
2 Input 3 s ~
S Processor i & S
= 7: N Y | I
2 PKI'-"Packet Input 2y ! | >
g Block —= A N
O 2 — | Interface
4[v - TX Port
A POB ’I N\
L2/DRAM PKO - Packet Output | | -
Phit BR | | ~ Simplified Packet
! ——Interface Block
| (XAUI, SPI-4.2, PCle,

PCI/PCI-X, SGMII,
/O Buses RGMit; GMH; or Mii)
IPDB = IPD Bus, PKOB = PKO Bus, POB = Packet Output Bus

The I/O Bus consists of two buses: 0Bl (input) and IOBO (output). Received packet data goes directly
from Interface RX to IPD on |IOBI without going through IOB. (IPDis a second sink on the bus.)

1. After the Interface Rx Port receives the packet and checks it for errors, it passes the packet to the
Input Packet Data (IPD) Unit (via the IOBI). The IPD shares the data with the Packet Input Processor
(PIP). These:two units work together to process the input packet.

2. After the PIP performs the packet parsing, including any checks configured by software, it computes
the data needed by the IPD for the Work Queue Entry (WQE) Fields (Group, Tag Type, Tag Value, and
QoS).

3. If IPD.does not drop the packet, it allocates a WQE buffer and Packet Data buffer from the Free
Pool Allocator (FPA) Unit. (The FPA manages the free buffers.)

4. The IPD writes the WQE fields to the WQE Buffer, and writes the packet data to the Packet Data
buffer in L2/DRAM (DMA via IPDB).

5. The IPD performs the add_work operation to add the WQE Pointer to the appropriate QoS queue
in the Schedule Synchronization Order (SSO) Unit.

6-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

2 Simple Executive Configuration and APlIs

The PIP/IPD API supplied with the SDK does not cover all possible uses of the two units. This
section provides an overview of the SDK 1.9.0 API, with some new features from SDK 2.0.

o]
=5
o
=
=
<
=9
ot
A

Most users take the default configuration provided by Simple Executive. The configuration can be
customized (see the directions in the Configuration chapter, the Free Pool Allocator (FPA)
chapter, and in this chapter).

An example of using the API functions is in Section 18 — “Appendix E: Example Code (1inux-
filter)”.

Most applications will use the API as follows:

1) Define CVMX HELPER ENABLE_IPD=0 // allows user to control when initialization is
considered to be complete

2) Call cvmx helper initialize fpa () to setup the FPA pools.

3) Call cvmx helper initialize packet io global () once on only one core

4) Call cvmx_helper initialize packet io local() on each core. This will
get all packet IO running.

5) Call the cvmx_pip* or cvmx_ ipd* functions only to change (modify) the IPD/PIP
defaults as needed. (For example, call cvmx pip config port().)

6) Call cvmx helper ipd and packet input enable()

Table 1: Summary of Relevant Functions

Helper Functions

cvmx_helper_initialize packet_io global () | Initialize global PIP/IPD variables. This
function calls cvmx ipd config()
using values defined in executive-

config.h.
cvmx_helper initialize packet io local() Each core calls this after global
initialization routine is complete
cvmx_helper ipd and packet input enable() | Call once all initialization is complete
cvmx_helper setup _red() Configure Per-QoS RED for congestion
control (all queues will have the same pass
and drop thresholds).
cvmmx_helper setup_ red queue () Configure Per-QoS RED or WRED for

congestion control (each queue can have
different pass and drop thresholds). Call
cvmx_helper setup red() first, then
call this function to modify queue
thresholds as needed.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-11

g CAVIUM OCTEON Programmer’s Guide

- NETWORKS
=
5
g_ cvmx_helper shutdown packet io global() (New in SDK 2.0). This function is used
= to shutdown the packet handling units,
S including IPD.
cvmx_helper shutdown packet io local() (New in SDK 2.0.) This function does a
core-local shutdown of packet I/O after the
global shutdown is complete.
PIP Functions
cvmx_pip_config_port () Configure a PIP/IPD input port.
cvmx_pip config crc() Configure the hardware CRC engine (on
SOme processors).
cvmx_pip_tag mask_clear () Clear all bits in a tag mask.
cvmx_pip_tag_mask_set () Set bits in the selected tag mask (used to
create tag value)
cvmx_pip_config vlan gos() Configure VLAN-to-QoS Table 0
cvmx_pip_config diffserv_gos() Configure Diffserv-to-QoS table
cvmx_pip get port status() Get port statistics
IPD Functions
cvmx_ipd config () Configure global settings for IPD.
cvmx_ipd_enable (void) This function is used to enable the IPD if
Simple Executive is configured to not
enable IPD.
cvmx_ipd disable (void) Instead of calling this function, use the
new SDK 2.0 function
cvmx _helper shutdown packet io
global (), which calls
cvmmx_ipd disable () at the right time.

6-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

2.1 Simple Executive Configuration
PIP and IPD depend on proper configuration of Simple Executive defines and FPA pool

configuration.

PIP and IPD

In addition to the pools, the following Simple Executive Configuration variables are applicable to

PIP/IPD:

Table 2: Simple Executive PIP/IPD Configuration Variables

Define

Purpose

Default

PIP/IPD Configuration variables defined in executive-config.h (alphabetical

order)

Value

CVMX ENABLE HELPER FUNCTIONS

Enables essential functions such as
cvmx helper initialize fpa()
. We strongly recommend use of the
helper functions.

Un-—
defined

CVMX_ENABLE LEN M8 FIX

Enable fix for the known issue PKI-
100 ("Size field is 8 too large in the
WQE and next pointers"). If this
variable is set to 0, the fix for this
known issue will not be enabled.

CVMX_ HELPER ENABLE BACK PRESSURE

We strongly recommend use of this
backpressure feature.

CVMX_ HELPER ENABLE IPD

This will'cause the IPD to be enabled
after initialization. Once IPD is enabled,
the hardware will start-accepting packets.
If configuration changes are made from
thedefault, then set this-configuration
variable'to 0'and, after custom changes
are complete, then call
cvmx dipd enable ().

CVMX HELPER FIRST MBUFF SKIP

The number of bytes to reserve before
the start of the packet in the MBUF.

184
(See
Notel)

CVMX_ HELPER INPUT PORT SKIP MODE

Select either skip-to-L2, skip-to-IP, or
uninterpreted.

See
Note2

CVMX HELPER INPUT TAG INPUT_ PORT

Use input port value in tag value creation.

CVMX HELPER INPUT TAG IPV4 DST IP

Use IPv4 Destination IP address field in
tag value creation.

CVMX_HELPER INPUT TAG IPV4 DST PORT

Use IPv4 Destination Port field in tag
value creation.

CVMX HELPER INPUT TAG IPV4 PROTOCOL

Use IPv4 Protocol field in tag value
creation.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY

6-13

g CAVIUM OCTEON Programmer’s Guide

NETWORKS
=
Default
= Define Purpose
=y Value
= CVMX_HELPER INPUT_TAG_IPV4_ SRC_IP Use IPv4 Source IP address field in tag 0
= value creation.
CVMX HELPER INPUT TAG T PV4_SRC_PORT Use IPv4 Source Port field in tag value 0
creation.
CVMX_HELPER INPUT_TAG_IPV6_DST_IP Use IPv6 Destination IP address field in 0
tag value creation.
CVMX_HELPER INPUT_TAG_IPV6_ DST_ PORT Use [Pv6 Destination Port field in tag 0
value creation.
CVMX_HELPER_INPUT_TAG_IPV6_ NEXT HEADER | Use IPv6 Next Header field in tag value
creation. 0
CVMX_HELPER_INPUT_TAG_IPV6_SRC_IP Use IPv6 Source IP address field in tag 0
value creation.
CVMX_HELPER_INPUT_TAG_IPV6_SRC_PORT Use [Pv6 Source Port ficld in tag value 0
creation.
CVMX_HELPER INPUT TAG TYPE Either ORDERED, ATOMIC, or NULL. See
Note3
CVMX HELPER NOT FIRST MBUFF SKIP The number of bytes to reserve in each
chained packet buffer (MBUF) after 0
the first MBUF.
Notel: The default CvMX HELPER FIRST MBUFF SKIP valuein the base SDK is set to
184 for compatibility with IPSEC to allow header expansion.
Note?2: The default value for CMVX HELPER INPUT PORT SKIP MODE is
CVMX PIP PORT CFG MODE_SKIPL2. See cvmx pip port parse mode tin
cvmx-csr—enums. h.
Note3: The default value for CVMX HELPER INPUT TAG TYPE-is
CVMX_ POW_TAG TYPE ORDERED.

2.1.1 About FPA Pools

In most applications, two FPA pools are used by PIP/IPD:
e The FPA Pool used for Packet Data Buffers is always FPA Pool 0
e The FPA pool used for Work Queue Entry (WQE) buffers is configurable, but is typically
FPA Pool 1

FPA pool configuration information is provided in the Free Pool Allocator (FPA) chapter. If the
default configuration will be changed, it is essential to read the FPA chapter. Pool information is

summarized in this section.

The default pool configuration used in the SDK is shown in the following table.

6-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
=

NETWORKS
Table 3: Default FPA Pool Configuration
Item Default Value
Packet Data Buffers
Pool Name CVMX FPA PACKET POOL
Description String “Packet buffers”
Pool Number (Default value) 0 (cannot be changed)
Default Buffer Size 16 * cache line size (2048 bytes) - See Notel, Note2
Default Number of Buffers Configurable via cvmx_helper initialize fpa()-
See Note3
Protected / Permanent 1 (TRUE)
Work Queue Entry Buffers
Name CVMX_FPA WQE_POOL
Description String “Work queue entries”
Pool Number (Default value) 1 (This can be any number; itis set to 1 by convention)
Default Buffer Size 1 * cache line size (128 bytes) — See Notel, Note2
Default Number of Buffers Usually the same as the number of Packet Data Buffers
Protected / Permanent 1 (TRUE)
Notel: Buffer Size must be a minimum of 128 bytes (cache line size), and must be a multiple of
128 bytes (CVMX_FPA MIN BLOCK_SIZE, CVMX FPA ALIGNMENT).
Note2: The default buffer size is configured in cvmx-resources.config
Note3: See the passthough example code.

The following tables provide the PIP/IPD perspective on the Packet Data Buffers and Work Queue
Entry buffers.

Table 4: Packet Data Buffers Information
Packet Data Buffers

Unit Allocating Buffer

The IPD automatically allocates Packet Data Buffers. Packet Data Buffers are always in FPA pool 0:
this is not configurable.

What controls the buffer allocation and use?

In the Simple Executive, the function cvmx_helper global setup ipd() sets the value of
IPD PACKET MBUFF SIZE[MB_SIZE]. This value must match the size of the buffers in FPA pool
0. The IPD always allocates Packet Data Buffers from pool 0.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-15

a
2o
i
=
=
]
=0
]
A

-
[
-
1)
=]
=7
=
)
-}

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Packet Data Buffers

Recommended Buffer Size
Up to 2048 bytes (sixteen cache lines) (MTU of 1500 bytes).

Recommended Number of Buffers

Either 4096 or the maximum number of in-flight packets.

Unit Freeing Buffer

PKO or core software

How does the system know which pool the buffer should be returned to?

The originating FPA pool number is stored automatically in the Work Queue Entry data structure by the
IPD. The PKO will optionally free the buffer to the specified pool (always Pool 0 for Packet Data
Buffers). The core may also optionally free the Packet Data Buffer.

Table 5: Work Queue Entry Buffers Information
Unit Allocating Buffer

The IPD or the core (via software). The IPD automatically allocates WQE buffers.
What controls the buffer allocation and use?

In the Simple Executive, the function cvmx_helper global setup ipd () sets the value of
IPD WQE FPA QUEUE [WQE QUE]. This register field is used to specify which FPA pool the Work
Queue Entry comes from.

Recommended Buffer Size

128 bytes (one cache line)

Recommended Number of Buffers

At least as many as Packet Data Buffers. If dynamic shorts are enabled, then packets which can fit
entirely in the space reserved in the WQE will not also have a duplicate copy in the Packet Data Buffer.
In the case where the WQE is in a WQE buffer (the option to have it in the Packet Data Buffer is not
enabled), then the Packet Data Buffer will not exist for dynamic shorts, and more WQE Buffers will be
needed than Packet Data Buffers.

Unit Freeing Buffer

Core software is responsible for freeing the buffer.

How does software know which pool the buffer should be returned to?

When freeing a WQE Buffer, use the define provided by the Simple Executive:
CVMX_FPA_ WQE_POOL

6-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilot|:::(vsl

2.2 Helper Functions
These functions simplify configuring and using the PIP/IPD.

Table 6: Helper Functions
Helper API Functions

int cvmx helper initialize packet io global (void)

Initialize global PIP/IPD variables. It initializes the PIP, IPD, and PKO hardware to support
simple priority based queues for the Ethernet ports. Each port is configured with a number of
priority queues based on CVMX PKO QUEUES PER PORT * where each queue is lower
priority than the previous.

Returns 0 on success, otherwise returns non-zero.This function calls cvmx ipd eonfig ()
using values defined in executive-config.h.

int cvmx helper initialize packet io local (void)

Each core calls this after global initialization routine is complete. Returns 0 on success,
otherwise returns non-zero.

int cvmx helper ipd and packet input enable (void)

Called after all internal packet IO paths are setup. This function enables IPD/PIP and begins
packet input and output.
Returns 0 on success, otherwise returns non-zero.

int cvmx helper setup red(int pass thresh, dint drop .thresh)

Configure Per-QoS RED for congestion control (all queues will have the same pass and drop
thresholds). The arguments are:
pass_thresh: the HIGH watermark (if the number of available Packet Data Buffers
1s>pass_thresh, the packet is admitted)
drop thresh: the LOW watermark (if the number of available Packet Data buffers
is <= drop_thresh, all incoming packets are dropped
If pass_ thresh >= number of available buffers > drop thresh, packets are randomly
dropped.

cvmx_helper setup red queue (int queue, int pass thresh, int drop thresh)

Configure Per-QoS RED or WRED for congestion control (each queue can have different pass
and drop thresholds). Call cvmx _helper setup red() first, then call this function to
modify queue thresholds as needed. The arguments are:
queue: which QoS queue's watermarks to set
pass_thresh: the HIGH watermark (if the number of available Packet Data Buffers
1s>pass_thresh, the packet is admitted)
drop thresh: the LOW watermark (if the number of available Packet Data buffers
is <= drop_thresh, all incoming packets are dropped
If pass thresh >= number of available buffers > drop thresh, packets are randomly
dropped.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY

6-17

o]
=5
o
=
=
<
=9
ot
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Helper API Functions

int cvmx helper shutdown packet io global (void)

New in SDK 2.0. This function is used to undo the the initialization performed in

cvmx_helper initialize packet io global (). After calling this routine and the
local version on each core, packet 10 for the OCTEON processor will be disabled and placed in
the initial reset state. It will then be safe to call the initialization function later on. Note that
this routine does not empty the FPA pools. It frees all buffers used by the packet 10 hardware
to the FPA so a function emptying the FPA after shutdown should find all packet buffers in the
FPA.

Returns 0 on success, negative on failure.

int cvmx helper shutdown packet io local (void)

New in SDK 2.0. This function does a core-local shutdown of packet I/O and should be called
on each core after calling cvmx_helper shutdown packet io global().

Returns 0 on success, negative on failure.

-
[
-
1)

=]

=7
=
)
-}

6-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

2.3 PIP Functions

These functions can be used to change the default configuration created by the helper routines.

a
=5
o
=
=
<
=9
ot
A

Table 7: PIP Functions
PIP API Functions (cvmx-pip.h)
void cvmx pip config port(uint64 t port num,
cvmx pip port cfg t port cfg, cvmx pip port tag port tag cfqg)

Configure an Ethernet input port. The arguments are:

port num: The port number to configure

port cfg: adata structure containing the configuration information

port tag cfg: a data structure containing the port's tag configuration information

void cvmx pip config crc(uint64 t interface, uint64 t dnvert result,
uint64 t reflect, uint32 t initialization vector)

Configure the hardware CRC engine. The arguments are:
interface: Interface to configure (0 or 1)

invert result: Invert the result of the CRC
reflect: Reflect

initialization vector: CRC initialization vector

cvmx pip tag mask clear (uint64 t mask index)

Clear all bits in a tag mask. This function should be called on startup before any calls to
cvmx_pip tag mask set (). Each bitsetin the final mask represents a byte used in the
packet for tag generation. The argument is:

mask index: Which tag mask to clear (0..3)

cvmx pip tag mask set (uint64 t mask index, uint64 .t offset,
uintoe4 t len)

The tag mask is used when the cvmx_pip port tag cfg t tag mode is non zero. There
are four separate masks that can be configured. The arguments are:

mask index: which tag mask to modify (0..3)

of fset: offset into the bitmask to set bits at. Use the GCC macro offsetof () to determine
the offsets into packet headers. For example, of fsetof (ethhdr, protocol) returns the
offset of the ethernet protocol field. The bitmask selects which bytes to include the tag, with bit
offset X selecting byte at offset X from the beginning of the packet data.

len: Number of bytes to include. Usually this is the sizeof () the field.

void cvmx pip config vlan gos(uint64 t vlan priority, unit64 t gos)
Configures the VLAN priority to QOS mapping for VLAN-to-QOS Table0. Note there is no
function to configure VLAN-to-QOS Tablel. The arguments are:

vlan priority: 0-7

gos: QOS value to assign to incoming packets with VLAN priority matching this VLAN
priority.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-19

-]
[
)
=]
=
(="
=
)
=

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

PIP API Functions (cvmx-pip.h)

void cvmx pip config diffserv gos(unit64 t diffserv, unit64 t qos)

Configures the Diffserv to QOS mapping. Note this function does not enable Diffserv QOS for
the port. The arguments are:

diffserv: diffserv field value (0-63)

gos: QOS value to assign to incoming packets with Diffserv value matching this Diffserv field
value.

void cvmx pip get port status(unit64 t port num, uinté64 t clear,
cvmx pip port status t *status)

Get the statistics for a port. The arguments are:

port num: the port number

clear: whether to clear the values after reading them (1=clear, 0O=do not clear)
status: the data structure used to store the status

On success, this function retrieves the port status and stores it in the status data structure.

2.4 PIP Data Structures and Defines

2.41 The cvmx_pip port cfg t Data Structure
This data structure is used to specify the configuration parameters for each port. The contents of

the data structure vary with the processor model. See cvmx pip.port cfgx tincvmx-
csr-typedefs.h in the SDK for details.

2.4.2 The cvmx_pip port tag cfg t Data Structure

This data structure is used to specify the tag configuration parameters for each port. The contents
of the data structure vary with the processor model. See cvmx ‘pip port tag cfgx tin
cvmx-csr-typedefs.h in the SDK for details.

2.4.3 The cvmx_pip parse mode_t Defines (Parse Modes for Incoming
Packets)

These defines (enumerated in cvmx _pip parse mode t)are used to set the parse mode for
the incoming packet:

CVMX PIP PORT CFG MODE NONE = Oull, // Uninterpreted
CVMX PIP. PORT CFG MODE SKIPL2 = lull, // Skip-to-L2
CVMX. PIP PORT CFG MODE SKIPIP = 2ull // Skip-to-IP

2.4.4 The cvmx_pip_tag_mode_t Defines (control the initial SSO Tag Value)

These defines (enumerated in cvmx_pip tag mode t)are used to set the initial Tag Value for
the incoming packet:

CVMX PIP TAG MODE TUPLE = Oull, // Always use tuple tag algorithm.
CVMX PIP TAG MODE MASK = 1lull, // Always use mask tag algorithm
CVMX PIP TAG MODE IP OR MASK = 2ull, // 1f packet is IP, use tuple else

6-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilot|::=(vsl

// use mask
CVMX_PIP TAG MODE TUPLE XOR MASK = 3ull // tuple XOR mask

=
A
o
=
=
]
=5
Ll
A

2.4.5 The cvmx_pow_tag_type t Defines (control the initial SSO Tag Type)

These defines (enumerated in cvmx _pow tag type t)are used to set the initial Tag Type for
the incoming packet:

CVMX POW TAG TYPE ORDERED = 0L, // ORDERED
CVMX POW_TAG TYPE ATOMIC = 1L, // ATOMIC
CVMX POW TAG TYPE NULL 2L, // NULL

CN_OCTEON_PRG_GUIDE VoI2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-21

-]
[
)
&
=
(="
=
)
=

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

2.4.6 The cvmx_pip port status_t Data Structure

PIP statistics registered are accessed via the cvmx pip get port status () function, which
returns the information in the cvmx _pip port status_t data structure. This information is

the same for all processors.

For register-level details, see Table 30 — “Statistics Register Fields”.

typedef struct
{

uint32 t dropped _octets;
uint32 t dropped packets;
uint32 t pci raw packets;
uint32 t octets;

uint32 t packets;

uint32 t multicast packets;
uint32 t broadcast packets;
uint32 t len 64 packets;
uint32 t len 65 127 packets;
uint32 t len 128 255 packets;
uint32 t len 256 511 packets;
uint32 t len 512 1023 packets;
uint32 t len 1024 1518 packets;
uint32 t len 1519 max packets;
uint32 t fcs align err packets;
uint32 t runt packets;

uint32 t runt crc_packets;
uint32 t oversize packets;
uint32 t oversize crc_ packets;
uint32 t inb packets;

uinto64 t inb octets;

uintlé t inb errors;

} cvmx pip port status t;

6-22 Cavium Networks Proprietary and Confidential - DO NOT COPY

Inbound octets marked to be
dropped by the IPD
Inbound packets marked to be
dropped by the IPD

RAW PCI Packets received by
PIP per port
Number of octets processed by PIP

Number of packets processed by PIP
Number of indentified

L2 multicast packets.

(Does not include broadcast packets.
Only includes packets whose

parse mode is SKIP TO L2)

Number of indentified L2 broadcast

packets. Does.not include multicast
packets. Only includes packets whose
parse mode is SKIP TO L2

Number of
Number of
Number. of
Number of
Number of
Number of

64B packets

65-127B packets
128-255B packets
256-511B packets
512-1023B packets
1024-1518B packets
Number of 1519-max packets
Number of packets with FCS or
Align opcode errors

Number of packets with length < min
Number of packets with

length < min and FCS error

Number of packets with length > max
Number of packets with

length > max and FCS error

Number of packets without
GMX/SPX/PCI errors received by PIP

Total number of octets from all
packets received by PIP,

including CRC

Number of packets with GMX/SPX/PCI
errors received by PIP

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

=

=5
2.4.7 The cvmx_pip err t Data Structure -
The opcode field in WQE WORD?2 is used to report the error details. The meaning of opcode =
depends on which of WORD2[RE] (L1/L2 receive error), WORD2[LE] (L2 receive error), or =
WORD2[IE] (L4 receive error) is set in WQE WORD?2. A
/ * %

* This defines the err code field errors in the Work Queue Entry

* % /

typedef union

{
cvmx_pip 14 err t 14 err; // L3 receive error (WORD2[LE]==1)
cvmx_pip ip exc t ip exc; // L4 receive error (WORD[IE]==1)
cvmx_pip rcv _err t rcv_err; // L1/L2 receive error (WORD2[RE]==1)

} cvmx pip err t;

2.4.8 The Packet Instruction Header Data Structure
This data structure is defined in Section 4.3.1 — “The cvmx _pip inst hdr t Data Structure”.

2.4.9 L1/L2 Receive Error Codes (WQE WORD2[RE] ==1)

If there is a receive error, then Work Queue Entry (WQE) WORD2[RE] field is set to 1, and
WORD2[opcode] contains the error code. When using the SDK, the following list of error codes
apply. These definitions are made in the cvmx pip rcv err t data structure. For more
details about the error codes, see the HRM.

Note: Late collisions (data received before collision) cannot be detected by the receiver because
they would appear as JAM bits which would appear as bad FCS or carrier extend error which is
CVMX_PIP EXTEND ERR.

CVMX_PIP RX NO ERR //=no.error
CVMX PIP PARTIAL ERR // RGMII+SPI4: partially received packet
//-(buffering/bandwidth) not adequate
CVMX PIP JABBER ERR // RGMII+SPI4: receive packet too
// large and truncated
CVMX PIP OVER FCS _ERR //~RGMII: max frame error
// (pkt len > max frame len) (with FCS error)
CVMX PIP OVER_ERR // RGMII+SPI4: max ‘frame error
// (pkt len > max frame len)
CVMX_ PIP ALIGN ERR // RGMII: nibble error (data not byte
// multiple - 100M and 10M only)
CVMX PIP UNDER FCS ERR // RGMII: min frame error
// (pkt len < min frame len) (with FCS error)
CVMX PTP.GMX FCS ERR // RGMII: FCS error
CVMX_PIP UNDER ERR // RGMIT+SPI4: min frame error
// (pkt len < min frame len)
CVMX PIP EXTEND ERR // RGMII: Frame carrier extend error
CVMX PIP LENGTH ERR // RGMII: length mismatch (len did
// not match len in L2 length/type)
CVMX_ PIP DAT ERR // RGMII: Frame error (some or all data
// bits marked err)
CVMX PIP DIP ERR // SPI4: DIP4 error
CVMX PIP_ SKIP_ERR // RGMII: packet was not large enough to pass

// the skipper - no inspection could occur

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-23

-]
[
)
&
=
(="
=
)
=

g CAVIUM OCTEON Programmer’s Guide

NETWORKS
CVMX PIP NIBBLE ERR // RGMII: studder error (data not repeated -
// 100M and 10M only)
CVMX PIP_PIP FCS // RGMII+SPI4: FCS error
CVMX PIP PIP SKIP ERR // RGMII+SPI4+PCI: packet was not large enough

// to pass the skipper - no inspection
// could occur

CVMX_ PIP PIP L2 MAL HDR= // RGMII+SPI4+PCI: malformed L2 (packet
// not long enough to cover L2 header)

2.4.10 L3 (IP) Error Codes (WQE WORD2[IE]==1)

If the WQE WORD2[IE] field is set to 1 (IP error), the following error codes apply. These error
codes are defined in the cvmx_pip ip exc t data structure. For more details about the error
codes, see the HRM.

CVMX PIP IP NO ERR // no error
CVMX_ PIP _NOT IP // not IPv4 or IPv6
CVMX PIP IPV4 HDR CHK // IPv4 header checksum violation
CVMX PIP IP MAL HDR // malformed (packet not long enough to
// cover IP header
CVMX PIP IP MAL PKT // malformed (packet not long enough to
// cover length specified in IP header)
CVMX_ PIP TTL HOP // TTL / hop count equal ‘zero
CVMX PIP OPTS // IPv4 options / IPv6 early extension headers
2411 L4 Error Codes (WQE WORD2[LE]==1)

L4 Error codes are shown in the following list. These error codes are defined in the
cvmx pip 14 err t 14 err datastructure. For more details about the error codes, see the
HRM.

CVMX PIP L4 NO ERR // No error

CVMX PIP L4 MAL ERR // TCP' (UDP) packet not long enough to cover the
// TCP (UDP)header

CVMX PIP CHK ERR // TCP/UDP checksum failure

CVMX PIP L4 LENGTH ERR // TCP/UDP length check (TCP/UDP. length does not

// match-IP length)
CVMX PIP BAD PRT ERR // illegal TCP/UDP port (either source or dest

// port is zero)
CVMX PIP TCP_ FLG8 ERR // TCP flags = FIN only
CVMX PIP TCP FLG9 ERR // TCP flags = 0
CVMX PIP TCP FLG10 ERR // TCP flags = FIN+RST+*
CVMX PIP TCP_FLGl11 ERR // TCP flags = SYN+URG+*
CVMX PIP_ TCP FLGl2 ERR // TCP flags = SYN+RST+*= 12ull,

CVMX PIP TCP FLG13 ERR // TCP flags = SYN+FIN+*

6-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

2.5 IPD Functions
Table 8: IPD API Functions

IPD API Functions

static inline void cvmx ipd config(uint64 t mbuff size,

uint64 t first mbuff skip, uint64 t not first mbuff skip,
uint64 t first back, uint64 t second back, wuinté4 t wge fpa pool,
cvmx ipd mode t cache mode, uint64 t back pres enable flag)

o]
=5
o
=
=
<
=9
ot
A

Configure global settings for IPD. This function is called when

cvmx_helper initialize packet io global () is executed, before IPD is enabled
using values configured into Simple Executive (see Notel).

mbuff size: Packets buffer size in 8-byte words. This size may be set to the same as or less
than the size of the Packet Data Buffer.

first mbuff skip: Number of 8-byte words to skip in the first buffer

not first mbuff skip: Number of 8-byte words to skip in each following buffer

first back: Must be same as first mbuff skip / 128

second back: Must be same as not first mbuff skip / 128

wge fpa pool: FPA pool to get work entries from

cache mode: Select the style of write to the L2 Cache (IPD CTL. STATUS[OPC MODE])

Cache mode can be any of:

CVMX IPD OPC MODE STT /* All blocks DRAM, not cached in L2 */
CVMX IPD OPC_MODE STF /* All blocks into L2 */

CVMX IPD OPC_MODE STF1 STT /* 1st.block L2, rest!DRAM */

CVMX IPD OPC_MODE STF2 STT /* 1st, 2nd blocks.L2, rest DRAM */

back pres enable flag: Enable or disable port back pressure
(IPD CTL STATUS[PBP EN])

Note: When cvmx ipd config () iscalled using the default values configured into Simple
Executive, the values are:

mbuff size: CMVX FPA PACKET POOL SIZE / 8 ///the entire Packet Data Buffer
first mbuff skip: CVMX HELPER FIRST MBUEF SKIP / 8

not first mbuff skip: CMVX HELPER/NOT FIRST MBUFF. SKIP / 8

first back: (CVMX HELPER FIRST MBUFF SKIP + 8) / 128 (+8 is for next ptr)
second back: .(CVMX_HELPER NOT FIRST MBUFF SKIP + 8)/128 (+8is for next ptr)
wge fpa pool: CVMX FPA WQE POOL

cache mode: CVMX IPD OPC MODE STT

back pres enable flag: CVMX HELPER ENABLE BACK PRESSURE

static inline void cvmx ipd enable (void)

This function is used to enable the IPD if Simple Executive is configured to not enable IPD
(CVMX _HELPER ENABLE IPD is defined to 0). This is done if the user will add
customizations after Simple Executive configuration functions complete. Note: Configuration
changes after the IPD is enabled will result in a race condition, specifically "invalid" packet
parsing results for those packets which arrived before the configuration changes.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-25

-]
[
)
=]
=
(="
=
)
=

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

IPD API Functions

static inline void cvmx ipd disable (void)

Instead of calling this function, use the cvmx_helper shutdown packet io global (),
which calls cvmx_ipd disable () at the right time. This function can be used to shutdown
ALL packet reception. This function is called when reinitializing the packet interface. It is
used by the cavium-ethernet Linux driver when the module is removed.

2.6 IPD Defines

2.6.1 The cvmx_ipd mode t Defines (How data is stored)

These defines (enumerated in cvmx ipd mode t) are used to set how packet data is written the
L2 cache.

typedefs enum {

CVMX IPD OPC MODE STT = OLL; // Write all blocks DRAM, none are
// cached in the L2
CVMX_IPD OPC_MODE STF = 1LL; // Write all blocks into L2

CVMX IPD OPC MODE STFl STT = 2LL; // Write first cache block to L2 cache,
// others to DRAM

3LL; // Write first two cache blocks to
// L2 cache, others. to DRAM

CVMX IPD OPC MODE STF2 STT
} cvmx_ipd mode t

2.7 Beyond the SDK: Custom Software

Starting at Section 4 — “Incoming Packet Formats”, technical details about PIP/IPD are provided to
help the user customize Simple Executive or write custom software.

The user should also refer to the HRM to get precise technical details for the specific model of
OCTEON being used.

3 IPD Input Ports

When using the PIP/IPD, many registers names include the IPD port number. The IPD port
numbering conventions vary depending on the processor and the specific hardware configuration.

6-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilot|::=(vsl

Port numbers follow these conventions:
e Packet interface 0: ports 0-15 (See note below)
o XAUI port0
o SGMII/RGMII: ports 0-3
o SPI-4.2: ports 0-15
Packet interface 1: ports 16-31
o For XAUI config: port 16
o For SGMI/RGMII: ports 16-19
o For SP1-4.2: 16-31
PCI/PCIe/DPI (sRIO Memory Accesses): ports 32-35
Loopback: ports 36-39
sRIO Messages: ports 40-43

Note: The processor which is most confusing on port numbering is the CN54XX/CN55XX
because packet interface 0 port numbers start at 16.

This section provides information on CN56XX and CN57XX IPD input ports first because this
processor contains a super-set of most options. This information is followed by CN54XX and
CN55XX information. Before reading the CN54XX and CN55XX information, it is worthwhile to
skim the CN56XX and CN57XX information. The configuration is similar, and easier to
understand on the CN56XX/CN57XX.

IPD port information for other processors is located in Section 19 —“Appendix F: Input Port
Configuration”.

3.1 CN56XX and CN57XX IPD Input Ports
The following figures illustrate the input ports for the CN54/55/56/57XX processors.

For example, the CN56XX and CN57XX processors offer the following hardware configuration
options:

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-27

=
A
)
o=
=
«
A
e
A

-
[
-
1)
=]
=7
=
)
-}

/~, CAVIUM
=

OCTEON Programmer’s Guide
NETWORKS s

Table 9: CN56XX and CN57XX Packet Input Configuration Options

Choice PCle Port 0 Packet PCle Port 1 Packet
Interface 0 Interface 1
1 4 lanes SGMII 4 lanes SGMII
2 4 lanes SGMII 4 lanes XAUI
3 4 lanes XAUI 4 lanes SGMII
4 4 lanes XAUI 4 lanes XAUI
5 8 lanes not available 4 lanes SGMII
6 8 lanes not available 4 lanes XAUI
7 4 lanes SGMII 8 lanes not available
8 4 lanes XAUI 8 lanes not available
9 8 lanes not available 8 lanes not available

When PCle port 0 is configured to use 8 lanes (instead of 4 lanes),
OLMO0 & QLM1 have been dedicated for PCle Port 0 use only; Packet
Interface 0 is not available.

When PCle port 1 is configured to use 8 lanes (instead of 4 lanes),
QLM?2 & QLM3 have been dedicated for PCle Port I use only; Packet
Interface 1 is not available.

The following figure illustrates the resultant [PD port numbers.- For example, if the processor is
configured with two packet interfaces, both in SGMII mode; and two PCle controllers with of 4
PCle lanes each:

e Packet Interface 0 SGMII ports = 0-3

e Packet Interface 1 SGMII ports = 16-19

e PCle ports = 32-35

e Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

In another example, if the processor is configured with one packet interface in XAUI mode, and
one PCle controller configured to be 4 lanes, while the other PCle controller is configured to be 8
lanes (packet interface 1 is unused in this configuration):

e Packet Interface 0 XAUI port =0

e PCle ports =32-35

e Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

Note that from an IPD port point of view, the number of PCle lanes is invisible.

6-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM

NETWORKS
Figure 2: CN56XX and CN57XX IPD Input Ports

CN56XX, CN57XX IPD Input Ports Examples

SGMII MODE XAUI MODE 8 Lanes PCle + 8 4 Lanes PCle + 1 XAUI
(4+4 PCle) (4+4 PCle) Lanes PCle + 8 Lanes PCle
Input IPD Input IPD IPD Input IPD
Port Port Port Port Port Port Port
Num Num Num Num Num Num Num
Packet |91 = O] Packet [0 X< 0 1 0| Packet [0 x<l0
Interface -y Interface L . Interface L
2 19 [2 2 2 2
0 s @ 0 = —— 0 =
3 3 | 3] | 3] | 3]
4 4 4 4
1S 15 15 15
| 6| 1 6 | 6 | 6
L7 L7 L7 L7
| 8 | | 8 | | 8 | 8 |
19 | 9 | 19 | 19 |
| 10 | 1 10 | | 10 | | 10 |
11 11 11 11
|12 |12 |12 |12
|13 IKEN IKEN IKEN
|14 | |14 |14 |14
15 15 | 15 | | 15 |
0]_ |16 [0 x<| 16 16 16
Packet |1 | S [17 | Iriz(r:flzite | 17 | 17 |17 |
Interface | 2 | @ [18| 1 | 18 | 18 | 18 |
1 3 18 18| 18 18|
120 20 20 20
21 21 21 oCle Confia 21
PCle Config: 22| PCle Config: 22| PCle Config: 22 e [22]]
4 lanes PCle | 23 | 4 lanes PCle | 23 | 8 lanes PCle 23 anes e | 23 |
+ 24 + 24 g 24 1XAUI 24]
25 25 25 v 25
4 lanes PCle 561 4 lanes PCle 561 8 lanes PCle 56 8 lanes PCle o6 1
27 27 27 27
28 28 28 28
PCle | 29 | PCle | 29 PCle 29 PCle 29|
input | 30 | input | 30 | input 30 input | 30 |
oTt(pOut ports g; ozﬁit ports g; Plt<ot ports 3; Plt(ot ports g;
outpu outpu
port [0 Nao 87337 port [0 Nalo 853 port L9 NMlo 833 pot 0 Mo 233
CTTYEEE] || M YRR | | N CrrvEE S [e rype e 3
35 35 35 Y 35
36] 36 361 736 736] 36 36] 36
O [37 37 @] 7 37 @] 7 37 O |37 37
& [38 38 | £ 38 38 | £ [38 38 & 38 38 |
39 | 39 | 39 39| 39 | 39 39 | 39 |
Loopback Loopback Loopback Loopback
Note1: Input is provided by 4 Quad-Lane Input Modules (QLMs), each able to provide 4 lanes of SerDes.

QLMO: dedicated to PCle, connected to PCle controller 0.

QLM1:

optionally either connected to PCle controller 0 or to Packet Interface 0

QLM2: dedicated to PCle, connected to PCle controller 1.

QLMS3: optionally either connected to PCle controller 1 or to Packet Interface 1
If QLM1 is configured as PCle, it is combined with QLMO to provide 8 lanes of SerDes on PCle controller 0.
If QLM3 iis configured as PCle, it is combined with QLM2 to provide 8 lanes of SerDes on PCle controller 1.

Note2: If the QLM is configured as a packet interface, its packet interface type may be configured to be
SGMII, XAUI (shown as “XA” in the figure), or PICMG.. QLM mode by configured in hardware.

Note3: IPD ports which shown in white are unused. This information is provided to emphasize the gap in IPD

port numbers.

Note4: The Media-Independent Interface (MIl) does not supply packets to IPD. MIl packets traverse memory
ring buffers outside of the IPD/PIP/SSO path.

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-29

=
A
)
o=
=
«
A
e
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

For the CN56XX andCN57XX, there are four Quad-Lane Modules (QLMs) which can be
configured in hardware in different ways. Although this is hardware-level information, it may be
useful to software engineers to visualize the system. Understanding this figure is also helpful for
understanding PCle ring configuration. This figure shows the option of connecting a QLM to a
Gigabit Ethernet MAC Instance (GMX) controller, or a PCle controller. On this processor, the
GMX can be configured in hardware to be in either SGMII or XAUI mode.

-]
[
)
&
=
(="
=
)
=

6-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Figure 3: CN56XX and CN57XX QLM Configuration Choices

CN56XX, CN57XX Hardware Input to IPD Ports IPD
QLM PCle-to-IPD port details are

ided in another fi —\‘_ Port

proviaeaq in anotner iigure. _

Lanes PCI Port 0@ NUmM_
/ N

=
=5
o
=

=

<
=9
ot
A

QLM 1 may be connected to
either:

A. PCle Controller 0 or

B. GMX Controller 0
The selection is configured in
hardware via the
QLM1 MODE<O0, 1> pins:

—_—— —

If GMX is in SGMII or
X" PICMG mode, there are

Choice A: &
0x0 = PCle 9 4 IPD Ports.

Choice B: $ If GMX is in XAUI mode,
0x1 = XAUI (IEEE 802.3-2005) there is On/y one IPD
0x2 = SGMII (v1.8) Port
0x3 = PICMG 3.1 4 :

QLM 1

Note: To get 8 Lanes of
PCle (SerDes) going to the

same PCle controller, either If the GMX is in'SGMII mode, there are up
[QLMO and QLM1] must be to 4 IPD Ports, configurable via the

used or [QLM2 and QLM3] GMXn_RX_ PRTS register.

must be used. For example, If the GMX is in XAUl-mode, there is only
It is not possible for QLMO one IPD Port.

and QLM?2 to go to the same PCI Port 1

PCle controller.

