
PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-1

Packet Input Processor (PIP) and
Input Packet Data (IPD) Units

Revision History
Revision2 - Nov. 19, 2010
1. Changed chapter number from 4 to 6.
2. Changed references to the Configuration and Advanced Topics chapter: these are two
separate chapters now.
3. Added references to new Essential Topics and Advanced Topics chapters.
4. Added Revison History.

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 4
LIST OF FIGURES .. 5
1 ... 7 Introduction
2 ... 11 Simple Executive Configuration and APIs

2.1 ... 13 Simple Executive Configuration
2.1.1 .. 14 About FPA Pools

2.2 ... 17 Helper Functions
2.3 .. 19 PIP Functions
2.4 ... 20 PIP Data Structures and Defines

2.4.1 ... 20 The cvmx_pip_port_cfg_t Data Structure
2.4.2 .. 20 The cvmx_pip_port_tag_cfg_t Data Structure
2.4.3 20 The cvmx_pip_parse_mode_t Defines (Parse Modes for Incoming Packets)
2.4.4 20 The cvmx_pip_tag_mode_t Defines (control the initial SSO Tag Value)
2.4.5 21 The cvmx_pow_tag_type_t Defines (control the initial SSO Tag Type)
2.4.6 .. 22 The cvmx_pip_port_status_t Data Structure
2.4.7 ... 23 The cvmx_pip_err_t Data Structure
2.4.8 ... 23 The Packet Instruction Header Data Structure
2.4.9 ... 23 L1/L2 Receive Error Codes (WQE WORD2[RE] ==1)
2.4.10 ... 24 L3 (IP) Error Codes (WQE WORD2[IE]==1)
2.4.11 ... 24 L4 Error Codes (WQE WORD2[LE]==1)

2.5 ... 25 IPD Functions
2.6 .. 26 IPD Defines

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

2.6.1 .. 26 The cvmx_ipd_mode_t Defines (How data is stored)
2.7 .. 26 Beyond the SDK: Custom Software

3 ... 26 IPD Input Ports
3.1 .. 27 CN56XX and CN57XX IPD Input Ports
3.2 .. 34 CN54XX and CN55XX IPD Input Ports

4 ... 38 Incoming Packet Formats
4.1 ... 38 Overall Processing Goal
4.2 .. 38 Parsing Modes

4.2.1 .. 40 Optionally removing the CRC (FCS) (CRC stripping)
4.3 .. 40 Optional Packet Instruction Headers

4.3.1 ... 43 The cvmx_pip_inst_hdr_t Data Structure
4.3.2 ... 43 RAW, RAWFULL, RAWSCH

4.4 ... 46 Optional PCIe Instruction Headers
4.5 .. 48 Registers to Configure Input Packet Format

5 .. 49 The Work Queue Entry Data Structure (WQE)
5.1 .. 49 Work Queue Entry Data Structure
5.2 .. 51 Software WQE Data Structures

5.2.1 ... 52 WQE The cvmx_wqe_t Data Structure
5.2.2 52 WQE WORD2: The cvmx_pip_wqe_word2 Data Structure
5.2.3 ... 55 WQE WORD3: The cvmx_buf_ptr_t data structure

6 .. 55 How Parse Mode Affects WQE WORD2 Data Structure
6.1 ... 56 All Parse Modes if L1/L2 Error Occurs
6.2 .. 58 Parse Mode = Skip-to-L2
6.3 .. 63 Parse Mode = Skip-to-IP
6.4 ... 66 Parse Mode = Uninterpreted
6.5 ... 71 Registers to Configure WQE WORD2 Content
6.6 ... 71 Where to Find More Information About Parsing

7 .. 72 Scheduling (WQE WORD1)
7.1 ... 72 Work Group Assignment (WQE WORD1 Group Field)

7.1.1 ... 75 Registers to Configure Group Assignment
7.2 ... 75 QoS Assignment

7.2.1 .. 79 Registers to Configure QoS Assignment
7.3 ... 81 Tag Type Assignment

7.3.1 .. 81 WQE WORD1 Tag Type
7.3.2 .. 83 Registers to Configure Tag Type Assignment

7.4 ... 83 Tag Value Assignment
7.4.1 .. 93 Registers to Configure Tag Value Assignment

7.5 .. 95 Using Watchers to Set QoS and Group
8 ... 97 Security
9 ... 98 Error Check Configuration

9.1 .. 101 CRC Check Configuration
10 .. 102 Packet Storage

10.1 ... 103 The Part of the Received Data Which is Stored
10.2 ... 104 Packet Storage in Packet Data Buffers

10.2.1 108 Storing WQE in Packet Data Buffer instead of WQE Buffer
10.3 .. 109 Choices for Writing Packet Data Buffer(s) to L2/DRAM

6-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-3

10.4 ... 110 Packet Data Storage in WQE WORD4-15
10.4.1 .. 113 Finding the Start of an IP Packet in the WQE
10.4.2 ... 114 Dynamic Short Storage in WQE

10.5 115 Accessing Packet Data When Some Packets are Dynamic Shorts
10.6 .. 117 Configuring Packet Storage

11 .. 121 Statistics (Performance, Debugging)
12 .. 123 Congestion Control (Backpressure, Packet Drop, RED, WRED)

12.1 ... 123 System-Level View of Congestion: Causes and Prevention
12.1.1 .. 123 Congestion Management Design Issues:
12.1.2 ... 123 Normal Congestion
12.1.3 .. 124 Unexpected Congestion

12.2 127 Overview of Congestion-Control Mechanisms Provided by PIP/IPD
12.3 ... 128 Critical Backpressure (Buffer Exhaustion)
12.4 ... 129 PIP/IPD Congestion-Control Configuration

12.4.1 130 Basic QoS RED Configuration: cvmx_helper_setup_red()
12.4.2 .. 130 Basic QoS WRED Configuration: cvmx_helper_setup_red_queue()
12.4.3 .. 130 Custom Configuration

12.5 .. 130 Per-QoS Admission Control (RED and WRED) (PQ-RED)
12.5.1 .. 134 The Simplest Case: Snapshot Value (Recommended)
12.5.2 .. 137 More Complex: Moving Average

12.6 139 Per-Port Congestion Control (Backpressure, Packet Drop) (PP-B, PP-PD)
12.6.1 .. 140 Per-Port Backpressure (PP-B)
12.6.2 .. 144 Per-Port Packet Drop (PP-PD)

12.7 .. 149 Per-Port RED
13 .. 149 Per QoS/Port Buffer Tracking
14 .. 149 Appendix A: PIP/IPD Registers and Register Fields
15 .. 150 Appendix B: Industry-Standard Reference Information

15.1 ... 151 L2 Header Formats
15.1.1 ... 152 L2 Header Type Field Values (EtherType)
15.1.2 .. 152 L2 Header VLAN, VLAN 1 Field Details

15.2 ... 153 L3: IPv4 Header
15.2.1 ... 155 IPv4 Protocol Field Values

15.3 ... 156 L3: IPv6 Header
15.4 ... 158 L4: TCP Header
15.5 .. 159 L4: UDP Header

16 .. 160 Appendix C: Input Packet Parsing Details
17 ... 163 Appendix D: A Note about Configuring GMX Backpressure
18 .. 164 Appendix E: Example Code (linux-filter)
19 ... 168 Appendix F: Input Port Configuration

19.1 .. 181 Fast Links for Input Port FiguresCav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