QLM 3 may be connected to

either:
A. PCle Controller 1 or PCle Controllers 0
B. GMX Controller 1 < and 1 are both
The selection is configured in §’® connected to IPD
hardware via the & input ports
QLM3 MODE<0,1> pins. numbered (32-35)
Note: If the QLM is not QLM 3

connected to the GMX
(because it is used as a PCle
interface instead), the IPD ports
for the unused GMX are not QLM: Quad-Lane Module: the SerDes Quad-
used. For example, if GMX0 is Lane module, which contains four lanes/ports.
not used, IPD ports (0-3) are The QLM is used for both input and output.
not used. GMX: Gigabit Ethernet Mac Instance, as in
GMX0, GMX1.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-31

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

The connection from the two PCle ports to the IPD port is via PCle rings. There are eight PCle
rings assigned to each IPD port. The assignment of the PCle rings to the IPD ports is not
configurable. Software can configure which of the two PCle ports provides input to which PCle
ring, as shown in the following figure:

-]
[
)
&

=

(="
=
)
=

6-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide

NETWORKS
=)
A
Figure 4: PCle Rings: PCle Port Connection to IPD Input Ports =
CN54XX, CN55XX, CN56XX, CN57XX 5
PCle Connection to IPD Input Ports E
Ring Num

L IPD

4 Port

8 Num

PCle 12
QLM(s) —Jp» Controller 0 \ 16

(PCle Port 0) 20
2N 24 Each IPD Port has a
% 8 group of eight rings
o, 7 .
Each ring is assigned to either K attacheg togt. "We

assignment of rings to

PCle port 0 or PCle port 1. 1 .
The port assignment is made 5 the]!_PD pg;’ts is not
in software via the 9 contigurable.

NPEI_PKT IN PCIE PORT

register (2 bits pe_r ring)._ , \&W'g? 13
Se' 17

7

Q
PCle / A
QLM(s) ——p» Controller 1 25

(PCle Port 1) 29
2
l'h.alative Assigned Ring Numbers For 6
I? 0s11.:10n e IPD Input Ports 32-35 10
ring in the port N
>
22
26
30
3
7
7 28 29 30 31 11
Note: The ring number is calculated using the 15
following formula (results shown above):
ring num = 4 * m + (port num - 32) where 19
m is the relative position of the ring in the port | | 23 |
(0-7) and IPD input port numbers range from 27
(32-35) (the PCle input ports). 31

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-33

/~, CAVIUM
=

OCTEON Programmer’s Guide
NETWORKS s

-
[
-
1)
=]
=7
=
)
-}

3.2 CN54XX and CN55XX IPD Input Ports

The CN54XX and CN55XX processors provide different hardware configuration options. The
essential information is the packet interface 0 is not available.

Table 10: CN54XX and CN55XX Packet Input Configuration Options
Choice PCle Port 0 Packet PCle Port 1 Packet
Interface 0 Interface 1

1 8 lanes not available 4 lanes SGMII
2 8 lanes not available 4 lanes XAUIL
3 8 lanes not available & lanes not available

QOLMO & QLM1 have been dedicated for PCle Port 0 use only; Packet
Interface 0 is not available.

When PCle port 1 is configured to use 8 lanes (instead of 4 lanes), QLM?2
& QLM3 have been dedicated for PCle Port I use only; Packet Interface 1
is not available.

The following figure illustrates the resultant IPD port numbers. Note that Packet Interface 0 is
missing, so that IPD port numbers start at “16”.

For example, if the processor is configured with one packet interfaces in SGMII mode, the first
PCle controller configured with 8 PCle lanes, and the second PCle controller configured with of 4
PClIe lanes:

e Packet Interface 1 SGMII ports = 16-19
e PCle ports = 32-35
e Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

In another example, if the processor is configured with no packet interfaces, and both PCle
controllers configured for 8 PCle lanes:

e PCle ports = 32-35

e Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

Note that from an IPD port point of view, the number of PCle lanes is invisible.

6-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide

Figure 5: CN54XX and CN55XX IPD Input Ports

NETWORKS

CN54XX, CN55XX IPD Input Ports Examples

SGMII MODE XAUI MODE 8 Lanes PCle +
(8 lanes PCle + (8 lanes PCle + 8 Lanes PCle
4 lanes PCle) 4 lanes PCle)
Input IPD Input IPD IPD
Port Port Port Port Port
Num Num Num Num Num
| 0| 1 0| 1 0|
1 1 1
|2 | |2 |2
|3 |3 |3
|4 | |4 |4 |
|5 | |5 | |5 |
6] 6 6
7] 7] 7]
8] 8] 8]
9] 9] 8 |
10 10| 10|
Kl Kl P11
12 12 12
|13] |13] |13]
| 14| | 14 | | 14 |
15 15 | 15 |
Packet | O | = |16 Packet [0 <] 16 | 16 |
Interface [= 1| Interface 17 17
2 |9 18 18 18
0 5 P e 0 TR TR
3 18 18] 18]
20 20] 20]
) 21) 21] 21
PCle Config: 22] PCle Config: 22| ECle Config: 22|
8 lanes PCle 23] 8 lanes PCle 23] 8 lanes PCle 23]
s (24 | s (247 % (24
4 lanes PCle [25 | 4 lanes PCle [25 | 8 lanes PCle [25]
26 126] 26|
27] 27| 27]
28] 28] 28]
PCle 29 PCle 29 PCle 29
input 30 input 30 input 30
PKO ports 31| PKO " ports 31 | PKO _ ‘ports 31 |
output 32 output 32 output 32
port [0 o g55] | | pot . LOTMegss) | | pon [0 Me 855
a | 34 num 0 vl 34 num 3 v 34
B N OHYRES: N YT
O | 37 ¢ 37 O | 37 ; 37 O | 37 37
& [38] 38 | & [38) 38 | & [38) 38 |
39 | 39] 39} .390] 39 139
Loopback Loopback Loopback

Note 1: Input is provided by 4 Quad-Lane Modules (QLMs), each able to provide 4 lanes of SerDes.
QLMO and QLM1:" dedicated to PCle, connected to PCle controller O (8 lanes of SerDes)

QLM2: dedicated to PCle, connected to PCle controller 1 (4 lanes of SerDes)

QLM3: optionally either connected to PCle controller 1, or to Packet Interface 1

If QLM3 is configured as PCle, it is combined with QLM2 to provide 8 lanes of SerDes on PCle controller 1

Note 2: If QLM3 is configured as a packet interface, its packet interface type may be configured to be
SGMII, XAUI (shown as “XA” in the figurer), or PICMG. QLM mode is configured by hardware.

Note 3: IPD ports which shown in white are unused. This information is provided to emphasize the gap in
IPD port numbers.

Note 4: The Media-Independent Interface (MIl) does not supply packets to IPD. Mll packets traverse
memory ring buffers outside of the IPD/PIP/SSO path.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY

6-35

=
=5
o
=
=
<
=9
ot
A

-]
[
)
&
=
(="
=
)
=

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

For the CN54XX andCN55XX, there are four Quad-Lane Modules (QLMs) which can be
configured in hardware in different ways. The first two QLMS (QLMO and QLM1) are dedicated
to PCle. Although this is hardware-level information, it may be useful to software engineers to
visualize the system. Understanding this figure is helpful for understanding PCle ring
configuration. This figure shows the option of connecting a QLM to a Gigabit Ethernet MAC
Instance (GMX) controller, or a PCle controller. On this processor, the GMX can be configured in
hardware to be in either SGMII or XAUI mode.

6-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Figure 6: CN54XX and CN55XX QLM Configuration Choices

Note: To get 8 Lanes of

It is not possible for QLMO

PCle controller.

either:
A. PCle Controller 1 or
B. GMX Controller 1

hardware via the
QLM3 MODE<O0, 1> pins:
Choice A:
0x0 = PCle
Choice B:
0x1 = XAUI (IEEE 802.3-2005)
0x2 = SGMII (v1.8)
0x3 = PICMG 3.1

Note: If the QLM is not
connected to the GMX

used. For example, if GMX
not used, IPD ports (16-19)
not used.

CN54XX, CN55XX Hardware Input to IPD Ports

PCle (SerDes) going to the
same PCle controller, either
[QLMO and QLM1] must be
used or [QLM2 and QLM3]
must be used. For example,

and QLM?2 to go to the same

QLM 3 may be connected to

The selection is configured in

(because it is used as a PCle
interface instead), the IPD ports
for the unused GMX are not

IPD
PCle-to-IPD port details are Port
provided in another figure. —N__

Port 0 Num\

PCI
/7

QLM
Lanes

QLM 0

QLM 1

If the GMX is in SGMII mode, there are up
to 4 IPD Ports, configurable via the
GMXn_RX PRTS register.

If the GMX'is'in XAUI mode, there is only
one IPD Port.

PCI Port 1

PCle Controllers 0

@v and 1 are both
Qa" connected to IPD
9 input ports

numbered (32-35)

QLM 3

QLM: Quad-Lane Module: the SerDes Quad-

1is Lane module, which contains four lanes/

are ports.The QLM is used for both input and output.
GMX: Gigabit Ethernet Mac Instance, as in
GMX0, GMX1.

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-37

=
=5
o
=

=

<
=9
ot
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

The connection from the two PCle ports to the IPD port is via PCle rings. There are eight PCle
rings assigned to each IPD port. The assignment of the PCle rings to the PCle ports is not
configurable. Software can configure which of the two PCle ports provides input to which PCle
ring, as shown in Figure 4 — “PCle Rings: PCle Rings: PCle Port Connection to IPD Input Ports”.

-]
[
)
&
=
(="
=
)
=

4 Incoming Packet Formats

Incoming packets can have a variety of formats. The most common format is simply an IP packet
with an L2 header, TCP/UDP header, data, and a CRC. This section introduces the supported
formats.

Whatever format is used, PIP/IPD has an overall goal which must be achieved.

4.1 Overall Processing Goal
PIP/IPD will attempt to receive the packet, and perform error checks on it. It will create a WQE
and save the packet data. When the WQE is created, the following information will be included:
e Hardware checksum
e Scheduling information needed by the SSO:

o QoS

o Group

o Tag Value
o Tag Type

e The total packet length
e The physical address of the start of packet data in the Packet Data Buffer (not the same as
the start of the Packet Data Buffer), unless the packet is entirely contained in the Work
Queue Entry (dynamic short)
e Packet information such as:
o Errors and error codes
o [P information (IPv4 or IPv6, TCP or UDP, Fragment, etc)
o VLAN information (VLAN, VLAN STACKED, VLAN ID, VLAN CFI bit)
o User-defined information

4.2 Parsing Modes

The exact packet information included in the WQE depends on the configured packet parse mode.

PIP/IPD supports three parse modes:
e Skip-to-L2 which parses the packet’s L2 header (L2 error check, VLAN information
provided, if packet is IP, IP information is provided)
e Skip-to-IP which parses the packet’s IP header (No L2 error check, IP error check, no
VLAN information, but IP information provided)
e Uninterpreted which does not parse the packet (no additional error checks, no VLAN or IP
information)

6-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
=

NETWORKS
=
-
Figure 7: Parsing Mode Choices Without Packet Instruction Header -
Formats for each Parse Mode With Optional Skip1 and Pad E
Uninterpreted Skip-to-L2 Skip-to-IP =
Skip | (SKip1) Skip | (Skip1) Skip | (Skip1)
L2 Header
Uninterpreted
IP
L2/IP
Pad Pad
CRC CRC CRC
Notes:
Note1: The CRC can be optionally removed from some ports.. By default, the CRCs are
removed.

Note2: Skip1 is optional data added to the packet by external hardware before the packet
is forwarded to the OCTEON processor.
Note3: Pad is optional data added to an IP packet by external-hardware before the packet
is forwarded to the OCTEON processor.

The parse mode is set in one of two ways:

1. All packets on this port have the same parse mode, which is set via the SDK configuration
variable CVMX_HELPER INPUT PORT SKIP MODE or the register configuration
variable (PIP PRT CFGn[MODE]).

2. The parse mode can vary per-packet. In this case, the packet has a Packet Instruction
Header or PCle Instruction Header. The parse mode is one of the fields in the instruction
header. Instruction Headers are discussed later in this section.

Customers may also add customized data to the start of the packet (Skip1) and the end of an IP
packet (Pad). This is done by using external hardware which adds the customized data, then sends
the packet to OCTEON. All packet data is stored, allowing the customer to access the customized
data from software after the packet is received. Note: if Pad is added to the end of the IP packet,
set the register field PIP_ PRT CFGn[PAD LEN]=1, to disable the length check.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-39

-]
[
)
&
=
(="
=
)
=

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

The number of bytes in the Skip1 region is configured per-port using the configuration register
(PIP_PRT CFGn[SKIP]). PIP/IPD skips over the specified number of bytes before beginning
packet parsing. Skipl must always be less than the number of bytes of packet data or WORD2 [RE]
will be setto 1. See the HRM for details.

The Pad field can be added to an IP packet. For example, a 40-byte IP packet arriving via a packet
interface may have been padded out to the minimum-defined packet size of 64 bytes. If any input

packet contains padding beyond the end of the IP packet, the PIP/IPD receives the pad and buffers
it along with the other packet data.

See the HRM for details on how to configure the optional Skipl and Pad correctly.

4.2.1 Optionally removing the CRC (FCS) (CRC stripping)

The packet’s hardware CRC (Frame Check Sum (FCS)) can be removed (stripped) by IPD before
the packet is buffered. This option does not apply to PCle ports.

Note: Software should nof remove the CRC from ports for which Work Queue Entry’s hardware
checksum field (HW Chksum) may be used by software. This is because the CRC bytes are
included in the hardware checksum, and software will probably need to reference the CRC value to
use the hardware checksum.

See Section 10 — “Packet Storage” for more information on optional FCS stripping.

4.3 Optional Packet Instruction Headers

PIP/IPD also supports incoming packets which have variable-length Packet Instruction Headers.
These headers are added by external hardware. The Packet Instruction Header specifies the
packet’s parse mode and may include the packet’s scheduling information: QoS Value, Work
Group ID, Tag Value, and Tag Type. Packet Instruction Headers allow an external device to
control packet scheduling and parsing on.a packet-by-packet basis. Packet Instruction Headers
may be 2, 4, or 8 bytes long.

If a Packet Instruction Header is included with the packet, customized data may be added before
and after the Packet Instruction Header. In this case, PIP/IPD needs to know how many bytes to
skip before the Packet Instruction Header (Skip1), and how much to skip after the Packet
Instruction Header (Skip2). Skip2 is only used if a Packet Instruction Header is included.

The Skip2 region is the number of bytes of customized data added after the Packet Instruction
Header.

The total number of Skip bytes is the sum of the bytes in Skipl + the number of bytes in the Packet
Instruction Header + the number of bytes in Skip2. The number of bytes in the Skip1 region is
specified in a configuration register. The remaining Skip bytes are provided via the SL (skip
length) field in the Packet Instruction Header. The SL (skip length) field is the number of bytes in
the Packet Instruction Header (2, 4, or 8 bytes), plus the number of bytes of customized data added
after the Packet Instruction Header.

6-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

=

Figure 8: Input Packet Format Options

CAVIUM
NETWORKS

Input Packet Formats Supported
Uninterpreted Skip-to-L2 Skip-to-IP
Skip | (Skip1) | | Skip I (Skip1) | | Skip I (Skip1)
PKT_INST_HDR PKT_INST_HDR PKT_INST_HDR
Skip Il (Skip2) | | Skip Il (Skip2) | | Skip Il (Skip1)

L2 Header
Uninterpreted IP
L2/IP
Pad Pad
CRC CRC CRC

o Skip |l is optional. There is no Skip1 if the packet is PCle with a PCle Instruction Header. Skipl
bytes can be used for customer-specific data.

e PKT_INST_HDR (Packet Instruction Header) is optional, and is added by an external device.
The number of bytes in the instruction header varies, depending on the values of the instruction
header fields R (RAW) and RS (Real Short, a small packet).

e Skip Il (Skip2) is optional. There is no Skip Il unless PKT_INST_HDR is present. Skip2l bytes
can be used for customer-specific data.

Pad is optional, and is only present in IP packets.
CRC may be optionally removed from some ports. By default, the CRCs are removed.

If Packet Instruction Headers are used for incoming packets on a port, set the port’s

PIP PRT CFGn[INST HDR] to 1. The default value is 0 (no packets will contain Packet
Instruction Headers). When this variable is set to 1, al/l packets received on the port must include a
Packet Instruction Header. This variable is not used for PCle ports.

CN_OCTEON_PRG_GUIDE VoI2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-41

=
A
o
=
=
]
=5
Ll
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Figure 9: Packet Instruction Header — Hardware View
Simplified Packet Instruction Header

-]
[
)
&
=
(="
=
)
=

Packet Instruction Header (8-byte version)

6362 58 56 54 48 47 4241 38 3534 231 1]
TT Tag
S|(2) (32 bits)

Note: Grayed out fields (reserved) must be set to zero.
R: RAW mode. Packet will be either RAWFULL or RAWSCH depending on the
value of PM.

PM: Parse Mode. One of: (O=uninterpreted), (1=skip-to-L2), or (2=skip-to-IP)

SL: Skip Length: The number of bytes to skip from the start of the Packet
Instruction Header to either the L2 or the IP section of the packet. (This value
is the sum of (size of Packet Instruction Header) + (size of Skip2 region)).

Qos: Set the QOs value in the Work Queue Entry to this value.

Grp: Set the Group (Grp) value in the Work Queue Entry to this value.

RS: Real Short. Packet data will fit into the WQE. No Packet Buffer is used.
See details on dynamic shorts in the text.

TT: Setthe Tag Type (TT) in the Work Queue Entry to this value.

Tag: Setthe Tag in the Work Queue Entry to this value.

PM SL QOS| Grp

Rsbits) 2 1] 7 (6 bits) | (3) | (4)

If R=1 (RAW), then the Parse Mode (PM) determines the scheduling type:

e |f PM == 0 (unscheduled), then Packet type = RAWFULL.
PIP_RAW WORD [WORD] is used to create WORD2 of the WQE

o IfPM == 1 (skip-to-L2) or 2 (skip-to-IP), then Packet type = RAWSCH. PIP/IPD
create the contents of WORD2 of the WQE by examining the packet
information.

6-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilot|::=(vsl

4.3.1 The cvmx_pip inst hdr_t Data Structure

This data structure is defined in cvmx-pip.h:

/* *
* Definition of the PIP custom header that can be pre-pended
* to a packet by external hardware.

* % /

typedef union

{

=
=5
o
=
=
<
=9
ot
A

uint64 t u64;
struct
{
uint64 t rawfull : 1; // Documented as R - Set if the Packet is
// RAWFULL. If set, this header must be
// the full 8 bytes
uint64 t reserved0 : 5; // Must be zero
cvmx pip port parse mode t parse mode : 2; // PIP parse mode for
// this packet
uint64 t reservedl : 1 // Must be zero
uinté64 t skip len Y // Skip amount, including this header,

// to the beginning of the packet
// Must be zero
POW input queue for this packet
// POW input group for this packet
// Flag to store this packet in the
// work queue entry, if possible
cvmx _pow tag type t tag type : 23 // POW input tag type
uint64 t tag v 32; ~// POW input tag
} s
} cvmx pip pkt inst hdr t;

uint64 t reserved2 6
uint64 t gos 37
uint64 t grp : 4
uint64 t rs 1

Ne Ne Ne N
~
~

4.3.2 RAW, RAWFULL, RAWSCH
The HRM and this chapter mention the options “RAW”, “RAWFULL”, and “RAWSCH”.

A packet is considered to be “RAW?” if it has a Packet Instruction Header and the RAW bit is set in
the instruction header. (The Packet Instruction Header data structure is shown in Figure 9 —
“Packet Instruction Header™.)

Depending on the parse mode, a RAW packet is either RAWSCH or RAWFULL. Both types of
raw packets provide scheduling information (QoS, Group, Tag Value, and Tag Type) for the
packet. The difference between the two types is in how the WQE WORD? fields are created.

RAWSCH:
e RAW and
e Parse Mode = Skip-to-L2 or Skip-to-IP

In this case only the scheduling information comes from the header. The packet is parsed to create
the Work Queue Entry (WQE) WORD? fields.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-43

/~, CAVIUM OCTEON Programmer’s Guide

- NETWORKS

o

Sl RAWFULL:

2 e RAW and

= e Parse Mode = Uninterpreted
S

Because the parse mode is “uninterpreted”, WORD?2 data cannot be derived from parsing the
packet. In this case “FULL” WORD?2 data comes from the port configuration register:

PIP RAW WORD[WORD]. Note that in this case, there is only one configuration of WORD?2 for
the system, not one per port.

WQE WORD?2 is discussed in more detail in Section 6 — “How Parse Mode Affects WQE WORD?2

6-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 10: WQE Information Copied From the Packet Instruction Header
Optional Packet Instruction Header

Note: If PIP_PKT CFGn[INST HDR] is set, then all packets arriving on the port must have a
Packet Instruction Header

Packet Instruction Header (variable length)

=
A
)
o=
=
«
A
e
A

6362 5856 54 48 47 4241 38 3534 231 0
R PM SL Qos| Grp RTT Tag
(5bits)[2 1] 7 (6 bits) | (3) | (4) [s|(2) (32 bits)

Note: Grayed out fields (reserved) must be set to zero.
R: RAW mode. Packet will be either RAWFULL or RAWSCH depending on the
value of PM.

PM: Parse Mode. One of: (O=uninterpreted), (1=skip-to-L2), or (2=skip-to-IP)

SL: Skip Length: The number of bytes to skip from the start of the Packet
Instruction Header to either the L2 or the IP section of the packet. (This value
is the sum of (size of Packet Instruction Header) + (size of Skip2 region)).

Q0s: Set the QoS value in the Work Queue Entry to this value.

Grp: Set the Group (Grp) value in the Work Queue Entry to this value.

RS: Real Short. Packet data will fit into the WQE. No Packet Buffer is used.
See details on dynamic shorts in the text.

TT: Setthe Tag Type (TT) in the Work Queue Entry to this value.

Tag: Setthe Tag in the Work Queue Entry to this value.

1514 108 6 0 RS is not used if any of the following conditions is true:
1. PIP_PRT CFGn[DYN RS] =1 for the given port
1. Rsbis) P S If R==0 and RS is not used 2..PIP GBL CFG[IGNRS] =1 AND the portis NOT a PCle
port
3. The packet is not a dynamic short (does NOT fit entirely into
the WQE)
3130 26 24 22 1615 109 6 32 0
PM SsL QOS Grp RTT)
2, Rsbits)| 21 7 (6bits) | 3)| 4) /) IfR==0andRs isused

If R==1 (RAW), then the Parse Mode (PM) determines the scheduling type:

B. If PM==1 (skip-to-L2) or 2 (skip-to-IP), then
Packet type = RAWSCH. PIP/IPD create the contents of WORD?2 of the WQE by examining
the packet information.

A. If PM==0 (unscheduled), then
/ Packet type = RAWFULL.. PIP. RAW_WORD [WORD] is used to create WORD2 of the WQE

6362 58 48 47 4241 38 3534 231 0
PM SL QoS Grp RTT Tag
3. Risbits)| 2 1| 7 (6 bits) | (3) | (4) [s|(2) (32 bits) If R==1
Work Queue Entry \\\
WORD1 Len ipt |QOS Grp Tag
(16 bits) (6) 3) (4) (3) (32 bits)

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-45

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

4.4 Optional PCle Instruction Headers
When packets arrive via PCle ports, they have a PCle Instruction Header if either:
e The PCIE INST HRD[R] bitissetto 1 OR
e The NPEI PKT (0-31) INSTR HEADER[USE IHDR] bitis set for the PCle ring the
packet arrived on a a a

-]
[
)
&

=

(="
=
)
=

Skip1 does not apply to PCle ports. There is no customized data allowed before the PCle
Instruction Header.

PIP/IPD converts the PCle Instruction Header into a Packet Instruction Header, as shown in the
next figure.

6-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 11: PCle Instruction Header Conversion to Packet Instruction Header
Creating Packet Instruction Header From PCle Instruction Header

For PCle packets, the Packet Instruction Header is created from the PCle Instruction Header plus
per-ring register Parse Mode and Skip Length values. This header is pre-pended to the PCle packet,
replacing the DPTR and PCIE_INST HDR fields which were at the start of the PCle packet.

=
A
o
=
=
]
=5
Ll
A

PCle Instruction Header

63 61 4847 4241 38 3534 231 0
RG DLENGSZ FSZ |QOS Grp RTT Tag
(13 bits) (6 bits) | (3) | (4) [S|(2) (32 bits)

Note: Grayed out fields (reserved) must be set to zero.
R: RAW mode. If R==1, packet will be either RAWFULL or RAWSCH depending
on the value of the parse mode. If R==0, the QOS, Grp, TT, and Tag_Value
fields are ignored.
G: Gather is used
DLENGSX: If G==1 and DLENGSZ!=0 (indirect gather instruction): DLENGSZ
is the number of entries in the gather list.
e |f G==1 and DLENGSZ==0 (direct gather instruction): DLENGSZ is only used to select
the instruction mode
e If G==0 (no gather): DLENGSZ must be nonzero. It represents the length of the
packet data (length in bytes) directly pointed at by DPTR.
Fsz: Front-data size: the number of bytes of packet data before the DPTR data
and after the optional Packet Instruction Header
Qos: If R==1, set the QOS value in the Work Queue Entryto this value.
Grp: If R==1, set the Group (Grp) value in the Work Queue Entry to this value.
RS: Real Short. Packet data will fit into the WQE. See details on dynamic shorts in the text.
TT: If R==1, set the Tag Type (TT) in the Work Queue Entry to this value.
Tag: If R==1, set the Tag in the Work Queue Entry to this'value.

Packet Instruction Header (variable length)

6362 58 56 54 48 47 4241 38 35343231 0
R PM SL QOS| Grp RTT] Tag
(5 bits)| 2 |1 7 (6:bits) | (3) | (4) [S/(2) (32 bits)

Note: Grayed out fields (reserved) must be set to zero.

R, Q0S, Grp, RS, TT, and Tag: are the same as for the PCle Instruction Header.

PM: Parse Mode. One of: (O=uninterpreted), (1=skip-to-L2), or (2=skip-to-IP).
If NPEI_PKTr[PBP]==1 (packet-by-packet mode) is set, this field is set to the value of
NPEI_PKTr[RPARMODE] (the raw parse mode set for this PCle ring), otherwise the
value is set to NPEI_PKTr[PAR MODE].

SL; Skip Length: The number of bytes to skip from the start of the Packet
Instruction Header to either the L2 or the IP section of the packet. (This value is the sum
of (size of Packet Instruction Header) + (size of Skip2 region)).
If NPEI_PKTr[PBP]==1 (packet-by-packet mode) is set this field is set to the value of
NPEI_PKTr[RSKP_LEN] (the raw skip length set for this PCle ring), otherwise the
value is set to NPEI_PKTr[SKP_LEN].

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-47

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

4.5 Registers to Configure Input Packet Format

These per-port configuration variables control PIP/IPD expectations about incoming packet
content, and how it should be handled. Note that PIP PRT CFGn[MODE] is not examined if

PIP PRT CFGn[INST HDR]==1. In that case, the parse mode is determined by the PM field in
the packet’s Packet Instruction Header.

-
[
-
1)
=
=7
=
)
-}

Note that Skip2 is specified in the Packet Instruction Header, and Pad is not specified, the extra
bytes are simply received. When Pad is used, the length check must be disabled.
Table 11: Re

isters to Configure Input Packet Format

H/W SDK
Brief Description Register Fields Default Default
Value Value
Parse Mode: Parse mode (Skip-to-L2 (1), Skip-to-IP | p1P_PRT CFGn N 0 1 (See
(2), or Uninterpreted (0)) (one per port) Notel)
Packet Instruction Header Present: When set, the bIp PRT CEG 0
Packet Instruction Header is present on all packets (one per p OI;) INST_ HDR 0 (H/W
(except PClIe ports 32-35) Default)
SKIP 1 Amount: Optional SKIP 1 amount: the - 0
. . . n
nurrll(ber of bytes PIP/IPD will skip before parsing the (one per-port) SKIP 0 o f(2 1/l qut)
packet.
0
Broadcom HiGig: Enable Broadcom HiGig parsin T M HIGIG_EN 0 Def(gt/lvlqt)
g gp g (one per port) — (See
Note?2)
Notes
Notel: Configured via executive-config.h:
CVMX HELPER INPUT PORT SKIP MODE = CVMX PIP PORT CFG.MODE SKIPLZ
Note2: Can be configured via cvmx _higig initialize ()

6-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

5 The Work Queue Entry Data Structure (WQE)

The Work Queue Entry (WQE) can be located either in a Work Queue Entry Buffer (most common
case) or in the first 128 bytes of the Packet Data Buffer (this feature is supported on selected
OCTEON models).

The following table shows the registers used to select either the FPA pool used to supply the Work
Queue Entry buffers, or the variable to set to use the Packet Data Buffer instead.

If the WQE is in the first 128 bytes of the Packet Data Buffer, when the work is added to the SSO,
the WQE pointer is simply a pointer to the Packet Data Buffer. (See the passthrough example
for code that uses this configuration.) See Section 10.2.1 — “Storing WQE in Packet Data Buffer
instead of WQE Buffer”.

Table 12: Reg Details

H/W SDK
Brief Description Register Fields Default Default

isters to Configure Work Queue Ent

Value Value

Select FPA Pool to Use for Work Queue Entry Buffers

Select WQE Pool: Select FPA Pool to
Use for Work Queue Entry Buffers.

This field is not used when IPD WQE FPA QUEUE WQE_QUE 0 i] t(Sri)e
IPD_CTL_ STATUS[NO_WPTR] is o
set.

Store WQE in first 128 bytes of Packet Data Buffer

Omit WQE Buffer: When setto 1,
Work Queue Entry buffers are not
used. The WQE data is located in the

first 128 bytes of the Packet Data 0
Buffer. Space must be reserved using | [FP_CTL_STATUS NI 0 Def‘z 1/1 th)
IPD 1ST MBUFF SKIP[SKIP SZ].

See the HRM register field description

for details.

WQE Endianness

Work Queue Entry Endian 0
specification. If setto 1, WQE is IPD CTL_ STATUS WQOE_LEND 0 (B/W
written in little Endian. Default)

Notes

Notel: The pool WQE pool number is configured automatically by Simple Executive. See the Configuration
chapter for details.

5.1 Work Queue Entry Data Structure

The Work Queue Entry (WQE) data structure is shown in the following figure. The format is
dictated by hardware requirements. Notice that details for WORD2 are not provided. The
WORD? fields depend on the parsing results. The different WORD2 data structures are shown as
“CASE1, CASE2, CASE3” in Figure 13 — “Parsing Cases”. The “CASE” notation is used in this

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-49

a
2o
i
=
=
]
=0
]
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

section to help the reader match the figures and tables to the appropriate data structure. (See
Section 6 — “How Parse Mode Affects WQE WORD?2 ” for more information.)

-]
[
)
&
=
(="
=
)
=

Figure 12: Work Queue Entry Data Structure — Hardware View
Work Queue Entry Data Structure

63 48 47 40 39 0
WO RDO HW_Chksum Unassigned POW_Next_Ptr
(16 bits) (8 bits) (40 bits)
63 48 47 41 3938 35343231 0
WORD1 Len ipt Q0S| Grp | TT Tag
(16 bits) (6) (3)| 4 (@3 (32 bits)
63 0
WORD2 Packet Decode Information (details vary)

WORD3 is a pointer to the first Packet Data Buffer

63 56 55 40 39 0
WORD3 1| Back |Pool Size Addr
@ | @3 (16 bits) (40 bits)
63 0
WORD4
Word 15 Packet Data (details vary)

Note: Grayed out fields (reserved) are set to zero by PIP/IPD. The software data structure field name is shown
in parenthesis in the list below.

HW_Chksum (hw_chksum): The hardware-calculated checksum of packet bytes.

POW_Next_Ptr (next_ptr): Used by the SSO to create linked lists.

Unassigned: Bits <40:47> are not used by hardware and are reserved for software use.

Len (len): Total packet length in bytes (from 1-65535).

iprt (ipprt): The input port number that the packet arrived on.

QOS (gos): This Work Queue Entry will be put on the specified SSO QoS queue. This value is used by the
SSO.

Grp((arp): This Work Queue Entry is in this:-Work Group. This value is used by the SSO.

TT (tag_type): The Tag Type for this Work Queue Entry (ATOMIC, ORDERED, or NULL). This value is used
by the SSO.

Tag (tag): The Tag Value for this Work Queue Entry. This value is used by the SSO.

L(i): The Invert bit (used by PKO). This value is set to 0 for an inbound packet (don’t free). This bit is used to
invert the state of the PKO command WORDO [DF] flag (don’t free). The Invert bit is used by software to free
only selected buffers in a buffer chain.

Back (back): The number of cache lines from Addr (start of packet) to the beginning of the first buffer (usually
0).

Pool (pool): The pool the buffer came from (0 for packet data buffers).

Size (size): The number of bytes from Addr to IPD_PACKET MBUFF_SIZE[MB_SIZE] (not the same as the
size of the buffer). This represents the number of bytes of packet data in the buffer, unless there is only one
buffer. If there is only one buffer, the number of bytes of packet data will be smaller than Size unless the
packet data ends exactly at the end of the region reserved by IPD_PACKET MBUFF_SIZE[MB_SIZE].

Addr (addr): The physical address of the start of the packet in the first Packet Data Buffer (not the start of the
buffer). Addr does not need to be cache-line aligned, but the start of the buffer must be cache-line aligned.

6-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilot|::=(vsl

5.2 Software WQE Data Structures
WQE data structures are:
e WQE: the WQE data structure is defined in cvmx wge t in cvmx-wge.h
e WORDO: the fields are defined in cvmx_wge t in cvmx-wge.h
e WORDI: the fields are defined in cvmx_wqge_t in cvmx-wge.h
e WORD?2: the fields are defined in cvmx pip wge word2 in cvmx-wge.h, aunion
of:
©o uinteée4 t uo4d
o struct s —used if the hardware determines the packet is IP (CASE 2 shown in
figures below).
o struct svlan —used to access the 16 VLAN bits
o struct snoip —used if the hardware could not determine whether the packet is
IP (CASE 3 shown in figures below)
o The CASE 1 data structure is not defined
e WORD3: The fields are defined in the cvmx buf ptr t data structure in
cvmx-packet.h

=
A
)
o=
=
«
A
e
A

Note: the “CASE 1, CASE 2, CASE 3” notation is explained in Section 6 — “How Parse Mode
Affects WQE WORD?2 Data Structure”.

The data structures used in the Work Queue Entry are shown below.

Note: hardware field names tend to be short, such as “vVv”. This short name fits well into the
figures showing the hardware data structure. ' Software field names are longer to help code
readability, such as “vlan valid” instead of “VV”. To help cross-connect the HRM with the
SDK, both the hardware and software field names are shown when possible:

e In the software data structures below, the hardware name is shown as the first part of the
field comment. See Section 5.2.1 = “WQE The cvmx wge t Data Structure” for an
example.

e In the tables which accompany the figures showing hardware data structures, the software
field names are shown in parenthesis after the hardware field name. See Table 13 —
“Fields: WQE WORD?2 Fields if L1/L2 Error (CASE 3C)” for an example.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-51

-
[
s
&
=
(="
=
e
=

/~, CAVIUM
NETWORKS

5.2.1 WQE The cvmx_wqge_t Data Structure

The Work Queue Entry software data structure is defined in cvmx-wqge . h:
/ * %

* Work queue entry format
*

OCTEON Programmer’s Guide

* must be 8-byte aligned
*/

typedef struct

{

// WORDO
uintlé t hw_chksum; // HW_Chksum - hardware checksum
uint8 t unused; // Unassigned - available for
// software use
uint64 t next ptr : 40; // POW Next Ptr - used by the
// SSO (POW) to create lists
// WORD 1
uinte4 t len :16; // Len - total bytes in the packet
uint64 t ipprt : 6; // iprt - input port
uinté4 t qgos : 3; // QOS - calculated QoS value
uint64 t grp : 4; // Grp- calculated Group value
cvmx _pow_tag type t tag type : 3; // TT - calculated tag type
uint64 t tag :32; // Tag value (Tag) - calculated
// tag wvalue
// WORD 2
cvmx_pip wge word t word2; // .status and error conditions
// WORD 3
cvmx_buf ptr t packet ptr; // pointer to first packet

// data buffer
// WORD4 to WORD15

*

/
HW WRITE: Hardware will fill in a programmable amount from the

packet, up to (at most, but perhaps less) the amount

needed to fill the work queue entry to 128 bytes
If the packet is recognized to be IP, the hardware starts (except that
the IPv4 header is padded for appropriate alignment) writing here
where the IP header starts.
If the packet is not recognized to be IP, the hardware starts writing
the beginning of the packet here.

b S R S . S S

~

uint8 t packet datal[96]; // WORD4 to WORD15 = 96 bytes

/ * %
* The WQE is usually 128 bytes (one cache line). Software can make the
* WQE any length, but the hardware only manages the first 128 bytes.
* (Making the WQE larger will not change the amount of packet data
* stored in the WQE).
*/
} CVMX CACHE LINE ALIGNED cvmx wge t;

5.2.2 WQE WORD2: The cvmx_pip wge word2 Data Structure

The contents of the WQE WORD?2 data structure depend on the results of the hardware parsing.
There are three possible data structures (a union).

6-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

There are three different possible data structures:
e CASE 1 (Uninterpreted, RAW, and No receive error). The SDK does not supply this data
structure since this is not the usual case.
e CASE2((IP)
e CASE 3 (Not IP)

CASE 2 and CASE 3 are contained in the cvmx pip wge word?2 data structure shown below,
and also appear in the following figures.

typedef union

{
uint64 t uo6d;

// Use this structure if the hardware determines that the packet
// is IP (CASE 2) */

struct
{
uint64 t bufs 8; // Bufs - number of buffers
uint64 t ip offset 8; // IP offset - offset to
// start of IP packet
uint64 t vlan valid 1; // VV - VLAN or VLAN STACKED
uint64 t vlan stacked 1;// VS - VLAN STACKED
uinte4 t unassigned 1; // is set to all O
uint64 t vlan cfi : 1; . // VC /(- VLAN CFI bit
uint64 t vlan id :12; // VLAN.id - VLAN ID
uint64 t pr : 4; //I PR - PCIe ring position
/7. [0-T7]
uinte4 t unassigned?2 8; // 1is set to all O
uint64 t dec ipcomp 1;.// CO = IP decompression
// needed
uinté4 t tcp. or udp 1; //.TU - TCP or UDP packet
uinté4 t dec ipsec 1;.///SE - decryption needed
uinte4 t is vé6 1; // Vo6 - set if packet is IPvo6
uint64 t software 1; // Reserved for software use
uint64 t L4 error 1;°// LE - L4 error
uint64 t is frag 1; // FR - fragment
uint64 t IP exc 1; // IE - IP exception
uinte4 t is ‘bcast 1;+// B - broadcast
uint64 t is mcast 1; // M - multicast
uinté4 t not IP 1; // NI - not IP
uinted t rcv_error 1; // RE - L1/L2 receive error
uint64 t err code 8; // opcode - error code (see

// cvmx_pip err t)
}ys; (// packet is IP (CASE 2)

// VLAN view of the structure - use this structure to get at the
// 16 VLAN bits */

struct

{
uint64 t unusedl :16;
uint64d t vlan :16;
uint64d t unused?2 :32;

} svlan;

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-53

=
=5
o
=
=
<
=9
ot
A

-]
[
)
&
=
(="
=
)
=

2=, CAVIUM
< NETWORKS

// use this structure if the packet

OCTEON Programmer’s Guide

// 1s NOT IP, including if an L1/L2 error occurs (CASE 3)
// Note this data structure is used of the hardware cannot determine

// that the packet is IP.

struct
{
uint64d t bufs : 85
uint64 t unused : 85
uint64 t vlan valid : 1;
uint64 t vlan stacked : 1;
uint64 t unassigned : 1;
uint64d t vlan cfi HE
uint64 t vlan id :12;
uint64 t pr : 4;
uint64 t unassigned?2 12;
uint64d t software 1;
uint64 t unassigned3 1;
uint64 t is rarp 1;
uint64 t is_arp 1;
uint64 t is_bcast 1;
uint64 t is _mcast 1;
uint64 t not IP 1;
uint64 t rcv_error 1%
uint64 t err code 8;

} snoip; // structure if NOT IP {(CASE 3)
} cvmx pip wge word2;

6-54 Cavium Networks Proprietary and Confidential - DO NOT COPY

Bufs - number of buffers
is set to O

VV - VLAN or VLAN STACKED
VS - VLAN STACKED

is set to O

VC - VLAN CFI bit

VLAN_id - VLAN ID

PR - PCIe ring position
[0-7]

is set to O

reserved for software use,
hardware will clear on
packet creation

is set to O

IR - RARP
IA - ARP
B = broadcast

M - multicast

NI - Not IP

RE - L1/L2 receive error
opcode - error code (see
cvmx pip err t)

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

5.2.3 WQE WORD3: The cvmx_buf ptr t data structure
The cvmx_buf ptr t data structure (WQE WORD?3) is defined in cvmx-packet. h:

=
A
)
o=
=
«
A
e
A

typedef union
{

void* ptr;
uint64 t u6d;
struct
{
uint64 t i : 1; // set to 0 for inbound packet
uint64 t back : 4; // Back - Indicates the number of cache lines
// to back up to access the start of the buffer
// relative to addr. In most cases. the amount to
// back up is less than a complete cache line, so
// this value is set to 0
uint64 t pool : 3; // Pool - The pool the buffer came from (pool
// 0 for packet data buffers)
uinte4 t size :16; // Size - The size of the segment pointed to
// by addr (in bytes)
uint64 t addr :40; // Addr - Pointer to the first byte of data
} s

} cvmx buf ptr t;

6 How Parse Mode Affects WQE WORD2 Data Structure

The packet’s parse mode is essential to how the packet is parsed. Parsing affects the information
stored in the WQE WORD 2 data structure and field values. The parsing mode does not change
the packet data (all received bytes are stored). This sectionpresents the different parse modes and
the resultant WQE WORD?2 data structures. The options are shown in the figure below. To
navigate this section most easily, use the next figure to locate the case applicable to your specific
application, then use the specific “CASE” notation to locate the relevant figure and table.