 LIST OF TABLES
Table 1: Summary of Relevant Functions ... 11
Table 2: Simple Executive PIP/IPD Configuration Variables ... 13
Table 3: Default FPA Pool Configuration ... 15
Table 4: Packet Data Buffers Information ... 15
Table 5: Work Queue Entry Buffers Information .. 16
Table 6: Helper Functions ... 17
Table 7: PIP Functions ... 19
Table 8: IPD API Functions .. 25
Table 9: CN56XX and CN57XX Packet Input Configuration Options .. 28
Table 10: CN54XX and CN55XX Packet Input Configuration Options .. 34
Table 11: Registers to Configure Input Packet Format ... 48
Table 12: Registers to Configure Work Queue Entry Details ... 49
Table 13: Fields: WQE WORD2 Fields if L1/L2 Error (CASE 3C) .. 57
Table 14: WQE WORD2 Fields for Skip-to-L2 and Is_IP (CASE 2A) .. 60
Table 15: WQE WORD2 Fields for Skip-to-L2 and NOT IP (CASE 3A) 62
Table 16: WQE WORD2 Fields for Skip-to-IP (CASE 2B) ... 64
Table 17: WQE WORD2 Fields for RAWFULL (CASE 1A and CASE 1B) 68
Table 18: WQE WORD2 Fields for Uninterpreted and not RAW (CASE 3B) 69
Table 19: Registers to Configure Work Queue Entry WORD2 .. 71
Table 20: Registers to Configure WQE WORD1 Group Assignment .. 75
Table 21: Registers to Configure WQE WORD1 QoS Assignment ... 79
Table 22: Registers to Configure WQE WORD1 Tag Type Assignment 83
Table 23: Registers to Configure WQE WORD1 Tag Value Assignment 93
Table 24: Registers to Configure Watchers ... 96
Table 25: Registers to Configure IP Security .. 98
Table 26: Registers To Configure Error Checking .. 98
Table 27: Registers Used to Configure CRC Check ... 102
Table 28: Packet Data Buffer Write to L2/DRAM Choices (Global Option) 109
Table 29: Registers to Configure Packet Storage .. 117
Table 30: Statistics Register Fields (Read Only) ... 122
Table 31: Overview of PIP/IPD Congestion Control Mechanisms ... 127
Table 32: Critical Backpressure Overview .. 129
Table 33: Overview of Per-QoS RED and WRED .. 132
Table 34: Registers to Configure Per-QoS RED/WRED – Snapshot .. 136
Table 35: Registers to Configure Per-QoS RED/WRED – Moving Average 138
Table 36: Per-Port Backpressure Overview .. 142
Table 37: Registers to Configure Per-Port Backpressure .. 142
Table 38: Per-Port Packet Drop Overview .. 146
Table 39: Registers to Configure Per-Port Packet Drop .. 147
Table 40: L2 Header Type Field Values (EtherType) .. 152
Table 41: IPv4 Header Fields .. 153
Table 42: IPv4 Protocols ... 155
Table 43: IPv6 Header Fields .. 157
Table 44: Overview of GMX Registers Used to Configure Backpressure 163

6-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-5

LIST OF FIGURES
Figure 1: Overview of PIP/IPD Processing ... 10
Figure 2: CN56XX and CN57XX IPD Input Ports ... 29
Figure 3: CN56XX and CN57XX QLM Configuration Choices .. 31
Figure 4: PCIe Rings: PCIe Port Connection to IPD Input Ports ... 33
Figure 5: CN54XX and CN55XX IPD Input Ports ... 35
Figure 6: CN54XX and CN55XX QLM Configuration Choices .. 37
Figure 7: Parsing Mode Choices Without Packet Instruction Header ... 39
Figure 8: Input Packet Format Options ... 41
Figure 9: Packet Instruction Header – Hardware View ... 42
Figure 10: WQE Information Copied From the Packet Instruction Header 45
Figure 11: PCIe Instruction Header Conversion to Packet Instruction Header 47
Figure 12: Work Queue Entry Data Structure – Hardware View .. 50
Figure 13: Parsing Cases ... 56
Figure 14: WORD2 if L1/L2 Error (CASE 3C) .. 57
Figure 15: WORD2 if PM=Skip-to-L2, No L1/L2 Errors (CASE 2A, CASE 3A) 59
Figure 16: WORD2 if PM=Skip-to-IP and No L1/L2 Errors (CASE 2B) 64
Figure 17: WORD2 if PM=Unint., RAW, No L1/L2 Errors (CASE 1A, CASE 1B) 67
Figure 18: WORD2 if PM=Unint., NOT RAW, No L1/L2 Errors (CASE 3B) 69
Figure 19: Group Assignment Flow Chart .. 74
Figure 20: Deriving QoS From VLAN Priority .. 76
Figure 21: QoS Assignment Flowchart, part 1 .. 77
Figure 22: QoS Assignment Flowchart, part 2 .. 78
Figure 23: Tag Type Assignment Flowchart ... 82
Figure 24: Tag Value Data Structure ... 84
Figure 25: Using Tag Mask to Include/Exclude Bytes in Mask Tag .. 85
Figure 26: Tag Mask Register Bits Correspondence to Packet Data Bytes 86
Figure 27: Tag Value Flow Chart .. 88
Figure 28: Flowchart for hw_tuple_tag() Function .. 89
Figure 29: Flowchart for hw_ipv4_hash() Function .. 90
Figure 30: Flowchart for hw_ipv6_hash() Function .. 91
Figure 31: Flowchart for hw_mask_tag() Function .. 92
Figure 32: Overview of Storing Received Data .. 104
Figure 33: Next Buffer Pointer (Next_Buf_Ptr) Data Structure ... 105
Figure 34: Packet Storage Using Multiple Packet Data Buffers (MBUFs) 107
Figure 35: Write Packet Data to L2/DRAM Choices .. 110
Figure 36: Format of Packet Data Stored in WQE WORD4-WORD15 111
Figure 37: Format of Packet Data in WQE if PIP_IP_OFFSET[OFFSET]==0 112
Figure 38: Locating the Start of an IP Packet in the WQE .. 114
Figure 39: System View of Backpressure/Congestion, part 1 ... 125
Figure 40: System View of Backpressure/Congestion, Part 2 ... 126
Figure 41: Critical Backpressure Situation, Backpressure on All Ports .. 128
Figure 42: Per-QoS Weighted Random Early Drop (WRED) ... 131
Figure 43: Per-QoS Admission Control (RED/WRED) Options .. 133

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 44: Per-QoS RED – Using Snapshot Value ... 134
Figure 45: Configuring WRED: Different Watermarks for Each QoS Queue 135
Figure 46: Per-Port In-Use Buffer Limit (Threshold) ... 140
Figure 47: Congestion Control: Per-Port Backpressure ... 141
Figure 48: Congestion Control: Per-Port Packet Drop ... 145
Figure 49: L2 Header Formats ... 151
Figure 50: L2 Header and VLAN, VLAN1 Field Details – CFI, VLAN ID 152
Figure 51: IPv4 Header .. 153
Figure 52: IPv6 Header .. 156
Figure 53: IPv4 Header with TCP/IP ... 158
Figure 54: UDP Header ... 159
Figure 55: Input Packet Parsing Cases .. 160
Figure 56: Input Packet Parsing Flowchart, Part 1 .. 161
Figure 57: Input Packet Parsing Flowchart, Part 2 .. 162
Figure 58: Linux-Filter .. 165
Figure 59: Input Ports: CN3005 ... 169
Figure 60: Input Ports: CN3010 ... 170
Figure 61: Input Ports: CN3020 ... 171
Figure 62: Input Ports: CN31XX .. 172
Figure 63: Input Ports: CN36XX .. 173
Figure 64: Input Ports: CN38XX .. 174
Figure 65: Input Ports: CN50XX .. 175
Figure 66: Input Ports: CN52XX .. 176
Figure 67: Input Ports: CN54XX and CN55XX ... 177
Figure 68: Input Ports: CN56XX and CN57XX ... 178
Figure 69: Input Ports: CN58XX .. 179
Figure 70: Input Ports: CN63XX .. 180

6-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-7

1 Introduction
 In the Packet Flow chapter of the OCTEON Programmer’s Guide (The Fundamentals), the actions
performed by the Packet Input Processor (PIP) and Input Packet Data (IPD) are shown with
minimal details. This chapter provides in depth detail of the processing performed by these two
units, and how to customize their configuration to optimize throughput.

Together, PIP/IPD:

1. Parse the packet, checking for errors in L2/L3 headers
2. Provide congestion control: drop packet and/or backpressure as needed
3. Create a Work Queue Entry (WQE) for the packet if it is not dropped
4. Determine packet properties which affect subsequent scheduling actions by the SSO

(POW) (Group, QoS, Tag Type, Tag Value)
5. Store the packet data
6. Send the WQE to the SSO for scheduling

The PIP/IPD provides a tremendous amount of configuration flexibility. Correct configuration of
the PIP/IPD requires a clear view of the desired software architecture and specifics of the target
application. Before reading this chapter, it is essential to understand the contents of the Packet
Flow chapter. It is also helpful to read the Software Overview chapter (especially the Software
Architecture section), the Essential Topics, Configuration, Advanced Topics, and the Free Pool
Allocator (FPA) chapters These chapters help the user visualize the overall system necessary to
develop a customized solution which will best fit the target application. The PIP/IPD is a central
component of that customized solution.

Because of the feature-richness flexibility of the PIP and IPD units, the chapter describing these
features is quite extensive. The chapter is designed so that readers can select the relevant section
their specific application, and ignore sections discussing unused features.

Although the PIP and IPD are separate units, they are so closely associated that they are collected
into a pseudo-block, the Packet Input (PKI) block. This pseudo-block is only used in high-level
diagrams, and is not used in the text of this chapter.

The PIP/IPD works closely with:

• The Packet Input Interfaces
• The Free Pool Allocator (FPA)
• The Schedule Synchronization Order (SSO) unit. (The SSO unit is referred to as the Packet

Order Work unit, or POW in the Hardware Reference Manual.)

The PIP/IPD receives the packet data from a traffic ingress port (for example, GMII). By using
configuration information from PIP/IPD Configuration and Status Registers (CSRs), and from
parsing the packet header, PIP/IPD determines the essential packet scheduling information: QoS
level, Work Group ID, Tag Value, and Tag Type. The PIP/IPD creates a Work Queue Entry
(WQE) and forwards it to the SSO. PIP/IPD stores the packet data in L2/DRAM, using a dedicated
bus to the I/O Bridge (IOB). If necessary, congestion control is managed via backpressure or RED.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The FPA maintains two pools of buffers: the Packet Data buffer pool and the Work Queue Entry
buffers. Packet Data buffers and WQE buffers are automatically allocated from the appropriate
FPA pool by PIP/IPD. The size and quantity of buffers, and the WQE buffer pool number are
configured when Simple Executive is configured at build time. The Packet Data buffer pool is
required by hardware to be FPA pool 0. The pool number not a configurable option. See the
Essential Topics, Configuration, and FPA chapters for details.

The IPD is responsible for:

• If required by PIP/IPD congestion control mechanisms, backpressure ports
• If no backpressure, IPD is responsible for receiving the packet from the input ports
• If required by configurable congestion control mechanisms, drop the packet, otherwise

continue packet processing
• Allocating the Work Queue Entry buffer from the WQE buffer pool maintained by the FPA
• Allocating the Packet Data buffers from the Packet Data buffer pool in maintained by the

FPA
• Storing information in the Work Queue Entry, including the QoS queue, Work Group, Tag

Type, and Tag Value which are computed by the PIP
• Storing information in the Packet Data Buffer(s) as needed
• Writing the Packet Data Buffer(s) to L2/DRAM
• Performing the add_work operation to add the Work Queue Entry to the appropriate

Quality of Service (QoS) queue in the SSO

The PIP is responsible for:

• Packet parsing
• Perform optional checks on the packet
• Compute the QoS queue, Work Group, Tag Type, and Tag Value
• Provide QoS, Work Group, Tag Type, and Tag Value information to IPD

The OCTEON Software Development Kit supports the PIP/IPD units with a thin layer of software
designed to serve as a base for more complex customized development. Because of the rich
features provided by the PIP/IPD units, the API does not cover all possible uses. This chapter
provides an overview of the API and the details needed to get started with customization.

The CN54/55/56/57 Hardware Reference Manual (HRM) was used to create many of the examples
in this document. Different processors have slight differences in implementation, primarily in
ports and interfaces supported. Whenever information in the HRM conflicts with information in
this chapter, it is assumed that the HRM is more correct.

The HRM is an essential reference when writing customized software for the PIP/IPD units. This
chapter is not intended to replace the HRM.

In this chapter, most register information matches the OCTEON CN55/55/56/57XX processor
HRM, with some additions for CN63XX.

6-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-9

Note that in most cases the format REGISTER[FIELD] in this chapter refers to a hardware
register and field combination, not a software ARRAY[INDEX].

The following figure is from the Packet Flow chapter. This figure provides a high-level view the
packet flow through the system. Proper configuration of PIP/IPD is essential for high-performance
systems.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 1: Overview of PIP/IPD Processing

I/O Buses
IPDB = IPD Bus, PKOB = PKO Bus, POB = Packet Output Bus
The I/O Bus consists of two buses: IOBI (input) and IOBO (output). Received packet data goes directly
from Interface RX to IPD on IOBI without going through IOB. (IPD is a second sink on the bus.)

Simplified Packet
Interface Block

(XAUI, SPI-4.2, PCIe,
PCI/PCI-X, SGMII,

RGMII, GMII, or MII)

PKI – Packet Input
Block

CORE

FPA – Free
Pool

Allocator
Unit

SSO - Schedule/
Synchronization

/Order

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

PKO – Packet Output
Unit

IOB – I/O Bridge

Interface
RX Port

IOBI /
IOBO

Interface
TX Port

L2/DRAM

6
4

0
-b

it
 C

o
h

e
re

n
t

M
e
m

o
ry

 B
u

s
 (

C
M

B
) IP
D

B

P
K

O
B

To Other
Devices

1. After the Interface Rx Port receives the packet and checks it for errors, it passes the packet to the
Input Packet Data (IPD) Unit (via the IOBI). The IPD shares the data with the Packet Input Processor
(PIP). These two units work together to process the input packet.
2. After the PIP performs the packet parsing, including any checks configured by software, it computes
the data needed by the IPD for the Work Queue Entry (WQE) Fields (Group, Tag Type, Tag Value, and
QoS).
3. If IPD does not drop the packet, it allocates a WQE buffer and Packet Data buffer from the Free
Pool Allocator (FPA) Unit. (The FPA manages the free buffers.)