Parsing details are shown in the flow chart in section 16 — “Appendix C: Input Packet Parsing”.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-55

/~, CAVIUM
=

OCTEON Programmer’s Guide
NETWORKS s

Figure 13: Parsing Cases
Packet Parsing and WQE WORD2 Cases

There are three parsing modes available: “Skip-to-L2” where the packet’s L2 header is parsed, “Skip-to-IP” which skips
directly to the IP portion of the packet, and “Uninterpreted” which does not examine the packet contents.

-]
[
)
&
=
(="
=
)
=

A packet with the parse mode “skip-to-L2” is further classified as either being an IP packet or Non-IP packet. The
packet is an IP packet if the L2 header’s type field contains either 0x800 (for IPv4) or 0x86DD (for IPv6).

There are three different data structures used for WORD2, depending on the parsing results: CASE 1, 2, and 3.
Within each case, field values depend on parsing results (A, B, C). Each of these WQE WORD?2 variations are shown
in other figures. Cases which do not have L1/L2 receive errors may be found on the Parsing flowchart.

Parse Mode = Uninterpreted Parse Mode = Skip-to-L2 Parse Mode =
Skip-to-IP
Uninterpreted (Includes RAWSCH packets)
(Includes RAWSCH
N, packets)
QN OTRAW
& ~a
RAWFULL .
(Uninterpreted AND U”'”,El%‘;f?_‘fi‘\‘/\/AND Skip-to-L.2 Skip-to-1P
RAW) -
/\ “ N -
PCle ((NOT PCle)
AND OR
PIP_GBL_CTL[RING_EN]==1 (PIP_GBL_CTL[RING EN]==0))
NO L1/ L1/L2 NO L1/ L1/L2 NO L1/ L1/L2 No L2/ L1/L2 No L1/ L1/L2 No L1/ L1/L2
L2 Error Error L2 Error Error L2 Error Error L2 Error Error L2 Error Error L2 Error Error
CASE | | CASE CASE | | CASE CASE | | CASE CASE | | CASE | | CASE | | CASE CASE CASE
1A 3C 1B 3C 3B 3C 2A 3C 3A 3C 2B 3C

6.1 All Parse Modes if L1/L2 Error Occurs

If there is an L1/L2 error during parsing, for any of the parsing modes (skip-to-L2, skip-to-IP,
uninterpreted), the WQE WORD?2 fields are set as shown in the following figure:

6-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 14: WORD?2 if L1/L2 Error (CASE 3C)

Parse Mode = Skip-to-L2, Skip-to-IP, or Uninterpreted, and an L1/L.2 Receive Error has
occurred
WQE WORD?2 Data Structure

This case applies if:

e An L1/L2 receive error occurred

e Any parse mode is specified: Skip-to-L2, Skip-to-IP, or Uninterpreted
In this case RE and NI are both set to 1 to indicate a receive error.

The fields Vv, VS, VC, VLAN_id, IR, IA, B, and M are unpredicable (U) because
when there is an L1/L2 receive error the packet may be corrupted.

Reserved fields in WQE are not named and are highlighted in gray. They are set to
0.

The different fields in the data structures are explained in the next table.

63 56 55 48 47 44 43 3231 2827 16 1413 87 0
CASE 3C:
H Bufs VLAN_id=U PR Opcode
L1/L2 Receive Error (8 bits) (8 bits) 4) (12 bits) 4) (12 bits) N (6 bits) (8 bits)
1312 1 10 9 8
47 _46—45 44 ‘
VV=U|VS=U vC=U IR=U | IA=U | B=U | M=U | NI=1 |RE=1

Table 13: Fields: WQE WORD2 Fields if L1/L2 Error (CASE 3C
Definition
(Fields are in alphabetical order.

The SDK sofiware field names are shown in parenthesis.)
Broadcast: set when the packet's destination MAC ‘address field in the L2 header is the

B broadcast address (all ones).

(is_bcast) Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Bufs Number of Buffers: The number of buffers used to store the packet data. A zero value means

(bufs) that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

Is ARP: Set when the packet's L2 header t ype field ==0x0806 (an ARP packet).

IA
(is. arp) Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
) L1/L2 error because the packet may be corrupted.
R Is RARP: Set when the packet's L2 header type field ==0x0835 (an RARP packet).
(is rar Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
p)
- L1/L2 error because the packet may be corrupted.
" Multicast: Set when the packet's destination MAC address field in the L2 header is a

multicast address (the group bit is set, and at least one of the remaining bits is a zero).

(is mcast) R . .
- Note: M is always zero when NOT in skip-to-L2 mode.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-57

o]
=5
o
=
=
]
=5
o
A

g CAVIUM OCTEON Programmer’s Guide

NETWORKS
=
:,U Definition
2 (Fields are in alphabetical order.
= The SDK software field names are shown in parenthesis.)
S B(III]O £ 1P) Not IP: Not an IP Packet or an L1/L2 receive error has occurred.
Error Code: Numeric code indicating specific error which occurred: If there is an error (any
Opcode of WORD2 [RE] or WORD2 [IE] or WORD2 [LE] is set), then Opcode contains an error
(err_code) code, otherwise Opcode=0. The error codes values depend on which error bit is set (RE,
IE, or LE). See those specific errors for details.
PCle Ring: The relative position of the PCle ring in the PKI input port [0-7].
PR is enabled if PTP GBL CTL[RING EN]==1.
PR If the packet was not received on a PCle port OR PIP GBL CTL[RING EN]==0, then
(pr) PR=0. - a
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCle port.
RE Receive error (L1/L2 error): For CASE 2, by definition RE==0 because CASE 2 only occurs
(rcv_error) there is NO L1/L2 error.
S(SO frware) Software Use: Reserved for software use.
VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).
If vv==0 (NOT VLAN), then VC=0.
If vv==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
ve If vv==1 and VS==1 (VLAN STACKED), then PIP GBL CTL[VS WQE] is used to

select which VLAN CFI will be used (VLANO or VLANI1). If

PIP GBL CTL[VS WQE]==0, then VLANO CFl is selected, otherwise VLAN1 CFI is
selected.

Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L.1/L.2 error because the packet may be corrupted.

VLAN ID: VLAN id isthe VLAN ID field (VLAN bits <11:0>).

If vv==0 (NOT VLAN), then VLAN 1id=0.

If vv==1 and vS==0 (NOT VLAN STACKED), then VLAN 1id is set to the packet's VLAN
id.

If vv==1 and VS==1 (VLAN STACKED), then PTP_GBL CTL[VS WOQE] is used to
select which VLAN id will be used. If PIP_ GBL CTL [VS_WQE]==0, then VLANO id is
selected, otherwise VLANI id is selected.

Note: VLAN. id is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN STACKED: This bit is only setif vv==1 (VLAN) AND the packet is VLAN

Vs STACKED.

(vlan_stacked) | Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is.an L1/L2 error because the packet may be corrupted.

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.

Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

(vlan cfi)

VLAN id
(vlan id)

\AY
(vlan valid)

6.2 Parse Mode = Skip-to-L2

When the parse mode is set to “skip-to-L2”, the L2 header is analyzed and appropriate fields are set
the WQE WORD?2.

The industry-standard L2 Header options are shown in Figure 49 — “L2 Header Formats”.

6-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
NETWORKS

Figure 15: WORD?2 if PM=Skip-to-L2, No L1/L2 Errors (CASE 2A, CASE 3A)

This case applies if:
e The packet’'s parse mode is Skip-to-L.2
e There are no L1/L2 Errors

if IP and 1 if not IP.

Parse Mode=Skip-to-L2: WQE WORD2 Data Structure

A packet with the parse mode “skip-to-L2” is classified as either being an IP packet or Not-IP
packet based on the value of the L2 header type field. The NI bit in WQE WORD2 is set to 0

Reserved fields in WQE are not named and are highlighted in gray. They are set to 0.

=
=5
o
=
=
<
=9
ot
A

In skip-to-L2 parsing mode, the packet is considered to be IP
if the type field in the L2 header is either: Skip-to-L2
0x8000 (IPv4,
or (Pv4) Simplified L2 Header A
0x86DD (IPv6). (VLAN fields not shown)
' / IP Packet
g Type==0x8000) OR
Ethernet Il DMAC | Uninterpreted | 2 R, or)
(14 bytes) (6 bytes) (6 bytes) %
> YES
(IP) NO
\ (NOT IP)
8
IEEE 802.3 DMAC Uninterpreted § Uninterpreted 5
22 (6 bytes) (6 bytes) N (6 bytes) =
bytes) v 2 IS IP NOT IP
4

L

In the case of an IP packet, more information about the packet (such as whether the
packet is TCP or UDP) can be determined by parsing the IP header.

Thus WORD?2 of the Work Queue Entry can be one of two different data structures,
depending on whether the skip-to-L2 packet is IP or not. Fields highlighted in green
are contained in one or the other data structure, but not in both.

The different fields in the data striictiires ara exnlained in the noxt tahla
ine glirerent 1 nt piaineag inthe next tab

1ITIUS 1T UTLO SUUVLUIOS Qi O OA 1 i X3 1o,

CASE 2A: 63 56 55 48 47 4443 3231 2827 2019 87 0
Skip-to-L2 Bufs IP_offset VLAN_id=0 PR Opcode
AND (8 bits) (8bits) | (4) (12 bits) 4) | (8bits) (12 bits) (8 bits)

ISIP —

47 __46—45 44 19 _18—17 16 15 14 13 12 11 10 9 Q

w | vs ve CO|TU |[SE|V6 | S |LE|FR|IE| B | M |NI=0|RE=0

CASE 3A: 63 56 55 4847 4443 3231 2827 1413 87 0

Skip-to-L2 -
Bufs VLAN_id PR s Opcode
AND (8 bits) (8 bits) | (4) (12 bits) (4) (12 bits) (6 bits) | (8 bits)
NOT IP ¢

1312 11 10 9 N8

47 _46—45" 44 ‘

w | vs ve ﬁ IA | B | M |NI=1|RE=0

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-59

-
[
-
1)
=]
=7
=
)
-}

2=, CAVIUM
< NETWORKS

Table 14: WQE WORD2 Fields for Skip

OCTEON Programmer’s Guide

-to-L2 and Is IP (CASE 2A

Definition
(Fields are in alphabetical order.

The SDK software field names are shown in parenthesis.)
Broadcast: set when the packet's destination MAC address field in the L2 header is the

B broadcast address (all ones).
(is_bcast) Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.
Bufs Number of Buffers: The number of buffers used to store the packet data. A zero value means
(bufs) that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).
IP Compression: The CO bit (IP compression protocol bit) is set when the packet is [IPCOMP
Co (the TPv4 header protocol field or the initial IPv6 next header field == 108.) This bit is

(dec_ ipcomp)

always clear when WORD2 [IE]==1 (IP error), and when WORD2 [V6] and WORD2 [FR] are
both set. This bit indicates that the packet needs to be decompressed.

Fragment: Set when the packet is a fragment. For IPv4, this bit is set when either the [Pv4
header's MF (More Fragments) flag is set, or the [Pv4 header fragment offset fieldis

F(lzs frag) non-zero (the last fragment has the MF flag cleared and a non-zero fragment offset). For
- IPvo6, this bit is set when the initial next header value is fragmentation (44). (For IPv6, FR
is never set when WORD2 [IE]==1 (IP error) .)
E IP Error: Set when the packet has an IP exception condition. When the IE bit is set,
(TP exc) WORD2 [Opcode] contains an error code specific to this type of error. The exact error codes
- will be provided in a separate table. Note the bit only applies if (!RE) && (INI).
IP offset IP Offset: The number of bytes from the first byte of packet data to the first byte of the IP
(ip_offset) packet (the IP header).
IP L4 Error: This bit is set when WORD2 [TU] is set and the PIP/IPD hardware found an error
LE in the TCP/UDP header and /or data. When the LE bit is.set, WORD2 [Opcode] contains an

(L4 error)

error code specific to this type of error. The exact error codes will be provided in a separate
table. Note this bit only applies if only applies if (IRE) && (INI) && (!IE) && (! FR).

M
(is _mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a multicast
address (the group bit is set, and at least one of the remaining bits is a zero).

Note: M is always zero when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

Not IP: Not an IP Packet or an-L1/L.2 error has occurred. For CASE 2, by definition NI==

NI because CASE 2 only occurs if the packet is IP. (Note this bit is set if the hardware cannot
(not_1IP) determine that the packet is IP. This does not necessarily mean that the packet is in fact not
IP.)
Error Code: Numeric code indicating specific errorwhich occurred: If there is an error (any of
Opcode WORD2 [RE] or WORD2 [IE] or WORD2 [LE] is set), then Opcode contains an error code,

(err code)

otherwise Opcode=0. The error codes values depend on which error bit is set (RE, IE, or
LE). See those specific errors for details.

PCle Ring: The relative position of the PCle ring in the PKI input port [0-7].
PRiSﬂmbbdifPIP_GBL_CTL[RING_EN]==

PR If the packet was not received on a PCle port OR PIP_GBL CTL[RING EN]==0, then
(pr) PR=0.
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCle port.
RE Receive error (L1/L.2 error): For CASE 2, RE==0 because CASE 2 only occurs there is NO
(rcv_error) L1/L2 error.
S(Software Use: Reserved for software use.
software)

6-60 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM

NETWORKS
. Is TCP or UDP: The TU bit is set when an IP packet is TCP or UDP (when the IPv4
(Ecp or udp) protocol value or the IPv6 initial next header ==6 (TCP)or==17 (UDP)). This bitis
- - always 0 when WORD2 [IE] ==1, and when WORD2 [V6] and WORD2 [FR] are both set.
ve Is IPv6: Setif IP header version field ==
(is v6)

VC (vlan cfi)

VLAN CFI bit: The vC bit is the VLAN CFI bit (VLAN bit <12>).

If vv==0 (NOT VLAN), then VC=0.

If vv==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If vv==1 and VS==1 (VLAN STACKED), then PIP_GBL CTL[VS_WQE] is used to select
which VLAN CFI will be used (VLANO or VLANT1). If PIP GBL CTL[VS WQE]==0,
then VLANO CFI is selected, otherwise VLAN1 CFI is selected.

Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN id
(vlan id)

VLAN ID: VLAN id is the VLAN ID field (VLAN bits <11:0>).

If vv==0 (NOT VLAN), then VLAN id=0.

If vv==1 and VS==0 (NOT VLAN STACKED), then VLAN 1id is set to the packet's VLAN
id.

If vv==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS WQE] is used to select
which VLAN ID will be used. If PIP GBL CTL[VS WQE]==0, then VLANO id is selected,
otherwise VLANI ID is selected.

Note: VLAN id is always 0 when NOT in skip-to-L2 mode because Vv==0. The value is
unpredictable when there is an L.1/L.2 error because the packet may be corrupted.

VS
(vlan stacked)

VLAN STACKED: This bit is only set if Vv==1(VLAN) AND the packet is VLAN
STACKED.

Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

\AY
(vlan valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY 6-61

=
=5
o
=
=
<
=9
ot
A

-
[
-
1)
=]
=7
=
)
-}

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Table 15: WQE WORD2 Fields for Skip

B
(is bcast)

-to-L2 and NOT IP (CASE 3A

Definition
(Fields are in alphabetical order. The SDK software field names are shown

in parenthesis.)
Broadcast: set when the packet's destination MAC address field in the L2 header is the
broadcast address (all ones).
Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Bufs Number of Buffers: The number of buffers used to store the packet data. A zero value means
(bufs) that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).
n Is ARP: Set when the packet's L2 header type field ==0x0806 (an ARP packet).
(is arp) Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
- L1/L2 error because the packet may be corrupted.
- Is RARP: Set when the packet's L2 header t ype field ==0x0835 (an RARP packet).
(is rarp) Note: 1A=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
- L1/L2 error because the packet may be corrupted.
" Multicast: Set when the packet's destination MAC address field in the L2 header is a

(is_mcast)

multicast address (the group bit is set, and at least one of the remaining bits is a zero).
Note: M is always zero when NOT in skip-to-L.2 mode.

B(III]O t 1P) Not IP: Not an IP Packet or an L1/L2 receive error has occurred.

Error Code: Numeric code indicating specific error which occurred: If there is an error (any
Opcode of WORD2 [RE] or WORD2 [IE] or WORD2 [LE] is set), then Opcode contains an error
(err_code) code, otherwise Opcode=0. The error codes values depend on which error bit is set (RE,

IE, or LE). See those specific errors for details:

PCIe Ring: The relative position of the PCle ring in the PKI input port [0-7].

PR is enabled if PIP_GBL CTL[RING_EN]==1,
PR If the packet was not received on a PCle port OR PIP GBL CTL[RING EN]==0, then
(pr) PR=0. S a

Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received

on a PCle port.
RE Receive error (L1/L.2 error): For CASE 2, by definition RE==0 because CASE 2 only occurs
(rcv_error) there is NO L1/L2 error.
S(SO frware) Software Use: Reserved for software use.

VLAN CFI bit: The vC bit is the VLAN CFI bit (VLAN bit <12>).

If vv==0 (NOT VLAN), then vC=0.

If vvi==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
ve If vv==1 and VS==1 (VLAN STACKED), then PIP_GBL CTL[VS WQE] is used to

(vlan cfi)

select which VLAN CFI will be used (VLANO or VLANI1). If

PIP GBL CTL[VS WQE]==0, then VLANO CFI is selected, otherwise VLAN1 CFI is
selected.

Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L.1/L.2 error because the packet may be corrupted.

6-62 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

Definition
Field (Fields are in alphabetical order. The SDK software field names are shown

in parenthesis.)
VLAN ID: VLAN id isthe VLAN ID field (VLAN bits <11:0>).
If vv==0 (NOT VLAN), then VLAN id=0.
If vv==1 and vS==0 (NOT VLAN STACKED), then VLAN 1id is set to the packet's VLAN
id.
If vv==1 and vS==1 (VLAN STACKED), then PIP GBL CTL[VS WQE] isusedto
select which VLAN id will be used. If PIP_ GBL CTL[VS WQE]==0, then VLANO id is
selected, otherwise VLANTI id is selected.
Note: VLAN 1id is always 0 when NOT in skip-to-L2 mode because Vv==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.
VLAN STACKED: This bit is only set if vv==1 (VLAN) AND the packet is VLAN
Vs STACKED.
(vlan_stacked) | Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.
VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

a
2o
i
=
=
]
=0
]
A

VLAN id
(vlan_id)

\AY
(vlan valid)

6.3 Parse Mode = Skip-to-IP

When the parse mode is “skip-to-IP”, the IP header is analyzed, and appropriate fields in WQE
WORD?2 are set.

(For reference, the IPv4 and IPv6 headers, including the IPv4 TCP/IP combined header may be
found in Section 15 — “Appendix B: Industry-Standard Reference Information”.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-63

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

Figure 16: WORD2 if PM=Skip-to-IP and No L1/L2 Errors (CASE 2B)
Parse Mode = Skip-to-IP and the WQE WORD2 Data Structure

-
[
-
1)
=]
=7
=
)
-}

This case applies if:
e The packet’s parse mode is Skip-to-IP
e There are no L1/L2 errors

A packet with the parse mode “skip-to-IP” is always classified as an IP packet.

In the case of skip-to-IP parsing mode, the information from the L2 header, such as
VLAN is not available. These fields are set to zero. The packet’s IP information
(such as whether the packet is TCP or UDP) is determined by parsing the IP
header.

The data structure for WORD2 of the Work Queue Entry is shown below. Fields
which require IP parsing are highlighted in green.

Reserved fields in WQE are not named and are highlighted in gray. They are set to
0.

The different fields in the data structures are explained in the next table.

o 63 56 55 48 47 44 43 3231 2827 20 19 87 0
CASE 2B:
Ski p-to- IP Bufs IP_offset VLAN_id PR Opcode
(8bits) | (Bbits) | (4) (12 bits) @ | (8 bits) (12 bits) (8 bits)
— —
47 46 45 44 19 18 17 16 15 14 13 12 1 10 9 Q
VV=0|VS=0 VvC=0 CO | TU | “"SE | V6 S LE FR IE | B=0 | M=0 | NI=0 |RE=0

Table 16: WQE WORD2 Fields for Skip-to-IP (CASE 2B

Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

Broadcast: set when the packet's destination MAC address field in the L2 header is the

B broadcast address (all ones).
(is_bcast) Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.
Bufs Number of Buffers: The number of buffers used to store the packet data. A zero value means
(bufs) that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).
IP Compression: The CO bit (IP compression protocol bit) is set when the packet is [IPCOMP
Co (the IPv4 header protocol field or the initial IPv6 next header field == 108.) This bit is
(dec_ipcomp) always clear when WORD2 [IE]==1 (IP error), and when WORD2 [V6] and WORD2 [FR] are

both set. This bit indicates that the packet needs to be decompressed.

6-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

Fragment: Set when the packet is a fragment. For IPv4, this bit is set when either the IPv4
header's MF (More Fragments) flag is set, or the IPv4 header fragment offset field is

(L4 error)

F(ljs frag) non-zero (the last fragment has the MF flag cleared and a non-zero fragment offset). For
- IPvo6, this bit is set when the initial next header value is fragmentation (44). (For IPv6, FR
is never set when WORD2 [IE]==1 (IP error) .)
. IP Error: Set when the packet has an IP exception condition. When the IE bit is set,
(1P exc) WORD2 [Opcode] contains an error code specific to this type of error. The exact error codes
- will be provided in a separate table. Note the bit only applies if (!RE) && (INI).
IP offset IP Offset: The number of bytes from the first byte of packet data to the first byte of the IP
(ip_offset) packet (the IP header).
IP L4 Error: This bit is set when WORD2 [TU] is set and the PIP/IPD hardware found an error
LE in the TCP/UDP header and /or data. When the LE bit is set, WORD2 [Opcode] contains an

error code specific to this type of error. The exact error codes will be provided in a separate
table. Note this bit only applies if only applies if ('RE) && (INI) && (!IE) && (! FR).

M
(is mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a multicast
address (the group bit is set, and at least one of the remaining bits is a zero).

Note: M is always zero when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

Not IP: Not an IP Packet or a L1/L2 error has occurred. For CASE 2, by definition NI==

(err_ code)

NI because CASE 2 only occurs if the packet is IP. (Note this bitis set if the hardware cannot
(not_IP) determine that the packet is IP. This does not necessarily:mean that the packet is in fact not
IP.)
Error Code: Numeric code indicating specific error which occurred: If there is an error (any of
Opcode WORD2 [RE] or WORD2 [IE] or WORD2 [LE] is set), then Opcode contains an error code,

otherwise Opcode=0. The error codes values depend on which error bit is set (RE, IE, or
LE). See those specific errors for details.

(pr)

PCle Ring: The relative position of the PCle ring in the PKI input port [0-7].

PR is enabled if PIP_GBL CTL[RING EN]==1.

If the packet was not received on a PCle port OR PTP_GBL CTL[RING EN]==0, then
PR=0.

Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCle port.

E

Receive error (L1/L.2 error): For CASE 2, RE==0 because CASE 2 only occurs there is NO
L1/L2 error.

R
(rcv_error)
S
(

software)

Software Use: Reserved for software use.

TU
(tcp _or udp)

Is TCP or UDP: The TU bit is set when an IP packet is TCP or UDP (when the IPv4
protocol value or the IPv6 initial next header ==6 (TCP)or==17 (UDP)). This bit is
always 0 when WORD2 [IE] ==1, and when WORD2 [V6] and WORD2 [FR] are both set.

V6
(is.v6)

Is IPv6: Set if IP header version field ==

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY 6-65

a
2o
i
=
=
]
=0
]
A

-
[
-
1)
=]
=7
=
)
-}

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

VC (vlan cfi)

Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).

If vv==0 (NOT VLAN), then VC=0.

I[f vv==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If vv==1 and VS==1 (VLAN STACKED), then PIP GBL CTL[VS WQE] is used to select
which VLAN CFI will be used (VLANO or VLAN1). If PIP GBL CTL[VS WQE]==0,
then VLANO CFI is selected, otherwise VLANT1 CFI is selected.

Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN id
(vlan id)

VLAN ID: VLAN id is the VLAN ID field (VLAN bits <11:0>).

If vv==0 (NOT VLAN), then VLAN id=0.

If vv==1 and VS==0 (NOT VLAN STACKED), then VLAN 1id is set to the packet's VLAN
id.

If vv==1 and VS==1 (VLAN STACKED), then PIP_GBL CTL[VS_WQE] is used to select
which VLAN ID will be used. If PIP GBL CTL[VS WQE]==0, then VLANO id is selected,
otherwise VLANI1 ID is selected.

Note: VLAN id is always 0 when NOT in skip-to-L2 mode because VvV==0. The value is
unpredictable when there is an L1/L.2 error because the packet may be corrupted.

VS
(vlan stacked)

VLAN STACKED: This bit is only set if vv==1 (VLAN) AND the packet is VLAN
STACKED.

Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

\AY
(vlan valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2'mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted:

6.4 Parse Mode = Uninterpreted

When the parse mode is “uninterpreted”, there are two cases for setting WQE WORD?2:
1. The packet has a Packet Instruction Header and the RAW bit is set to 1 in the instruction

header

2. Either the packet does not have a Packet Instruction Header, or the RAW bit is set to 0.

6-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

o 2=, CAVIUM
OCTEON Programmer’s Guide NETWORKS

Figure 17: WORD2 if PM=Unint., RAW, No L1/L2 Errors (CASE 1A, CASE 1B)
Parse Mode = Uninterpreted and RAW (RAWFULL): WQE WORD?2 Data Structure

=
A
o
=
=
]
=5
Ll
A

This case applies if the packet is RAWFULL. For the packet to be RAWFULL, all of the
following must be true:

e The packet has a Packet Instruction Header or PCI Instruction Header

e The instruction header’s parse mode field is “Uninterpreted”

e The RAW bit is set in the instruction header

e There are no L1/L2 errors

RAWFULL packets use PIP_RAW_WORD [WORD] to create WQE WORD2. There is no
requirement for the contents of PIP_RAW_WORD [WORD] .

If PIP_GBL_CTL[RING_EN]==1, and the packet is received on a PCI/PCle port, PCl ring
information is automatically inserted into WORD2 instead of PIP_RAW_WORD [WORD] bits
<31:28>.

The different fields in the data structures are explained in the next table.

Case 1A:
RAWFULL

AND 63 56 55 3231 2827 0

PCle Bufs PIP_RAW_\:VSOSI.'\;[;[;NORD] bits | pre PlP_RAw_v:gﬁ&[WORD] bits
AND (8 bits) (24 bits) @) (28 bits)

PIP_GBL CTL[RING EN]==

Case 1B:
RAWFULL 63 56 55 0
AND Bufs PIP_RAW_WORD[WORD]
((NOT PCle) OR (8 bits) (56 bits)
PI P_GBL_CTL [RING_EN] =0)

As of SDK 1.9, there is no software data structure for CASEI fields, so the following table does
not specify a software field name after the hardware field name.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-67

-
[
-
1)
=]
=7
=
)
-}

/~, CAVIUM

NETWORKS

OCTEON Programmer’s Guide

Table 17: WQE WORD2 Fields for RAWFULL (CASE 1A and CASE 1B

Bufs

Definition

(Fields are in alphabetical order.)
Number of Packet Data Buffers: The number of buffers used to store the

packet data. A zero value means that a dynamic short packet is stored
entirely in the WQE (there is no Packet Data Buffer).

PIP RAW WORD

RAW Word: Set to the value of the PIP_RAW WORD configuration
register. Incoming packets may optionally contain a Packet Instruction
Header. If the R (RAW) bit is set in the Packet Instruction Header, and
the parse mode is uninterpreted, then the packet is RAWFULL.
RAWFULL packets are not parsed and decoded by PIP/IPD to fill in the
WQE WORD?2 fields. Instead, the value of the PIP. RAW._ WORD
register is used to populate WQE WORD?2.

PIP RAW WORD<55:32>

RAW Word bits <55 : 32>: If the packet is RAWFULL and arrived on
a PCIE port and PIP GBL CTL[RING EN]==I, then bits <31:28>
of WQE WORD?2 are replaced by PRR. This causes the

PIP RAW WORD to be split into two parts, with PRR occupying WQE
WORD?2 bits <31:28>.

PIP RAW WORD<27:0>

RAW Word bits <27:0>: The value of PIP RAW WORD configuration
register, bits <27:0>. See PIP RAW WORD<55:32>.

PRR

PCle Ring RAW: If the packet is RAWFULL and arrived on a PCIE
port and PIP GBL CTL[RING EN]==1, then bits <31:28> of WQE
WORD2 set to the relative position of the PCle ring in the PKI input port
[0-7]. (Technically, there is only one data structure: if the packet was
not received on a PCle port or PIP_ GBL CTL[RING EN]==0, then
PRR=PIP RAW WORD<31:38>. To reduce complexity, this is shown
in the figure above as a different data structure with

PIP RAW WORD<55 :0> uninterrupted.)

6-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g &ﬁ‘\l\,llcll:::(vsl

Figure 18: WORD2 if PM=Unint., NOT RAW, No L1/L2 Errors (CASE 3B)

Parse Mode = Uninterpreted and NOT RAW (NOT RAWFULL):
WQE WORD?2 Data Structure

o]
=5
o
=
=
]
=5
o
A

This case applies if:

The packet has a Packet Instruction Header or PCI Instruction Header, AND
The instruction header’s parse mode field is “Uninterpreted”, AND

The RAW bit is NOT set in the instruction header

There are no L1/L2 errors

This case also applies if:
e |[f there is no Packet Instruction Header or PCI Instruction Header AND
e The port’s configured parse mode is set to “Uninterpreted”
((PIP_PRT_ CFGn[MODE])==0 (no packet inspection)).
e There are no L1/L2 errors
Note: “RAW” cannot be set without an instruction header.
In this case, NI is set to 1 to indicate this is not an IP packet.

Reserved fields in WQE are not named and are highlighted in gray. They are set to 0.

The different fields in the data structures are explained in the next table.

CASE 3B:
Uninterpreted 63 56 55 48 47 44 43 3231 28 27 2019 1413 87 0
AND Bufs VLAN_id=0 PR Opcode
NOT RAW (8 bits) (8 bits) (4) (12 bits) (4) (14 bits) (6 bits) (8 bits)
47 46—45" 44 13/12 1 10 9 8
VV=0|VS=0| 0 |VC=0 IR=0| IA=0 | B=0 | M=0 | NI=1 |[RE=0

Table 18: WQE WORD2 Fields for Uninterpreted and not RAW (CASE 3B
Definition
(Fields are in alphabetical order.

The SDK software field names are shown in parenthesis.)
Broadcast: set when the packet's destination MAC address field in the L2 header is the

B broadcast address (all ones).

(is_bcast) Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Bufs Number of Buffers: The number of buffers used to store the packet data. A zero value means

(bufs) that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

Is ARP: Set when the packet's L2 header type field ==0x0806 (an ARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

IA
(is_arp)

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-69

-
[
-
1)
=]
=7
=
)
-}

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)
Is RARP: Set when the packet's L2 header type field ==0x0835 (an RARP packet).

IR L. . . .
(is rarp) Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an

- L1/L2 error because the packet may be corrupted.
M Multicast: Set when the packet's destination MAC address field in the L2 header is a

) multicast address (the group bit is set, and at least one of the remaining bits is a zero).

(is mcast) R . .

- Note: M is always zero when NOT in skip-to-L2 mode.
D(Iio t 1p) Not IP: Not an IP Packet or an L1/L2 receive error has occurred.

Error Code: Numeric code indicating specific error which occurred: If there is an error (any

Opcode of WORD2 [RE] or WORD2 [IE] or WORD2 [LE] is set), then Opcode contains an error

(err code)

code, otherwise Opcode=0. The error codes values depend on which error bit is set (RE,
IE, or LE). See those specific errors for details.

PR
(pr)

PClIe Ring: The relative position of the PCle ring in the PKI input port [0-7].
PRiSﬁmbbdifPIP_GBL_CTL[RING_EN]==

If the packet was not received on a PCle port OR PIP_GBL. CTL[RING EN]==0, then
PR=0.

Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCle port.

E

Receive error (L1/L2 error): For CASE 2, by definition RE==0 because CASE 2 only occurs
there is NO L1/L2 error.

R
(rcv_error)
S
(

Software Use: Reserved for software use.

software)
VLAN CFIbit: The vC bit is the VLAN CFLbit (VLAN bit <12>).
If vv==0 (NOT VLAN), then VC=0.
If vv==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
ve If vv==1 and VS==1 (VLAN STACKED), then PIP GBL _CTL[VS_ WQE] is usedto

(vlan cfi)

select which VLAN CFI will be used (VLANO or VLANL). If

PIP GBL CTL[VS WQE]==0, then VLANO CFI is selected, otherwise VLAN1 CFI is
selected.

Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L.2 error because the packet may be corrupted.

VLAN id
(vlan id)

VLAN ID: VLAN id is the VLAN ID field (VLAN bits <11:0>).

If vv==0 (NOT VLAN), then VLAN id=0.

If vv==I and V5==0 (NOT VLAN STACKED), then VLAN 1id is set to the packet's VLAN
id.

If vv==1 and vs==1 (VLAN STACKED), then PIP_GBL CTL[VS WQE] is used to
select which VLAN id will be used. If PIP GBL CTL[VS WQE]==0, then VLANO id is
selected, otherwise VLANTI id is selected.

Note: VLAN 1idis always 0 when NOT in skip-to-L2 mode because Vv==0. The value is
unpredictable when there is an L1/L.2 error because the packet may be corrupted.

VS
(vlan stacked)

VLAN STACKED: This bit is only set if Vv==1 (VLAN) AND the packet is VLAN
STACKED.

Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

\AY
(vlan valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

6-70 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

6.5 Registers to Configure WQE WORD2 Content

Work Queue Entry WORD1 and WORD?2 field content is controlled by user-configured variables.
In addition to the variables shown in this section, see Section 9 — “Error Check Configuration”.

The specific FPA pool used for WQE buffers is configurable via the
IPD WQE FPA QUEUE [WQE QUE] field.

ure Work Queue Entry WORD2
H/W SDK

Table 19: Registers to Config

Brief Description Register Fields Default Default
Value Value
Add PCle Ring Information: Ifset to 1, add PCle ring 0
information to WQE WORD?2 PIF_GBL CTL RING_EN 0 (H/W
: Default)

Select Which VLAN to Use: Which VLAN CFI bit to
use for VLAN Stacking: 0
O=use first VLAN (network order) P1P_GBL_CTL VS _WOE 0 e éié qu)
1=use second VLAN (network order)
Specify WORD?2 for RAWFULL Packets: Contains the
WQE WORD2 value for RAWFULL packets. The 8-bit | .~ | . (HO L
bufs field is still set by IPD. Note there is only one - - Default)
configuration register for all ports.

6.6 Where to Find More Information About Parsing

For readers who need more details, see Section 16— “Appendix C: Input Packet Parsing”, and the
HRM.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-71

a
2o
i
=
=
]
=0
]
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

7 Scheduling (WQE WORD1)

The PIP/IPD unit is responsible for setting packet information needed by the scheduler: the
packet’s Group, QoS, Tag Type, and Tag Value. These are all fields in the WQE which is
submitted to the SSO via the add_work operation.

-]
[
)
&
=
(="
=
)
=

The PIP/IPD provides various options in how these fields are set. This section introduces the
various options, and presents technical details.

Note that if a Packet Instruction Header is used, and the RAW bit in the instruction
header is set, then Group, QoS, Tag Type, and Tag Value are all taken directly from the
instruction header: register configuration fields are ignored.

In addition to register variables which control how these fields are set, PIP/IPD provides port
watchers, which look for specific types of packets. Port watchers can be used to set either the
group or QoS value of matched packets.

7.1 Work Group Assignment (WQE WORD1 Group Field)

There are four methods for setting the group value:
1. Specify group in the Packet Instruction Header (RAWFULL, RAWSCH)
2. Derive group from the packet’s Tag Value (GRPTAG)
3. Set group via a Port Watcher (for matched packets) (See Section 7.5 — “Using Watchers to
Set QoS and Group”)
4. Take Default value for the port

The per-port GRPTAG feature can be used to direct all the traffic from a flow to one work group
(“flow steering”), which can reduce the locking needed by an application. If all locking is per-
flow, this feature could be used to implement a completely lockless system. Flow steering is also
sometimes used to improve L1 cache hits(core affinity). The problem is that having only one core
process a flow, where the Tag Type is ORDERED means that the power of parallel processing
(multiple cores processing the same flow) is not being used.

This feature can also be used for load balancing. Since the tag is based on a CRC, the bits in it are
fairly evenly distributed. Including these bits in the group value results in a random distribution of
flows over the groups. The groups are then mapped to the available cores (load balancing). One
caveat occurs when the number of groups created does not evenly map to the number of cores used
to process the groups. No matter what the GRPTAGMASK value is, the result is always a power-of-
two number of groups (1, 2, 4, 8, and 16). If the number of available cores is not a power of two
(3, 5-7, or 9-15), then the groups will not map evenly to the cores, and the traffic load will be
unbalanced between cores.

Note: This feature is not generally useful for load balancing because the incoming
traffic load is not balanced.

The GRPTAG formula is:

Group=

6-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

((WQE WORDI1[TAG] & ~PIP_ PRT TAGn[GRPTAGMASK]) + PIP PRT TAGn[GRPTAGBASE]) & OxF

Note that GRPTAGMASK specifies the bits to be excluded (the bits that should not be considered).
When the AND operation is done it is with the NOT of GRPTAGMASK: TAG & ~GRPTAGMASK.

GRPTAGBASE is an offset which allows low group numbers to be excluded from the GRPTAG
calculation. The lower group numbers can then be used for special traffic mapping. For example,
For example, the group number for ARP packets (which are not part of a specific flow) can be set
to 0, while flows are directed to group numbers greater than 0.

For example, to process a mixture of IP and non-IP traffic, the IP traffic will use the GRPTAG
feature while the non-IP traffic will not. GRPTAGBASE allows you to differentiate between the
two. Non-IP can use groups 0 through (GRPTAGBASE-1), while IP uses groups GRPTAGBASE
through 15.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-73

=
A
)
o=
=
«
A
e
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Figure 19: Group Assignment Flow Chart

Start Group
Assignment

Set Default Value: Group = PIP_PRT TAGn[GRP] ‘

Group Assignment

-]
[
)
&

=

(="
=
)
=

Note that if parse mode == Uninterpreted, and the
packet is not RAW, it drops through the code and exits
with the default Group value.

L1/L2 Receive Error YES (Group is default value, Exity———

NO
RAWFULL or RAWSC YES—» Group = PKT INST HDR[GRP] ——Exit———»
?
NO Note that watchers may only set the group if
v a prior test has not caused the group-setting
—w For all watchers (i= 0; i <MAX WATCHERS; i++) ‘ function to exit.

YES PIP_PRT TAGn[GRPTAG]
i >= MAX WATCHERS (No more AND (1P OR
? watchers) PIP PRT TAGn[GRPTAG MSKIP
? NO
NO (Exit)
I(IE) means no IP packet errors YES \—’
Watcher () I(LE) means no TCP/UDP errors
<+«—NO enabled I(FR) means not a fragment :
? IPv4.HL==5 matches IPv4 packets without
YES options
\ 4 (HL = header length)
Set mask and match values Group = ((WQE WORD1[TAG] & =
~PIP_PRT_TAGn[GRPTAGMASK]) + —]
PIP_PRT TAGn[GRPTAGBASE]) & OxF Exit—»)

YES, Match

Watcher type == protocol/next header

AND !(IE) and !(LE) AND Match (ProHtgggz:\;eXt y
? “Match” means that both
No the type and the
masked value match.
LOOP AND I(IE) and !(LE) AND YES, Match
AGAIN I(FR) AND(IPv6 or IPv4 .HL==5) AND Matgl (TCP Dest)
2 T
2 Note that if multiple
NO S watchers could match,
the lowest-numbered
Ast"z"::; typg’::El)JiD VES. Match watcher which matches
! and ! , Matc , .
I(FR) AND (IPv6 or IPv4.HL==5) AND Match (UDP Dest) * will det?’ mine the
? packet’s group value.
YES, Match
NO (EtherType)
Watcher type == ETHERTYPE Group=

EXIT——M

PIP_QOS_WATCHn[GRP]

AND Match
?

NO

END Group
Assignment

6-74 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

7.1.1 Registers to Configure Group Assignment
The registers fields in the following table are in logical order, not in HRM order.

Table 20: Registers to Configure WQE WORD1 Group Assignment
H/W SDK

Brief Description Register Default Default

Value Value

Default Group for the Port

0

Default Group: Set the default work PIP PRT TAGn
— = GRP 0 (H/W
group number for the packet (one per port) Default)
Calculate Group from Tag Value
IP GRPTAG: GRPTAG enable for IP
. - 0
packets: If GRPTAG==1, use WQE tag PIP_PRT TAGn GRPTAG y (/W
value to create the Work Group value for | (one per port) Pefault)
an IP packet
Non-IP GRPTAG: Additional enable for
non-IP packets: If GRPTAG==1 and 0
==1 the WQE t PIP_PRT_TAGH GRPTAG. MSKIP 0 (H/W
GRPTAG_MSKIP==1, use the WQE tag (one per port) N A

value to create the Work Group value
even if the packet is not an IP packet

GRPTAG Mask: If GRPTAG==1, specify bIp PRT TAG 0
which bits of WQE Tag value to exclude (one per p Oit) GRPTAGMASK 0 (H/W
from the Work Group computation Default)

GRPTAG Base: If GRPTAG==1, specifies bl BRT TAG 0
n

the offset to use to compute the WQE (one pér port) GRPTAGBASE 0 (H/W

Work Group from tag value Default)

7.2 QoS Assignment

The QoS value can be controlled in various ways. It can come from:

A default value

The Packet Instruction Header (for RAWFULL and RAWSCH packets)

A Broadcom HiGig Header priority converted to.a QoS

A VLAN or VLAN stacked priority converted to a QoS

An IP Diffserv priority (which can be configured to take precedence over VLAN priority)
A Port Watcher (similar process as for group value setting) (See Section 7.5 — “Using
Watchers to Set QoS and Group™)

A e

The function cvmx pip config vlan gos () can be used to configure the VLAN-to-QoS
mapping Table0 (shown in the figure below). As of SDK 1.9, there is no function to configure
VLAN-to-QoS mapping Tablel.

The function cvmx_pip config diffserv gos () can be used to configure the diffserv-to-
QoS mapping table.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-75

o]
=5
o
=
=
]
=5
o
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Figure 20: Deriving QoS From VLAN Priority
Deriving QoS from VLAN Priority

-]
[
)
&
=
(="
=
)
=

If the L2 header contains VLAN or VLAN Stacking (two VLAN entries), then the VLAN
“priority” field (PCP) can be used to set the packet’s QoS value.

To enable setting QoS using VLAN information for the port:
PIP_PRT CFGn[QOS_VLAN]=1

If VLAN stacking (two Ethe:net . DMAC Uninterpreted § 2 ot
VLAN entries in the L2 Bbytes) | (Bbyies) |2 |3 |F&
header), decide which VLAN
VLAN to use for all ports
to get the VLAN priority
field:
PIP_GBL_CTL [VS_QOS] Ethernet I DMAC Uninterpreted 3 z |9
0=Use VLANO + (Gbytes) | (6bytes) | @ S| 2
1=Use VLAN1 VLAN Stacked © =
/ \

> Ve \
The VLAN priority is extracted from the selected VLAN 0,734 78 s
entry in the L2 header (VLANO if no VLAN stacking). PCP' — VLAN ID

3) ° (12 bits)

This priority is used as an index into a VLAN-to-QoS
mapping table. PCP:
Priority O=lowest, 7=highest

There are two tables used to map VLAN priority to QoS.
Each port can select which table to use via PIP_PRT_CFGn[QOS_VSEL]:

O=table0
1=table1 h
Table0

Table1
- N, The user configures the VLAN priority-to-QoS
Z = Z= , -
<5 9 <5 0 mapping values in ?he two VLAN-to_QoS
SI c 8 SI = 8 mapping tables, using the PIP_QOS VLANn
o register, where n is the VLAN priority.
0 0
1 1 TableQ Table1
2 2 PIP_QOS_VLANO [QOS] PIP_QOS_VLANO [QOS1]
3 3 PIP_QOS VLAN1[QOS] PIP_QOS VLAN1[QOS1]
PIP_QOS_VLAN2[QOS] PIP_QOS_VLAN2[QOS1]
4 4 PIP_QOS_VLAN3[QOS] PIP_QOS_VLAN3[QOS1]
5 5 PIP_QOS VLAN4[QOS] PIP_QOS VLAN4[QOS1]
PIP_QOS_VLANS5[QOS] PIP_QOS_VLANS5[QOS1]
6 6 PIP_QOS_VLANG6[QOS] PIP_QOS_VLANG6[QOS1]
7 7 PIP_QOS VLAN7[QOS] PIP_QOS VLAN7[QOS1]

6-76 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

o 2=, CAVIUM
OCTEON Programmer’s Guide NETWORKS

=
=5
o
=
=
<
=9
ot
A

Figure 21: QoS Assignment Flowchart, part 1
Note that if parse mode == Uninterpreted, and the packet

P— QoS Assignment, part 1
Assignment
is not RAW, it drops through the code and exits with the

Set Default Value: QOS=PTP_PRT_CFGn[QOS] | default QoS value

YES (QoS is default value, Exity———————————————»

L1/L2 Receive Error

QOS=PKT_INST HDR[QOS] ——————Exit—— M

—}‘ For all watchers i= 0; I <MAX WATCHERS; i++) ‘

YES Processing
i >= MAX WATCHERS (No more Continues in the
? watchers) Next Figure

NO

Note that watchers may only set the QoS if a
prior test has not caused the QoS-setting
function to exit.

Watcher (i)
enabled
?

«—NO

YES I(IE) means no IP packet errors
v I(LE) means no TCP/UDP errors
Set mask and match values .’(FR) means not a fragment

IPv4.HL==5 matches IPv4 packets without options
(HL = header length)

EXIT

atcher type == protocol/next header (FTrEﬁ)’C'\CT:IEICehxt
1 | “, ”
AND !(1E) and 'Q(LE) AND Matg)f Header) ‘Match” means that
) both the type and
NO the masked value
match.

atcher type == TCP

LOOP AND !(IE)and !(LE) AND YES, Match
AGAIN I(FR) AND(IPVv6 or IPv4 . HL==5) AND Matc (TCP Dest) |
R Note that if multiple
No 5 watchers could
% match, the lowest-
Watcher type == UDP 3 numbered watcher
AND !(IE) and !(LE) AND YES, Match which matches will
FR) AND (IPv6 or IPv4 .HL==5) AND Matcl (UDP Dest) determine the
? packet’s QoS value.
NO
(Watcher type == ETHERTYPE) YES, Match
AND Match (EtherType)
?
QOSs=
NO PIP_QOS_WATCHn[WATCHER] EXIT

END QoS
Assignment

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-77

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Figure 22: QoS Assignment Flowchart, part 2
QoS Assignment, Continued

-]
[
)
&
=
(="
=
)
=

Note that if parse mode == Uninterpreted, and the ey
continues from

packet is not RAW, it drops through the code and previous figure.
exits with the default Group value.

(Diffserv is
Enabled for this port
(PIP_PORT CFGn[QOS DIFF)) AND
(IS IP) AND ! (IE) AND ! (LE) AND
NOT (VLAN AND PIP_PRT CFGn[QOS_VLAN]
AND
PIP_PRT CFGn[QOS_VOD])

YES

Qos= | e
> PIP_QOS DIFF (IP.TOS/class<7:2>) [QOS] Exith

NO Do not set Diffserv value for VLAN packets when

QOS_VLAN is enabled and

VILAN over Diffserv is enabled.

VLAN AND

(VLAN QOS enabled for this port

(PIP_PRT CFGn[QOS_VLAN])
?

YES Determine which VLAN

will provide the priority.

LAN Stacking AND

(VLAN1 Selected

(PIP_GBL VS_QOS[VS_QOS]==
?

NO

YES l

Priority= Priority=
VLAN].priority VLANO .priority

A

EXIT:

Determine which table
will be-used: TableO
or Table1.

VLAN-to-QOS Table0O Selected

PIP PRT CFG[QOS VSEL]==0
(PIP_BRT_CFGIQOS_VSEL]==0) NO
rYEs
QOS= QOsS=
PI P_QOS_VLAN<priori ty>[QO0Ss] PI P_QOS_VLAN<priori ty>[QO0sS1]
\;Exitgb
Exit

Look up QoS in HiGig Priority-to-QoS mapping
YES»| table: ——Exit—»
QOS=HG_QOS_TABLE[HG PRI<5:0>]

per-port HiGig Enabled
(PIP_PRT_CFG[HG_QOS])
?

NO (Take Default and Exit)

END QoS
Assignment

6-78 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

7.2.1 Registers to Configure QoS Assignment

In the following table, ignore fields which are not applicable. For example, if you are not using
Broadcom HiGig, or VLAN STACKING, then ignore the variables.

The packet’s QoS value can also be set by a global watcher. See Section 7.5 — “Using Watchers to
Set QoS and Group” for watcher configuration.

The register fields in the following table are in logical order, not HRM order.

Table 21: Registers to Configure WQE WORD1 QoS Assignment

Brief Description Register Fields Default Default
Value Value
Default QoS for the Port
Default QoS: One register per port. PIP_PRT CFGn od% 0 (Soee
Default QoS for the port (one per port) Notel)
VLAN
Enable VLAN Priority over QoS: 0
One register per port. Ifsetto 1, If PIP_PRT CFGn
— - 0

VLAN, then VLAN priority will be | (one per port) QOS=CA] perrt
used to set QoS
Select VLAN-to-QoS MappingTable:
One register per port. If VLAN,
Select which VLAN-to-QoS mapping 0
table to use for this port PIP PRT CEGn 008 VSEL 0 (H/W
0=PTP_QOS_VLANn[QOS] {one per port) a Default)
(TableO)
1=PIP_QOS VLANn[QOS1]
(Tablel)
Configure VLAN-to-QoS mappping 0/

: —_ (H/W
Table0: One entry per VLAN priority | PP Q0S_VIAN (0=T)w NP, 0 Default)
(()_7)_ (one per VLAN priority) (See
(See PIP PRT CEGn[QOS VSEL]) Note2)
Configure VL AN-to-QoS mappping

; P 0
Tablel: One entry per VLAN priority | pIp 00S VLAN (0-7) 0051 0 (H/W
(0_7)_ (one per VLAN priority) Default)
(See PIP PRT CFGn[QOS VSEL])

VLAN STACKING (VLAN registers also apply if VLAN stacking is used)

For VLAN STACKING, Select which

VLAN field will be used: Global

setting (for all ports): select which 0
VLAN field in the L2 header will PIP GBL CTL VS_0Q0S 0 (H/W
provide the VLAN priority Default)
0=vLANO

1=vLAN1

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-79

a
2o
i
=
=
]
=0
]
A

g CAVIUM OCTEON Programmer’s Guide

NETWORKS

w
[
w
& H/W SDK
=y rief Description egister ields efau efau
a Brief Descript Regist Field Default Default
= Value Value
< Broadcom HiGig
0
Enable Broadcom HiGig: One bIP PRT CEG (H/W
register per port. Enables HiGig QoS (one per poit) HG_QOs 0 Default)
lookup based on HiGig Priority (See
Note3)
Select Table Entry to Update: The 0/
- .. . (H/W
gglggrslor;g élﬁlgx (tgetgz . PIP_KG_PRI_Q0S 0 Default)
_ _ . (See
UP_QOS) Note3)
Set QoS Value for Table at Index PRI: 0/
P (H/W
?ﬁggxﬂtls ?hréogg E()QROIS(u”T"iiI;IEE;ltO PIP HG PRI QOS Q0s 0 Default)
_ _ (See
this QoS value. (See also UP_QOS) Note3)
Configure HiGig QoS mapping table:
Global register. When set, updates the 0
entry in the HiGig QoS table, where (H/W
the table index is specified by PRI and | PIP_HG_PRI_QOS UP_QOS 0 Default)
the value is specified by 00s. This Néiii)
table maps the HiGig priority to a QoS
level.
Diffserv
Enables QoS for Diffserv: One 0
register per port. This enables using (H/W
the diffserv value in the packet header iiigpgz;cggi b) QOS_DIFF 0 Default)
to determine the destination SSO QoS (See
queue. Note4)
Diffserv Maping Table: One register 0
per Diffserv value. For each Diffserv orra W orrr &N (5/W
value (level), specifies the QoS value (onnge; Diff(serv) level) Q08 0 Default)
(maps 64 Diffserv levels to 8 QoS ; (iej)
levels) ore
VLAN over Diffserv
VLAN over Diffserv: One register
per port. The VLAN QoS value takes | pIP_PRT CFGn 008 VoD 0 (HO i
priority over Diffserv in setting the (one per port) - Default)
QoS
Notes
Notel: When using the helper functions, the SDK configures the QoS value so that each port sends packets to a
different SSO queue:
port config.s.gos = ipd port & 0x7;
Note2: Can be configured via cvmx_pip config vlan gos ()
Note3: Can be configured via cvmx_higig initialize()
Noted: Can be configured via
cvmx pip config diffserv gos()

6-80 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilot|::=(vsl

7.3 Tag Type Assignment

7.3.1 WQE WORD1 Tag Type

Tag Type can be any of:

e ATOMIC: Use ATOMIC tag type if there are shared resources which need to be protected
with a packet-linked lock: packets with the same tag tuple will be processed one-at-a-time
in ingress order. The SSO will maintain the packets in ingress order.

e ORDERED: Use ORDERED tag type if there are no shared resources to protect: packets
with the same tag tuple can be processed in parallel. The SSO will maintain the packets in
ingress order.

e NULL: Use NULL if neither shared resources nor ingress order need to be protected:
packets with the same tag tuple can be processed in parallel. The SSO will not maintain the
packets in ingress order.

=
A
o
=
=
]
=5
Ll
A

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-81

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Tag Type Assignment

-]
[
)
&
=
(="
=
)
=

Figure 23: Tag Type Assignment Flowchart
Note that if parse mode == Uninterpreted, and the packet

Start Tag Type
Assignment
is not RAW, it drops through the code and exits with the

Set Default Value: default Tag Type value.

Tag_type=PIP_PRT TAGn[NON_TAG]

L1/L2 Receive Error YES (Tag Type is default value, Exity}——— b
?
NO
Tag_type=PKT INST HDR[TT] ————Exit——— ¥
NO (Tag Type = default value, Exitf———»
YES (IPv6)
i—No (IPv4)
proto_nh=IPv4.protocol proto_nh=IPvé6.next header
Ll
<
L
/(LE) means no
TCP/UDP errors
(IE) AND YES, Tag_Type= .
oroto_nh==TCP (TCP) YES—¥ olp PRT_TAGN[TCP6_TAG] Exit—m
?
NO Tag_Type= .
—» - Exit—»
NO (Not TCP) (IPv4) PIP_PRT_TAGN[TCP4_TAG]
IPv6 Tag_Type= .
_
? YES > PIP_PRT_TAGN[IP6_TAG] Exit—
\ Tag_Type= .
NO (IPv4) » PIP PRT_TAGN[IP4_TAG] Exit—m

END Tag Type
Assignment

6-82 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS
7.3.2 Registers to Configure Tag Type Assignment

o]
=9
!
=
=
<
A
ot
A

Specify Tag Type in the fields in the table below as:
0=ORDERED (CVMX_ POW TAG TYPE ORDERED)
1=ATOMIC (CVMX_ POW _TAG TYPE ATOMIC)
2=NULL (CVMX_POW_TAG TYPE NULL)

Table 22: Registers to Configure WQE WORD1 Tag Type Assignment

H/W SDK
Brief Description Register Fields Default Default

Value Value

Non-IP Tag Type (Default Value)

0
Default Tag Type: Set tag type if not IP (See Notel) TiiEPEZETigit) NON_TAG 0 . C() iz;)
IP Tag Type - TCP
. 0
IPv6 TCP Tag Type: Set tag type of TCP packet (See | p1P_PRT TAGn rcpe M 0 (See
Notel) (one per port) = Note2)
. 0
IPv4 TCP Tag Type: Set tag type of TCP packet (See | p1P_PRT TAGn - e) 0 (See
Notel) (one per port) - Note2)
IP Tag Type - NOT TCP
. : 0
IPv6 !TCP Tag Type: set tag type if NOT TCP (See | p1p_PRT. TAGn Ine oo 0 (See
Notel) (one per port) N\ Note2)
. : 0
IPv4: 'TCP Tag Type set tag type if NOT TCP (See PIP_PRT_TAGnt 1p4 TG 0 (see
Notel) (one per port) Note2)

Notel: Three choices:

0=0ORDERED (CVMX_POW_TAG_TYPE_ORDERED)
1=ATOMIC (CVMX_ POW TAG_TYPE ATOMIC)
2=NULL (CVMX POW_TAG TYPE NULL)

Note2: Configured via executive-config.h:
CVMX_HELPER INPUT TAG TYPE = CVMX_POW TAG TYPE ORDERED
The helper function sets the values for all these fields to the same value: ORDERED.

When using Simple Executive, all fields are set to the same configuration variable which is defined
in executive-config.h:
CVMX_HELPER_INPUT TAG TYPE:

This variable is set to ORDERED by default:
#define CVMX HELPER INPUT TAG TYPE CVMX POW_TAG TYPE ORDERED

This variable is used in the internal-use function cvmx helper port setup ipd().

7.4 Tag Value Assignment

The tag value can be used to create multiple unique virtual work flows. Ideally, the unique work
flows correspond to IP header per-flow resources. Then, when a packet-linked lock (ATOMIC tag

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-83

-]
[
)
&
=
(="
=
)
=

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

type) is used to provide exclusive access to per-flow resources, non-related flows are not blocked
waiting for the lock. A tuple tag is recommended for this purpose.

Figure 24: Tag Value Data Structure
Tag Value Data Structure

RAWFULL AND RAWSCH PACKETS

31 0

PIP_INST_HDRI[TAG]

ALL OTHER PACKETS

31 2423 1615 0
Always 0 nur'f]';’:i'o':%':FF Hash of Specific Fields
(8 bits) s o) (16 bits)

There are four tag mode choices (selected via TAG MODE):

Create tag value using the tuple tag algorithm (only useful for [Pv4 or IPv6 packets)
Create tag value using the mask tag algorithm

Create tag value using tuple tag if IP; else use mask tag

Create tag value using tuple tag XOR mask tag

The tuple tag is a hash which optionally includes the IP source and destination addresses, the IP
protocol (IPv4) or next header (IPv6) value, the TCP/UDP.source and destination ports, and the
VLAN ID. There are per-port configuration variables which control these options. The tuple tag
also includes a secret value. The hash results change with different secret values.

The mask tag is a hash which optionally includes/excludes any of the first 128 bytes of packet data
(starting at byte 0). A 128-bit mask is used to select which of the 128 bytes are included: each bit
in the mask represents a corresponding byte. The mask consists of 16 8-bit registers (16*8=128
bits), the PIP TAG INCr (PIP taginclude) registers. There are four global masks. The specific
mask used by a port is selected via the PIP PRT CFGn[TAG INC] field. The following figures
show how the bits in the PIP TAG INCr registers correspond to the first 128 bytes of packet
data. The PIP TAG INCr registers are used in the tag mask algorithm (hw mask tag()), and
are not used for the tag tuple algorithm (hw tuple tag()). Byte 0 in the figure below
corresponds to the first byte of the packet received.

6-84 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS
=
-
Figure 25: Using Tag Mask to Include/Exclude Bytes in Mask Tag -
Create Tag Value Using a Mask =
=
First PIP_TAG_INC Register in the Mask Packet =
7 0
111,010 y Byte 0
Byte 1

Calculate the tag value from the first 128 bytes of the

packet, using a mask to either include or exclude Byte 2
specific bytes from the tag value calculation.

. : . . Byte 3
There are sixteen 8-bit registers in the mask (128 y
bits).

Byte 4

Fach hit in the mack correanondc to a hute in the
1/AVIL ULL 111 ULV 111401 \/Ull\/DlJUllUO “woa UJ LV 111 uawv
packet (128 bits correspond to 128 bytes) Byte 5
If a bit in the mask is set, the corresponding byte in
the packet is included in the tag value calculatjom Byte 6
Bit 7 in the first register in the mask (for example, Byte 7
register 0) corresponds to the first byte of the packet
(in Network Order).

In this example, during the tag value calculation,
instead of using the contents of bytes 2 and 4, a value
of zero is substituted because the corresponding bits
in the mask are set to 0.

The following figure shows an example of how the bits in the PIP TAG INCr registers
correspond to bytes of packet data. These registers are used in the tag mask algorithm. The
registers are not used for the tag tuple algorithm. In this example, only the first of the four tag
masks (registers 0-15) are shown.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-85

/~, CAVIUM OCTEON Programmer’s Guide

- NETWORKS
E Figure 26: Tag Mask Register Bits Correspondence to Packet Data Bytes
E PIP TAG_INC[EN] Register Masks
g How 128 Bits in the Mask Correspond to the First 128 Bytes of Packet Data
Mask Packet Data Bytes
Registers (packet data is shown in Big Endian mode)
7 0
Off[III)) o] 1+ [2 [3 | 4 | 5 | 6 | 7 |
LTI | 8 | 9 | 10 | 1 | 12 | 13 | 14 | 15 |
2 MTTTTTT] | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
3MTTTTTT] | 24 | 25 | 26 | 27 | 28 | 20 | 30 | 31 |
AMTTITTIT) % | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
sHTITTIT | 40 | 41 | 42 | 43 | 44 | a5 | 46 | 47 |
6 TTTTTT] | 48 | 49 | 5 | 51 | 52 | 53 | 54 | 55 |
70777771 || % | s | 5 | 59 .| 6 | 61 | 62 | 63 |
SITITITT]]| || 64 | e | e6 | 67 | 68 | 69 | 70 | 71 |
oM TTTITT] | 72 | 13 | 74 | 75 | 16| 17 | 718 | 79 |
W[[T[]7]| [8 | 8 | -8 | 8 | 84 | 8 | 8 | 87 |
WW[TTT77]) | [8 | 8 | 90 | 91 | 92 | 93 | 94 | 95 |
2777771 | [9 & 97 | 98 | 99 | 100 | 101 | 102 | 103 |
BT | 104 105 | 106 | 107 | 108 | 109 | 110 | 111 |
14 [T M2 113 | 14 |15 | 116 | 117 | 118 | 119 |
15 1T 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |

Some of these options are easily tunable via Simple Executive configuration variables; other
configuration variables require knowledge of the register fields.

6-86 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

o 2=, CAVIUM
OCTEON Programmer’s Guide NETWORKS

When using Simple Executive, relevant fields are set using the following configuration variables,

which are defined in executive-config.h:
// if 1, include PIP/IPD port
CVMX HELPER INPUT TAG INPUT PORT

=
=5
o
=
=
<
=9
ot
A

IPv4:

// if 1, include source IP address
CVMX_ HELPER INPUT TAG IPV4 SRC IP

// if 1, include destination IP address
CVMX_ HELPER INPUT TAG IPV4 DST IP

// if 1, include TCP/UDP source port
CVMX_HELPER INPUT TAG IPV4 SRC_ PORT

// 1f 1, include TCP/UDP destination port
CVMX_ HELPER INPUT TAG IPV4 DST_ PORT

// 1f 1, include protocol value
CVMX_HELPER INPUT TAG IPV4 PROTOCOL

IPv6:

// if 1, include source IP address
CVMX_ HELPER INPUT TAG IPV6 SRC_IP

// if 1, include destination IP address
CVMX_HELPER INPUT TAG IPV6 DST IP

// 1f 1, include TCP/UDP source port
CVMX_ HELPER INPUT TAG IPV6 SRC_PORT

// 1f 1, include TCP/UDP destination port
CVMX_HELPER INPUT TAG IPV6 DST_ PORT

// 1f 1, include next header value

CVMX HELPER INPUT TAG IPV6 NEXT HEADER

These fields are used in the internal-use function = evmx helper port setup ipd(),
which is called by cvmx _helper initialize packet io global ().

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-87

g CAVIUM OCTEON Programmer’s Guide

NETWORKS
=
i Figure 27: Tag Value Flow Chart
=]
2 .
- Start Tag Value Tag Valuc? Assignment .
g Assignment (See the pseudo code in the HRM for more details.)
PIP PRT TAGn[TAG _MODE]:
y 0: use tuple tag
Set Default Value: 1: use mask tag
Tag_value=0 2:if IP, use tuple tag, else use mask tag

3: tuple tag XOR mask tag

inc_port=TRUE >

YES (Receive Error)}——— (default tag value)

L1/L2 Receive Error
?

NO

inc_port=FALSE
YES——— P Tag_value= p——
PKT INST HDR[TAG]

RAWFULL OR RAWSCH

NO
v

‘ inc_port=TRUE ‘

TAG_MODE==
2

YES Tag value<15:0>=
| — p——

(tuple tag) hw_tuple tag()
NO
YES Tag value<15:0>=
== - — _>
(mask tag) hw_mask_tag()
NO

YES YES Tag_value<l5:0>= | .

TAG_MODE==2 (tuple_tag) hw_tuple tag()

NO Tag_value<l5:0>= | >

(mask tag) hw_mask_tag()

Tag_value<l5:0>=

——NO (XOR both together) b hw_mask tag() XOR]
hw_tuple tag()

PIP_PRT_TAGn[INC_PORT]==

NO
\ 4

Tag<23:16>=0xFF Tag<23:16>=port

A

NO (don’t change bits <23:16>)

End Tag Value
Assignment

6-88 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 28: Flowchart for hw_tuple_tag() Function

Flowchart for hw_tuple tag () Function
(See the pseudo code in the HRM for more details.)

=
A
o
=
=
]
=5
Ll
A

NO
YES
NO
v 4
Tag = hw_ipv4_hash() Tag = hw_ipvé_hash() Tag=0

Return (Tag) ;

v

End
hw_tuple tag()

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-89

g CAVIUM OCTEON Programmer’s Guide

NETWORKS

w
]
:f Figure 29: Flowchart for hw ipv4 hash () Function
= — —
& < ~ Start > hw_ipv4_hash () Function
g hw_ipvd_hash() (See the pseudo code in the HRM for more details.)
IP Error
?
NO

IP4_SRC== YES ¢

Include source IP address + secret in src_crc
NO [

YES

v

‘ include destination IP address + secret in dst_crc ‘

YESl
?

‘Include source port in src_crc

le |

YESj

‘Include protocol in prot_crc ‘ NO |
NO \ [«
<

YES
v

YES Include destination port in
dst crc

Vlan_valid AND
((INC_Vvs==1) OR
(INC_vs==3))
?

le |

‘ Include VLANO in prot_crc ‘
NQ |

Vlan_stacked AND
((INC_Vs==2) OR
(INC_vs==3))

YES
v

Exclude src_crc
by setting

src_crc=0

YE81 YES

Include VLAN1 in prot_crc
NQ |

NO

AND (NOT FRAGMENT)
AND (NO LE Error)
AND
No options (HL==5)
2

NO

i‘
A

Result=
(src_crc XOR dst_crc XOR prot crc) & ~PIP_TAG_MASK[MASK]

‘ Return (result) ;

(clear bits not set in MASK)

End
hw_ipv4 hash()

6-90 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’

/~, CAVIUM
NETWORKS

s Guide

Figure 30: Flowchart for hw_ipvé hash () Function

Start
hw_ipvé_hash ()

> hw_ipvé_hash () Function

IP Error
?

NO

IP6_SRC==

(See the pseudo code in the HRM for more details.)

IP6_DST==

NO

lg

YES

v

‘ include destination IP address + secret in dst_crc ‘

l

NQ

YES
v

‘Include source port in src_crc

YESﬁ

‘ Include next header in prot_crc ‘ NO

[P ‘
‘ <

Vlan_valid AND
((INC_Vvs==1) OR
(INC_vs==3))
?

YES
v

YES Include destination port in
dst crc

‘ Include VLANO in prot_crc ‘

le |

Vlan_stacked AND
((INC_Vs==2) OR

(SYNC AND !ACK packet) YES;

(INC_vs==3))

(TAG_SYN==1
?

YE81 YES

Exclude src_crc
by setting

‘ Include VLAN1 in prot_crc

src_crc=0

(TCP OR UDP)

AND (NO LE Error)
?

AND (NOT FRAGMENT)

NO

NO

i‘
A

Result=
(src_crc XOR dst_crc XOR prot crc) & ~PIP_TAG_MASK[MASK]

‘ Return (result) ;

(clear bits not set in MASK)

End
hw_ipvé_ hash()

CN_OCTEON_PRG_GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY 6-91

=
A
)
o=
=
«
A
e
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Figure 31: Flowchart for hw_mask_tag() Function

hw_mask tag() Function
(See the pseudo code in the HRM for more details.)

Start
hw_mask_tag()
4

result = 0
crc = OxFFFF
pkt_cnt = 0

-]
[
)
|~

=

(="
=
)
=

If the packet is less than

4 128 bytes long, a value of 0
—> For all bits in the mask (i=0; i<128; i++; pkt_cnt++) is used for bytes off the end
of the packet (Data=0).

i <128

YES

NO (exit loop)

(Is the bit set in the mask)
AND
(pkt_cnt > pkt_size)
?

NO

YES
v
Data=packet[pkt_cnt] Data=0
LOOP
AGAIN

hl

Create CRC of Data using
prior CRC as initial value

\ 4

Result =
crc &~PIP_TAG MASK [MASK]

A 4

End
hw_mask_tag()

6-92 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

7.4.1 Registers to Configure Tag Value Assignment

Table 23: Registers to Config

Brief Description

Select Tag Mode

ure WQE WORD1 Tag

Register

Fields

CAVIUM

Value Assignment

NETWORKS

SDK

Default

Value

Tag Algorithm: One register per port. Specifies
the tag value algorithm to use:

O=create tag value using the tuple tag algorithm
1=create tag value using the mask tag algorithm
2=create tag value using tuple tag if IP, else use
mask tag

3=create tag value using tuple tag XOR mask tag

PIP PRT TAGn
(one per port)

TAG_MODE

0
(H/W
Default)
(See
Notel)

Select Global Tag MASK

Mask: Global Register. This mask applies to all
tag modes. It is a mask for the lower 16 bits of
computed tag. (result & ~MASK)

PIP TAG MASK

MASK

0
(H/W
Default)

Select Whether to Include PIP/IPD Port in Tag Value

Include PIP/IPD Port: One register per port.
Include the PIP/IPD port in tag value

PIP. PRT TAGn
(one per port)

INC PRT

1
(See
Note3)

Values Used with Mask Tag Option

Which Register: One register per port. Specify
which of the 64 PTP TAG INC registers to use
when calculating mask tag hash (four 16-entry
masks are used to cover 128 bytes). Note that the
mask is always applied to the first 128 bytes of the
packet, without skiping any bytes.

O=use registers 0-15;

1=use registers 16-31;

2=use registers 32-47;

3=use registers 48-63

PIP PRT.CFGn
(one per port)

TAG \INC

0
(See
Note2)

Include Bytes: Each EN field is 8 bits. Each bit
represents a byte. The 64 registers can be used to
create four different masks used if TAG_MODE is
1 (create mask tag). The

PIP PRT CFGI[TAG_INC] field specifies
which of the four masks to use. For example,
registers 0-15 are used to create a (8 * 16) = 128
bit mask. Bit <7> corresponds to the MSB and bit
<0> corresponds to the LSB of the corresponding
8-byte word.

PIP TAG INC(0-
63)

(Grouped into
four

128-bit masks)

EN

0
(See
Note2)

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

a
2o
i
=
=
<
=0
]
A

-
[
-
1)
=]
=7
=
)
-}

2=, CAVIUM
< NETWORKS

Brief Description

Values Used with Tuple Tag Option

Register

OCTEON Programmer’s Guide

H/W SDK
Default

Value

Dest Secret: Global register. Secret initial value

for destination tuple tag CRC calculation. This PTP TAG SECRET ST 0 (HO i
provides a mechanism for each OCTEON - - Default)
processor to be unique.

Src Secret: Global register. Secret initial value for

source tuple tag CRC calculation. This providesa | . = ..o SRe 0 (HO i
mephanism for each OCTEON processor to be - - Default)
unique.

Omit Src CRC: Global register. Do not include

src_crc for TCP SYN&!ACK packets 0
(dst_crc is always included): PIP GBI CFG TAG_SYN 0 (H/W
O=include src_crc befault)
1=do not include src_crc

VLAN STACKING - Include VLAN ID: One

register per port. Specifies the VLAN ID to be

include in the tag value when VLAN stacking: o1p PRT TAG 0
0=do not include VID (ons per pog 0 INC_VS 0 (H/W
I=include VID (VLANO) in hash Default)
2=include VID (VLANI1) in hash

3=include VID {VLANO, VLAN1} in hash

VLAN and NOT VLAN STACKING - Include

VLAN ID: One register per port. Include VLAN .

ID in tag value when not VLAN stacked: PIP PRT TAGn

0=do not include VID in hash (one per port) HHE_VLAR ° Def(igt)
I=include VID in hash

IPv4

IPV4 Dst Port: One register per port. Include PIP. PRT TAGn .1 DPRC 0 (Soee
TCP/UDP dst port in tag value fong) per port) - Noted)
IPv4 Src Port: One register per port. Include PIP_PRT TAGn) - 0 (Soee
TCP/UDP src port in tag value (one per port) - Note5)
IPv4 Protocol: One register per port. Include PIP_PRT TAGn Ip4 pOTL 0 (Soee
protocol in tag value (one per port) - Note6)
IPv4 Dst Addr: One register per port. Include dst | p1p_PRT TAGn 14 DST 0 (Soee
address in tag value (one per port) - Note7)
IPv4 Src Addr: One register per port. Include src | pIP_PRT TAGn . 0 (Soee
address in tag value (one per port) - Note8)
IPv6

IPV6 Dst Port: One register per port. Include PIP_PRT TAGn 196 DPRT 0 (Soee
TCP/UDP dst port in tag value (one per port) - Note9)
IPv6 Src Port: One register per port. Include PIP PRT TAGn 1P6 SPRT 0 (Soee
TCP/UDP src port in tag value (one per port) - Notel0)

6-94 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide

NETWORKS
a
=
H/W SDK =
Brief Description Register Fields Default Default S
Value Value -
=W
IPv6 Next Header: One register per port. Include | p1P_PRT TAGn 1P6 NXTH 0 (Soee
next_header in tag value (one per port) - Notell)
IPv6 Dst Addr: One register per port. Include dst | p1P_PRT TAGn 1P6 DST 0 (Soee
address in tag value (one per port) - Notel2)

. : 0
IPv6 Src Addr: One register per port. Incude src PIP_PRT TAGn TP6_SRC 0 (See

address in tag vaue (one per port) Notel3)

Notel: Available defines are: CVMX TAG MODE TUPLE, CVMX TAG MODE MASK,
CVMX TAG MODE IP OR MASK,CVMX TAG MODE XOR. The default SDK does not change the H/W
default.

Note2: This field is cleared and set via the functions cvmx_pip tag mask clear() and
cvmx_pip tag mask set ().

For the following notes, when using Simple Executive, relevant fields are set using the following configuration
variables, which are defined in executive-config.h. The user may change the definition to alter the default
configuration.

Note3: CVMX HELPER INPUT TAG INPUT PORT
Note4: CVMX HELPER INPUT TAG IPV4 DST PORT
Note5: CVMX_HELPER INPUT TAG IPV4 SRC PORT
Note6: CVMX_HELPER INPUT TAG IPV4 PROTOCOL
Note7: CVMX_HELPER INPUT TAG IPV4 DST.IP
Note8: CVMX_ HELPER INPUT TAG IPV4 SRC'IP
Note9: CVMX HELPER INPUT TAG IPV6 DST PORT
Notel0: CVMX HELPER INPUT TAG IPV6 SRC PORT
Notel1: CVMX HELPER INPUT TAG IPV6 NEXT ‘HEADER
Notel2: CVMX HELPER INPUT TAG IPV6 DST_IP
Notel3: CVMX HELPER INPUT TAG IPV6 SRC.IP

7.5 Using Watchers to Set QoS and Group

Depending on the processor model, there are 4 or 8 global watchers. These watchers can set the
packet’s QoS value or Group value, or both. The watchers are enabled on a per-port basis (for each
port, one bit enables the QoS setting, the other bit enables the Group setting).

If the watcher’s QoS bit is enabled for the port and the watcher’s configuration matches the packet
configuration, then the packet’s QoS is set to the watcher’s QoS.

If the watcher’s Group bit is enabled for the port and the watcher’s configuration matches the
packet configuration, then the packet’s Group is set to the watcher’s Group.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-95

-
[
-
1)
=]
=7
=
)
-}

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

Table 24: Registers to Configure Watchers

H/W SDK
Description Register Field Default Default
Value Value
Watcher Configuration
Type of Packet To Match: One register per
Watcher. Watcher will match this type of
incoming packets: 0=disable across all ports
1=match protocol (IPv4) or next header L1P 008 WATCH (0-7 0
(IPv6) (onEQ = (=1 TYPE 0 (H/W
L per watcher) Default)
2=match TCP destination port etau
3=match UDP destination port
4=match Ethertype field
5-7=reserved
. : 0
Value to Match: One register per watcher. PIP_QOS_WATCH(0-7) MATCH 0 (/W
Value to watch for (one per watcher) Default)
Match Mask: One register per watcher. Mask o1p WATCH (07 0
a range of values (16 bits: set the bit to mask (Ongng; Waicée;)) MASK 0 (H/W
(match & ~mask) Default)
Group Value to Set If Match Group Watcher:
One register per watcher. Group number of PIP QOS_WATCH (0-7) 0
: == GRP 0 (H/W
watcher (set group of matched packet to this (one per watcher) Default)
value)
QoS Value to Set if Match QoS Watcher: One o1 oos warcla? 0
register per watcher. QoS value pf watcher (onnge; N tc}ger) J WATCHER 0 éH/T/lv
(set QoS of matched packet to this value) Default)
Per Port: Enable Watcher to Set Matched Packet's QoS Value
Enable QoS Watchers 0-3: One register per
port. Enable QoS for watchers 0-3. (An PIP _PRT CFGn 0
. . — v - Q0S. WAT 0 (/W
enable bit is provided for each watcher. Set (one per port) N Default)
bit to 1 to enable the watcher.)
Enable QoS Watchers 4-7: One register per .
port. Engble QOS. for watchers 4-7. (An PIP PRT CFGn 00s w17 0 (/W
enable bit is provided for each watcher. Set (eneiper port) N D Default)
bit to 1 to enable the watcher.)
Per Port: Enable Watcher to Set Matched Packet's Group Value
Enable Group Watchers 0-3: One register per
0
port. Engble group for watchers 0-3. (An PIP_PRT CFGn GRP WAT 0 (H/W
enable bit is provided for each watcher. Set (one per port) - Default)
bit to 1 to enable the watcher.)
Enable Group Watchers 4-7: One register per .
port. Engble group for watchers 4-7. (An PIP_PRT CFGn GRP WAT 47 0 (H/W
enable bit is provided for each watcher. Set (one per port) - - Default)
bit to 1 to enable the watcher.)