4. The IPD writes the WQE fields to the WQE Buffer, and writes the packet data to the Packet Data
buffer in L2/DRAM (DMA via IPDB).
5. The IPD performs the add_work operation to add the WQE Pointer to the appropriate QoS queue
in the Schedule Synchronization Order (SSO) Unit.

3
3

4
(v

ia
 IP

D
B)

4
(v

ia
 IP

DB)

5

POB

1 (IOBI directly to IPD)

Packet Input

Color/Pattern KEY

Schedule /
Synchronization
/ Order

Core Processing

Packet Output

FPA

Pseudo-
blocks

I/O Bridge

Memory

6-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-11

2 Simple Executive Configuration and APIs
The PIP/IPD API supplied with the SDK does not cover all possible uses of the two units. This
section provides an overview of the SDK 1.9.0 API, with some new features from SDK 2.0.

Most users take the default configuration provided by Simple Executive. The configuration can be
customized (see the directions in the Configuration chapter, the Free Pool Allocator (FPA)
chapter, and in this chapter).

An example of using the API functions is in Section 18 – “Appendix E: Example Code (linux-
filter)”.

Most applications will use the API as follows:

1) Define CVMX_HELPER_ENABLE_IPD=0 // allows user to control when initialization is
considered to be complete

2) Call cvmx_helper_initialize_fpa() to setup the FPA pools.
3) Call cvmx_helper_initialize_packet_io_global() once on only one core
4) Call cvmx_helper_initialize_packet_io_local() on each core. This will

get all packet IO running.
5) Call the cvmx_pip* or cvmx_ipd* functions only to change (modify) the IPD/PIP

defaults as needed. (For example, call cvmx_pip_config_port().)
6) Call cvmx_helper_ipd_and_packet_input_enable()

Table 1: Summary of Relevant Functions

Function Description
Helper Functions
cvmx_helper_initialize_packet_io_global() Initialize global PIP/IPD variables. This

function calls cvmx_ipd_config()
using values defined in executive-
config.h.

cvmx_helper_initialize_packet_io_local() Each core calls this after global
initialization routine is complete

cvmx_helper_ipd_and_packet_input_enable() Call once all initialization is complete
cvmx_helper_setup_red() Configure Per-QoS RED for congestion

control (all queues will have the same pass
and drop thresholds).

cvmx_helper_setup_red_queue() Configure Per-QoS RED or WRED for
congestion control (each queue can have
different pass and drop thresholds). Call
cvmx_helper_setup_red() first, then
call this function to modify queue
thresholds as needed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Function Description
cvmx_helper_shutdown_packet_io_global() (New in SDK 2.0). This function is used

to shutdown the packet handling units,
including IPD.

cvmx_helper_shutdown_packet_io_local() (New in SDK 2.0.) This function does a
core-local shutdown of packet I/O after the
global shutdown is complete.

PIP Functions
cvmx_pip_config_port() Configure a PIP/IPD input port.
cvmx_pip_config_crc() Configure the hardware CRC engine (on

some processors).
cvmx_pip_tag_mask_clear () Clear all bits in a tag mask.
cvmx_pip_tag_mask_set() Set bits in the selected tag mask (used to

create tag value)
cvmx_pip_config_vlan_qos() Configure VLAN-to-QoS Table 0
cvmx_pip_config_diffserv_qos() Configure Diffserv-to-QoS table
cvmx_pip_get_port_status() Get port statistics
IPD Functions
cvmx_ipd_config()

Configure global settings for IPD.

cvmx_ipd_enable(void) This function is used to enable the IPD if
Simple Executive is configured to not
enable IPD.

cvmx_ipd_disable(void) Instead of calling this function, use the
new SDK 2.0 function
cvmx_helper_shutdown_packet_io_
global(), which calls
cvmx_ipd_disable() at the right time.

6-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-13

2.1 Simple Executive Configuration
PIP and IPD depend on proper configuration of Simple Executive defines and FPA pool
configuration.

In addition to the pools, the following Simple Executive Configuration variables are applicable to
PIP/IPD:

Table 2: Simple Executive PIP/IPD Configuration Variables
Define Purpose Default

Value
PIP/IPD Configuration variables defined in executive-config.h (alphabetical

order)

CVMX_ENABLE_HELPER_FUNCTIONS Enables essential functions such as
cvmx_helper_initialize_fpa()
. We strongly recommend use of the
helper functions.

Un-
defined

CVMX_ENABLE_LEN_M8_FIX Enable fix for the known issue PKI-
100 ("Size field is 8 too large in the
WQE and next pointers"). If this
variable is set to 0, the fix for this
known issue will not be enabled.

1

CVMX_HELPER_ENABLE_BACK_PRESSURE We strongly recommend use of this
backpressure feature. 1

CVMX_HELPER_ENABLE_IPD This will cause the IPD to be enabled
after initialization. Once IPD is enabled,
the hardware will start accepting packets.
If configuration changes are made from
the default, then set this configuration
variable to 0 and, after custom changes
are complete, then call
cvmx_ipd_enable().

1

CVMX_HELPER_FIRST_MBUFF_SKIP The number of bytes to reserve before
the start of the packet in the MBUF.

184
(See
Note1)

CVMX_HELPER_INPUT_PORT_SKIP_MODE Select either skip-to-L2, skip-to-IP, or
uninterpreted.

See
Note2

CVMX_HELPER_INPUT_TAG_INPUT_PORT Use input port value in tag value creation. 1
CVMX_HELPER_INPUT_TAG_IPV4_DST_IP Use IPv4 Destination IP address field in

tag value creation. 0

CVMX_HELPER_INPUT_TAG_IPV4_DST_PORT Use IPv4 Destination Port field in tag
value creation. 0

CVMX_HELPER_INPUT_TAG_IPV4_PROTOCOL Use IPv4 Protocol field in tag value
creation. 0

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Default Define Purpose Value
CVMX_HELPER_INPUT_TAG_IPV4_SRC_IP Use IPv4 Source IP address field in tag

value creation. 0

CVMX_HELPER_INPUT_TAG_IPV4_SRC_PORT Use IPv4 Source Port field in tag value
creation. 0

CVMX_HELPER_INPUT_TAG_IPV6_DST_IP Use IPv6 Destination IP address field in
tag value creation. 0

CVMX_HELPER_INPUT_TAG_IPV6_DST_PORT Use IPv6 Destination Port field in tag
value creation. 0

CVMX_HELPER_INPUT_TAG_IPV6_NEXT_HEADER Use IPv6 Next Header field in tag value
creation. 0

CVMX_HELPER_INPUT_TAG_IPV6_SRC_IP Use IPv6 Source IP address field in tag
value creation. 0

CVMX_HELPER_INPUT_TAG_IPV6_SRC_PORT Use IPv6 Source Port field in tag value
creation. 0

CVMX_HELPER_INPUT_TAG_TYPE Either ORDERED, ATOMIC, or NULL. See
Note3

CVMX_HELPER_NOT_FIRST_MBUFF_SKIP The number of bytes to reserve in each
chained packet buffer (MBUF) after
the first MBUF.

0

Notes
Note1: The default CVMX_HELPER_FIRST_MBUFF_SKIP value in the base SDK is set to
 184 for compatibility with IPSEC to allow header expansion.
Note2: The default value for CMVX_HELPER_INPUT_PORT_SKIP_MODE is
 CVMX_PIP_PORT_CFG_MODE_SKIPL2. See cvmx_pip_port_parse_mode_t in
 cvmx-csr-enums.h.
Note3: The default value for CVMX_HELPER_INPUT_TAG_TYPE is
 CVMX_POW_TAG_TYPE_ORDERED.