As of SDK 2.0, the SDK does not provide a function to set these values.

Note: Some OCTEON models do not support an Ethertype watcher. ARP packets must be
handled at a high priority, but watchers cannot uniquely classify ARP packets because they are not

6-96 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG _GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

IP. To handle ARP packets at a high priority when the Ethertype option is not available on the
OCTEON model, set all non-IP packets to a higher QoS.

The following examples show how to use watchers.

Example 1:

Separate IPv4 traffic from IPv6 traffic, and cause IPv4 traffic to go to Group 2 while IPv6 traffic
goes to Group 5, configure the watchers as follows:

Watcher 0 will watch for [Pv4 traffic:

PIP QOS WATCHO[TYPE] = O0x4; // Match EtherType field
PIP QOS WATCHO[MATCH] = 0x8000; // IPv4

PIP QOS WATCHO[MASK] = 0; // no masking

PIP QOS_WATCHO[GRP] = 2;

Watcher 1 will watch for IPv6 traffic:

PIP QOS WATCH1[TYPE] = 0x4; // Match EtherType field
PIP QOS WATCHI1[MATCH] = 0x86DD; // IPv6

PIP QOS WATCHI [MASK] 0; // no masking

PIP_QOS WATCHL [GRP] 5

Then, for every port which should be watched, enable the bits corresponding to the watchers to be
enabled (watcher 0 and 1 in this example):

PIP PRT CFGn[GRP WAT] = 0x3

Example 2:

Use watcher 1 to match all values in the range 128-255, and set group to 4:
PIP QOS WATCHL[TYPE] = Ox2 // Match TCP/dest field

PIP QOS WATCHI[MATCH] = 128 // 1 0000 0000b

PIP QOS WATCH1[MASK] = 127 // 1111 1111b

PIP QOS WATCH1[GRP] = 4

(255 is the maximum value for the 16-bit match field.)

Note: When using Simple Executive to read and write CSRs, “PTP QOS WATCH1 [GRP] = 4"

translates to:
cvmx pip gos watchx t watcher;
watcher.u64 = cvmx read csr(CVMX PIP QOS WATCHX(1l));
watcher.s.grp = 4;
cvmx write c¢csr(CVMX PIP QOS WATCHX (1), watcher.u64);

8 Security

The WORD2 [SE] (dec ipsec) field is set when the packet is IP and may require IPsec
decryption. ‘This bit is set when:
e The packet is [IPsec ESP (i.e. the IPv4 protocol or the initial IPv6 next header
equals 50).
e The packet is [Psec AH (i.e. the IPv4 protocol or the initial [IPv6 next header equals
51).
e The packet is TCP (i.e. the [Pv4 protocol or the initial [IPv6 next header equals 6)
and the packet’s TCP destination port matches one of four possible programmed values and
(WORD2 [V6] || (IPv4.HL==5)).

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-97

=
=5
o
=
=
<
=9
ot
A

g CAVIUM OCTEON Programmer’s Guide

NETWORKS

e The packet is UDP (i.e. the IPv4 protocol or the initial [IPv6 next header equals 17)
and the packet’s UDP destination port matches one of four possible programmed values and
(WORD2 [V6] || (IPv4.HL==5)).

-
[
-
&

=

=7
=
)
-}

There are four programmable destination ports set via the PIP_DEC IPSECn registers, shared by
TCP and UDP. Each programmed port can match TCP and/or UDP.

ure IP Securit

H/W
Default

Table 25: Registers to Config

SDK
Default
Value

Brief Description Register Fields

Value

Dest Port to Match On: UDP or TCP PIP_DEC_IPSEC (0-3) 0
destination port to match on. (Four destination DPRT 0 (H/W
port values) Default)
Dest Port for TCP Packets: This DPRT PIP DEC_IPSEC (0-3) 0
should be used for TCP packets. (Four destination TCP 0 (H/W
port values) Default)
Dest Port for UDP Packets: This DPRT PIP DEC_IPSEC (0-3) 0
should be used for UDP packets. (Four destination Ubp 0 (H/W
port values) Default)

9 Error Check Configuration

The following registers control error-check configuration. When errors occur, they are reported in
the opcode field in the WQE data structure. The meaning of the opcode field depends on which
error bit is set in the WQE (RE, LE, IE). There are also registers to enable exception/error
interrupts. These interrupts are seldom used because the information is already provided in the
packet’s WQE. In addition, when the interrupt occurs, there is no way to tell which packet caused
the interrupt.

Table 26: Registers To Configure Error Checking
H/W

Default

SDK
Default
Value

Brief Description Register Fields

Value

Packet Length Checks

Byte Count for max-sized frame check: Two

registers (see Notel). Failing packets set the
MAXERR interrupt and are optionally sent with
WQE WORD2 [opcode] ==MAXERR (see
MAXERR EN field). The effective MAXLEN

used by the hardware is
PIP FRM LEN CHK[MAXLEN] + (4 x VV)

+ (4 x vS) where (vv==1 if VLAN or
VLAN STACKING) and (vs==1 if VLAN
STACKING)

PIP_FRM LEN CHK(0-1)
(PIP_FRM LEN CHKO is
used for packets on
packet interfacel, PCIe
(except RAW packets),
and loopback ports;

PIP FRM LEN CHKl is use
for packets on packet
interfacel ports and
PCIe RAW packets)

MAXLEN

0x600

0x600
(H/W
Default)
(See
Notel)

6-98 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide

=

CAVIUM

NETWORKS

H/W SDK
Brief Description Register Default Default
Value Value
PIP_FRM LEN CHK(0-1)
o (PIP FRM LEN CHKO is
Byte count for min-sized frame check: Two used for packets on
- e . 0x40
registers (see Notel). Failing packets set the | packet interface0, PCle (H/W
. L . (except RAW packets),
MINERR interrupt and are optionally sent with - MINLEN 0x40 Default)
and loopback ports; 3
WQE WORD2 [opcode] =MINERR (see PIP_FRM LEN CHK1 is use (See
— — - Notel)
MINERR EN ﬁeld). for packets on packet
- interfacel ports and
PCIe RAW packets)
Select largest L2 frame size: The value of the
type/length field can be considered either a
type or a length. Values under the cutoff are
considered to be length. For example, if 0 (1500)
MAX_ L2==0, packets with a type/length value | PIP_GBL_CFG MAX 1.2 0 (1500) (H/W
of > 1500 are considered to specify type, not Default)
length.
0=1500 / 0x5dc
1=1535/ Ox5ff
L2 length error check enable: One register .
per port. Frame was reqelved with length PIP)RT}FGnt LENERR' EN 0 (/W
error. This check is typically not enabled for | (one per port) Default)
incoming packets on PCle ports.
0
Max frame error check enable: One register (H/W
rt. F ived with length > PR MAXERR EN 0 Default)
per port. Frame was received with leng (bne Yper’ port) 5
max_length (See
- Note2)
Min frame error check enable: One register 0/

. . (H/W
per port. Frame.was recgved Wlth length < PIP _PRT CFGn MTAREVeN 0 Default)
min_length. This check is typically not (one per port) - (See
enabled for incoming packets on PCle ports. Note2)
Disable length check for packets with oA prr S 0
padding in client data: One register per port. (one per p Oit) PAD LEN 0 (H/W
(set to 1 to disable) Default)

. . 0
Disable }ength check for VLAN pa'ckets. PIPiPRTi(ZFGnt VIAN LEN 0 (/W
One register per port. (set to 1 to disable) (one per port) Default)
Other Error Checks (alphabetical order)

Configure IPv6/UDP checksum: 1
O=allow optional checksum code (H/W

. PIP GBL CFG IP6_UDP 1
1=do not-allow optional checksum code - - - Default)
(See the HRM for details.)
Enable IPv4 header checksum check: Set to 1 1/

. (H/W
to engble. Indicates that an IPv4 pe.tcket. BIP GBL CTL — 1 Default)
contained IPv4 header checksum violations. - - - (See
Only applies to packets classified as [Pv4. Note3)

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-99

o]
=9
!
=
=
<
A
ot
A

-
[
-
&

=]

=7
=
)
-}

/~, CAVIUM
=

NETWORKS

OCTEON Programmer’s Guide

SDK

Brief Description Register Default

Value
1
Enable TTL (IPv4) / hop (IPv6) check: Set to (H/W
1 to enable. Indicates that the IPv4 TTL field | PIP_GBL_CTL IP_HOP Default)
or IPv6 HOP field is zero. (See
Note3)
Enable IP malformed check: Setto 1 to
enable. Indicates that the packet was 1/
(H/W
malformed. Malformed packets are defined bTP GBL CTL Ip MAL Defaglt)
as packets that are not long enough to cover - - - (See
the IP header or not long enough to cover the Note3)
length in the IP header.
Enable IPv4 options check: Setto 1 to 1/

. (/W
enable. In@cates the presence of [Pv4 . bTP GBL CTL Ipa opad Default)
options. It is set when the length !=5. This - - - (See
only applies to packets classified as IPv4. Note3)
Enable IPv6 early extension headers: Set to 1
to enable. Indicate the presence of IPv6 early
extension headers. These bits only apply to
packets classified as IPv6. Bit 0 will flag
early extensions when next_header is any one
of:

* hop-by-hop (0)
* destination (60) 1/
: (H/W
*_ routing (43)) PIP GBL CTL IP6 EEXT Default)
Bit 1 will flag early extentions when .8 - (See
next_header is NOT any of: Note3)
* TCP (6)
* UDP (17)
* fragmentation (44)
* ICMP (58)
* IPSEC ESP (50)
* IPSEC AH (51)
* IPCOMP
1
[(H/W
Enable L2 malformed check: Setto 1 to V AREER N Lo MAL Default)
enable. - - - (See
Note3)
Enable TCP/UDP checksum check: Setto 1
to enable. Indicates that a packet classified as !
4
either TCP or UDP contains an L4 checksum PLF_SBL_CTL bA_CHR Def(igt)
failure.
1
Enable TCP/UDP length check: Setto 1 to (/W
enable. Indicates that the TCP or UDP length | PIP_GBL_CTL L4_LEN Default)
does not match the the IP length. y (ieg)
Oote

6-100 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

H/W SDK
Brief Description Register Fields Default Default
Value Value
Enable TCP/UDP malformed packet check: 1
Set to 1 to enable. Indicates that a TCP or bTP GBL CTL L4 MAL 1 Def(ggt)
UDP packet is not long enough to cover the - - - (See
TCP or UDP header. Note3)
Enable TCP/UDP illegal port check: Setto 1 1/

. (H/W
to enable. Ind}cates that a TCP or UDP bTP GBL CTL L4 PRT 1 Default)
packet has an illegal port number: either the - - - (See
source or destination port is zero. Note3)
Enable TCP flags check: Set to 1 to enable.

Indicates any of the following conditions
[URG, ACK, PSH, RST, SYN, FIN] :
tep_flag (1/
v . H/W
: 2,588888(1) EE;N only) PIP GBL CTL TCP_FLAG 1 Default)
: (See
* 6'bxxx1x1: (RST+FIN+¥) Note3)
* 6'blxxx1x: (URGHSYN+*)
* 6'bxxx11x: (RST+HSYN+*)

* 6'bxxxx11: (SYN+FIN+%*)

Notel: PIP FRM LEN CHKO is used for packets on packet interface0, PCle, and PKO loopback ports.
PIP FRM LEN CHKI is used for packet on packet interfacel ports and PCle RAW packets.

Note2: The SDK sets this value to 0 in the internal-use function . cvmx helper npi enable () (an internal
PClIe block)

Note3: By disabling the checker, the exception will not be flagged and the packet will be parsed as best it can. Note,
by disabling conditions, packets can be parsed incorrectly (.i.e. IP. MAL and L4 MAL could cause bits to be seen in
the wrong place. IP_CHK and L4 CHXK mean that the packet was corrupted).

9.1 CRC Check Configuration

Some processors have CRC Check configuration registers in the PIP/IPD register set (for example,
CN58XX).

When using CRC, the term reflect means to flip the bits (mirror image), so that bit 0 becomes bit
31, and bit 31 becomes bit 0. The sequence 11000100 becomes 00100011.

The term invert means to change all zeros to ones and all ones to zeroes. The sequence 11000100
becomes 00111011.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-101

=
A
o
=
=
]
-»
o
~

2=, CAVIUM
< NETWORKS

Brief Description

-
[
-
1)

=]

=7
=
)
-}

Table 27: Regi

Register

CRC Calculation: Datapath Reflection Control

OCTEON Programmer’s Guide

ure CRC Check

Fields

H/W
Default

Value

SDK
Default
Value

Ports 0-15:
PIP_CRC_CTLO

1

. . (one bit for all ports) (H/W
Invert: If set, invert the result. Ports 16-31: INVRES 1 Default)
PIP CRC CTL1 (See Notel)
(ong bit for all ports)
o Ports 0-15:
Reflect: Reflect the bits in each byte. PIP_CRC_CTLO 1
The byte order does not change: (one bit for all ports) | ..., 1 (H/W
O=calculate CRC MSB-to-LSB Ports 16-31: Default)
1=calculate CRC LSB-to-MSB PIP_CRC_CTL1 (See Notel)
(one bit for all ports)
CRC Calculation: Initial Value
Ports 0-15:
Initial Value: Set initial value (IV) used E(’I P_CE?EIVO o 0x4 ?SE;‘* 49
. . one bit per por
by the CRC algorithm. The default is Ports 16-31: v Ox46AF6449 | o roult)
FCS32. PIP CRC IV (See Notel)
(ong bit per port)

Notel: These registers can be configured via the SDK function cvmx pip config crc().

10 Packet Storage

This section covers:

1. What part of the packet is stored in Packet Data Buffer(s) and the WQE Buffer
2. Choices for writing Packet Data Buffers to L2/ DRAM

3. Packet Storage in Packet Data Buffers, including optional storage of the WQE in the Packet

Data buffer

4. Packet Storage in the Work Queue Entry data structure, including dynamic shorts

5. Accessing packet data when some packets are dynamic shorts and some are not

6. Registers used to configure packet storage options

Usually, PIP/IPD writes the entire packet into Packet Data Buffers, and also writes the first 96
bytes (92 bytes if IP and not [Pv6 because 4 bytes are used for alignment) of the packet to the
Work Queue Entry data structure (WORD4-WORD15).

PIP/IPD does not write the packet to Packet Data Buffers if:

6-102 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

o 2=, CAVIUM
OCTEON Programmer’s Guide NETWORKS

1. All the bytes of the packet will fit into WQE WORD4-WORDI15 and the dynamic short
option is enabled for the port. This packet is referred to as a dynamic short packet.
(Dynamic shorts are discussed in more detail in Section 10.4.2 —“Dynamic Short Storage in
WQE”.)

2. The packet is dropped due to Per-Port Packet Drop or Per-QoS RED. In this case, there is
also no WQE. (This is discussed in more detail in Section 12 — “Congestion Control
(Backpressure, Packet Drop, RED, WRED)”.)

3. The packet is dropped due to receive buffer overflow before reaching PIP/IPD. (A partial
packet may be received before the receive buffer overflows, resulting in partial packets. In
this case WORD2 [RE] ==1 and WORD2 [OPCODE] ==1 (partial error).) A WQE exists
even if there was a partial receive.

PIP/IPD can support a maximum of 255 buffers for a packet and a maximum packet size of

65535 bytes. The maximum Packet Data Buffer size is 16384 bytes (2048 8-byte words).

10.1 The Part of the Received Data Which is Stored

The packet (packet data) received by PIP/IPD usually starts after the Start Frame Delimiter (SFD)
(the preamble is typically excluded), and continues to the CRC. The CRC is optionally not stored
(available only for ports (0-31, 36-39): the CRC cannot be removed from packets arriving on
PCI/PCle/DPI ports or sRIO ports.

=
A
)
o=
=
«
A
e
A

Packet Data Stored in Packet Data Buffers:
e All received bytes after the SFD to the end of the frame, optionally including the CRC

Packet Data Stored in Work Queue Entry WORD4-WORDI1S5 (See Figure 36 — “Format of Packet
Data Stored in WQE WORD4-WORDI15” for an illustration.). In all cases, the CRC at the end of
the frame is optionally not stored.:

e IfIPand PIP IP OFFSET[OFFSET]==0:

o Stored packet data starts at [P Header and continues until the end of the packet data
or the end of WORD15.

o IfIPand PIP IP OFFSET[OFFSET] !=0:

o PIP IP OFFSET[OFFSET] specifies the numberof 8-byte words to reserve in
the WORD4-WORD15 portion of the WQE for packet data which is immediately
prior to the IP header.

* IfPIP IP OFFSET[OFFSET] is large enough to accommodate all of the
packet data preceding the IP header, including byte0, then the stored packet
data starts at the first byte of packet data and continues until the end of the
packet data. If there is any space remaining (header is short), PIP/IPD will
fill it with zeroes.

= Otherwise, the PIP/IPD will backfill any byte before the IP header until
OFFSET x 8 bytes are used. (The alignment pad is reserved.)

e IfNOTIP:
o Stored packet data starts with the first byte after the SFD and continues until the end
of the packet data or the end of WORD15.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-103

-]
[
)
&
=
(="
=
)
=

2=, CAVIUM
< NETWORKS

OCTEON Programmer’s Guide

Figure 32: Overview of Storing Received Data

Storing Packet Data

the Packet Data Buffer or WQE Data Structure)

(Packet Data is defined to be the bytes of the received packet which are stored in

Incoming Frame Packet Data Stored in

Packet Data Stored in WQE WORD4-

stored.

Note6: The L2 header is only present for Ethernet or 802.3 packets.

Packet Data Buffer(s) WORD15
(location in buffer not (location in WQE WORD4-WORD15 not
shown) shown)
1 [Preamble IP NOT IP
Optional Header Optional Header Op(ngzr;all\ll(;lga;der Optional Header
(See Note2) (See Note2) Note5) (See Note2)
Frame Header Frame Header
Frame Header Frame Header (L2 Header) (L2 Header)
(L2 Header) (L2 Header)
(Ethernet or 802.3) (Ethernet or 802.3) (EirEmEs ey oz (Ethernet or 802.3)
(See Note5) (See Noteb)
Packet Header Packet Header Packet Header
(IP Header and (IP Header and (IP Header and
TCP/UDP TCP/UDP TCP/UDP
UEJ Headers) Headers) Headers)
&
T 3 (N A P Stored packet data stopsat =~ |
5 end of WORD15
©
o Payload
Payload Payload Payload
Padding Padding Padding
(See Note3) (See Note3) (See Note3)
CRC CRC CRC CRC
(See Note4) (See Note4) (See Note4)
Note1: The preamble is normally consumed before it reaches PIP/IPD.
Note2: The Optional Header includes any SKIP1, Packet Instruction-Header, and SKIPII areas.
Note3: Padding is optional, and is only present in IP packets.
Note4: CRC is optionally not stored for ports (0-31, 36-39). This option is configured via the

IPD_SUB_PORT FCS register, and is not available for PCle or loopback ports. By default, the CRCs are not

Note5: For IP packets, the stored packet begins with the IP header unless PIP_IP OFFSET [OFFSET] !=0.
For.example, to store the L2 header prior to the IP header, set PIP_IP OFFSET [OFFSET] to 2.

10.2 Packet Storage in Packet Data Buffers

If the packet is not stored as a dynamic short in the WQE, then it is stored in one or more packet

data buffers.

6-104 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide
8 " NETWORKS

The physical address of the packet data in the first packet data buffer is stored in WQE

WORD3 [Addr]. When multiple buffers are needed to store the packet data, each buffer contains
the physical address of the next buffer in the buffer chain (Next Buf Ptr). The

Next Buf Ptr field is the same data structure as WQE WORD3, as shown in the following
figure:

=
=5
o
=
=
<
=9
ot
A

Figure 33: Next Buffer Pointer (Next Buf Ptr) Data Structure
Next Buffer Pointer (Next Buf Ptr)

63 56 55 40 39 0

Back [Pool Size Addr

W@ 3 (16 bits) (40 bits)

Note: When there is only one buffer, the last valid buffer pointer is the one in the WQE; otherwise
the last valid buffer pointer is the one in the second-to-last buffer.

Note: The software data structure field name is shown in parenthesis in the list below.

I (i): The Invert bit (used by PKO). This value is set to O for an inbound packet (don’t free).
This bit is used to invert the state of the PKO command WORDO [DF] flag (don’t free). The Invert
bit is used by software to free only selected buffers in a buffer chain.

Back (back): The number of cache lines from Addr (start of packet) to the beginning of the first
buffer (usually 0).

Pool (pool): The pool the buffer came from (0 for packet data buffers)

Size (size): The number of bytes from Addr to IPD PACKET MBUFF SIZE[MB SIZE]
(not the same as the size of the buffer). This represents the number of bytes of packet data in the
buffer, with the possible exception of the last buffer. For the last buffer, the number of bytes of
packet data will be smaller than the Size field in the last valid Next Buf Ptr unless the packet
data ends exactly at the end of the region reserved by IPD_PACKET MBUFF SIZE[MB SIZE].
Addr (addr): The physical address of the start of the packet in the buffer (not the same as the
start of the buffer). Addr doesnot need to be cache-line aligned, but the start of the buffer must be
cache-line aligned.

The start of the first Packet Data Buffer = ((Addr >> 7) - Back) << 7), where
back = IPD_1ST_NEXT PTR BACK[BACK]

The start of subsequent Packet Data Buffers = (Next Buf Ptr - Back), where
back = IPD_2ND NEXT PTR BACK[BACK]

IPD_1ST NEXT PTR BACK[BACK] and IPD_2ND_NEXT PTR_BACK[BACK] are in units of 128-
byte words and must be consistent with the mbuf SKIP_SZ settings.

Note that Back is used by hardware units such as the PKO to determine the start of the packet data
buffer. (The PKO uses the start address in the buffer free operation.) It is critical to configure
these correctly: incorrect configuration causes FPA corruption.

For example, PKO finds the start address of the buffer using the following formula:

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-105

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Buffer Start Address = ((Addr >> 7) - Back) << 7

-]
[
)
&
=
(="
=
)
=

Back is set to the value of IPD 1ST NEXT PTR BACK[BACK] for the first Packet Data
Buffer and IPD 2ND NEXT PTR BACK[BACK] for subsequent Packet Data Buffers. Back is
in units of 128-byte words (cache line size). The value of these registers must be consistent with
the corresponding IPD 1ST MBUFF SKIP[SKIP SZ] and

IPD NOT 1ST MBUFF SKIP[SKIP SZz] variables. By default, the SDK sets these variables
using the MBUFF SKIP sizes as shown in the following pseudo code:

// The +8 below is to include the Next Buf Ptr
first back = CVMX HELPER FIRST MBUFF SKIP+8) / 128

// The +8 below is to include the Next Buf Ptr
second back = VMX HELPER NOT FIRST MBUFF SKIP+8) / 128

When the amount of data exceeds the size of one Packet Data buffer, linked buffers (mbufs) are
used, as shown in the following figure.

6-106 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide
8 NETWORKS
Q
. . . &
Figure 34: Packet Storage Using Multiple Packet Data Buffers (MBUFs) =
. =
Packet Data Storage if Data Exceeds One Mbuf N
Ll
63 56 55 40 39 0 A
WQE .| Back |Pool Size Addr
WORD3 |!| (4 | (3) (15 bits) (40 bits)
P
0?;‘?’/
- First e
T Alignment Irs ¢S rhird Unpredictable Third Unpredictable
1| Pad (07 | Unpredictable |, ¢ B B
W | bytes) Bytes ¢ ytes ytes
n 5"
| 6‘6
g NexgPSE per Next_Buf_PtN Next_Buf_Pt]\
Ll
| & NS ~a N
£ 3
8 =
gy
= Packet Data Packet Data Packet Data
L <
g o
a 0
o
Second Unpredictable Second Unpredictable Second Unpredictable
Bytes Bytes Bytes
< 64 bits > « 64 bits > < 64 bits >
Notes:

Alignment Pad:
* For IP packets, this pad is added by PIP/IPD:

* If IPv4, Pad = 32 bits
*If IPv6, Pad = 0
* If IP, but neither IPv4 or IPv6, Pad = 32 bits
* For non-IP packets, the user can configure the amount of padding. Pad must be
between 0-7 bytes.:
* If RAW, Pad = PIP_GBL_CFG[RAW_SHF]
* If not IP and not RAW, Pad = PIP_GBL_CFG[NIP_SHF]

Unpredictable bytes are areas in the mbuf reserved for customer software. The contents is not touched by
PIP/IPD (for example, not set to all zeroes), so the content is unpredictable.

First Unpredictable Bytes: The size of the first unpredictable bytes section is configured via
IPD_1ST MBUFF_SKIP[SKIP_Sz]. This size is specified in 8-byte words.

Second Unpredictable Bytes: The size of the second unpredictable bytes section is the size of the Packet
Data Buffer minus IPD_PACKET MBUFF_SIZE[MB SIZE]. This size is specified in

8-byte words. Typically this variable is set to the size of the packet data buffer, so that the second
unpredictable bytes region does not exist.

Third Unpredicable Bytes: The size of the third unpredictable bytes section is configured via
IPD_NOT_ 1ST MBUFF_SKIP[SKIP_ SZ].

Next Buf Ptr: This field is used to point to the start of packet data in the next mbuf in the chain, and
provide other information about the buffer. The Addr field in the Next_Buf_Ptr in the last buffer is invalid.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-107

-]
[
)
&
=
(="
=
)
=

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

The Addr field in the Next Buf Ptr in the last buffer is invalid.
Any bytes in the buffer beyond the end of the stored packet data are invalid.

Note that the “unpredictable” areas in the mbuf are not over-written with any data by PIP/IPD, and
will contain “random” data. The intended use of these areas is to allow for example growth of
packet header length without needing to copy the whole packet payload to a new buffer that
includes the new (larger) header.

Note: The PIP/IPD always writes packet data in complete (128 byte) cache blocks,
including when it writes the first and last data. This is why the Packet Data Buffer must
be 128-byte aligned, and the size of the Packet Data Buffer must be a multiple of cache
line size. Otherwise, memory before or after the Packet Data Buffer may be corrupted.
The Simple Executive configuration code automatically takes care of this. This is only a
problem when not using Simple Executive to configure FPA buffers.

10.2.1 Storing WQE in Packet Data Buffer instead of WQE Buffer

On some OCTEON models, PIP/IPD can also be configured to not use WQE buffers
(IPD_CTL_STATUS[NO WPTR]==1). In this case, the 128-byte WQE data structure is inserted
into the area of the first Packet Data Buffer reserved by the register field

IPD 1ST MBUFF SKIP[SKIP SZ]. To reserve sufficient space for the WQE, set

IPD 1ST MBUFF SKIP[SKIP SZ] to 16. (This variable’s units are in 8-byte words.)

When PIP/IPD adds the work to the SSO queues, it executes the add work function with the

WQE pointer set to the location of the WQE in the Packet Data buffer. See the HRM for more
details.

6-108 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

10.3 Choices for Writing Packet Data Buffer(s) to L2 DRAM

Packet Data Buffers are stored in L2Cache/DRAM based on four configuration choices, as shown
in the following table. Option selection is global and affects all ports.

PIP and IPD

Table 28: Packet Data Buffer Write to L2/DRAM Choices (Global Option

Choice Description
0 All Packet Data Buffers are written directly to memory (DRAM), bypassing the L2 cache.

All Packet Data Buffers are written to L2 cache. (If evicted, cache blocks are written to

! memory (DRAM)).
The first aligned cache block holding the Next Buf Ptr and the packet data is written to
2 the L2 cache. All remaining cache blocks are written directly to memory (DRAM),

bypassing the L2 cache. (If evicted, cache blocks are written to memory (DRAM)).

The first two cache blocks holding the Next Buf Ptr and the packet data are written to
3 the L2 cache. All remaining cache blocks are written directly to memory (DRAM),
bypassing the L2 cache. (If evicted, cache blocks are written to memory (DRAM)).

When using the Simple Executive, these choices are defined as:

CVMX IPD OPC MODE STT = OLL; // Write all blocks DRAM, none are
// cached in the L2 cache
CVMX_ IPD OPC MODE STF = 1LL; // Write all blocks'into L2 cache

CVMX_IPD OPC MODE STFl STT = 2LL; // Write first cache block which
// contains Next Buf Ptr to L2 cache,
// others to DRAM

CVMX IPD OPC MODE STF2 STT = 3LL; // Write first two cache blocks which
// contain the Next Buf Ptr to
// L2 cache, others-to DRAM

The default Simple Executive configuration is CVMX_ IPD OPC-MODE STT (choice 0: all
Packet Data Buffers are written directly to DRAM). In this mode, users typically access the first
96 bytes of packet data via the WQE, and access the Packet Data Buffer(s) as needed.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-109

/~, CAVIUM
=

Next Buf Ptr
written to L2
Cache, all other

Write to L2 Cache

Choice 3: First
two aligned cache
lines containing
Next Buf Ptr
written to L2
Cache, all other
cache blocks

i} NETWORKS OCTEON Programmer’s Guide
:? Figure 35: Write Packet Data to L2/DRAM Choices
=
o Write Packet Data Buffer to L2 Cache/DRAM Choices
w
° Color Key Choice 2: First
Write directly to DRAM, aligned cache line
bypassing L2 Cache containing

Choice 0: Al Choice 1: Al cache blocks written directly to
blocks written to blocks written to written directly to DRAM (See
dram DRAM L2 Cache (See DRAM (See Note1, Note2,
(See Note1) Note2) Note1, Note2) Note3)
Third Third Third Third
Unpredictable Unpredictable Unpredictable Unpredictable
Bytes Bytes Bytes Bytes
Next Buf Ptr Next Buf Ptr Next Buf Ptr

Next Buf Ptr

Packet Data Packet Data Packet Data
Packet Data

Second Second Second Second
Unpredictable Unpredictable Unpredictable Unpredictable
Bytes Bytes Bytes Bytes
€——c4bis—Pp G—o4bis—P | G——64 bis—Ppl | G——64 bits—Pp

Notes:

Note1: Data written directly to DRAM bypasses the L2 cache.
Note2: Once data is written to L2 cache, then it can be automatically flushed to DRAM if the
cache block is evicted.

Note3: Choice 3 shows the Next Buf_ Ptr in the second half of the first cache line containing
the Next Buf Ptr.

10.4 Packet Data Storage in WQE WORD4-15

WQE WORD4-15 contains packet data. The format of the packet data in the WQE depends on the
type of packet and is shown in the figure below.

6-110 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
NETWORKS

Figure 36: Format of Packet Data Stored in WQE WORD4-WORD15

Packet Storage in WQE WORD4-WORD15
(not drawn to scale, big-endian format)

Other Cases
The number of bytes of alignment is determined by:
e PIP_GBL CFG[NIP_ sHF] or] (NotIP and Not RAW)
e PIP_GBL_CFG[RAW_SHF] (not IP and RAW)

Alignment—p»
0Os
(Alignment Pad)

8

Y

g Packet Data

(From the first byte)
0Os if packet ends

v

H 64 bits H

If IP Version Field == If IP Version Field != 6
Alignment—H
A Os if header is m] 0s Os if header is 5
short @ (Alignment Pad) short @
[T L
Packet Data Prior to IP Header 8‘ Packet Data Prior to IP Header ,C:)
» b
i H -
V|Class| Flow Len NHdnHOP o) V|"[TOS| Length 5
ol L ol
n _| (%] -
£ IP Sre Addr (128 bits) | £ ID |F| Offset |TTL|Prot| Chksum | &
8 8
IP Dest Addr (128 bits) IP Src Addr IP Dest Addr
Remainder of Packet Remainder of Packet
0s if packet ends 0s if packet ends
v v
< 64 bits > < 64 bits >
Notes:

Note1: Data show'in this figure is in big-endian format
(IPD_CTL STATUS [WQE_LEND]==0).

Note2: The contents of WQE WORD4-WORD15 are
unpredictable when WORD2 [RE]==1 (receive error) and
the packet is not RAWFULL. (RAWFULL packets do not
have the RE bit in WQE WORD?2.)

Note3: For IP packets, PIP/IPD does not copy any bytes
in the packet prior to the IP header into WQE WORD4-
WORD15 unless PIP_IP OFFSET [OFFSET] !=0.
PIP_ IP OFFSET[OFFSET] is the number of 8-byte
words to include in the WQE prior to IP data. If

PIP_IP OFFSET[OFFSET] !=0, then the PIP/IPD will
backfill any byte before the IP header until WORDA4 is full
or the start of the packet (byte0). If there is space
remaining, PIP/IPD will fill it with zeroes.

Note4: For Non-IP packets:
* PIP GBL CFG[RAW_SHF] is used or align RAW
packets,
* PIP GBL_CFG[NIP_SHF] is used to align non-
RAW packets.

Note5: If the number of packet bytes prior to the IP
header is less than the bytes allocated by

PIP_IP OFFSET[OFFSET], then the extra space will be
filled with zeroes (“Os if header is short”).

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-111

=
A
)
o=
=
«
A
e
A

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

The PIP IP OFFSET[OFFSET] field is used only for IP packets. PIP/IPD will copy the IP
header to the start of WQE WORD4 + alignment + PIP IP OFFSET [OFFSET]. Thus, for IP
packets, if PIP IP OFFSET [OFFSET]==0, the packet will not include the L2 header before
the IP header, as shown in the following figure:

-]
[
)
&

=

(="
=
)
=

Figure 37: Format of Packet Data in WQE if PIP IP OFFSET [OFFSET]==

IP Packet Storage in WQE WORD[4-15] if PIP_IP OFFSET [OFFSET]==
(big-endian format)

If IP Version Field == If IP Version Field != 6
(96 bytes of packet data) (92 bytes of packet data)
WORD4 |V(Class Flow Len NHdiHOP ? 0s viHT0s| Length
(Alignment Pad) L £

WORD5 ID |F| Offset |[TTL|Prot| Chksum

IP Src Addr (128 bits)
WORDG6 IP Src Addr IP Dest Addr
WORD7 _

IP Dest Addr (128 bits) Remainder of Packet

WORDS8
WORD9 0

Remainder of Packet *3
WORD10 3

(o)}
WORD11
WORD12
WORD13
WORD14
Os if packet ends
WORD15 0s if packet ends i
< 64 bits > < 64 bits >
If PIP IP OFFSET[OFFSET] != 0, then PIP/IPD will automatically copy the number of

bytes specified by PIP IP OFFSET [OFFSET] to the WQE prior to the IP header (backfilling
from the TP header toward the start of WQE WORDA4), as shown in Figure 36 — “Format of Packet
Data Stored in WQE WORD4-WORDI15”. For example, to copy an Ethernet II header without
VLAN (14 bytes) into the WQE prior to the start of the IP header, set

PIP IP OFFSET[OFFSET]==2 (16 bytes). If there are fewer bytes in the packet than specified
by PIP IP OFFSET[OFFSET] (the header is “short”), then PIP/IPD will fill these bytes with
zeroes (in this example, two bytes are filled with zeroes).

6-112 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

10.4.1 Finding the Start of an IP Packet in the WQE

For IP packets, finding the start of the packet data in the WQE can be tricky. In particular, the
alignment bytes, and the PIP IP OFFSET [OFFSET] value need to be considered. The number
of bytes of packet data prior to the IP header may be less than (PIP IP OFFSET [OFFSET] *
8). This section describes the math to locate byte0 of the packet data in the WQE, given that
PIP IP OFFSET[OFFSET] is large enough so that byte0 is in the WQE.

=
A
)
o=
=
«
A
e
A

If the packet is IP but not IPv6, then a 4-byte alignment pad is added to the start of WQE WORDA4.

In the SDK, the work data structure contains the WQE. The WQE field work->packet data
points to the start of WQE WORDA4. This is not the same as the start of the IP packet data because
there may be an alignment pad and also zero-filled bytes.

The start of the IP Header is located at:
// (Start of WQE WORD4) + alignment + (OFFSET in bytes)
work->packet data + alignment +(PIP_IP OFFSET[OFFSET] x 8)

The following formula assumes that PIP IP OFFSET [OFFSET] is large enough to include all
the packet bytes prior to the IP header. Given the location of the start of the IP header, software
can calculate the start of the IP packet by subtracting the number of bytes from byte0 of packet data
to the IP header. This is provided in WQE WORD2 field ip offset:

// (Start of IP Header) - (distance in bytes from byte0 to the IP header)
work->packet data + alignment +
(PIP_IP OFFSET[OFFSET] x 8) =~ (work->word2.s.ip offset)

See Section 10.5 — “Accessing Packet Data When Some Packets are Dynamic Shorts” for example
code.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-113

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

w
]
=] . . .
i Figure 38: Locating the Start of an IP Packet in the WQE
s . .
o Locating the Start of the IP Packet in WQE WORD4-WORD15
g (PIP_IP_OFFSET[OFFSET] must be large enough to fit all packet bytes from
byte0 to the IP header)
(not drawn to scale, big-endian format)
If IP Version Field == If IP Version Field != 6 : i
A Os if header is E A) 0s 0Os if header is E
short @ (Alignment Pad) short o
Packet Data Prior to IP Header "é Packet Data Prior to IP Header "é
(ip_offset bytes) m (ip_offset bytes) o
_ W _ m
w
V/(Class| Flow Len |NHdgHOP & \% II:I TOS| Length %
| |
o o
2] _| [} -
2 IP Sre Addr (128 bits) ol £ ID |F| Offset TTL|Prot| Chksum | &
& &
IP Dest Addr (128 bits) IP Src Addr IP Dest Addr
Remainder of Packet Remainder of Packet
0Os if packet ends Os if packet ends
v v
< 64 bits > < 64 bits >
In the SDK, the work data structure contains the WQE, and work->packet_data points to the start of WQE
WORDA4.
If PIP_IP_ OFFSET [OFFSET] specifies enoughbytes to fit all bytes in the packet from byte0 to the start of the IP
header, then WQE WORD2 [Ip_offset] canbe used to locate the start of the packetin the WQE using the formula:
work->packet_data + alignment + (PIP_IP_OFFSET[OFFSET] x 8) - (work->word2.s.ip offset)

10.4.2 Dynamic Short Storage in WQE

PIP/IPD analyzes whether the packet can fit entirely into WQE WORD4-WORD15. A packet
which can fit into this space is a dynamic short. A packet with an L1/L2 receive error can never be
a dynamic short. As shown in the figure above, for IP packets, if

PIP IPD OFFSET[OFFSET]==0, packet bytes prior to the IP header are not copied to the
WQE-. An IP packet cannot be a dynamic short unless PIP IPD OFFSET [OFFSET] specifies
sufficient bytes to copy the entire packet to the WQE.

6-114 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

If PIP/IPD determines a packet is a dynamic short and the dynamic short option is enabled, it will
not create an additional copy of the packet data to a Packet Data Buffer (which would be
redundant). The dynamic short option is enabled if:
e PIP PRT CFGn[DYN RS]==1 for the port
e or the RS bit is set in the Packet Instruction Header and either:
o PIP GBL CTRL[IGNRS]==0
o or the port is a PCI/PCle/DPI port (ports 32-35)

=
=5
o
=
=
<
=9
ot
A

Note that PIP/IPD ignores both PIP PRT CFGn[DYN RS] and the RS bit in the Packet
Instruction Header for packets hardware does not classify as dynamic short: it is okay for these
fields to be set for all packets.

When the packet data is accessed via WQE WORD4-WORDI15 instead of a Packet Data Buffer,
the WQE WORD?2 Bufs field is set to 0, and WQE WORD?3 fields Back, Size, and Addr are
unpredictable (set to 0 on some OCTEON models, not set on other OCTEON models). The entire
packet only exists in the WQE.

If the WQE is in the Packet Data Buffer: Note that in the case of a dynamic short when

IPD CTL STATUS [NO WPTR]==1, the packet data is written to the WQE data structure, and
the WQE data structure is written to the Packet Data Buffer. In this case, no WQE Buffer is
allocated. The dynamic short function specifies where the packet data is written; the NO WPTR
field specifies where the WQE data structure is written.

If the packet is a dynamic short, and dynamic shorts are enabled, and
IPD CTL_STATUS[NO WPTR]==0, then no Packet Data Buffer is allocated.

10.5 Accessing Packet Data When Some Packets are Dynamic Shorts
When packet data is stored in Packet Data Buffers, software gets the address of the packet data via

the address stored in WQE WORD3. The address in WQE WORD?3 is unpredictable for dynamic
shorts (because they are stored in the WQE instead of in Packet Data Buffers).

To allow the same software to access the packet data regardless-of where it is stored, software can
create abuffer ptr data structure which is the same data structure as WQE WORD3. Software
then initializes the buffer ptr fields differently depending on whether the packet is a dynamic
short or not:
e Ifnota dynamic short: sets the value of buffer ptr to WQE WORD3
e Is dynamic short: software fills in the pool, size, and addr fields in the buffer ptr
data structure, setting the value of addr to point to the start of packet data in the WQE data
structure.

The example code below uses this technique.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-115

-]
[
)
&
=
(="
=
)
=

g CAVIUM OCTEON Programmer’s Guide

NETWORKS

The following code is from the traffic-gen example:
This code illustrates software creating a separate WQE [WORD3] data structure (which includes a
pointer to the start of packet data). This data structure can then be used by software without

needing to know whether the packet is stored in the Packet Data section of the Packet Data Buffer
or in the WQE.

/**

* Given a WQE, return an OCTEON packet pointer for the beginning

* of the packet data (NOT THE SAME AS A “C” pointer”.

* For packets where data is stored in a packet data buffer, this is trivially
*

the packet pointer in the WQE. For packets where bufs is zero (dynamic
* shorts), this is non trival.
*/
static inline cvmx buf ptr t get packet buffer ptr(const cvmx wge t *work)
{
cvmx_buf ptr t buffer ptr;

if (cvmx_likely(work->word2.s.bufs == 0)) // dynamic short if bufs==
{
buffer ptr.u64 = 0;

buffer ptr.s.pool CVMX_ FPA WQE POOL;
buffer ptr.s.size = CVMX FPA WQE POOL SIZE;

// work->packet data points to the start of WQE WORD4
buffer ptr.s.addr = cvmx ptr to phys((void*)work->packet data);

// WARNING: This code assume_ that PIP GBL CFG[RAW SHF]=0 and
// PIP GBL CFGI[NIP SHF]=0. If this was not the case we'd

// need to add these offsets depending on if the packet was
// in RAW mode or not.

// ~addr += PIP GBL CFG[RAW SHF] for the RAW case.

// ~addr += PIP GBL CEG[NIP SHF]; for the non-IP case

if (cvmx likely(!work->word2.s.not IP)).// likely is an IP packet
{

// add the IP alignment

// alignment==0 for IPv6, otherwise == 4 bytes

buffer ptr.s.addr 4= (work->word2.s.is v6"1)*4;

//.this code assumes PIP IP OFFSET[OFFSET] is large enough so that
// all the packet bytes from byte0 to the IP header are all stored
// in WQE WORD4 prior to the IP header. In this case, ip offset
// specifies the number of packet bytes prior to the IP header.
// PIP_IP OFFSET is in 8-byte units
buffer ptr.s.addr += (PIP IP OFFSET*8 - work->word2.s.ip offset);
}
}
else // not a dynamic short
buffer ptr = work->packet ptr;

return buffer ptr;

6-116 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

10.6 Configuring Packet Storage

a
2o
i
=
=
]
=0
]
A

Table 29: Registers to Configure Packet Stora

SDK
Brief Description Register Fields Default Default

Value Value

Packet Storage Choices

Packet Storage Choices:

0=All packets written to DRAM,
bypassing L2 cache

1=All Packet Data Buffers
written to L2 cache.

2=The first cache block
containing the
Next Buf Ptr is written to
L2 cache, all others are written | IPD_CTL_STATUS OPC_MODE 0 See Notel
directly to DRAM, bypassing
L2 cache.

3=First two cache blocks
containing the Next Buf Ptr
and packet data are written to
L2 cache, all others are written
directly to DRAM, bypassing
L2 cache.

Omit WQE Buffer: When set to
1, Work Queue Entry buffers are
not used. The WQE data is
located in the first 128 bytes of 0

the Packet Data Buffer. Space IPD_CTL_STATUS NO_WPTR 0 (H/W
must be reserved using Default)
IPD 1ST_MBUFF SKIP[SKIP SZ].
See the HRM register field
description for details.

MBUF Configuration

First MBUF skip amount. The
number of 8-byte words from the
start of the first mbuf at which to
store the next-pointer. Legal

values are 0-32. See also the

IPD 1ST NEXT PTR BACK
register. This field can be used to
reserve space in the Packet Data
Buffer for software use, or for the
WQE if the WQE will be stored
in the Packet Data Buffer instead
of a WQE Buffer.

IPD 1ST MBUFF SKIP SKIP SZ 0 See Note2

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-117

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

H/W

Brief Description Register Default
Value

-
[
-
&

=]

=7
=
)
-}

All other MBUF skip amounts.
The number of 8-byte words from
the start of all mbufs (except the
first) at which to store the next
pointer. Legal values are 0-32.
See also the

IPD_2ND NEXT PTR_BACK

register.

IPD NOT 1ST MBUFF SKIP | SKIP SZ 0 See Note3

MBUF size. The number of 8-
byte words in an MBUF. Legal
values are in the range 32-2048.
(Pool 0 buffers must be a
minimum of 256 bytes.) If the
packet data buffers in the FPA 19D DPACKET MBUFF SIZE MB STZE 0x20 (256
pool are smaller than this size, - - - - bytes)
packet data will be written to
adjacent memory, corrupting
the system. Packet data buffers
may be larger than the mbuf
size.

See Note4

Back Pointer Configuration

First Back: The number of 128-
byte words to subtract from WQE
WORD3 [Addr] (the start of the
packet in the first mbuf). This is
used to locate the start of the IPD 1ST NEXT PTR.BACK BACK 0 See Noteb
mbuf. Legal values are 0-15. - N

The value must be consistent with

the
IPD 1ST_MBUFF SKIP[SKIP SZ]

value.

Not First Back: The number of
128-byte words to subtract from
the next _ptr value (the start of the
packet). This is used to locate the
start of the mbuf when it is not
the first mbuf. Legal values are
0-15. The value must be

consistent with the
IPD_NOT 1ST MBUFF_SKIP[SKIP_

sz] value.

IPD 2ND NEXT PTR BACK BACK 0 See Note6

Length Compliance

Length compliance bit. When
this bit is set to 1, eight bytes are

subtracted frpm the datg length IPD CTL STATUS LEN M8 1 (Slee
field so that it does not include 8 -~ - Note7)
bytes for the Packet Instruction
Header.

6-118 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

o]
=9
H/W =
Brief Description Register Fields Default S
Value =
Real Short (Dynamic Short) Options A
Ignore RS bit. If setto 1, ignore
RS bit in Pac}(et Instruction bTP GBI CTL IGNRS 0 (HO/W
Header (applies only to ports 0- - - Default)
31).
Dynamic RS calculation. If set to 0
1, dynamically calculate RS TiigPEZ;ngit) DYN_RS 0 (H/W
based on packet size. Default)
Padding
RAW Packet Alignment Pad. 0
The number of bytes to pad a PIP GBL CFG RAW_ SHF 0 (H/wW
RAW packet (0-7 bytes). D§rault)
Non-IP Packet Alignment Pad. 0
The number of bytes to pad a
non-IP packet which is not RAW PLF_GBL_CFG NIF_SHE ° Def(igft)
(0-7 bytes).
Pre-1P Data Pad. The number of
8-byte words to include in the
WQE prior to IP data. PIP/IPD
will backfill packet data bytes
starting at the IP header until the
beginning of WORD4 or until
there is no more packet data
(byte0). PIP/IPD will zero-fill 0
any remaining space. IP packets | p1P_1P OFFSET OFFSET 0 (H/W
are automatically aligned by Default)
PIP/IPD. OFFSET is calculated
from the start of the packet and
includes the automatic alignment.
If OFFSET==0, the IP header
starts at WQE WORDA4. If
OFFSET==1, the IP header starts
at WQE WORDS.
FCS Stripping
Strip FCS: For ports 0-31: When
a bit is set, the Frame Check Sum
(also known as CRC) is not OxFFFFFFFF
stored for packets arriving on the (H/W
port corresponding to that bit IPD SUB_PORT FCS OXxFFFFFFF | Dofault)
. 2® : PORT BIT (See
position. This bit should only be | (one bit per port) - F Note$,
set if both the CRC is present and Notel0,
should not be stored. FCS cannot Notell)
be stripped from PCI/PCIe/DPI or
sRIO Messaging ports.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-119

g CAVIUM OCTEON Programmer’s Guide

NETWORKS
=
© SDK
2. Brief Description Register Default
= Value
S Strip FCS: For ports 36-39:
When a bit is set, the Frame
Check Sum (also known as CRC)
is not stored for packets arriving
on the port corresponding to that b sUB PORT FCS ono
bit position. This bit should only | (=755t ooy pore) PORT_BIT2 OxE No(tgg,
be set if both the CRC is present Notell)
and should not be stored. FCS
cannot be stripped from
PCI/PCle/DPI or sRIO
Messaging ports.
Endianness
Packet Endianness specification. 0
If set to 1, packet is written in IPD CTL_STATUS PKT_LEND 0 (H/W
little Endian. Default)
Miscellaneous Settings
Packet buffering off. When set to
1, the IPD does not use its 0
internal buffers to buffer the IPD CTL_STATUS PKT_OFF 0 (H/W
received packet data. This is not Default)
used in normal operation.

Notel: IPD CTL STATUS[OPC_MODE] is initialized to
CVMX_IPD OPC_MODE STT when
cvmx_helper initialize packet io global () is called.

Note2: IPD 1ST MBUFF SKIP[SKIP_ SZz] s initialized to
(CVMX_HELPER FIRST MBUFF SKIP / 8) when
cvmx_helper initialize packet io globadl () is called.

Note3: IPD NOT 1ST MBUFF SKIP[SKIP_ SZ]. is initialized to
(CVMX_HELPER NOT FIRST MBUFF.SKIP /~8) when
cvmx_helper initialize packet io global () iscalled.

Note4: IPD PACKET MBUFF SIZE[MB SIZE] is initialized to
(CMVX_FPA PACKET POOL SIZE / 8) when

cvmx_helper initialize packet io global () is called.

IPD PACKET MBUFE SIZE[MB SIZE] mustalways be at least 18 64-bit words larger than
IPD 1ST MBUFFE SKIP[SKIP SZ], and at least 16 64-bit words larger than

IPD NOT/1ST MBUFF SKIP[SKIP SZ7].

Note5: TPD 1ST NEXT PTR BACK[BACK] is initialized to
(CUMX HELPER FIRST MBUFF SKIP + 8) / 128 (+8 isfornext ptr) when
cvmx_helper initialize packet io global () is called.

Note6: IPD 2ND NEXT PTR BACK[BACK] is initialized to
(CVMX_HELPER NOT FIRST MBUFF SKIP + 8) / 128 (+8is for next ptr) when
cvmx_helper initialize packet io global () is called.

6-120 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

H/W SDK

Brief Description Register Fields Default Default

=
A
)
o
=
<
Value Value =
A

Note7: IPD CTL STATUS[LEN M8] is initialized to

TRUE (1) if CMVX_ENABLE LEN M8 FIXisdefined when

cvmx_helper initialize packet io global () is called.

CN38XX/CN36XX pass-2 versions have a known issue in which the Size field is too large by 8
(incorrect). On other processors, if IPD _CTL STATUS[LEN M8]==0, the Size field is too large by 8§
(incorrect). If IPD_CTL STATUS[LEN M8]==1, the Size field is correct.

Note8: Software should not remove the CRC (strip FCS) from ports for which Work Queue Entry’s
hardware checksum field (HW Chksum) may be used by software. This is because the CRC bytes are
included in the hardware checksum, and software will probably need to reference the CRC value to use the
hardware checksum.

Note9: The default SDK turns off FCS stripping for the loopback ports.

Notel0: There is no FCS stripping on ports 32-35 (PCI/PCle/DPI) or 43-46 (sR1O

Messaging).

Notell: The FCS strip bit should only be set when both CRC is present and should be removed.

11 Statistics (Performance, Debugging)

The statistics registers are useful in debugging. There are two types of statistics registers:
e PIP STATx PRTn per-port registers which contain normal statistics and can be cleared
on read. These registers do not count dropped packets.
e PIP STAT INB_ *n per-portregisters which are used for system debugging and cannot
be cleared on read. These registers count all packets including dropped packets and packets
with errors.

The function cvmx pip get port status () will read all of these values and provide them
in the cvmx_pip port status t data structure. (See Section 2.4.6 — “The

cvmx_pip port status t Data Structure™) The statistics are the same for the different
processors.

The register field PIP 'STAT CTL[RDCLR] is used to configure whether the
PIP STATx PRTn registers are cleared after they are read:
If RDCLR==0, then PIP STATx PRTn registers hold value when read
If RDCLR==1, then PIP STATx PRTn registers are cleared when read (default value)

Note: To count all packets dropped by the system, sum the (number of packets dropped by the
receiver) + (number of packets dropped by IPD).

In the list below, PIP_STAT INB_*n register field counters include packets which are dropped
by IPD. PIP STATx PRTn registers do not include dropped packets.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-121

-
[
-
1)
=]
=7
=
)
-}

/~, CAVIUM
=

NETWORKS
Table 30: Statistics Register Fields (Read Onl

Brief Description

OCTEON Programmer’s Guide

Register

Packets Dropped Statistics

Number of inbound packets dropped by IPD due to either Per-Port Packet

PIP STATO PRTn

with errors and packets dropped by IPD) (See Notel)

(one per port)

Drop or Per-QoS RED/WRED (one per port) DRP_PKTS
Number of inbound octets dropped by IPD due to either Per-Port Packet PIP_STATO PRTn DRP 0CTS
Drop or Per-QoS RED/WRED (See Note2) (one per port) -
Traffic Statistics
Number of packets processed by PIP per port féigsgi’?giig PKTS
Number of octets processed by PIP per port (both good and bad (with PIP_STAT1 PRTn 0TS
errors)) (See Note 2) (one per port)
RAWFULL and RAWSCH packets without an L1/L2 error processed by PIP_STAT2 PRTn -
PIP per port (one per port)
Broadcast and Multicast Statistics
Number of identified L2 broadcast packets processed by PIP per port. p1p sTa Sacaf
Does not include multicast packets. Only includes packets whose parse (one per por tf BCST
mode is skip-to-L.2
Number of identified L2 multicast packets processed by PIP per port. iV o O .
Does not include broadcast packets. Only includes packets whose parse O I oor tl)q MCST
mode is skip-to-L2
Size Statistics
Number of 65-to-127 byte packets processed by PIP per port féigsgi?giig H65t0127
Number of 64-byte packets processed by PIP per port Tiigsgg%ig H64
PIP STAT5 PRTn
Number of 256-t0-511 byte packets processed by PIP per port {one per port) H256t0511
PIP_STAT5 PRTn
Number of 128-t0255 byte packets processed by PIP per port (ond poi port) H128t0255
Number of 1024-to-1518 byte packets processed by PIP per port fiiésgg 6555?)7 H1024to01518
Number of 512-to-1023 byte packets processed by PIP per port P(;qusgii 65?;?; H512t01023
Number of 1519-to-max byte packets processed by PIP per port Tiigsgi?ﬁiig H1519
Error Statistics
Number of packets processed by PIP with FCS or Align opcode errors per | P1p_STAT7 PRTn res
port. (Note: FCSiis not checked on PCle ports (32-35).) (one per port)
Number of packets processed by PIP with length < minimum and FCS PIP STAT8 PRTn FRAG
error per port. (Note: FCS is not checked on PCle ports (32-25).) (one per port)
Number of packets processed by PIP with length < minimum per port féigsggggiig UNDERSZ
Number of packets processed by PIP with length > maximum and FCS PIP_STAT9_PRTn JABBER
error per port. (Note: FCS is not checked on PCle ports (32-35).) (one per port)
Number of packets processed by PIP with length > maximum féigsgi’i 95?;?; OVERSZ
Inbound Statistics (intended for system debug) (See Note3)
Number of octets from all packets received by PIP per port (includes PIP_STAT INB OCTSn 0CTS
packets with errors and packets dropped by IPD) (See Notel) (one per port)
Number of packets with errors received by PIP per port (includes packets PIP_STAT INB ERRSn ERRS

6-122 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

Register

PIP_STAT INB PKTSn
(one per port)

Brief Description

Number of packets without errors received by PIP per port (includes

packets with errors and packets dropped by IPD) (See Notel) FRES

Notel: PIP STAT INB* register field counters include packets which are dropped by IPD (all packets "received"
by PIP/IPD). Otherwise, only "processed" packets are counted (which excludes packets dropped by PIP/IPD or
which do not yet have an assigned WQE).

Note2: Octets (8 bit words) count every byte in each packet: If PIP/IPD receives a single 64-byte packet, the packet
statistic would increment by one while the octet statistic would increment by 64.

Note3: Both sets of registers can accumulate. Only when PIP _STAT CTL[RD CLR] is set will the
PIP_STATx PRTn registers clear on reads. The PIP_STAT INB *nregisters cannot be cleared on read; the values
continue to accumulate.

12 Congestion Control (Backpressure, Packet Drop, RED,
WRED)

This section provides:
e A system-level view of congestion causes and prevention
e Overview of the congestion control mechanisms provided by PIP/IPD
e Easy configuration information for PIP/IPD congestion control
e Detailed information on each PIP/IPD congestion control mechanism

12.1 System-Level View of Congestion: Causes and Prevention

Congestion can be caused by either a sudden increase in traffic(normal) or a design/software error
(unexpected).

1211 Congestion Management Design Issues:

The design questions pertinent to congestion management:
e What is the expected traffic pattern?
e What should happen during a spike in traffic? (A spike is an unexpected higher than
average network load.)
e Can the sender respond to backpressure?
e (Can some packets be dropped?
e Should high-priority traffic be protected?

12.1.2 Normal Congestion

A normal cause of temporary congestion is a sudden and temporary increase in traffic (a traffic
spike).

For example, if a system is designed to handle 100 packets per second, has a steady traffic of 75
packets per second, and then receives a spike of 500 packets per second, the number of available
buffers will drop abruptly, and then slowly recover when the system returns to the steady traffic of
75 packets per second. In this scenario, while the steady traffic continues, the system will be able
to process the steady traffic level + 25 buffers per second.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-123

o]
=5
o
=
=
<
=9
ot
A

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

121.3 Unexpected Congestion

If unexpected backpressure or packet drop occurs, use the following flow chart as a
troubleshooting guide. This chart shows a packet flowing through the system, and congestion
issues which can occur, along with user-configurable congestion-control points.

-]
[
)
&

=

(="
=
)
=

6-124 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
NETWORKS

Figure 39: System View of Backpressure/Congestion, part 1

GMX Backpressures at MAC

(Pause Frames used in flow

control) or drops packets if «—YES

the sender disregards flow
control.

l«—Exit

YES (Packet
stays in GMX FIFO)

System View of Backpressure/Congestion, part 1

Note: This figure only shows GMX backpressure. Backpressure can also occur on other packet ports.

@art: Packet arrives at GME

GMX FIFO
Already Full
?

NO (OKAY)

IPD
Backpressuring All ports or
this port?
?

NO (OKAY)
v

Packet Received at IPD Port

NO

NO
EXIT

WQE Buffers Available

YES (OKAY)

Packet Data Buffers Available
?

YES (OKAY)

Backpressure all GMX ports
(IPD stops receiving packets)

TiExit
rNO
Drop Packet,

freeing allocated
resources

Processing

Pass
acket Acceptance Test (QoS
Admission Control (RED/
RED) or Per-Port Packet Dro
Tests)
?

YES (OKAY)

Processing

Continues in the
Next Figure

PIP/IPD Congestion Control
Mechanisms are highlighted.

GMX will only drop packets if PIP/
IPD has run out of buffers (critical
backpressure) AND the sender
disregards flow control. In this case,
the GMX FIFO will become full, and the
GMX might receive a partial packet, or drop
packets.

Buffer exhaustion (Critical Backpressure):
This situation should be avoided if possible.
This PIP/IPD congestion control mechanism
is not configurable. It is important that the
system not run out of buffers. If it runs out
of buffers, then the PKI will backpressure all
ports on the GMX, preventing high-priority
traffic from being received.

Note that IPD prefetches about 100 buffers
at a time, and PKO frees buffers in similar
batches. If less than the requested number
of buffers are available, the prefetch will fail,
resulting in Critical Backpressure.

If the packet requires multiple Packet Data
buffers and the system runs out of Packet
Data buffers mid-packet, the packet will be
truncated and the WQE WORD2[RE]
(receive error) will be set. These packets
require special processing, adding to the
system load.

1. These are configurable PIP/IPD
congestion control mechanisms.

2. The PIP/IPD will drop the packet if it does
not pass the Per-QoS Admission Control
(RED/WRED) or Per-Port Packet Drop tests.

3. Ideally, the Per-QoS Admission Control is
configured to drop low-priority traffic and
allow high-priority traffic to be received.

4. When using Per-Port Packet Drop
congestion control, software must decrement
the per-port counter when the buffer is freed.

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-125

=
A
)
o=
=
«
A
e
A

-]
[
)
&
=
(="
=
)
=

/

If Per-Port Backpressure is enabled, a separate

process monitors the threshold. If the counter is
at or over the threshold, the process applies per-
port backpressure. The current packet is

2=, CAVIUM
< NETWORKS

OCTEON Programmer’s Guide

Figure 40: System View of Backpressure/Congestion, Part 2

Processing
continues from
previous figure.

Packet Flow and Congestion/Backpressure, Page 2

admitted.

.

WQE sent to SSO
(add_work) 4. Note that software must decrement the
per-port counter when the buffer is freed.
Yy e .y,

Software Calls
get_work

4

Software sends packet
to PKO

.

Software decrements any Per-Port
counters used BEFORE freeing WQE.

;

Software frees WQE

YES (Loop Until
No Backpressure)

Y

PKO Receiving

ackpressure from GM
?

NO
A 4

PKO Sends Packet to GMX

v

GMX Transmits Packet

4

Software or PKO frees Packet
Data Buffer

End Packet Processing

)

1. This is one of the PIP/IPD configurable
congestion control mechanisms.

2. Per-port backpressure can be used, but
this mechanism can block high-priority traffic
on the port, and requires software overhead
to decrement a per-port counter.

3. The user might use both Per-Port
Backpressure and Per-Port Packet Drop on
the same port. If drops are expensive,
backpressure as much as possible, but if
needed, drop packets.

software, verify that low-priority work is not
allowed to consume all SSO Work
Descriptors (entries). If all Work Descriptors
are consumed and software only calls
get_work for high-priority work, a deadlock
will result.

2. Configure tag types and tag values to
create as many unique flows as possible to
maximize parallel processing. Minimize use
of ATOMIC tag types to essential processing
to allow work to be processed in parallel
when ever possible. |

Only if packet is being forwarded.

Verify WQE freed, and freed to correct FPA
pool.

N

If GMX is receiving backpressure from the
receiver, it backpressures the PKO. If the
backpressure event is long enough, packets |
will continue to be received and be buffered |
in main memory until the either the Packet
Data buffers or WQE buffers are exhausted.
The IPD will then backpressure due to buffer
exhaustion.

Verify Packet Data Buffer is freed, and freed
to the correct FPA pool.

6-126 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

12.2 Overview of Congestion-Control Mechanisms Provided by PIP/IPD

PIP/IPD provides several congestion-control mechanisms, as shown in the next table:

=
A
)
o=
=
«
A
e
A

Table 31: Overview of PIP/IPD Congestion Control Mechanisms

Critical Backpressure

The IPD exerts internal backpressure on the all ports, causing the receivers FIFO to become full
(such as the GMX FIFO). Once the receiver’s FIFO becomes full, then depending on its
configuration it can backpressure/drop packets. This situation should be avoided.

Per-QoS Admission Control (WRED., RED)

The number of available Packet Data buffers is compared to the Per-QoS HIGH and LOW
watermarks. If the number of available Packet Data buffers is:

* greater than the PASS (high) watermark: all packets are admitted

* less than or equal to the DROP (low) watermark: all packets are dropped

* equal to or less than PASS and greater than DROP: packets are randomly dropped
Each QoS queue can have different watermarks, which is the preferred congestion control
method because it allows high-priority traffic to flow while dropping lower priority traffic. This
feature may be combined with Per-Port Backpressure.

Per-Port Backpressure

A counter contains the number of in-use buffers for the port. If the counter exceeds the per-port
threshold, backpressure the port. (The current packet is accepted.). Software is responsible for
decrementing the counter when the buffer is freed. Per-Port Backpressure and Per-Port Packet
Drop use similar configuration registers and the same in-use buffer counter. This feature may
be combined with Per-QoS WRED/RED or Per-Port RED.

Per-Port Packet Drop

A counter contains the number of in-use buffers for the port. If the counter exceeds the per-port
threshold, drop all incoming packets for the port. Software is responsible for decrementing the
counter when the buffer is freed. Per-Port Backpressure and Per-Port Packet Drop use similar
configuration registers and the same in-use buffer counter.

Per-Port RED

Drop packets randomly on a per-port basis if the number of available buffers drops to a level at
or below the threshold set for the QoS queue. This is implemented using the Per-QoS RED
Congestion Control mechanism. To implement this, there must be less than 8 ports used in the
system (the same as the maximum number of QoS queues). This feature may be combined with
Per-Port Backpressure.

Each of these mechanisms is covered in greater detail in the sections below. For additional
information, see the HRM.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-127

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

12.3 Critical Backpressure (Buffer Exhaustion)

Critical Backpressure occurs if there are no more available Packet Data buffers or WQE buffers
(buffer exhaustion). Critical Backpressure results in IPD backpressuring a// ports (no packets will
be received by IPD). This mechanism is not user-configurable.

-
[
-
1)
=]
=7
=
)
-}

If buffer exhaustion occurs, IPD will backpressure all ports, stopping the flow of al// traffic
regardless of the traffic priority. Buffer exhaustion should be avoided by using one of the user-
configurable congestion control mechanisms.

The following figure illustrates Critical Backpressure due to buffer exhaustion.

Figure 41: Critical Backpressure Situation, Backpressure on All Ports
Critical Backpressure Situation: No traffic is processed by PIP/IPD
Ocecurs if one or both of these conditions are met:

1. No more WQE Buffers
2. No more Packet Data Buffers

IPD Backpressures Port

IPD Backpressures Port

IPD backpressures ALL ports

[l >

IPD Backpressures Port

IPD Ports

IPD Backpressures Port

Packet Interfaces (GMX and PCle and
loopback)

IPD Backpressures
all-ports!

6-128 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

o 2=, CAVIUM
OCTEON Programmer’s Guide NETWORKS

Table 32: Critical Backpressure Overview
Critical Backpressure Overview
The IPD exerts internal backpressure on the all ports, causing the receivers FIFO to

Action become full (such as the GMX FIFO). Once the receiver’s FIFO becomes full, then
depending on its configuration it can backpressure/drop packets.

o]
=5
o
=
=
<
=9
ot
A

Conﬁgura‘uon None. This feature is not configurable and cannot be disabled.

Options

Based on Not enough Packet Data buffers or Work Queue Entry buffers to receive the entire
packet.

Pros This feature is automatic: no configuration is required.

If buffer exhaustion occurs, IPD will backpressure all ports, stopping the flow of a//
Cons traffic regardless of the traffic priority. Buffer exhaustion should be avoided by using
one of the user-configurable congestion control mechanisms.

Possible
Configuration Failing to configure other mechanisms to prevent buffer exhaustion.
Errors

Note : Buffer exhaustion can occur when there are still available buffers in the FPA
pool in following case: The IPD prefetches a block of WOE and Packet Data buffer
pointers from the FPA. If there are not enough buffers available to satisfy the request,
the request will fail (all or nothing). The IPD prefetch amount is different for various
chips, and is approximately 100 buffers. If less than the prefetch amount of buffers are
available, buffer exhaustion will occur even though there are buffers remaining in the
pool. We recommend that congestion control mechanisms are configured so if there are
ever less than 128 buffers, all input is dropped. This maintains a stable number of
available buffers for IPD prefetch.

12.4 PIP/IPD Congestion-Control Configuration

To configure congestion control:
e First decide which traffic classes are to be assigned to the various QoS levels
e Then determine the expected steady-state traffic load for each of those traffic classes, and
make sure adequate Packet Data and Work Queue Entry buffers are available for routine
traffic
e Then determine the desired action during a traffic spike:

o - Keep high priority traffic flowing while dropping random low-priority traffic: use Per-
QoS RED/WRED (recommended)

o - Keep traffic flowing on some ports while blocking and/or dropping all packets
regardless of priority on some or all of the ports. Note these mechanisms do not let
high-priority traffic through and require software overhead to decrement each port’s In-
Use Buffer Counter: use Per-Port Backpressure or Per-Port Packet Drop

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-129

-]
[
)
&

=

(="
=
)
=

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

12.41 Basic QoS RED Configuration: cvmx helper setup red()

The SDK provides the function cvmx_helper setup red(int pass_thresh, int
drop thresh). This function can be called by the user to configure Per-QoS RED. The
function will turn off Per-Port Backpressure and Per-Port Packet Drop. All 8 QoS levels will be
configured with the same pass thresh and drop thresh, creating a Random Early Drop
(RED) solution which is not weighted (not WRED). The number of free packet data buffers will
be determined by a periodic snapshot of IPD QUEO FREE_ PAGE_CNT.

This function only turns off Per-Port Backpressure and Per-Port Packet Drop for the packet
interfaces, not for PCI/PCle rings.

See Section 12.5 — “Per-QoS Admission Control (RED and WRED)” for information about Per-
QoS RED.

12.4.2 Basic QoS WRED Configuration:
cvmx_helper setup red queue()

After calling cvmx_helper setup red(), the user may call

cvmx helper setup red queue (int queue, int pass thresh, int

drop thresh) to adjust the thresholds for the QoS queue to a different value, and thus

implement Weighted Random Early Drop (RED).

See Section 12.5 — “Per-QoS Admission Control (RED and WRED)” for information about Per-

QoS RED.

12.4.3 Custom Configuration

Custom configuration details are discussed in the sections for each type of PIP/IPD congestion
control. There is no SDK function provided as of SDK 2.0 to simplify custom configuration.

12.5 Per-QoS Admission Control (RED and WRED) (PQ-RED)

The Per-QoS Random Early Drop (RED) and Weighted Random Early Drop (WRED) mechanism
compares the number of available Packet Data Buffers to-each QoS queue’s HIGH and LOW
watermark values. If the number of available Packet Data buffers is:

e (Greater than the PASS (high) watermark: "all packets are admitted

e Less than or equal to the DROP (low) watermark: all packets are dropped

e Equal to or less than PASS and greater than DROP: packets are randomly dropped

RED is implemented when all QoS queues have the same PASS and DROP watermarks.
WRED is implemented when the PASS and DROP watermarks are unique for each queue
(weighting for the queue’s priority), allowing high-priority traffic to be received while lower-

priority traffic is randomly dropped.

This feature can be easily configured using the SDK functions cvmx _helper setup red()
and cvmx_helper setup red queue ().

6-130 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

This congestion control mechanism is recommended, especially when used with the WRED option,
a snapshot of the number of available Packet Data Buffers in the FPA. This combination it is the
best choice to keep high-priority traffic to flowing on all ports during times of congestion.

o]
=5
o
=
=
]
=5
o
A

Note: The actual number of available Packet Data buffers may exceed the snapshot value because
the snapshot value does not include any buffers prefetched by IPD.

Note: The QoS value calculated for this congestion control mechanism may be different than the
value used for the WQE when the packet has one of the following:

e An L2/LI receive error (WORD2 [RE]==1)

e AnIP error (WORD2 [IE]==1)

e A TCP/UDP error (WORD2 [LE]==1)

The difference in QoS value occurs because the Per-QoS RED-WRED QoS calculation occurs
before the entire packet is received.

Figure 42: Per-QoS Weighted Random Early Drop (WRED)
Per-QoS Random Packet Drop (Example of Four Ports)

Occurs if:
1. The number of available Packet Data buffers is-below the QoS queue’s LOW

watermark, or (randomly) if between HIGH and LOW watermarks.
2. The port has been configured to drop packets if this occurs

QS JTTH gviTu U LiUY pPGUIRTLS S Uvvur

PIP/IPD randomly drops packets
destined for a QoS queue when
they fail the QoS Admission Control

e)

C

(]

Q0

O

a

% test

é %‘ 2 Test Number of

o8 & ' Available Buffers | '
m “;‘é o Against Per-Qos Pass

fole] o Watermarks

% .

= Low-priority

% =5 packets are

& L dropped

Highest-priority traffic passes;

Lowest-priority traffic is either randomly dropped or
all dropped, depending on:

e | Number of available Packet Data buffers

e Per-QoS watermarks

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-131

-]
[
)
=]
=
(="
=
)
=

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Action

Table 33: Overview of Per-QoS RED and WRED
Per-QoS Congestion Control (WRED or RED) Overview

Implement either Random Early Drop (RED) or Weighted Random Early Drop
(WRED):
* RED is implemented when all QoS queues have the same PASS and DROP
watermarks.
* WRED is implemented when the PASS and DROP watermarks are unique for
each queue (weighting for the queue’s priority), allowing high-priority traffic
to be received while lower-priority traffic is randomly dropped.

This mechanism compares the number of available Packet Data buffers to the PASS
and DROP watermarks for the target QoS queue. If the number of available Packet
Data buffers is:

« greater than the PASS (high) watermark: all packets are admitted

* less than or equal to the DROP (low) watermark: all packets are dropped

* equal to or less than PASS and greater than DROP: packets are randomly
dropped

The number of available Packet Data buffers can be either a snapshot value
(recommended) or a calculated moving average.

Configuration
Options

Per-QoS enable

Per-QoS PASS and DROP watermarks
Snapshot or moving average

WRED or RED

The function cvmx_helper setup red () will configure RED based on a
snapshot value. The function cvmx helper setup red queue () can be used
to configure WRED based on a snapshot value after calling

cvmx_helper setup red().

Based on

Number of available Packet Data Buffers (either'a snapshot or a moving average).

Pros

This is the preferred congestion control method, when implemented with snapshot
and WRED, because it allows high-priority traffic to flow while dropping lower
priority traffic.

Pros/Cons

If packet drop is not acceptable and the sender will respond to backpressure, use Per-
Port Backpressure instead.

Possible
Configuration
Errors

Setting the HIGH watermark to a value above the initial buffer count. Otherwise, the
HIGH watermark will never be crossed and the drop mechanism will not be activated.

6-132 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide
8 " NETWORKS

2
=5
Figure 43: Per-QoS Admission Control (RED/WRED) Options =
Per-QoS Admission Control (RED/WRED) Options =
The SDK provides functions to configure the E
highlighted options. WRED: Each QoS queue
has different Pass/Drop
Thresholds
Snapshot: Actual number
of available Packet Data
buffers
RED: All QoS queues
have the same Pass/Drop
Thresholds
Per-QoS
Admission Control WRED: Each QoS queue
has different Pass/Drop
Moving Average: Thresholds
Calculated average based
on periodic snapshot of
number of available
Packet Data buffers RED: All QoS queues
have the same Pass/Drop
Thresholds

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-133

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Figure 44: Per-QoS RED - Using Snapshot Value
Per-QoS Watermarks (Snapshot Example)

-]
[
)
&
=
(="
=
)
=

Upon packet arrival, the current number of available Packet Data Buffers (snapshot) is

compared to the PASS and DROP watermarks. If:

e Shapshot > PASS: the packet is admitted.

e PASS >= Snapshot > DROP: PIP/IPD compares the pre-calculated drop probability
to a pseudo-random number to determine whether to drop the packet

e Snapshot <= DROP: the packet is dropped.

) Available
Pass all packets if Buffers
f available
Zzgebrir/s? gargZ;:rbtﬁan A Configure Per-QoS High Watermark:
' | Configure Per-QoS Low Watermark:
! R
High Watermark IPD_QOS(0-7) RED_MARKS[DROP]
(Pass) I
Randomly drop packets AI‘
if the number of |
available buffers is less :
than or equal to the high | The watermarks can be unique for
;;”ate’; ’;’af k and ftJ’ eate:(| each QoS queue to provide Weighted
an the fow watermarr. Random Early Drop (WRED).
Low Watermark
(Drop) > This allows the user to protect the
, A high-priority traffic while dropping low-
Drop all packets if | riority traffic
number of available | p y ’
1 [
Zqug;‘stés;Ais/soxan or l Note: When using a moving average instead
WC; termark of a snapshot value, substitute “moving
’ average” for “snapshot” in the text in this
0 figure.
12.51 The Simplest Case: Snapshot Value (Recommended)

In the simplest case (recommended), when a packet is received, PIP/IPD uses the actual number of
available Packet Data Buffers (the value of IPD QUEO FREE PAGE CNT[QO PCNT])
(snapshot value) and compares it to two per-QoS queue watermarks: PASS (high watermark) and
DROP (low watermark).

There is a per-port enable bit. If the bit is not set, then the port does not participate in the Per-QoS
RED.

6-134 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 45: Configuring WRED: Different Watermarks for Each QoS Queue
Per-QoS Watermarks Using WRED

When using Weighted Random Early Drop (WRED), each QoS queue has different
PASS and DROP watermarks so higher-priority traffic is admitted while lower-priority
traffic is dropped.

=
A
)
o=
=
«
A
e
A

Available
Buffers
In this example, QoS queue 0 is the

A highest-priority queue, and QoS
Queue 2 is the lowest-priority queue.

QoS Queue 2:
I(-IFl)grst\;Vatermark P Configure Per-QoS High Watermark:
A IPD_QOS(0-7)_RED_MARKS[PASS]

| Configure Per-QoS Low Watermark:
I IPD_QOS(0-7)_RED_MARKS[DROP]
I
I
I

QoS Queue 2: :

Low Watermark

(DROP);

. P
S%i \Cfv”a‘igren:érk The watermarks can be unique for

(PASS) A each QoS queue to provide Weighted
|
|
|
|

Random Early Drop (WRED).

This allows the user to protect the
high-priority traffic while dropping low-
QoS Queue 1: priority traffic.

Low Watermark
DROP);

(QoS Qlieue 0: >
High Watermark
(PASS)

QoS Queue 0:
Low Watermark
(DROP) 128

of a snapshot value, substitute “moving
average” for “snapshot” in the text in this
0 figure.

A Note: When using a moving average instead
Reserve for IPD prefetch :
!

The registers used to configure this feature are shown in the following table.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-135

-
[
-
1)
=]
=7
=
)
-}

2=, CAVIUM
< NETWORKS

Table 34: Re

isters to Config

OCTEON Programmer’s Guide

ure Per-QoS RED/WRED - Snapshot

H/W SDK
Brief Description Register Fields Default Default
Value Value
Global Snapshot of Number of Available Packet Data Buffers
Number of Available Packet Data Buffers:
Lhis register is constantly updateq by ¢ | 1ep_queo_rres_pace oNT | 00_oNT | read only | read only
pool 0 (the Packet Data buffer pool).
Global Variables
Allow RAW packet Drop: Set to 1 to allow
IPD to drop RAW packets based on Per- PIP PRT CFGn RATDRE 0 (HO i
Port Packet Drop or Per-QoS RED (one per port)
p Q Default)
algorithm.
Pass-Drop Probability Calculation Delay: 0
The number of core-clock cycles to wait (H/W
before calculating the new packet drop Default)
probability for each QoS level. The TPD_RED_FORT_ENABLE FRELOLY 0 See
interval is ([PRB DLY + 68] x 8) Eziilz
cycles.
Per-QoS Variables
Port Enable for ports (0-35): Any bit that is 15D RED PORT ENABLE 0
set enables the port's ability to have packets (for ports 0-35) PRT_ENB 0 (H/W
dropped by Per-QoS RED. Default)
Port Enable for ports (36-39) (loopback
ports): Any bit that is set enables the port's | 1pD RED PORT ENABLE2 i 0 (HO i
ability to have packets dropped by Per-QoS | (for loopback ports) -
y p pped by Default)
RED.
Select snapshot or moving average: Per- 0
QoS variable. Set to 1 to use snapshot IPD RED QUE (0-7) PARAM Ne Sr 0 (H/W
value instead of moving average (one ‘per QoS queue) 5 Default)
(recommended). See Note3
Pass Watermark (Threshold): Per-QoS 150 cone\7 Y rep maade 0
variable: Packets will be passed if the (onEQgeé Qo)SiqueEe) S PASS 0 (H/W
queue size is greater than this value. Default)
Drop Watermark (Threshold): Per-QoS
variable: Packets will be dropped if the IPD QOS (0-7). RED MARKS DROP 0 (HO I
queue size is equal to or less than this (one per QoS queue) Default)
value.
Probability Constant: This value is used in 0
calculating the probability of a packet being (H/W
passed or dropped by the RED engine. Set | JFP_RED_QUE(0-7) _PARAM PRB_CON 0 Default)
K (one per QoS queue) See
this to: (255ul<<24) / (PASS - Noted,
DROP). Noteb
Interrupts
. : . 0
Interrupt: Global interrupt: Packet dropped PTP INT REG PKTDRD 0 (H/H
due to Per-QOS RED Default)
. . 0
Enable interrupt: Global interrupt enable: 5TP INT EN PKTDRD 0 u
/W
Packet dropped due to Per-QOS RED - Def(au 1t)

6-136 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide g §=E¢‘V\,Ilct|=:(vsl

H/W SDK
Brief Description Register Fields Default Default

Value Value

a
2o
i
=
=
]
=0
]
A

Notel: Use the SDK functions cvmx_helper setup red()and cvmx helper setup red queue () to
configure this mechanism. First call cvmx helper setup red(), then call
cvmx_helper setup red queue () to adjust queue priorities to weighted RED.