2.1.1 About FPA Pools
In most applications, two FPA pools are used by PIP/IPD:

• The FPA Pool used for Packet Data Buffers is always FPA Pool 0
• The FPA pool used for Work Queue Entry (WQE) buffers is configurable, but is typically

FPA Pool 1

FPA pool configuration information is provided in the Free Pool Allocator (FPA) chapter. If the
default configuration will be changed, it is essential to read the FPA chapter. Pool information is
summarized in this section.

The default pool configuration used in the SDK is shown in the following table.

6-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-15

Table 3: Default FPA Pool Configuration
Item Default Value

Packet Data Buffers
Pool Name CVMX_FPA_PACKET_POOL

Description String “Packet buffers”

Pool Number (Default value) 0 (cannot be changed)

Default Buffer Size 16 * cache line size (2048 bytes) - See Note1, Note2

Default Number of Buffers Configurable via cvmx_helper_initialize_fpa()-
See Note3

Protected / Permanent 1 (TRUE)

Work Queue Entry Buffers

Name CVMX_FPA_WQE_POOL

Description String “Work queue entries”

Pool Number (Default value) 1 (This can be any number; it is set to 1 by convention)

Default Buffer Size 1 * cache line size (128 bytes) – See Note1, Note2

Default Number of Buffers Usually the same as the number of Packet Data Buffers

Protected / Permanent 1 (TRUE)

Notes
Note1: Buffer Size must be a minimum of 128 bytes (cache line size), and must be a multiple of
 128 bytes (CVMX_FPA_MIN_BLOCK_SIZE, CVMX_FPA_ALIGNMENT).
Note2: The default buffer size is configured in cvmx-resources.config
Note3: See the passthough example code.

The following tables provide the PIP/IPD perspective on the Packet Data Buffers and Work Queue
Entry buffers.

Table 4: Packet Data Buffers Information
Packet Data Buffers

Unit Allocating Buffer
The IPD automatically allocates Packet Data Buffers. Packet Data Buffers are always in FPA pool 0:
this is not configurable.

What controls the buffer allocation and use?
In the Simple Executive, the function cvmx_helper_global_setup_ipd() sets the value of
IPD_PACKET_MBUFF_SIZE[MB_SIZE]. This value must match the size of the buffers in FPA pool
0. The IPD always allocates Packet Data Buffers from pool 0.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Packet Data Buffers
Recommended Buffer Size
Up to 2048 bytes (sixteen cache lines) (MTU of 1500 bytes).

Recommended Number of Buffers
Either 4096 or the maximum number of in-flight packets.
Unit Freeing Buffer
PKO or core software
How does the system know which pool the buffer should be returned to?
The originating FPA pool number is stored automatically in the Work Queue Entry data structure by the
IPD. The PKO will optionally free the buffer to the specified pool (always Pool 0 for Packet Data
Buffers). The core may also optionally free the Packet Data Buffer.

Table 5: Work Queue Entry Buffers Information

Work Queue Entry (WQE) Buffers
Unit Allocating Buffer
The IPD or the core (via software). The IPD automatically allocates WQE buffers.
What controls the buffer allocation and use?
In the Simple Executive, the function cvmx_helper_global_setup_ipd() sets the value of
IPD_WQE_FPA_QUEUE[WQE_QUE]. This register field is used to specify which FPA pool the Work
Queue Entry comes from.

Recommended Buffer Size
128 bytes (one cache line)
Recommended Number of Buffers
At least as many as Packet Data Buffers. If dynamic shorts are enabled, then packets which can fit
entirely in the space reserved in the WQE will not also have a duplicate copy in the Packet Data Buffer.
In the case where the WQE is in a WQE buffer (the option to have it in the Packet Data Buffer is not
enabled), then the Packet Data Buffer will not exist for dynamic shorts, and more WQE Buffers will be
needed than Packet Data Buffers.
Unit Freeing Buffer
Core software is responsible for freeing the buffer.
How does software know which pool the buffer should be returned to?
When freeing a WQE Buffer, use the define provided by the Simple Executive:
CVMX_FPA_WQE_POOL

6-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-17

2.2 Helper Functions
These functions simplify configuring and using the PIP/IPD.

Table 6: Helper Functions
Helper API Functions

int cvmx_helper_initialize_packet_io_global(void)

Initialize global PIP/IPD variables. It initializes the PIP, IPD, and PKO hardware to support
simple priority based queues for the Ethernet ports. Each port is configured with a number of
priority queues based on CVMX_PKO_QUEUES_PER_PORT_* where each queue is lower
priority than the previous.
Returns 0 on success, otherwise returns non-zero.This function calls cvmx_ipd_config()
using values defined in executive-config.h.

int cvmx_helper_initialize_packet_io_local(void)

Each core calls this after global initialization routine is complete. Returns 0 on success,
otherwise returns non-zero.

int cvmx_helper_ipd_and_packet_input_enable(void)

Called after all internal packet IO paths are setup. This function enables IPD/PIP and begins
packet input and output.
Returns 0 on success, otherwise returns non-zero.
int cvmx_helper_setup_red(int pass_thresh, int drop_thresh)

Configure Per-QoS RED for congestion control (all queues will have the same pass and drop
thresholds). The arguments are:
pass_thresh: the HIGH watermark (if the number of available Packet Data Buffers
 is > pass_thresh, the packet is admitted)
drop_thresh: the LOW watermark (if the number of available Packet Data buffers
 is <= drop_thresh, all incoming packets are dropped
If pass_thresh >= number of available buffers > drop_thresh, packets are randomly
dropped.

cvmx_helper_setup_red_queue(int queue, int pass_thresh, int drop_thresh)

Configure Per-QoS RED or WRED for congestion control (each queue can have different pass
and drop thresholds). Call cvmx_helper_setup_red() first, then call this function to
modify queue thresholds as needed. The arguments are:
queue: which QoS queue's watermarks to set
pass_thresh: the HIGH watermark (if the number of available Packet Data Buffers
 is > pass_thresh, the packet is admitted)
drop_thresh: the LOW watermark (if the number of available Packet Data buffers
 is <= drop_thresh, all incoming packets are dropped
If pass_thresh >= number of available buffers > drop_thresh, packets are randomly
dropped.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Helper API Functions
int cvmx_helper_shutdown_packet_io_global(void)

New in SDK 2.0. This function is used to undo the the initialization performed in
cvmx_helper_initialize_packet_io_global(). After calling this routine and the
local version on each core, packet IO for the OCTEON processor will be disabled and placed in
the initial reset state. It will then be safe to call the initialization function later on. Note that
this routine does not empty the FPA pools. It frees all buffers used by the packet IO hardware
to the FPA so a function emptying the FPA after shutdown should find all packet buffers in the
FPA.
Returns 0 on success, negative on failure.
int cvmx_helper_shutdown_packet_io_local(void)

New in SDK 2.0. This function does a core-local shutdown of packet I/O and should be called
on each core after calling cvmx_helper_shutdown_packet_io_global().
Returns 0 on success, negative on failure.