Note2: We recommend a value of 0 for PRB_ DLY so the calculation occurs as frequently as possible.

Note3: We recommend USE_PCNT be set to 1 to use the snapshot value.

Noted: (Although the hardware could be used to calculate the PRB_CON value from DROP and PASS, this has not
been implemented.)

Note5: "CON" stands for "CONSTANT"

Note the following variables are ignored when using a snapshot value:
IPD RED PORT ENABLE[AVG DLY],IPD RED QUEqg PARAM[NEW CON, AVG CON].

12.5.2 More Complex: Moving Average

A more complex option involves calculating a moving average based on periodic snapshots. The
moving average can be weighted either toward the new snapshot value or the prior moving
average, depending on the degree of responsiveness needed. As of SDK 2.0, the SDK does not
provide a function to configure this option.

Caveats: When using the moving average, buffer exhaustion can occur if traffic is accepted but
there are not enough buffers to accommodate it. Traffic can also be dropped unnecessarily when
the moving average is lower than the actual value. This situation can occur because:
e The moving average is not as precise as the snapshot value.
e [PD prefetches about 100 packets at a time, causing the number of buffers to fluctuate even
in steady-state traffic.

When using the moving average option, the variables IPD._RED PORT ENABLE[AVG DLY],
IPD RED QUEg PARAM[NEW CON, AVG CON] areused.
e AVG_DLY — controls how often the moving average is recalculated
e NEW CON — a high value weights the moving average toward the most recent snapshot
value
e AVG .CON — a high value weights the moving average toward the current average value

NEW.CON (+ AVG_ CON must == 256.
See the HRM for more detail.
Note the registers in Table 34 — “Registers to Configure Per-QoS RED/WRED — Snapshot” are

also used to configure the Per-QoS RED/WRED using the moving average. In addition to those
registers, the following registers are required.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-137

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

Table 35: Re

isters to Configure Per-QoS RED/WRED - Moving Average

-
[
-
1)
=
=7
=
)
-}

H/W SDK
Brief Description Register Fields Default Default
Value Value

Global Variables
Moving Average Calculation Delay: .
The': number of core'-clock cycles to IPD RED PORT ENABLE [— 0 g
wait before calculating the new packet - - - Default)
drop probability for each QoS level.
Per-QoS Variables
Select snapshot or moving average:
Per-QoS variable. Setto 1 to use 5D RED OUE (0-7) PARAM 0
snapshot value instead of moving (one peEQ o0 s(qu;ae) USE_PCNT 0 (H/W
average (recommended). The interval Default)
is ([AVG_DLY + 10] x 8) cycles.
New Snapshot Weight: When
calculating the moving average, a

. . . O
higher value will place more weight IPD_RED_QUE (0-7)_PARAM NEW CON 0 /0
on the new snapshot value than the (one per QoS queue) - Default)
current moving average value.
NEW_CON + AVG_CON must = 256.
Moving Average Weight: When
calculating the moving average, a

. . . O
higher value will p!ace more weight IPD RED QUE (0-7). PARAM e o 0 (/W
on the current moving average value (one per QoS queue) - Default)
than the snapshot value. NEW_CON +
AVG_CON must = 256.
Note: The registers used for the Per-QoS RED/WRED also apply. These registers are used in addition to those, with
the exception of the USE_ PCNT field which is 1 to use the snapshot and 0 to use the moving average.
Note: See the HRM for details.

6-138 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
=

OCTEON Programmer’s Guide
8 " NETWORKS

12.6 Per-Port Congestion Control (Backpressure, Packet Drop) (PP-B,
PP-PD)

The Per-Port Backpressure (PP-B) and Per-Port Packet Drop (PP-PD) are user-configurable

congestion control mechanisms. Both mechanisms share many configuration registers.

=
A
)
o=
=
«
A
e
A

Each port has a per-port in-use buffer counter, which usually is configured to count the number of
Packet Data buffers currently used by the port. Each port also has a per-port in-use buffer limit
(threshold) which is the limit on how many buffers it can use. Software is responsible for
decrementing the in-use buffer counter when the buffer is freed, adding software overhead.

Per-Port Backpressure will cause IPD to backpressure the port when the per-port in-use buffer limit
is reached.

Per-Port Packet Drop will cause IPD to drop all incoming packets on the port when the per-port in-
use buffer limit is reached.

Each port’s counter can be configured to count Packet Data Buffers (recommended), Work Queue
Entry Buffers, or both.

There is both a global-enable and a per-port enable. Both need to be set for the mechanism to
function on a specific port.

Both mechanisms are turned off by default when using the cvmx_helper setup red()
function to configure the Per-QoS RED/WRED mechanism.

The threshold value must be configured carefully or the mechanism will not function as desired.
Warning: If the threshold is set above the actual number of free buffers, the threshold
will never be crossed (the actual count will always be below the threshold). For example,
if the threshold was set to 2048 packets but the initial buffer count is only 1024 Packet
Data Buffers, buffer exhaustion would occur before the threshold was reached. In this

case, Per-Port Backpressure and/or Per-Port Packet Drop will never be turned on.

Setting the per-port thresholds becomes even more complicated when you have multiple
ports. The sum of all the port’s thresholds must be below the initial buffer count.

Note: The per-port in-use buffer counters will wrap around if not decremented by software.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-139

-]
[
)
&
=
(="
=
)
=

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

When using per port congestion control, decrement the per-port in-use buffer counter using the
following code fragment BEFORE freeing the WQE (this code accesses fields in the WQE):

cvmx_ipd sub port bp page cnt t page_ cnt;

page cnt.u64 = 0; // initialize all fields in the register to 0
page cnt.s.page cnt = -work->word2.s.bufs; // 2s complement
page cnt.s.port = work->ipprt; // specify which port’s counter
cvmx_write csr(CVMX_ IPD SUB PORT BP PAGE CNT, page cnt.u64);

Figure 46: Per-Port In-Use Buffer Limit (Threshold)
Per-Port Threshold (In-Use Buffer Limit)

If this packet causes the in-use buffer count to cross the
threshold (the in-use buffer limit), then depending on the

configuration:
e The port will be backpressured after this packet is
received, or
° Al arithanntiant nanlnta 1l ha AlrannaA
all OUIJOCL’UGI It ’JCIU!\CLO il VT Uiy, ’JGU
The backpressure/packet drop will continue until the number

of in-use buffers is below the threshold.

In-Use
Threshold Buffers
(In-Use Buffer ——p»|
Limit)

both
e Per-Port Backpressure and
e Per-Port Packet Drop

Each port can have a different

The Per-Port Threshold is used for A
[
[
|
[
|
|
|
|
threshold. :
|

All thresholds must sum to less
than the initial number of buffers.

12.6.1 Per-Port Backpressure (PP-B)

Per-Port Backpressure is applied if the port’s in-use buffer counter exceeds the port’s in-use buffer
limit. Per-Port Backpressure can be combined with Per-QoS RED/WRED or Per-Port RED: if the
sender does not respond to backpressure, packets can be dropped to prevent buffer exhaustion.
(See Section 17 — “Appendix D: A Note about Configuring GMX Backpressure” for a brief
introduction to configuring Pause Frames for GMX. This is a hardware-level view.)

6-140 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 47: Congestion Control: Per-Port Backpressure
Per-Port Backpressure (Example of Four Ports)

Occurs if:
1. The number of in-use buffers for the port exceeds the port’s threshold
2. Port has been configured to assert backpressure if this occurs

o]
=5
o
=

=

<
=9
ot
A

”””””” rrrrrrrrrrrrrrrrirl
| | Traffic Flows Normally | |
| T T T e T [T T e |

| ooy
any port which has
reached the per-port in-
use buffer limit
(threshold)

IPD Backpressures Port

rrrrrrrrrrrrrrrrirl
| | Traffic Flows Normally | |
| T T T e T [T T e |

Packet Interfaces (GMX and PCle and
loopback)
IPD Ports

Potential problems with this technique include:

1. Software is required to decrement the per-port in-use buffer counter when the buffer is
freed. Which buffers are counted is configurable: Packet Data buffers, WQE buffers, or
both.

2. High-priority traffic on the port cannot be selectively received by PIP/IPD: all traffic on
the port is backpressured, not just low-priority-traffic.

3. Some senders do not respond to backpressure. In this case, use Per-Port Packet
Drop or Per-QoS Admission Control (RED/WRED).

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-141

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

Table 36: Per-Port Backpressure Overview
Per-Port Backpressure Overview
Backpressure the port if the number of buffers in-use by the port (in-use buffer

Action counter) exceeds the configurable per-port in-use buffer limit (threshold).
Backpressure continues until the number of in-use buffers drops below the threshold.

-
[
-
&

=]

=7
=
)
-}

Each port's in-use buffer limit (threshold). The in-use buffer counter is also

Configuration configurable: it can count the number of Packet Data Buffers (recommended), the

Options number of Work Queue Entry Buffers (used if all packets are short enough to fit into
a WQE), or both.

Based on Each port's in-use buffer limit and in-use buffer counter.

If some ports are by definition higher priority than other ports, then this mechanism
might be the right choice. It is possible to implement a lossless flow control system.
Because many registers are used in common, it is easy to configure some ports for
Per-Port Backpressure and others for Per-Port Packet Drop.

Pros

Software is responsible for decrementing the counter when the buffer is freed, adding
software overhead. This method blocks all traffic on the port, including high-priority
traffic. This mechanism only works if the sender responds to the backpressure.

Cons When configuring this option, verify that the sum of all in-use buffer limits can use
does not exceed the total number of available buffers. The fixed limit may mean
backpressure is applied on a port because the threshold is reached, but there are still
available buffers.

Possible . The sum of all in-use buffer limits must not exceed the total number of available
Configuration . 4
Errors buffers. Failing to decrement the per-port in-use buffer counter.

Table 37: Registers to Configure Per-Port Backpressure

Register Details

Global Enable: Global per-port backpressure enable

Global configuration register. Global backpressure
IPD_CTL_STATUS[PBP EN] enable for per-port backpressure and per-port packet
(See Note 1, Note2) drop functionality.

(Reset value == 0).

Per-Port Enable: Individual per-port backpressure enable

There is one register per port. Both the global and per-
port enable must be on for the per-port packet drop
functionality to be enabled. If this field is set to 1, the
port's per-port backpressure is enabled.

(Reset value == 0)

IPD PORTn BP PAGE CNT[BP ENB]
(one per port)

6-142 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Register Details

Threshold Configuration: Configure per-port in-use buffer limit

RGMII/SPI-4/SGMII/XAUI (ports 0-31):
IPD PORT[0-31] BP PAGE CNT[PAGE CNT]

PCI/PCle (ports 32-35):
IPD_PORT[32-35] BP PAGE_CNT [PAGE CNT]

Loopback (ports 36-39):
IPD PORT[36-39] BP PAGE CNT2[PAGE CNT]

sRIO (ports 40-43):
IPD PORT[40-43] BP_ PAGE CNT3[PAGE CNT]
(See Note 1)

There is one register per port. Maximum number of
buffers (WQE and/or Packet Data Buffers, depending
on configuration) which the port may use. The register
IPD_PORT BP COUNTERS[2] PAIRn[CNT_ VAL] count
the actual number of buffers in use by the port. When
this number is exceeded, backpressure is applied to the
port. Note that PAGE CNT is in units of 256 buffers, so
1=256 buffers, 2=512 buffers.

Note that the threshold must be configured to be
lower than the number of buffers in the FPA pool to
prevent buffer exhaustion.

(Reset value == 0)

Configure Counter, Part 1: Configure per-port in-use buffer counter configuration for WQE buffers.

IPD CTL STATUS[ADDPKT]
(See Note 1)

Global configuration register. If set to 1, count the
number of packets which-have arrived on the port (the
number of WQE buffers sent by the port to the SSO).
(Reset value == 0)

buffers.

Configure Counter, Part 2: Configure per-port in-use buffer counter configuration for Packet Data

IPD CTL STATUS [NADDBUF]

Global configuration register. If set to 1, do NOT count
the Packet Data buffers allocated by IPD for the port.
(Reset value == 0)

Counter: Per-port in-use buffer count value

RGMII/SPI-4/SGMII/XAUI (ports 0-31):
IPD PORT BP COUNTERS PAIR[0-31] [CNT VAL]

PCI/PCle (ports 32-35):
IPD PORT BP_COUNTERS PATR[32-35] [CNT VAL]

Loopback (ports 36-39):
IPD_PORT BP COUNTERS2 PAIR[36-39] [CNT VAL]

SRIO (ports 40-43):
IPD_PORT BP COUNTERS3 PATR[40-43] [CNT VAL]
(See Note 1)

There is one register per port.- Automatic count of
buffers in-use by the port. Depending on ADDPKT and
NADDBUF configuration, will count one of:

1) Allin-use Packet Data buffers

2) All in-use WQE buffers

3) Both in-use Packet Data buffers and WQE buffers
(Reset value == 0)

Counter Decrement Selector: Specify Which Port's Counter to Decrement

IPD SUB PORT BP PAGE CNT[PORT]
(See Note 1, Note 3)

There is one in-use buffer counter per port. This field
specifies which counter to decrement. (Software
decrements the in-use buffer count when the buffers are
freed).

(Reset value == 0)

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-143

o]
=5
o
=

=

[
=9
ot
A

-
[
-
1)
=]
=7
=
)
-}

g CAVIUM OCTEON Programmer’s Guide

NETWORKS
Register Details

Counter Decrement: Decrement per-port in-use buffer count value

There is one register per port. Software decrements the
in-use buffer count when the buffers are freed via this
register. Software writes the twos-complement value to
IPD SUB PORT BP PAGE CNT[PAGE CNT] be added to

(See Note 1, Note 3) IPD PORTn BP COUNTERS([2] PAIRn[CNT VAL].
The port is specified via

IPD SUB PORT BP PAGE CNT[PORT].

(Reset value == 0)

Notel: Register(s) also used by the per-port drop mechanism.

Note2: Key Issue Regarding IPD CTL STATUS [PBP_EN]: There is a known issue related to
this bit for all CN3XXX and CN5XXX. This bit cannnot be programmed arbitrarily and
actually must be transitioned from zero to one on a specific cycle. It should never be set to zero
after being set once. Our SDK goes to great lengths to make sure IPD.CTL STATUS [PBP_ EN]
is set a the right time to avoid the issue The cvmx-helper function does extensive cleanup on
packet shutdown. Uboot sets this bit during early boot on some processors. To get reliable per-
port backpressure, you must use the cvmx-helper functions for initialization and shutdown.

Note 3: To subtract X from the counter, create a twos-complement of X (negative X). Store the
twos-complement value in IPD SUB_PORT BP PAGE CNT [PAGE_CNT], which will add the twos-
complement value to IPD PORT BP COUNTERS PAIRn[CNT VAL], decrementing the counter.
(A twos-complement number is created by taking the one's complement of the number (invert
every bit in the binary number), then add 1 to the result.)

Note: GMX INF MODE [EN] must be set to 1 for each packet interface that requires port
backpressure prior to setting PBB_EN to 1./ Once enabled, the sending of per-port backpressure
cannot be disabled by changing the value of TPD_CTL STATUS [PBP EN]. See the HRM for
more details.

12.6.2 Per-Port Packet Drop (PP-PD)

Per-Port Packet Drop is applied if the port’s in-use buffer count exceeds the port’s in-use buffer
limit (threshold). This mechanism will drop all packets on the port until the in-use buffer count is
below the threshold. Although the HRM calls this "RED", there is no randomness to the drop, so it
is misnamed.

6-144 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Figure 48: Congestion Control: Per-Port Packet Drop
Per-Port Packet Drop (Example of Four Ports)

o]
=5
o
=

=

<
=9
ot
A

Occurs if:
1. The number of in-use buffers for the port exceeds the port’s threshold
2. Port has been configured to drop packets if this occurs

| | " Traffic Flows Normally | | PIP/IPD drops all packets on
e any port which has reached the
: per-port in-use buffer limit

| | Traffic Flows Normally | | (threshold)

Test Number of
. In-Use Buffers '
Against Threshold ' Pass
Value

IPD Ports

rrrrrrrrrrrrrrrrunrt
| | Traffic Flows Normally | |
| T e U ey e e e ey ey o |

)
c
®
2
O
o
o
c
S
X
=
e
[%]
o)
o)
@
h=
]
£
=
3]
X
o)
@
o

Potential problems with this technique include:
1. Software is required to decrement the per-port in-use buffer counter when the buffer is
freed. Which buffers are counted is configurable: 'Packet Data buffers, WQE buffers, or
both.

2. High-priority traffic on the port cannot be selectively received by PIP/IPD: all traffic on
the port is dropped if the threshold is exceeded, not just low-priority traffic.

3. Some system suffer substantial performance penalties due to packet loss. In this case,
use a lossless/backpressure scheme.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-145

g CAVIUM OCTEON Programmer’s Guide

- NETWORKS

o

:? Table 38: Per-Port Packet Drop Overview

E_ Per-Port Packet Drop Overview

= Action Drop all incoming packets on the port if the number of buffers in-use by the port (in-

=) use buffer counter) exceeds the configurable per-port in-use buffer limit (threshold).

Packet drop continues until the number of in-use buffers drops below the threshold.

Configuration Each port's in-use buffer limit (threshold). The in-use buffer counter is also
Options configurable: it can count the number of Packet Data Buffers (recommended), the

number of Work Queue Entry Buffers (used if all packets are short enough to fit into
a WQE), or both.

Based on Each port's in-use buffer limit and in-use buffer counter.

Pros If some ports are by definition higher priority than other ports, then this mechanism
might be the right choice. Because many registers are used in common, it is easy to
configure some ports for Per-Port Backpressure and others for Per-Port Packet Drop.
Cons Software is responsible for decrementing the counter when the buffer is freed, adding
software overhead. This method drops a// traffic on the port, including high-priority
traffic. When configuring this option, verify that the sum of all in-use buffer limits
can use does not exceed the total number of available buffers. The fixed limit may
mean backpressure is applied on a port because the threshold is reached, but there are
still available buffers.

Possible The sum of all in-use buffer limits must not exceed the total number of available
Configuration buffers. Failing to decrement the per-port in-use buffer counter.
Errors

6-146 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Table 39: Registers to Configure Per-Port Packet Drop

Register Details

Global Enable: Global per-port backpressure enable

o]
=5
o
=
=
[
=9
ot
A

Global configuration register. Global backpressure
IPD CTL STATUS [PBP EN] enable for per-port backpressure and per-port packet
(See Note 1, Note 2) drop functionality.

(Reset value == 0)

Per-Port Enable: Individual per-port packet drop enable

One configuration register, one bit per port. Both the
global and per-port enable must be on for the per-port
IPD BP PRT RED END[PRT ENBn] packet drop functionality to be enabled. Each port
(one bit per port) corresponds to a bit in this field. When the port’s bit
is set to 1, the per-port packet drop check for the port
is enabled. (Reset value == 0)

Allow Raw Packet Drop: Optionally allow raw packets to be dropped by this mechanism

Global configuration register. If set to 0, then
RAWFULL and RAWSCH packets are never dropped
by per-port packet drop. (Reset value == 0)

PIP PRT CFGn [RAWDRP]
(one per port)

Threshold Configuration: Configure per-port in-use buffer counter

There is one register per port. Maximum number of
buffers (WQE and/or Packet Data Buffers, depending

RGMII/SPI-4/SGMIIXAUI (ports 0-31): on configuration) which the port may use. The

IPD PORT[0-31] BP PAGE CNT[PAGE CNT]

register
PCI/PCle (ports 32-35): IPD PORT BP COUNTERS[2] PAIRn[CNT VAL]
IPD_PORT[32-35]_BP_PAGE_CNT [PAGE_CNT] count the actual number-of buffers in use by the port.
Loopback (ports 36-39): When this number is exceeded, packets arrixﬁng on.
IPD PORT[36-39] BP PAGE CNT2[PAGE CNT] this port are dropped. Note that PAGE CNT is in units

of 256 buffers, so 1=256 buffers, 2=512 buffers.
igg% éggﬁ%i‘?g}”?& eac cnrs (p il Cu) Note that the threshold must be configured to be
(Ses Note 1) ~ — ~ = lower than the number of buffers in the FPA pool

to prevent buffer exhaustion.
(Reset value == 0)

Configure Counter, Part 1: Configure per-port in-use buffer counter configuration for WQE buffers.
Global configuration register. If set to 1, count the

number of packets which have arrived on the port (the
ingCEEEZTT)TUS " number of WQE buffers sent by the port to the SSO).
(Reset value == 0)

Configure Counter, Part 2: Configure per-port in-use buffer counter configuration for Packet Data
buffers.

Global configuration register. If setto 1, do NOT
count the Packet Data buffers allocated by IPD for the
IPD CTL STATUS [NADDBUF] port

(Reset value == 0)

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-147

-
[
-
1)
=]
=7
=
)
-}

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

Register Details

Counter: Per-port in-use buffer count value

There is one register per port. Maximum number of
buffers (WQE and/or Packet Data Buffers, depending

RGMII/SP1-4/SGMIIXAUI (ports 0-31): on configuration) which the port may use. The
IPD_PORT_BP_COUNTERS PATR[0-31] [CNT_VAL]

register
PCI/PCle (ports 32-35): IPD PORT BP COUNTERS[2] PAIRn[CNT VAL]
IPD_PORT BP_COUNTERS_PAIR[32-35] [CNT_VAL] count the actual number of buffers in use by the port.
Loopback (ports 36-39): Whe.n this number is exceeded, backpress.ur.e is .
IPD PORT BP COUNTERS2 PAIR[36-39] [CNT VAL] applied to the port. Note that PAGE CNT is in units of
256 buffers, so 1=256 buffers, 2=512 buffers.
sRIO (ports 40-43): Note that the threshold must be configured to be

IPD PORT BP COUNTERS3 PAIR([40-43] [CNT VAL]

(See Note 1) lower than the number of buffers in the FPA pool

to prevent buffer exhaustion.
(Reset value == 0)

Counter Decrement Selector: Specify Which Port's Counter to Decrement

There is one in-use buffer counter per port. This field
specifies which counter to decrement. (Software
decrements the in-use buffer count when the buffers
are freed).

(Reset value == 0)

IPD_SUB PORT BP PAGE_CNT[PORT]
(See Note 1, Note 3)

Counter decrement: Decrement per-port in-use buffer ‘count value

There is one register per port. Software decrements
the in-use buffer count when the buffers are freed via
this register.. Software writes the twos-complement
IPD_SUB PORT BP PAGE CNT[PAGE CNT] value to be added to

(See Note 1, Note 3) IPD PORTn BP (COUNTERS([2] PAIRn[CNT VAL].
The port is specified via

IPD SUB PORT.BP PAGE CNT[PORT].

(Reset value == 0)

Notel: Register(s) also used by the per-port backpressure mechanism.

Note2: Key Issue Regarding IPD CTL STATUS [PBP EN]: There is a known issue related to
this bit for all CN3XXX and CN5XXX. This bit cannnot be programmed arbitrarily and actually
must be transitioned from zero to one on a specific cycle. It should never be set to zero after
being set once. Our SDK goes to great lengths to make sure IPD CTL STATUS [PBP_EN] is set
a the right time to avoid the issue The cvmx-helper function does extensive cleanup on packet
shutdown. Uboot sets this bit during early boot on some processors. To get reliable per-port
backpressure, you must use the cvmx-helper functions for initialization and shutdown.

6-148 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide g &ﬁ‘\l\,llotl::r(vsl

Register Details

Note 3: To subtract X from the counter, create a twos-complement of X (negative X). Store the
twos-complement value in IPD SUB PORT BP PAGE CNT[PAGE CNT], which will add the twos-
complement value to IPD PORT BP COUNTERS PAIRn[CNT VAL], decrementing the counter. (A
twos-complement number is created by taking the one's complement of the number (invert every
bit in the binary number), then add 1 to the result.)

o]
=5
o
=
=
<
=9
ot
A

12.7 Per-Port RED

Per-Port RED allows packets to be randomly dropped on a per-port basis rather than per-QoS.
There is no unique mechanism to support this, but if there are less than 8 ports used in the system
(the same as the maximum QoS queues), then by setting the default QoS for the port to the port
number, each port’s traffic will go to a different QoS. By setting each QoS to the same threshold
value, all ports will have an equal chance to receive packets. Because the per-QoS mechanism
uses random drop, per-port RED will have been implemented.

This feature can also be combined with Per-Port Backpressure.

13 Per QoS/Port Buffer Tracking

This feature is listed in the HRM as “Per-Port and QoS Threshold Interrupts”. In this feature, the
PIP/IPD hardware maintains a counter per port/QoS that PIP/IPD increments when it sends a
packet to the SSO. There is one counter for each port/QoS combination of port number (up to 16)
and the SSO QoS level (0-7). PIP/IPD maintains 128 counters (16 ports times 8 QoS levels),
corresponding interrupt bits and enables, and corresponding watermarks (one for each QoS level
and port combination).

This feature is only used in special cases and is not documented here.

14 Appendix A: PIP/IPD Registers and Register Fields

The registers and fields contained in this chapter are specifically for CN54/55/56/57XX. Many of
these registers and register fields are identical on the other processors.

This chapter does not include register fields used for BIST (power on memory test), reset, enable,
Per QoS/Port Buffer Tracking registers, or registers or fields reserved for internal use.

Registers are divided into different tables by purpose. The following links will help locate the
tables in the chapter:

Table 11: Registers to Configure Input Packet Format — Page 48

Table 12: Registers to Configure Work Queue Entry Details — Page 49

Table 19: Registers to Configure Work Queue Entry WORD?2 — Page 71

Table 20: Registers to Configure WQE WORD1 Group — Page 75

Table 21: Registers to Configure WQE WORDI1 QoS Assignment — Page 79

Table 22: Registers to Configure WQE WORD1 Tag Type- Page 83

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-149

-]
[
)
&
=
(="
=
)
=

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

Table 23: Registers to Configure WQE WORDI Tag Value Assignment — Page 93
Table 24: Registers to Configure Watchers — Page 96

Table 25: Registers to Configure IP Security - 98

Table 26: Registers To Configure Error Check - Page 98

Table 27: Registers Used to Configure CRC Check — Page 102

Table 29: Registers to Configure Packet Storage — Page 117

Table 30: Statistics Register Fields — Page 122

Table 34: Registers to Configure Per-QoS RED/WRED — Snapshot — Page 136
Table 35: Registers to Configure Per-QoS RED/WRED — Moving Average — Page 138
Table 37: Registers to Configure Per-Port Backpressure — Page 142

Table 39: Registers to Configure Per-Port Packet Drop- Page 147

15 Appendix B: Industry-Standard Reference Information

These industry-standard data structures are provided here for quick reference.

6-150 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS
=
2o
15.1 L2 Header Formats -
. =
Figure 49: L2 Header Formats N
Skip-to-L2 Parsing of ETHERNET II and IEEE 802.3 Packets =
ETHERNET Il
3
Ethernet Il DMAC Uninterpreted 3
(1 4 bytes) (6 bytes) (6 bytes) %
>
Ethernet Il =
* DMAC Uninterpreted S 2 %
VLAN (6 bytes) (6 bytes) g ; g
(18 bytes) >
Ethernet Il
VLAN DMAC Uninterpreted ‘8 % ‘8 % E
[oe] «Q ~
Stacked (6 bytes) (6 bytes) 2l x\(< g
(22 bytes) =
IEEE 802.3
8
IEEE 802.3 DMAC Uninterpreted § Uninterpreted g
22 byteS) (6 bytes) (6 bytes) ‘\._} (6 bytes) %
=
IEEE 802.3 ?
+ , o o o \ S
DMAC Uninterpreted | <Z(3 |Uninterpreted 2
VLAN (6 bytes) (6 bytes) g o ‘5 (6 bytes) E
(26 bytes) =
IEEE 802.3 —
+ o o o — (=3 é
DMAC Uninterpreted | 2 | Z | © | Z | 8 |Uninterpreted | 2
ST\/Q\LC':A;L\IED (6 bytes) (6 bytes) g ; g ; ‘\,%,) (6 bytes) %
o
30 bytes) "
Notes: Is_IPis TRUE if Type is either 0x8000 (IPv4) or 0x86DD (IPv6).
The Type field can be used as a length field if it is less than 1500 or 1535
(configurable via PIP_PRT CFG[MAX LEN]).

CN_OCTEON_PRG_GUIDE VoI2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-151

/~, CAVIUM

OCTEON Programmer’s Guide

. NETWORKS
g 15.1.1 L2 Header Type Field Values (EtherType)
= Table 40: L2 Header Type Field Values (EtherType)
g Type Value
ARP 0x0806
IPv4 0x0800
IPvV6 0x86DD
MAC CTRL 0x8808
RARP 0x0835
VLAN ID 0x8100

15.1.2 L2 Header VLAN, VLAN 1 Field Details

Figure 50: L2 Header and VLAN, VLAN1 Field Details — CFI, VLAN ID
L2 Header VLAN and VLANI1 Field Formats

0 34 78 15
PCP |~ VLAN ID
3) [(12 bits)

PPC: Priority Point Code. This is the IEEE 802.1p priority, a
number from 0-7 (O=lowest, 7=highest).. This number indicates
the packet’s priority.

CFI: Canonical Format Indicator: If 1, MAC address is in non-
canonical format. If 1, MAC address isin canonical format.
VLAN ID: Identifies the VLAN the frame belongs to. A value
of 0 means the frame doesn’t belong to any VLAN.

6-152 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS
o]
=5
!
=
15.2 L3: IPv4 Header =
=9
o
Figure 51: IPv4 Header -
IPv4 Header
0 34 78 15 16 31
IP' Header lefereptlated Total Length
Version| Length Services (16 bits)
(4 bits) | (4 bits) (8 bits)
Identification Flags Fragment Offset
(16 bits) S5 (13 bits)
Time to Live Protocol IP Header Checksum
(8 bits) (8 bits) (16 bits)

Source Address
(32 bits)

Destination Address
(32 bits)

Options (if Header Length > 5)
(either zero or (N*32 bits))

Data (not part of the IP header)

Note: Fields shown in gray are reserved and must be set to
zero.

Field descriptions are in the table following this figure.

Note: In this figure, the zero bit is shown on the left. ‘The
figure was drawn this way to match figures in commonly-
used networking reference books.

Table 41: IPv4 Header Fields
Version Version Number: For IPv4, the version number is four.
Header Length | Header Length: The number of 32-bit words in the header. If header length is
5 (20 bytes), there are no options. The minimum value is 5.
Differentiated Diffserve Value: (Originally Type of Service (TOS)), now is Differentiated

Services Services (diffserv). This is used to specify a packet-handling preference, such
as low delay or high reliability.

Total Length Total Datagram Length: Size of header plus data, in bytes. The minimum
value is 20 bytes (header, and zero data).

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-153

-]
[
)
=]
=
(="
=
)
=

2=, CAVIUM
< NETWORKS

Field Description

Identification

Identification: Optional, and primarily used to uniquely identify each fragment
of an original datagram.

Flags

Flags:
DF (Don't Fragment): If the DF bit is set and the datagram must be

fragmented to be routed, then it is dropped.

MF (More Fragments): If the packet is not fragmented, the MF bit is set to
zero. If the packet is fragmented, all fragments except the last fragment have
this bit set to one. The last fragment has the bit set to zero.

Note: The third flag is reserved and must be set to zero.

Fragment
Offset

Fragment Offset: The offset of the fragment relative to the beginning of the
original unfragmented datagram. This value is specified in eight-byte blocks.
The first fragment will have an offset of zero.

Time to Live

Time to Live: Used to prevent a datagram from going in circles on the Internet
forever. Also considered to be a "hop count": each switch or router which
handles the packet decrements the TTL field by 1. When TTL equals zero, the
packet is discarded.

Protocol Protocol: The format of the data portion, such as‘TCP or UDP.
Header Header Checksum: The checksum of the IP header. Note that the data is part
Checksum of the IP header, and therefore is not included in the checksum.

Source Address

Source Address: The IPv4 address of the sender. Note this may not be the
true address, if network address translation is used.

Destination Destination Address: The IPv4 address the receiver. Note this may not be a

Address true address if network address translation is used.

Options Options: These are rarely used. They must be padded out to make 32-bit
words.

Data Data: Not part of the header, and not included in the IP header checksum. The

format of the contents is specified in the Protocol field.

6-154 Cavium Networks Proprietary and Confidential - DO NOT COPY

OCTEON Programmer’s Guide

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

o]

=

]

. =

15.2.1 IPv4 Protocol Field Values =

=™

o

Table 42: IPv4 Protocols A

IPv4 Protocols

HOP_BY HOP 0
TCP [
UDP 17
ROUTING 43
FRAG 44
IPSEC_ESP 50
IPSEC_AH 51
ICMP 58
DESTINATION 60
IPCOMP 108
OTHER 255

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-155

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

w
o
w
> 15.3 L3: IPv6 Header
o Figure 52: IPv6 Header
= IPv6 Header
0 34 11 12 31
Ve?s)ion Traffic Class Flow Label
(4 bits) (8 bits) (20 bits)
Payload Length Next Header Hop Limit
(16 bits) (8 bits) (8 bits)

Source Address
(128 bits)

Destination Address
(128 bits)

Extension Headers (up to six)

Data (not part of the IPv6 header)

Note: Fields shown in gray are reserved and must be set to zero.
Field descriptions are in the table following this figure.

Note: In this figure, the zero bit is shown on the left. The
figure was drawn this way to match figures in commonly-
used networking reference books.

6-156 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Table 43: IPv6 Header Fields

Field Description

Version Version Number: For IPv6, the version number is six.

Traffic Class Traffic Class: The number of 32-bit words in the header. If header length is 5
(20 bytes), there are no options. The minimum value is 5.

Flow Label Flow Label: (Originally Type of Service (TOS)), now is Differentiated
Services (diffserv). This is used to specify a packet-handling preference, such
as low delay or high reliability.

Payload Length | Payload Length: Size of header plus data, in bytes. The minimum value is 20
bytes (header, and zero data).

Next Header Next Header: Optional, and primarily used to uniquely identify each fragment
of an original datagram.

Hop Limit Hop Limit:

Source Address

Source Address: The IPv6 address of the sender. Note this may not be the
true address, if network address translation is used.

Destination Destination Address: The IPv6 address the receiver. Note this may not be a
Address true address if network address translation isused.

Extension Extension Headers: These are rarely used. They must be padded out to make
Headers 32-bit words.

Data Data: Not part of the header, and not included in the IP header checksum. The

format of the contents is specified in the Protocol field.

CN_OCTEON_PRG GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY 6-157

o]
=5
o
=
=
<
=9
ot
A

/~, CAVIUM
NETWORKS

15.4 L4: TCP Header
Figure 53: IPv4 Header with TCP/IP
TCP/IP Combined Header (IPv4)
0 34 78 15 16 31

OCTEON Programmer’s Guide

-]
[
)
&
=
(="
=
)
=

IP |Header| Differentiated
. . Total Length
Version| Length Services (16 bits)
(4 bits)| (4 bits) (8 bits)
Identification Flags Fragment Offset
(16 bits) S5 (13 bits)
Time to Live Protocol IP Header Checksum
(8 bits) (8 bits) (16 bits)

Source Address
(32 bits)

Destination Address
(32 bits)

Options (if Header Length >:5)
(either zero or (N*32 bits))

Source Port Destination Port
(16 bits) (16 bits)
Sequence Number
(32 bits)
Acknowledgement Number
(32 bits)
Data |Resgf- Flags Window Size
Offset |~ eq (8 bits) (16 bits)
(4 bits) | (4 bits)
TCP checksum Urgent Offset
(16 bits) (16 bits)

options (if Data Offset > 5)

data (if any)

Note: The TCP header is highlighted in green.

6-158 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

15.5 L4: UDP Header

Figure 54: UDP Header

=

CAVIUM
NETWORKS

UDP Header
0 34 78 15 16 31
Source Port Destination Port
(16 bits) (16 bits)
Length Checksum
(16 bits) (16 bits)

data (if any)

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-159

=
A
o
=
=
]
=5
Ll
A

2, CAVIUM o
e NETWORKS OCTEON Programmer’s Guide

16 Appendix C: Input Packet Parsing Details

The HRM includes parsing pseudo code. The following figures show the different options and a
parsing flow chart. The “Cases” in these figures match the cases shown in the WQE WORD?2
figures. This figure is identical to the figure shown earlier in this chapter.

-]
[
)
&

=

(="
=
)
=

Figure 55: Input Packet Parsing Cases

Packet Parsing and WQE WORD?2 Cases

There are three parsing modes available: “Skip-to-L2” where the packet’'s L2 header is parsed, “Skip-to-IP” which skips
directly to the IP portion of the packet, and “Uninterpreted” which does not examine the packet contents.

A packet with the parse mode “skip-to-L2” is further classified as either being an IP packet or Non-IP packet. The
packet is an IP packet if the L2 header’s type field contains either 0x800 (for IPv4) or 0x86DD (for IPv6).

There are three different data structures used for WORD2, depending on the parsing results: CASE 1, 2, and 3.
Within each case, field values depend on parsing results (A, B, C). Each of these WQE WORD2 variations are shown
in other figures. Cases which do not have L1/L2 receive errors may be found on the Parsing flowchart.

Parse Mode = Uninterpreted Parse Mode = Skip-to-L2 Parse Mode =
Skip-to-IP
(Includes RAWSCH packets) (Includes RAWSCH
N, packets)
QN OT/?AW
P ~A
RAWFULL A
. Uninterpreted AND . .
(Uninterpreted AND Skip-to-L2 Skip-to-IP
RAW) NOT RAW
/\ “ —
PCle ((NOT PCle)
AND OR
PIP_GBL CTL[RING_EN]==1 (PIP_GBL_CTL[RING_EN]==0))
NO L1/ L1/L2 NO L1/ L1/L2 NO L1/ L1/L2 No L2/ L1/L2 No L1/ L1/L2 No L1/ L1/L2
L2 Error Error L2 Error Error L2 Error Error L2 Error Error L2 Error Error L2 Error Error
CASE CASE CASE CASE CASE CASE CASE CASE CASE CASE CASE CASE
1A 3C 1B 3C 3B 3C 2A 3C 3A 3C 2B 3C

6-160 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
NETWORKS

Figure 56: Input Packet Parsing Flowchart, Part 1

Start Packet
Parsing

Note this case includes all RAWSCH
packets, because RAWSCH packets
are RAW and (skip-to-L2 or skip-to-

Packet Parsing (assuming no parsing errors)

Note: The CASE labels
(such as “CASE 2B”) can
be used to match to the

Read
Packet

IP).

acket Instruction
Header AND

later figures.
NO NO
Parse Mode == . Parse Mode ==
Uninterpreted (Skip-to-L.2 skip-to-IP (CASE 2A
Py or Skip-to-IP) N or CASE 3A)
YES
. YES
(Unmte:preted) (Skip-to-IP) (Skip-to-L2)
(CASE 2B)
;iﬁiizxzsguﬂnw — P_TRJE Processing
L2_size=0 bytes L:_si;e=0 Co;lltintu’is in the
VV=FALSE VV=FALSE ext Figure
VS=FALSE RAWFULL VS_FALSE
VLANO=0 packets are | 1.ano0=0
VLAN1=0 RAW and VLAN1=0
uninterpreted

L2 Header

Present
?