6-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-19

2.3 PIP Functions
These functions can be used to change the default configuration created by the helper routines.

Table 7: PIP Functions
PIP API Functions (cvmx-pip.h)

void cvmx_pip_config_port(uint64_t port_num,
cvmx_pip_port_cfg_t port_cfg, cvmx_pip_port_tag port_tag_cfg)

Configure an Ethernet input port. The arguments are:
port_num: The port number to configure
port_cfg: a data structure containing the configuration information
port_tag_cfg: a data structure containing the port's tag configuration information
void cvmx_pip_config_crc(uint64_t interface, uint64_t invert_result,
uint64_t reflect, uint32_t initialization_vector)

Configure the hardware CRC engine. The arguments are:
interface: Interface to configure (0 or 1)
invert_result: Invert the result of the CRC
reflect: Reflect
initialization_vector: CRC initialization vector
cvmx_pip_tag_mask_clear (uint64_t mask_index)

Clear all bits in a tag mask. This function should be called on startup before any calls to
cvmx_pip_tag_mask_set(). Each bit set in the final mask represents a byte used in the
packet for tag generation. The argument is:
mask_index: Which tag mask to clear (0..3)
cvmx_pip_tag_mask_set (uint64_t mask_index, uint64_t offset,
uint64_t len)
The tag mask is used when the cvmx_pip_port_tag_cfg_t tag_mode is non zero. There
are four separate masks that can be configured. The arguments are:
mask_index: which tag mask to modify (0..3)
offset: offset into the bitmask to set bits at. Use the GCC macro offsetof() to determine
the offsets into packet headers. For example, offsetof(ethhdr, protocol) returns the
offset of the ethernet protocol field. The bitmask selects which bytes to include the tag, with bit
offset X selecting byte at offset X from the beginning of the packet data.
len: Number of bytes to include. Usually this is the sizeof() the field.

void cvmx_pip_config_vlan_qos(uint64_t vlan_priority, unit64_t qos)

Configures the VLAN priority to QOS mapping for VLAN-to-QOS Table0. Note there is no
function to configure VLAN-to-QOS Table1. The arguments are:
vlan_priority: 0-7
qos: QOS value to assign to incoming packets with VLAN priority matching this VLAN
priority.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

PIP API Functions (cvmx-pip.h)
void cvmx_pip_config_diffserv_qos(unit64_t diffserv, unit64_t qos)

Configures the Diffserv to QOS mapping. Note this function does not enable Diffserv QOS for
the port. The arguments are:
diffserv: diffserv field value (0-63)
qos: QOS value to assign to incoming packets with Diffserv value matching this Diffserv field
value.
void cvmx_pip_get_port_status(unit64_t port_num, uint64_t clear,
cvmx_pip_port_status_t *status)
Get the statistics for a port. The arguments are:
port_num: the port number
clear: whether to clear the values after reading them (1=clear, 0=do not clear)
status: the data structure used to store the status

On success, this function retrieves the port status and stores it in the status data structure.

2.4 PIP Data Structures and Defines

2.4.1 The cvmx_pip_port_cfg_t Data Structure
This data structure is used to specify the configuration parameters for each port. The contents of
the data structure vary with the processor model. See cvmx_pip_port_cfgx_t in cvmx-
csr-typedefs.h in the SDK for details.

2.4.2 The cvmx_pip_port_tag_cfg_t Data Structure
This data structure is used to specify the tag configuration parameters for each port. The contents
of the data structure vary with the processor model. See cvmx_pip_port_tag_cfgx_t in
cvmx-csr-typedefs.h in the SDK for details.

2.4.3 The cvmx_pip_parse_mode_t Defines (Parse Modes for Incoming
Packets)

These defines (enumerated in cvmx_pip_parse_mode_t) are used to set the parse mode for
the incoming packet:

CVMX_PIP_PORT_CFG_MODE_NONE = 0ull, // Uninterpreted
CVMX_PIP_PORT_CFG_MODE_SKIPL2 = 1ull, // Skip-to-L2
CVMX_PIP_PORT_CFG_MODE_SKIPIP = 2ull // Skip-to-IP

2.4.4 The cvmx_pip_tag_mode_t Defines (control the initial SSO Tag Value)
These defines (enumerated in cvmx_pip_tag_mode_t) are used to set the initial Tag Value for
the incoming packet:

CVMX_PIP_TAG_MODE_TUPLE = 0ull, // Always use tuple tag algorithm.
CVMX_PIP_TAG_MODE_MASK = 1ull, // Always use mask tag algorithm
CVMX_PIP_TAG_MODE_IP_OR_MASK = 2ull, // If packet is IP, use tuple else

6-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-21

 // use mask
CVMX_PIP_TAG_MODE_TUPLE_XOR_MASK = 3ull // tuple XOR mask

2.4.5 The cvmx_pow_tag_type_t Defines (control the initial SSO Tag Type)
These defines (enumerated in cvmx_pow_tag_type_t) are used to set the initial Tag Type for
the incoming packet:

CVMX_POW_TAG_TYPE_ORDERED = 0L, // ORDERED
CVMX_POW_TAG_TYPE_ATOMIC = 1L, // ATOMIC
CVMX_POW_TAG_TYPE_NULL = 2L, // NULL

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

2.4.6 The cvmx_pip_port_status_t Data Structure
PIP statistics registered are accessed via the cvmx_pip_get_port_status() function, which
returns the information in the cvmx_pip_port_status_t data structure. This information is
the same for all processors.

For register-level details, see Table 30 – “Statistics Register Fields”.

typedef struct
{
 uint32_t dropped_octets; // Inbound octets marked to be
 // dropped by the IPD
 uint32_t dropped_packets; // Inbound packets marked to be
 // dropped by the IPD
 uint32_t pci_raw_packets; // RAW PCI Packets received by
 // PIP per port
 uint32_t octets; // Number of octets processed by PIP
 uint32_t packets; // Number of packets processed by PIP
 uint32_t multicast_packets; // Number of indentified
 // L2 multicast packets.
 // (Does not include broadcast packets.
 // Only includes packets whose
 // parse mode is SKIP_TO_L2)
 uint32_t broadcast_packets; // Number of indentified L2 broadcast
 // packets. Does not include multicast
 // packets. Only includes packets whose
 // parse mode is SKIP_TO_L2
 uint32_t len_64_packets; // Number of 64B packets
 uint32_t len_65_127_packets; // Number of 65-127B packets
 uint32_t len_128_255_packets; // Number of 128-255B packets
 uint32_t len_256_511_packets; // Number of 256-511B packets
 uint32_t len_512_1023_packets; // Number of 512-1023B packets
 uint32_t len_1024_1518_packets; // Number of 1024-1518B packets
 uint32_t len_1519_max_packets; // Number of 1519-max packets
 uint32_t fcs_align_err_packets; // Number of packets with FCS or
 // Align opcode errors
 uint32_t runt_packets; // Number of packets with length < min
 uint32_t runt_crc_packets; // Number of packets with
 // length < min and FCS error
 uint32_t oversize_packets; // Number of packets with length > max
 uint32_t oversize_crc_packets; // Number of packets with
 // length > max and FCS error
 uint32_t inb_packets; // Number of packets without
 // GMX/SPX/PCI errors received by PIP
 uint64_t inb_octets; // Total number of octets from all
 // packets received by PIP,
 // including CRC
 uint16_t inb_errors; // Number of packets with GMX/SPX/PCI
 // errors received by PIP
} cvmx_pip_port_status_t;

6-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-23

2.4.7 The cvmx_pip_err_t Data Structure
The opcode field in WQE WORD2 is used to report the error details. The meaning of opcode
depends on which of WORD2[RE] (L1/L2 receive error), WORD2[LE] (L2 receive error), or
WORD2[IE] (L4 receive error) is set in WQE WORD2.

/**
 * This defines the err_code field errors in the Work Queue Entry
**/
typedef union
{
 cvmx_pip_l4_err_t l4_err; // L3 receive error (WORD2[LE]==1)
 cvmx_pip_ip_exc_t ip_exc; // L4 receive error (WORD[IE]==1)
 cvmx_pip_rcv_err_t rcv_err; // L1/L2 receive error (WORD2[RE]==1)
} cvmx_pip_err_t;

2.4.8 The Packet Instruction Header Data Structure
This data structure is defined in Section 4.3.1 – “The cvmx_pip_inst_hdr_t Data Structure”.

2.4.9 L1/L2 Receive Error Codes (WQE WORD2[RE] ==1)
If there is a receive error, then Work Queue Entry (WQE) WORD2[RE] field is set to 1, and
WORD2[opcode] contains the error code. When using the SDK, the following list of error codes
apply. These definitions are made in the cvmx_pip_rcv_err_t data structure. For more
details about the error codes, see the HRM.

Note: Late collisions (data received before collision) cannot be detected by the receiver because
they would appear as JAM bits which would appear as bad FCS or carrier extend error which is
CVMX_PIP_EXTEND_ERR.

 CVMX_PIP_RX_NO_ERR // no error
 CVMX_PIP_PARTIAL_ERR // RGMII+SPI4: partially received packet

// (buffering/bandwidth) not adequate
 CVMX_PIP_JABBER_ERR // RGMII+SPI4: receive packet too

// large and truncated
 CVMX_PIP_OVER_FCS_ERR // RGMII: max frame error

// (pkt len > max frame len) (with FCS error)
 CVMX_PIP_OVER_ERR // RGMII+SPI4: max frame error

// (pkt len > max frame len)
 CVMX_PIP_ALIGN_ERR // RGMII: nibble error (data not byte

// multiple - 100M and 10M only)
 CVMX_PIP_UNDER_FCS_ERR // RGMII: min frame error

// (pkt len < min frame len) (with FCS error)
 CVMX_PIP_GMX_FCS_ERR // RGMII: FCS error
 CVMX_PIP_UNDER_ERR // RGMII+SPI4: min frame error

// (pkt len < min frame len)
 CVMX_PIP_EXTEND_ERR // RGMII: Frame carrier extend error
 CVMX_PIP_LENGTH_ERR // RGMII: length mismatch (len did

// not match len in L2 length/type)
 CVMX_PIP_DAT_ERR // RGMII: Frame error (some or all data

// bits marked err)
 CVMX_PIP_DIP_ERR // SPI4: DIP4 error
 CVMX_PIP_SKIP_ERR // RGMII: packet was not large enough to pass

// the skipper - no inspection could occur

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

 CVMX_PIP_NIBBLE_ERR // RGMII: studder error (data not repeated –
// 100M and 10M only)

 CVMX_PIP_PIP_FCS // RGMII+SPI4: FCS error
 CVMX_PIP_PIP_SKIP_ERR // RGMII+SPI4+PCI: packet was not large enough

// to pass the skipper - no inspection
// could occur

 CVMX_PIP_PIP_L2_MAL_HDR= // RGMII+SPI4+PCI: malformed L2 (packet
// not long enough to cover L2 header)

2.4.10 L3 (IP) Error Codes (WQE WORD2[IE]==1)
If the WQE WORD2[IE] field is set to 1 (IP error), the following error codes apply. These error
codes are defined in the cvmx_pip_ip_exc_t data structure. For more details about the error
codes, see the HRM.

 CVMX_PIP_IP_NO_ERR // no error
 CVMX_PIP_NOT_IP // not IPv4 or IPv6
 CVMX_PIP_IPV4_HDR_CHK // IPv4 header checksum violation
 CVMX_PIP_IP_MAL_HDR // malformed (packet not long enough to

// cover IP header
 CVMX_PIP_IP_MAL_PKT // malformed (packet not long enough to

// cover length specified in IP header)
 CVMX_PIP_TTL_HOP // TTL / hop count equal zero
 CVMX_PIP_OPTS // IPv4 options / IPv6 early extension headers

2.4.11 L4 Error Codes (WQE WORD2[LE]==1)
L4 Error codes are shown in the following list. These error codes are defined in the
cvmx_pip_l4_err_t l4_err data structure. For more details about the error codes, see the
HRM.

CVMX_PIP_L4_NO_ERR // No error
CVMX_PIP_L4_MAL_ERR // TCP (UDP) packet not long enough to cover the
 // TCP (UDP)header
CVMX_PIP_CHK_ERR // TCP/UDP checksum failure
CVMX_PIP_L4_LENGTH_ERR // TCP/UDP length check (TCP/UDP length does not
 // match IP length)
CVMX_PIP_BAD_PRT_ERR // illegal TCP/UDP port (either source or dest
 // port is zero)
CVMX_PIP_TCP_FLG8_ERR // TCP flags = FIN only
CVMX_PIP_TCP_FLG9_ERR // TCP flags = 0
CVMX_PIP_TCP_FLG10_ERR // TCP flags = FIN+RST+*
CVMX_PIP_TCP_FLG11_ERR // TCP flags = SYN+URG+*
CVMX_PIP_TCP_FLG12_ERR // TCP flags = SYN+RST+*= 12ull,

CVMX_PIP_TCP_FLG13_ERR // TCP flags = SYN+FIN+*

6-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-25

2.5 IPD Functions
Table 8: IPD API Functions

IPD API Functions
static inline void cvmx_ipd_config(uint64_t mbuff_size,
uint64_t first_mbuff_skip, uint64_t not_first_mbuff_skip,
uint64_t first_back, uint64_t second_back, uint64_t wqe_fpa_pool,
cvmx_ipd_mode_t cache_mode, uint64_t back_pres_enable_flag)

Configure global settings for IPD. This function is called when
cvmx_helper_initialize_packet_io_global() is executed, before IPD is enabled
using values configured into Simple Executive (see Note1).
mbuff_size: Packets buffer size in 8-byte words. This size may be set to the same as or less
than the size of the Packet Data Buffer.
first_mbuff_skip: Number of 8-byte words to skip in the first buffer
not_first_mbuff_skip: Number of 8-byte words to skip in each following buffer
first_back: Must be same as first_mbuff_skip / 128
second_back: Must be same as not_first_mbuff_skip / 128
wqe_fpa_pool: FPA pool to get work entries from
cache_mode: Select the style of write to the L2 Cache (IPD_CTL_STATUS[OPC_MODE])
 Cache mode can be any of:
 CVMX_IPD_OPC_MODE_STT /* All blocks DRAM, not cached in L2 */
 CVMX_IPD_OPC_MODE_STF /* All blocks into L2 */
 CVMX_IPD_OPC_MODE_STF1_STT /* 1st block L2, rest DRAM */
 CVMX_IPD_OPC_MODE_STF2_STT /* 1st, 2nd blocks L2, rest DRAM */
back_pres_enable_flag: Enable or disable port back pressure
(IPD_CTL_STATUS[PBP_EN])