WORD?2 data structures in

NO» Ethertype val=FALSE

RAW
? L2 header
YvES may-be
YES present
v NO Ethertype val=TRUE before IP
) _ Uninterpreted |Ethertype=PKT.Type .
WQE WORI?)Z <55.(§J> = (AND NOT header. [This
PIP_RAW_WORD [WORD] RAWFULL) is checked.
(CASE 3B)

PCle
Packet AND

PIP_GBL_CTL[RING EN]== .
’ Packet ‘;ND PR=PCle ring
NO PIP GBL CTL[RING EN]== YES——p p;?fmg r|tn
YES (CASE 1B) ? b
v
PRR=PClering | NO
position in PKI port (CASE 1A) No

Variables used in this flow chart (in alphabetical order):

Ethertype: The Ethernet packet Type field (set if packet has an L2 header)

Ethertype_val: TRUE if the packet's Ethertype is set

Is_IP: TRUE if the packet is an IP packet (Type==0x8100 (ipv4)) or
(Type==0x86DD (ipv6))

L2_size: the size of the L2 header in bytes (0 if not skip-to-L2)

PR, PRR: The position of the PCle ring in the PKI port

VLANO: if VLAN or Stacked VLAN, set to value of VLANO tag, otherwise=0

VLAN1: if VLAN Stacked, set to value of VLAN1 tag, otherwise=0

vs: TRUE if the packet is STACKED VLAN

vv: TRUE if packet is VLAN or STACKED VLAN (Type==0x8100)

End Packet
Parsing

CN_OCTEON_PRG_GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-161

=
A
)
o=
=
«
A
e
A

-]
[
)
|~

=

(="
=
)
=

2=, CAVIUM
< NETWORKS

OCTEON Programmer’s Guide

Figure 57: Input Packet Parsing Flowchart, Part 2

Processing
continues from
previous figure.

VLAN OR

VLAN STACKED
?

NO

(Neither)
v

Ethertype val=TRUE
Ethertype=PKT. type
L2_size=14 bytes
VV=FALSE

VS=FALSE

VLANO=0

VLAN1=0

YES—»

Skip-to-L2 Packet Parsing
(Continued from prior figure)

VLAN
STACKED YES
?
NO (VLAN STACKED)
(VLAN) L
v

Ethertype_ val=TRUE
Ethertype=PKT. type
L2_size=18 bytes
VV=TRUE

VS=FALSE
VLANO=PKT . VLANO
VLAN1=0

Ethertype val=TRUE
Ethertype=PKT. type
L2_size= 22 bytes
VV=TRUE

VS=TRUE
VLANO=PKT . VLANO
VLAN1=PKT.VLAN1

Variables used in this flow chart (in
alphabetical order):

Ethertype: The Ethernet packet
Type field (set if packet
has an L2 header)
Ethertype_val: TRUE if the packet’s
Ethertype is set
Is_IP: TRUE if the packet is'an IP packet
(type==0x8100 (ipv4)) or
(type==0x86DD(ipv6))
L2_size: The size of the L2 header in
bytes (0 if not skip-to-L2)
VLANO: If VLAN or Stacked VLAN, set to
value of VLANO tag, otherwise=0
VLAN1: If VLAN Stacked, set to value of
VLAN1 tag, otherwise=0
vs: TRUE if the packet is Stacked VLAN
vv: TRUE if packet is VLAN or Stacked
VLAN (Type==0x8100)

YES

L2 size=L2 size+8

Type==0x8000) OR
(Type==0x86DD)
?

YES (CASE 2A)

Is_IP=TRUE

NO

(CASE 3A)4> Is_IP=FALSE

A

Set WQE WORD?2 fields

End Packet
Parsing

6-162 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide

/~, CAVIUM
NETWORKS

17 Appendix D: A Note about Configuring GMX Backpressure

This section is included in this chapter for reference only. It is not intended to be a complete
discussion of how backpressure is implemented at the MAC layer. See the HRM for more

information.

The GMX registers that control the pause frames are introduced in the table below. (These are

CN54/55/56/57 registers.)

Table 44: Overview of GMX Registers Used to Configure Backpressure

GMXn_TX OVR_BP[EN]

Global enable. Set to 1 to turn backpressure on.

GMXn TX_OVR_BP[BP]

Per-Port enable. Set bit corresponding to port to
turn backpressure on for the port. The global
EN bit must be 1 for per-port backpressure to
work.

GMXn_TXn PAUSE PKT TIME[TIME]

The pause_time field placed in out bound
802.3 pause packets

GMXn TXn PAUSE PKT INTERVAL[INTERVAL]

How often the pause packet is sent

GMXn_TXn PAUSE_ZERO[SEND]

If this variable is set to 1, the bus can be used
more efficiently. CN54/55/56/57 autogenerates
a pause packet with a pause time of 0 when
flow-control deasserts, which can allow the
remote transmitter to restart more quickly.

GMXn TX STAT9[CTL]

Number of Control packets generated by
hardware

GMXn TX_ PAUSE_ PKT DMAC [DMAC]

The DMAC field placed is outbound pause
packets

GMXn_TX PAUSE PKT TYPE[TYPE]

Note: n can be either O0.or 1.

The TYPE field placed is outbound pause

iackets

Note: To find these registers in the HRM, use the search string of the form
"GMXO0/1_TX0 PAUSE PKT" (to find them in a block of text) or
"GMX0 TX0 PAUSE PKT" (to find them in the registers description section).

Choosing proper values of GMX TX PAUSE PKT TIME[TIME] and

GMX TX PAUSE PKT INTERVAL[INTERVAL] can be challenging for the system
designer. It is suggested that TTME be much greater than INTERVAL and

GMX TX PAUSE ZERO[SEND] be set. This allows a periodic refresh of the PAUSE
count and then when the backpressure condition is lifted, a PAUSE packet

with TIME==0 will be sent indicating that the OCTEON processor is ready for additional

data.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-163

o]
=5
o
=
=
<
=9
ot
A

-]
[
)
&

=

(="
=
)
=

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

If the system chooses to not set GMX TX PAUSE ZERO [SEND], then it is suggested that TIME
and INTERVAL are programmed such that they satisfy the following rule:

INTERVAL <= (TIME - (largest pkt size + IFG + pause pkt size))

where:
e largest pkt size is that largest packet that the system can send (normally 1518B)

e TIFGis the Inter Frame Gap
e pause pkt size is the size of the PAUSE packet (normally 64B)

18 Appendix E: Example Code (1inux-filter)

In the 1inux-filter example, the Ethernet driver configures PIP/IPD. (In the code example,
the term POW is used. POW is another term for SSO.) Linux filter modifies the group for the IPD
port, and gets all incoming packets from that port.

6-164 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

Figure 58: Linux-Filter

2=, CAVIUM
< NETWORKS

linux-filter: Forwarding a Packet to the Control Plane

The hardware units and data plane cores perform a large amount of packet processing without requiring any
action from the cores running the control plane. Processing is shown in steps 1-12, below.

OCTEON HOST

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the SSO. Data Plane: Cores 1 and 2
Step 3: Data-plane core calls get_work () and receives the packet. Mnux—filter as
Step 4: Data-plane core tests the packet: Test if packet ((broadcast) && a SE—S% lication: accents
(IP)) = FALSE. Send packet to Linux. o pr’f) e 4p
Step 5: Data-plane core changes the group to 15 and sends the packet to group
the SSO .
Step 6: Control-plane core calls get_work () and receives the packet. 2’;:; éﬁ%f;ﬁ;iﬁfﬂi;:t
Step 7: Control-plane core processes the ping request and replies, using .
Group 14 processing.
Step 8: Control-plane core sends the packet to the SSO. N
Step 9: Data-plane calls get_work () and receives the packet. N\
Step 10: Data-plane receives the ping reply \‘
Step 11: Data-plane core sends packet to PKO for transmit. Data Plane
Step 12: PKO sends ping reply.
- - 0
s GO"\‘ 3. get work result group SE-S
5 °
2- Q.‘;()
5
RX :]
ck ~
IPD - o 238 % o2 M SE-S
1 1. Ping * Input gl ~ 9*
(not broadcast) Packet $S0 - Schedule/ / otk s
Data Synchronization qe"‘)'
I [Order :
PIP - S,
Packet — e «
Input NS
Processor | — 9*‘0%‘“4- -
PKI - Packet Input s e@"zé
Block—_ N
8 x
QQQ
TX Mo, Control Plane
k3
4——12. Ping reply out = \9
put Unit ¢y
°‘io1\ Linux
£4
—J Driver
o
- /' @(\6 Q})
- 00&
- - 4{\0
=)

Control Plane: Core 0
'Running: Linux Operating System
| accepts work for group=15

CN_OCTEON_PRG_GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-165

=
A
o
=
=
]
=5
Ll
A

-]
[
)
=]
=
(="
=
)
=

~, CAVIUM e G
NETWORKS OCTEON Programmer’s Guide

The following code is from the 1inux-filter example:

Set up the definitions:

/* This POW group ID is used for packets destined to the Linux kernel. This
Group ID must match the kernel Ethernet driver's pow receive group parameter */
#define TO LINUX GROUP 15 // send work to linux kernel

/* This POW group ID is used by the Linux kernel for egress packets. This
group ID must match the Ethernet driver's pow send group parameter */
#define FROM LINUX GROUP 14 // get work from linux kernel

/* This POW group ID is used for ingress packets that must be intercepted by
cores running the linux-filter Simple Executive application. Packets from the
intercept port are assigned to this POW group instead of the normal ethernet
pow_receive group */

#define FROM INPUT PORT_ GROUP 0 // get all work from input port (group 0)

/* Packets ingressed on the intercept port are intercepted by linux-filter and
processed. Packets received from the kernel Ethernet virtual POWO device are
sent out this port. */

CVMX_SHARED int intercept_port = 0; // this value is board-dependent

Atmain (), the SE core responsible for SE-specific initialization waits for the IPD

initialization (performed by a core running Linux) to be complete:
/* Have one core do the hardware initialization */
if (cvmx_coremask first core(sysinfo->core mask))
{
printf ("\n\nLoad the Linux ethernet driver with:\n"
"\t $ modprobe cavium-ethernet pow send group=%d
pow receive group=%d\n",
FROM LINUX GROUP, TO LINUX_GROUP);

printf ("Waiting for ethernet module to complete

initialization...\n\n\n");
cvmx_ipd ctl status t ipd reg;
do

{
ipd reg.u64 = cvmx read csr (CVMX IPD CTL STATUS);
} while (!ipd reg.s.ipd en);
<code omitted>

Make sure all incoming traffic on IPD port 0 (intercept_port) sets Group value to zero
(the value of the FROM INPUT PORT_GROUP):

/* Change the group for only the port we're interested in */
cvmx pip port tag cfg t tag config;
// load data structure with current values
tag config.u64 = cvmx read csr(CVMX PIP PRT TAGX (intercept port));
if (tag _config.s.grp == TO LINUX GROUP) // not the desired value
{
tag_config.s.grp = FROM_INPUT PORT_GROUP;
// change group for this port to 0 (FROM INPUT PORT GROUP)
cvmx write csr(CVMX PIP PRT TAGX (intercept port), tag config.u6d);

6-166 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

Get ready to receive group 0 (FROM_INPUT PORT_GROUP) and group 14:

(FROM_LINUX_GROUP) work:
/* Accept any packet except for the ones destined to the Linux group */
cvmx pow set group mask(cvmx get core num(),
S a (1<<FROM_INPUT PORT GROUP) | (1<<FROM_LINUX GROUP)) ;

o]
=5
o
=
=
<
=9
ot
A

<code omitted>

In the following code segment, note the error check, and buffer free:
while (1)
{
#ifdef linux
/* Under Linux there better thing to do than halt the CPU waiting for
work to show up. Here we use NO WAIT so we can continue processing
instead of stalling for work */
cvmx wge t *work = cvmx pow work request sync(CVMX POW NO_WAIT) ;
if (work == NULL)
{

/* Yield to other processes since we don't have anything to do */

usleep (0) ;
continue;
}
#else
/* In standalone CVMX, we have nothing to 'do if there isn't work, so
use the WAIT flag to reduce power usage */
cvmx _wge t *work = cvmx pow work request sync (CVMX POW WAIT) ;
if (work == NULL)
continue;
#endif
/* Check for errored packets, and drop. .If sender does not respond to

backpressure or backpressure is not sent, packets may be truncated
if the GMX fifo overflows. */

if (work->word2.s.rcv_error) <<< receive error

{

/* Work has error, so drop */

cvmx helper free packet data(work); & << free Packet Data buffer
cvmx_fpa free (work, CVMX FPA WQE POOL, 0); << free WQE buffer
continue;

}

/* See if we should filter this packet */

if (is_filtered packet (work))

{
printf ("Received %u byte packet. Filtered.\n", work->len);
cvmx_helper free packet data(work); << free Packet Data buffer
cvmx_ fpa free(work, CVMX FPA WQE POOL, 0); << free WQE buffer

}

else if (work->grp == FROM LINUX GROUP)

{

<code omitted>

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-167

/~, CAVIUM
NETWORKS

OCTEON Programmer’s Guide

19 Appendix F: Input Port Configuration

This section contains port configuration information for additional processors.

-]
[
)
&
=
(="
=
)
=

For more information about CN54XX, CN55XX, CN56XX, and CN57XX, see Section 3 — “IPD
Input Ports”.

Links to the different figures in this section:

Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:

Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:

6-168 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN3005 — Page 169

CN3010 — Page 170

CN3020 — Page 171

CN31XX —Page 172

CN36XX —Page 173

CN38XX — Page 174

CNS0XX — Page 175

CN52XX —Page 176

CN54XX and CN55XX — Page 177
CN56XX and CN57XX — Page 178
CN5S8XX —Page 179

CN63XX — Page 180

CN_OCTEON_PRG GUIDE_Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS

Figure 59: Input Ports: CN3005

CN3005 IPD Input Ports Example
Ports Available .
Input IPD CN3005 Ports 0-1 Options
Port Port
Num Num Packet Interface Option 1
Packet 0 8 N 0
Interface = Input IPD
0 T 1o~ 1 Port Port
2 Num Num
3 RGMII or
4 ¢ Mil ¢
5
1 GMII or MlI 1
6
7
8
9
10 Packet Interface Option 2
1 Input IPD
12 Port Port
13 Num Num
14 RGMIl or
15 . Mil ¢
16
1 RGMII 1
17
18
18
20
ol Notes:
22
23 Note 1:- Ports which are not colored in
24 are unused.
22 Note 2: There is no loopback available.
27 Note 3: The Media-Independent
28 Interface (MIl) can be used as a packet
PC 29 interface on these processors.
Input
Ports 30 Note 4: Ports 2-31 are not used. The
31 unused port numbers correspond to
0 —Pp 32 active ports on other processors. This
. configuration is necessary to support
L » 33 software re-use.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-169

=
A
o
=
=
]
=5
Ll
A

-]
[
)
&
=
(="
=
)
=

2, CAVIUM o
é NETWORKS OCTEON Programmer’s Guide

Figure 60: Input Ports: CN3010

CN3010 IPD Input Ports Example
Ports Available -
Input IPD CN3010 Ports 0-1 Options
Port Port
Num Num Packet Interface Option 1
Packet 0 5N 0
Interface B 6 Input IPD
0 T 16| 1 Port Port
2 Num Num
3 RGMII or
4 ¢ Mil L
5
1 GMll or MII | . 1
6
7
2 Unused 2
8
9
10 Packet Interface Option 2
L Input IPD
12 Port Port
13 Num Num
14 RGMII or
15 ¢ Mil ¢
16
1 RGMiIl 1
17
18
— 2 RGMII 2
18
20
21
o | Notes:
23 Note 1: Ports which are not colored in
24 are unused.
25
26 Note 2: There is no loopback available.
27 Note 3: The Media-Independent
28 Interface (MII) is used as a packet
PCI 29 interface on these processors.
Input "
Ports 30 Note 4: Ports 2-31 are not used. The
31 unused port numbers correspond to
0 —P 32 active ports on other processors. This
1 —Pp 33 configuration is necessary to support
- software re-use.

6-170 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

2=, CAVIUM
< NETWORKS

Figure 61: Input Ports: CN3020
CN3020 IPD Input Ports Example

Ports Available
Input IpD | Notes:
Port Port
Num Num

=
A
o
=
=
]
=5
Ll
A

Note 1: Ports which are not colored in
are unused.

Packet 0
Interface| 1

0 2

Note 2: There is no loopback available.

RGMII

Note 3: Ports 3-31 are not used. The
unused port numbers correspond to
active ports on other processors. This
S configuration is necessary to support
6 software re-use.

PCI 29
Input T
Ports 30

—
1 =P 33

CN_OCTEON_PRG_GUIDE VolI2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-171

g CAVIUM OCTEON Programmer’s Guide

- NETWORKS
]
iy Figure 62: Input Ports: CN31XX
=
o CN31XX IPD Input Ports Examples
p-U
-} Ports Available)
Input IPD CN31XX Ports 0-1 Options
Port Port
Num Num Packet Interface Option 1
Packet 0 &5« 0 Input IPD
Interface 1 56 1 Port Port
0 2 O] 2 Num Num
3
0 RGMII 0
4
5
1 GMIl 1
6
7
3 2 UNUSED 2
9
10 Packet Interface Option 2
" Input IPD
12 Port Port
13 Num Num
14
0 RGMII 0
15
16
1 RGMII 1
17
18
2 RGMII 2
18
20
21
22 Notes:
23
24 Note 1: Ports which are not colored in
are unused.
25
26 Note 2: There is no loopback port
27 available.
28
PCI 29 Note 3: Ports 3-31 are not used. The
Input unused port numbers correspond to
Ports 30 active ports on other processors. This
31 configuration is necessary to support
0 » 32 software re-use.
1 —P 33

6-172 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS
>
Figure 63: Input Ports: CN36XX =
=
CN36XX IPD Input Ports Examples <
=
RGMIl Mode SPI-4.2 Mode A
Input IPD Input IPD
Port Port Port Port
Num Num Num Num
Packet 0, 9 Packet 0 0
Interface 1= 11 Interface L L
2 192 2 2
0 31%[3 0 3 3
4 4 4
5 5| o5
6 6 | 86
7 7|27
8 8 |4 [8
9 9 |z [9
10 10| » | 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 PCI 28
ir?p?ult 29 input 29
ports :?;(1) ports g?
0P 32 0.—p 32
1 —P 33 1 —pi 33
2 —P 34 2 P34
3 —p 35 3 —Ppi 35
Notes:
Note 1: There is no loopback available.
Note 2: Ports which are not colored in are unused.
Note 3: In RGMII mode, ports 4-31 are not used. In SPI-4.2 mode,
ports 16-31 are not used. The unused port numbers correspond to
active ports on other processors. This configuration is necessary to
support software re-use.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-173

=

CAVIUM

OCTEON Programmer’s Guide

NETWORKS
=
i Figure 64: Input Ports: CN38XX
=
o CN38XX IPD Input Ports Examples
p-U
< RGMII Mode SPI-4.2 Mode
Input IPD Input IPD
Port Port Port Port
Num Num Num Num
Packet 0 = 0 Packet 0 0
Interface 11=11 Interface 1 1
219 2 2 2
0 313 0 3 3
4 4 4
5 5 o | 5
6 6 | 86
7 7 E 7
8 8 |4 [8
9 9 |z [9
10 10 | © | 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
0 _ |16 0 16
Fooe T E 7 Asewiling @i
) 2918) 2 18
3 19 3 19
20 4 20
21 5 o | 21
22 6 | 8 22
23 N Q2B
24 8.« | 24
25 9 |z |25
26 10 & [26
27 11 27
28 12 28
irF:Cu't 29 13 29
P 30 14 30
ports 31 15 31
0. i 32 ol (0.9 32
1 —P 33 input . | — 33
2 P 34 '”pr‘tJ 2 P34
3 P 35 PONS. T3Pl 35
Notes:
Note 1: The packet interfaces may also be combined as one RGMII
and one SPI 4.2.
Note 2: There is no loopback available.
Note 3: For packet interface 0, In RGMIlI mode, ports 4-15 are not
used. For packet interface 1, in RGMII mode, ports 20-31 are not
used. Ports which are not colored in are unused.

6-174 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide ‘é CAVIUM

NETWORKS
=
2o
Figure 65: Input Ports: CN50XX =
CN50XX IPD Input Ports Examples 5
=5
Ports Available : =
Input IPD CN50XX Ports 0-1 Options
Port Port
Num Num Packet Interface Option 1
packet | 0 | sov| O Input IPD
Interface| 1 5 o Port Port
0 2 |O7 | 2 Num Num
3 RGMII or
4 g Mill g
5
1 GMiIl or MII 1
6
7
8 2 UNUSED 2
9
10 Packet Interface Option 2
" Input IPD
12 Port Port
13 Num Num
14 RGMIl or
15 J Mil g
16
1 RGMII 1
17
18
2 RGMI| 2
18
20
21
22 Notes:
23
24 Note 1: Ports which are not colored in
are unused.
25
26 Note 2: There is no loopback available.
27
28 Note 3: The Media-Independent
PCI 29 Interfaces (MIl) are used as packet
Input interfaces on these processors.
Ports 30
31 Note 4: Ports 3-31 are not used. The
0 | p 32 unused port numbers correspond to
active ports on other processors. This
L P 33 configuration is necessary to support
software re-use.

CN_OCTEON_PRG GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-175

-]
[
)
&

=

(="
=
)
=

2=, CAVIUM
< NETWORKS

OCTEON Programmer’s Guide

Figure 66: Input Ports: CN52XX

SGMII MODE

Input IPD
Port
Num

Z7U
O|O|N|O|O|D|WN =IO c o
33

-
o

-
N

alalala
B WN

-
(o)

Packet
Interface
0

-
~

SGMII
%

PCle Config:
(2 lanes PCle +

2 lanes PCle)
Or 4 lanes PCle

PKO input
output
port
num

WIWIWININININININININININ=
N|= (OO0 N|O| 0B W N~ Ol

PCle
Rings
‘oo
w

W W W W
EEAR

[36]
37]
38} 38
39 | 39
Loopback

PKO

Notes:
Note 1: “XA” = XAUI
Note 2: Ports which are not colored in are unused.

one 4-lane PCle interface or two 2-lane PCle interfaces.

mode is configured in hardware.

CN52XX IPD Input Ports Examples

XAUI MODE

Input IPD

Port Port

Num Num
| 0|
L1
| 2
| 3
| 4 |
| S |
| 6 |
|7
| 8 |
| 9 |
| 10 |
|11
|12]
13]
|14 |

15

Packet [0 [x <16
Interface %
0 = 1
| 18 |

20

PCle Config:
(2 lanes PCle +
2 lanes PCle)

Or 4 lanes PCle

W W WIWINININININININININ
WIN|=O|©|00|NO| OB WN—

PCle
input
ouput P18
port L0 Ao 2
O Sras]
num Y 7| 34
V) a5
36 1 36
O | 37 ¢ 37
£ 38 38
39 | 39
Loopback

Note 5: 'Input is provided by 2 Quad-Lane Input Modules (QLMSs).
QLMO can be connected to PCle controller 0 and (optionally) PCle controller 1, creating either

Note 3: The Media-Independent Interfaces (MIl) are not used as packet interfaces on these processors.
Note 4: Ports 0-15 are not used. The unused port numbers correspond to active ports on other
processors. This configuration is necessary to support software re-use.

Note 6: If QLM1's packet interface type may be configured to be SGMII, XAUI (XA), or PICMC. QLM

6-176 Cavium Networks Proprietary and Confidential - DO NOT COPY

CN_OCTEON_PRG GUIDE_Vol2A

/~, CAVIUM

OCTEON Programmer’s Guide

=
=5
Figure 67: Input Ports: CN54XX and CN55XX =
=
CN54XX, CN55XX IPD Input Ports Examples «
=9
SGMII MODE XAUI MODE 8 Lanes PCle + E
(8 lanes PCle + (8 lanes PCle + 8 Lanes PCle
4 lanes PCle) 4 lanes PCle)
Input IPD Input IPD IPD
Port Port Port Port Port
Num Num Num Num Num
| 0| 1 0| 1 0|
1 1 1
|2 | |2 |2
|3 |3 |3
4		4	4	
5		5		5
6		6		6
L7 L7 L7				
8		8		8.
9		9	19	
10		10		10
11 11 11				
12		12		12
13] IKER IKER				
14		14		14
15 15	15			
Packet	O	=	16 Packet [0 <] 16	16
1	5	17 17 17		
Interface 210 18	Interface KR KGR			
0 5 P e 0 TR TR				
3 18	18		18	
20		20		20
; 21 - 21 . 21
PCle Config: 27 PCle Config: 22| PCle Config: 22|
8 lanes PCle 23] 8 lanes PCle 23] 8 lanes PCle 23]
+ 24 + 24 3 24
4 lanes PCle 25 4 lanes PCle 25 8 lanes PCle 25
26 26 26
27 27 27
28 28 28
PCle 29 PCle 29 PCle 29
input 30 input 30 input 30
PKO ports 31 PKO " ports 31 PKO _ ‘ports 31
output 32 output 37 output 32
23:1 @*8 é 33 port @*g é’a 33 port @\Lg § 33
o | 94 | 34 num 0 ¥ 34 num 0 ¥ 34
T E [T PR o Y &35
36 ¢ 36 36 ¢ 36 36 ¢ 36
O | 37 ¢ 37 O | 37 ; 37 o |37/ 37
£ [38 38 £ 38 38 £ 38 38
39 39 39 39 [39 39
Loopback Loopback Loopback

Note 1: Input is provided by 4 Quad-Lane Modules (QLMs), each able to provide 4 lanes of SerDes.
QLMO and QLM1:" dedicated to PCle, connected to PCle controller O (8 lanes of SerDes)

QLM2: dedicated to PCle, connected to PCle controller 1 (4 lanes of SerDes)

QLM3: optionally either connected to PCle controller 1, or to Packet Interface 1

If QLM3 is configured as PCle, it is combined with QLM2 to provide 8 lanes of SerDes on PCle controller 1

Note 2: If QLM3 is configured as a packet interface, its packet interface type may be configured to be
SGMII, XAUI (shown as “XA” in the figurer), or PICMG. QLM mode is configured by hardware.

Note 3: IPD ports which shown in white are unused. This information is provided to emphasize the gap in
IPD port numbers.

Note 4: The Media-Independent Interface (MIl) does not supply packets to IPD. Mll packets traverse
memory ring buffers outside of the IPD/PIP/SSO path.

CN_OCTEON _PRG_GUIDE Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-177

g CAVIUM OCTEON Programmer’s Guide

w
]
C) .
i Figure 68: Input Ports: CN56XX and CN57XX
=
- CN56XX, CN57XX IPD Input Ports Examples
(=
p-U
) SGMII MODE XAUI MODE 8 Lanes PCle + 8 4 Lanes PCle + 1 XAUI
(4+4 PCle) (4+4 PCle) Lanes PCle + 8 Lanes PCle
Input IPD Input IPD IPD Input IPD
Port Port Port Port Port Port Port
Num Num Num Num Num Num Num
Packet |91 = O] Packet [0 X< 0 1 0| Packet [0 x<l0
Interface -y Interface L . Interface L
2102 2 2 2
0 3 1% 3] 0 3] 3| 0 3]
| 4] |4 | 4 | |4 |
| S S | 1S | | S
| 6 | | 6 | | 6 | | 6 |
L7 L7 L7] L7
| 8 | | 8 | | 8 | | 8 |
19 | 9 | 19 | 19 |
1 10 | 1 10 | 1 10 | 1 10 |
1 1 11 1
|12 | 112 | 112 | |12 |
IKER IER E |13]
| 14| | 14| |14] | 14|
15 15 15 |15 |
1 0 | _ [16] [0 <] 16 16 | 16 |
Packet |1 | S [17 | Iria(r:kat | 17 | 17 |17 |
Interface [2 | & [18 | enace 18 | 18 8|
1 3 18 | 18 | 18 | | 18 |
| 20 | | 20 | 120 | | 20 |
121 | | 21| | 21 PCle Confia: |21 |
PCle Config: 22| PCle Config: 22| PCle Config: 22 e [22]]
4 lanes PCle | 23 | 4 lanes PCle | 23 | 8 lanes PCle 23 anes e | 23 |
v 24| " 24| + 24] 1XAUI | 24|
4 lanes PCle 272 4 lanes PCle 272 8 lanes PCle 372 8 Iane; PCle 272
27 27 ¥:a 27
| 28 | | 28 | 28 | 28 |
PCle 129 | PCle 29| PCle 29 PCle | 29 |
input | 30 | input | 30 | input 30 input | 30 |
oTt(pOut ports 31 ozlt(p?n ports 31 Plt<ot ports 1 Plt(ot ports 31
32 32 outpu 32 outpu 32
23:1 @*8 833 | port @\Ag & 33 | port @‘Ag g 33 port @ig 833 |
WOTEEE || MM THYRESE || MM THYEESH || M rrvEE i
| 36 1 36 | 361 136 | .36 36 | 36 1 36 |
o [37 37 o [37 37 o 37 37 o [37 37
& [38 38 | £ 38 38 | £ [38 38 & 38 38 |
39 | 1 39 | 39 | 1 39| 39 | 39 39 | 1 39 |
Loopback Loopback Loopback Loopback
Note1: Input is provided by 4 Quad-Lane Input Modules (QLMs), each able to provide 4 lanes of SerDes.
QLMO: dedicated to PCle, connected to PCle controller 0.
QLM1: optionally either connected to PCle controller 0 or to Packet Interface 0
QLM2: dedicated to PCle, connected to PCle controller 1.
QLMS3: optionally either connected to PCle controller 1 or to Packet Interface 1
If QLM1 is configured as PCle, it is combined with QLMO to provide 8 lanes of SerDes on PCle controller 0.
If QLM3 iis configured as PCle, it is combined with QLM2 to provide 8 lanes of SerDes on PCle controller 1.
Note2: If the QLM is configured as a packet interface, its packet interface type may be configured to be
SGMII, XAUI (shown as “XA” in the figure), or PICMG. QLM mode by configured in hardware.
Note3: IPD ports which shown in white are unused. This information is provided to emphasize the gap in IPD
port numbers.
Note4: The Media-Independent Interface (MIl) does not supply packets to IPD. MIl packets traverse memory
ring buffers outside of the IPD/PIP/SSO path.

6-178 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

OCTEON Programmer’s Guide

Figure 69: Input Ports: CN58XX

=

CAVIUM
NETWORKS

Notes:

CN58XX IPD Input Ports Example

RGMII Mode

Input
Port
Num

IPD
Port
Num

Packet

Interface

RGMII

0

0
1
2
3

O|O|IN|O|O|AWN=O

Packet

Interface

w|N| o
RGMII

1

PCI

input

ports

Hd

Note 2: There is no loopback available.

SPI-4.2 Mode

Input IPD
Port Port
Num Num

Packet (1) (1)
Interface 2 2
0 3 3

4 4

B o | 5

6 | 86

7 E 7

8 | & | 8

91z 19

10| » | 10

11 11

12 12

13 13

14 14

15 15

Packet (1) 1?
Inter1‘face 2 18
3 19

4 20

5 | o |21

6 | 8 22

N Q2B

8. .|« |24

9 1z [25

10 » | 26

11 27

12 28

13 29

14 30

15 31

0. —Pp 32

PCL = B33
input 2 Pl 34
ports 3 35

Note 1: The packet interfaces may also be combined as one RGMII
and one SP14.2.

Note 3: For packet interface 0, In RGMIlI mode, ports 4-15 are not
used. For packet interface 1, in RGMII mode, ports 20-31 are not
used. Ports which are not colored in are unused.

CN_OCTEON_PRG_GUIDE_Vol2A

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-179

=
A
o
=
=
]
=5
Ll
A

g CAVIUM OCTEON Programmer’s Guide

- NETWORKS
]
iy Figure 70: Input Ports: CN63XX
=
o CNG63XX IPD Input Ports Examples
p-U
S SGMII MODE XAUI MODE
Input IPD Input IPD
Port Port Port Port
Num Num Num Num
Packet % = % Packet ‘ 0 ‘X < (1)
Interface 2 %] Interface]
0 31% 3] 0 3|
4] 4]
| 5 | | 5 |
| 6 | | 6 |
L7 L7
| 8 | | 8 |
19 | 19 |
| 10| | 10
|11 A1
112 | 112 |
| 13 | | 13|
| 14 | | 14 |
| 15 | |15 |
| 16 | | 16 |
117 | 117 |
| 18 | | 18 |
| 18 | | 18 |
| 20 | | 20 |
| 21| | 21|
| 22 | | 22 |
| 23 | 1123 |
| 24 | | 24 |
| 25 | | 25 |
| 26 | | 26 |
| 27 | 27 |
| 28 | | 28 |
DPI 29 DPI 29
input | 30 | input 1.30 |
PKO ports 31 PKO ports 31
output 32 output 32
port -0 by 8 port O 855
Q= 34 o $/.34
num &35 num 5]
, | 36 | 1 36| , | 361 36 |
¥ O [37] 37 a¥ o [87 | 37
88 % 38 o8 | | 88 F [38
39 | 39 ; 39 | 39
sRIO0 Message Ports % sRIO0 Message Ports %
(QLMO) 42| (QLMO) a7
sRIO1 Message Ports 431 sRIO1 Message Ports 431
(QLM1) . (QLM1) —
Notes:
Note 1: The QLMO and QLM1 can be independently configured as either PCle or sRIO.
Note 2: sRIO-memory accesses will arrive via the DPI ports and
sRIO messages will arrive via the sRIO ports.
Note 3: If the QLMO is configured as PCle, then sRIO ports 40-41 are unused. If QLM1 is
configured as PCle, then sRIO ports 23-43 are unused.
Note 4: If the packet interface is configured as SGMII, ports 4-31 are unused. If the packet
interface is configured as XAUI (XA), then ports 1-31 are unused. If an sRIO-attached device
doesn't send sRIO messages, the sRIO ports are unused.
Note 5: IPD ports which shown in white are unused. This information is provided to emphasize
the gap in IPD port numbers.

6-180 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG GUIDE Vol2A

/~, CAVIUM
=

OCTEON Programmer’s Guide
8 " NETWORKS

19.1 Fast Links for Input Port Figures

The following links were provided at the beginning of this section, and are repeated here to provide
a fast way to access the different figures.

=
A
)
o=
=
«
A
e
A

Links to the different figures in this section:

Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:

Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:
Input Ports:

CN_OCTEON_PRG_GUIDE_Vol2A

CN3005 — Page 169

CN3010 —Page 170

CN3020 — Page 171

CN31XX —Page 172

CN36XX — Page 173

CN38XX — Page 174

CN50XX — Page 175

CN52XX —Page 176

CN54XX and CN55XX — Page 177
CN56XX and CN57XX — Page 178
CNS8XX — Page 179

CN63XX — Page 180

Cavium Networks Proprietary and Confidential - DO NOT COPY

6-181

	1 Introduction
	2 Simple Executive Configuration and APIs
	2.1 Simple Executive Configuration
	2.1.1 About FPA Pools

	2.2 Helper Functions
	2.3 PIP Functions
	2.4 PIP Data Structures and Defines
	2.4.1 The cvmx_pip_port_cfg_t Data Structure
	2.4.2 The cvmx_pip_port_tag_cfg_t Data Structure
	2.4.3 The cvmx_pip_parse_mode_t Defines (Parse Modes for Incoming Packets)
	2.4.4 The cvmx_pip_tag_mode_t Defines (control the initial SSO Tag Value)
	2.4.5 The cvmx_pow_tag_type_t Defines (control the initial SSO Tag Type)
	2.4.6 The cvmx_pip_port_status_t Data Structure
	2.4.7 The cvmx_pip_err_t Data Structure
	2.4.8 The Packet Instruction Header Data Structure
	2.4.9 L1/L2 Receive Error Codes (WQE WORD2[RE] ==1)
	2.4.10 L3 (IP) Error Codes (WQE WORD2[IE]==1)
	2.4.11 L4 Error Codes (WQE WORD2[LE]==1)

	2.5 IPD Functions
	2.6 IPD Defines
	2.6.1 The cvmx_ipd_mode_t Defines (How data is stored)

	2.7 Beyond the SDK: Custom Software

	3 IPD Input Ports
	3.1 CN56XX and CN57XX IPD Input Ports
	3.2 CN54XX and CN55XX IPD Input Ports

	4 Incoming Packet Formats
	4.1 Overall Processing Goal
	4.2 Parsing Modes
	4.2.1 Optionally removing the CRC (FCS) (CRC stripping)

	4.3 Optional Packet Instruction Headers
	4.3.1 The cvmx_pip_inst_hdr_t Data Structure
	4.3.2 RAW, RAWFULL, RAWSCH

	4.4 Optional PCIe Instruction Headers
	4.5 Registers to Configure Input Packet Format

	5 The Work Queue Entry Data Structure (WQE)
	5.1 Work Queue Entry Data Structure
	5.2 Software WQE Data Structures
	5.2.1 WQE The cvmx_wqe_t Data Structure
	5.2.2 WQE WORD2: The cvmx_pip_wqe_word2 Data Structure
	5.2.3 WQE WORD3: The cvmx_buf_ptr_t data structure

	6 How Parse Mode Affects WQE WORD2 Data Structure
	6.1 All Parse Modes if L1/L2 Error Occurs
	6.2 Parse Mode = Skip-to-L2
	6.3 Parse Mode = Skip-to-IP
	6.4 Parse Mode = Uninterpreted
	6.5 Registers to Configure WQE WORD2 Content
	6.6 Where to Find More Information About Parsing

	7 Scheduling (WQE WORD1)
	7.1 Work Group Assignment (WQE WORD1 Group Field)
	7.1.1 Registers to Configure Group Assignment

	7.2 QoS Assignment
	7.2.1 Registers to Configure QoS Assignment

	7.3 Tag Type Assignment
	7.3.1 WQE WORD1 Tag Type
	7.3.2 Registers to Configure Tag Type Assignment

	7.4 Tag Value Assignment
	7.4.1 Registers to Configure Tag Value Assignment

	7.5 Using Watchers to Set QoS and Group

	8 Security
	9 Error Check Configuration
	9.1 CRC Check Configuration

	10 Packet Storage
	10.1 The Part of the Received Data Which is Stored
	10.2 Packet Storage in Packet Data Buffers
	10.2.1 Storing WQE in Packet Data Buffer instead of WQE Buffer

	10.3 Choices for Writing Packet Data Buffer(s) to L2/DRAM
	10.4 Packet Data Storage in WQE WORD4-15
	10.4.1 Finding the Start of an IP Packet in the WQE
	10.4.2 Dynamic Short Storage in WQE

	10.5 Accessing Packet Data When Some Packets are Dynamic Shorts
	10.6 Configuring Packet Storage

	11 Statistics (Performance, Debugging)
	12 Congestion Control (Backpressure, Packet Drop, RED, WRED)
	12.1 System-Level View of Congestion: Causes and Prevention
	12.1.1 Congestion Management Design Issues:
	12.1.2 Normal Congestion
	12.1.3 Unexpected Congestion

	12.2 Overview of Congestion-Control Mechanisms Provided by PIP/IPD
	12.3 Critical Backpressure (Buffer Exhaustion)
	12.4 PIP/IPD Congestion-Control Configuration
	12.4.1 Basic QoS RED Configuration: cvmx_helper_setup_red()
	12.4.2 Basic QoS WRED Configuration: cvmx_helper_setup_red_queue()
	12.4.3 Custom Configuration

	12.5 Per-QoS Admission Control (RED and WRED) (PQ-RED)
	12.5.1 The Simplest Case: Snapshot Value (Recommended)
	12.5.2 More Complex: Moving Average

	12.6 Per-Port Congestion Control (Backpressure, Packet Drop) (PP-B, PP-PD)
	12.6.1 Per-Port Backpressure (PP-B)
	12.6.2 Per-Port Packet Drop (PP-PD)

	12.7 Per-Port RED

	13 Per QoS/Port Buffer Tracking
	14 Appendix A: PIP/IPD Registers and Register Fields
	15 Appendix B: Industry-Standard Reference Information
	15.1 L2 Header Formats
	15.1.1 L2 Header Type Field Values (EtherType)
	15.1.2 L2 Header VLAN, VLAN 1 Field Details

	15.2 L3: IPv4 Header
	15.2.1 IPv4 Protocol Field Values

	15.3 L3: IPv6 Header
	15.4 L4: TCP Header
	15.5 L4: UDP Header

	16 Appendix C: Input Packet Parsing Details
	17 Appendix D: A Note about Configuring GMX Backpressure
	18 Appendix E: Example Code (linux-filter)
	19 Appendix F: Input Port Configuration
	19.1 Fast Links for Input Port Figures