Note: When cvmx_ipd_config() is called using the default values configured into Simple
Executive, the values are:
mbuff_size: CMVX_FPA_PACKET_POOL_SIZE / 8 // the entire Packet Data Buffer
first_mbuff_skip: CVMX_HELPER_FIRST_MBUFF_SKIP / 8
not_first_mbuff_skip: CMVX_HELPER_NOT_FIRST_MBUFF_SKIP / 8
first_back: (CVMX_HELPER_FIRST_MBUFF_SKIP + 8) / 128 (+8 is for next ptr)
second_back: (CVMX_HELPER_NOT_FIRST_MBUFF_SKIP + 8)/128 (+8 is for next ptr)
wqe_fpa_pool: CVMX_FPA_WQE_POOL
cache_mode: CVMX_IPD_OPC_MODE_STT
back_pres_enable_flag: CVMX_HELPER_ENABLE_BACK_PRESSURE

static inline void cvmx_ipd_enable(void)

This function is used to enable the IPD if Simple Executive is configured to not enable IPD
(CVMX_HELPER_ENABLE_IPD is defined to 0). This is done if the user will add
customizations after Simple Executive configuration functions complete. Note: Configuration
changes after the IPD is enabled will result in a race condition, specifically "invalid" packet
parsing results for those packets which arrived before the configuration changes.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

IPD API Functions
static inline void cvmx_ipd_disable(void)

Instead of calling this function, use the cvmx_helper_shutdown_packet_io_global(),
which calls cvmx_ipd_disable() at the right time. This function can be used to shutdown
ALL packet reception. This function is called when reinitializing the packet interface. It is
used by the cavium-ethernet Linux driver when the module is removed.

2.6 IPD Defines

2.6.1 The cvmx_ipd_mode_t Defines (How data is stored)
These defines (enumerated in cvmx_ipd_mode_t) are used to set how packet data is written the
L2 cache.

typedefs enum {
 CVMX_IPD_OPC_MODE_STT = 0LL; // Write all blocks DRAM, none are
 // cached in the L2
 CVMX_IPD_OPC_MODE_STF = 1LL; // Write all blocks into L2
 CVMX_IPD_OPC_MODE_STF1_STT = 2LL; // Write first cache block to L2 cache,
 // others to DRAM
 CVMX_IPD_OPC_MODE_STF2_STT = 3LL; // Write first two cache blocks to
 // L2 cache, others to DRAM
} cvmx_ipd_mode_t

2.7 Beyond the SDK: Custom Software
Starting at Section 4 – “Incoming Packet Formats”, technical details about PIP/IPD are provided to
help the user customize Simple Executive or write custom software.

The user should also refer to the HRM to get precise technical details for the specific model of
OCTEON being used.

3 IPD Input Ports
When using the PIP/IPD, many registers names include the IPD port number. The IPD port
numbering conventions vary depending on the processor and the specific hardware configuration.

6-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-27

Port numbers follow these conventions:
• Packet interface 0: ports 0-15 (See note below)

o XAUI: port 0
o SGMII/RGMII: ports 0-3
o SPI-4.2: ports 0-15

• Packet interface 1: ports 16-31
o For XAUI config: port 16
o For SGMI/RGMII: ports 16-19
o For SPI-4.2: 16-31

• PCI/PCIe/DPI (sRIO Memory Accesses): ports 32-35
• Loopback: ports 36-39
• sRIO Messages: ports 40-43

Note: The processor which is most confusing on port numbering is the CN54XX/CN55XX
because packet interface 0 port numbers start at 16.

This section provides information on CN56XX and CN57XX IPD input ports first because this
processor contains a super-set of most options. This information is followed by CN54XX and
CN55XX information. Before reading the CN54XX and CN55XX information, it is worthwhile to
skim the CN56XX and CN57XX information. The configuration is similar, and easier to
understand on the CN56XX/CN57XX.

IPD port information for other processors is located in Section 19 – “Appendix F: Input Port
Configuration”.

3.1 CN56XX and CN57XX IPD Input Ports
The following figures illustrate the input ports for the CN54/55/56/57XX processors.

For example, the CN56XX and CN57XX processors offer the following hardware configuration
options:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 9: CN56XX and CN57XX Packet Input Configuration Options
Choice PCIe Port 0 Packet

Interface 0
PCIe Port 1 Packet

Interface 1
1 4 lanes SGMII 4 lanes SGMII
2 4 lanes SGMII 4 lanes XAUI
3 4 lanes XAUI 4 lanes SGMII
4 4 lanes XAUI 4 lanes XAUI
5 8 lanes not available 4 lanes SGMII
6 8 lanes not available 4 lanes XAUI
7 4 lanes SGMII 8 lanes not available
8 4 lanes XAUI 8 lanes not available
9 8 lanes not available 8 lanes not available

Notes
When PCIe port 0 is configured to use 8 lanes (instead of 4 lanes),
QLM0 & QLM1 have been dedicated for PCIe Port 0 use only; Packet
Interface 0 is not available.

When PCIe port 1 is configured to use 8 lanes (instead of 4 lanes),
QLM2 & QLM3 have been dedicated for PCIe Port 1 use only; Packet
Interface 1 is not available.

The following figure illustrates the resultant IPD port numbers. For example, if the processor is
configured with two packet interfaces, both in SGMII mode, and two PCIe controllers with of 4
PCIe lanes each:

• Packet Interface 0 SGMII ports = 0-3
• Packet Interface 1 SGMII ports = 16-19
• PCIe ports = 32-35
• Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

In another example, if the processor is configured with one packet interface in XAUI mode, and
one PCIe controller configured to be 4 lanes, while the other PCIe controller is configured to be 8
lanes (packet interface 1 is unused in this configuration):

• Packet Interface 0 XAUI port = 0
• PCIe ports = 32-35
• Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

Note that from an IPD port point of view, the number of PCIe lanes is invisible.

6-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-29

Figure 2: CN56XX and CN57XX IPD Input Ports
CN56XX, CN57XX IPD Input Ports Examples

4 Lanes PCIe + 1 XAUI
+ 8 Lanes PCIe

8 Lanes PCIe + 8
Lanes PCIe

XAUI MODE
(4+4 PCIe)

SGMII MODE
(4+4 PCIe)

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

S
G

M
II1

2
3

S
G

M
II0

1
2
3

Input
Port
Num

0

1

Note1: Input is provided by 4 Quad-Lane Input Modules (QLMs), each able to provide 4 lanes of SerDes.
QLM0: dedicated to PCIe, connected to PCIe controller 0.
QLM1: optionally either connected to PCIe controller 0 or to Packet Interface 0
QLM2: dedicated to PCIe, connected to PCIe controller 1.
QLM3: optionally either connected to PCIe controller 1 or to Packet Interface 1
If QLM1 is configured as PCIe, it is combined with QLM0 to provide 8 lanes of SerDes on PCIe controller 0.
If QLM3 is configured as PCIe, it is combined with QLM2 to provide 8 lanes of SerDes on PCIe controller 1.

Note2: If the QLM is configured as a packet interface, its packet interface type may be configured to be
SGMII, XAUI (shown as “XA” in the figure), or PICMG.. QLM mode by configured in hardware.

Note3: IPD ports which shown in white are unused. This information is provided to emphasize the gap in IPD
port numbers.

Note4: The Media-Independent Interface (MII) does not supply packets to IPD. MII packets traverse memory
ring buffers outside of the IPD/PIP/SSO path.

00

36
37
38
39

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

0

36
37
38
39

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

0

Input
Port
Num

00

36
37
38
39

X A
X A

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

PCIe Config:
4 lanes PCIe

+
4 lanes PCIe

PCIe Config:
4 lanes PCIe

+
4 lanes PCIe

PCIe Config:
8 lanes PCIe

+
8 lanes PCIe

PCIe
input
ports

PCIe
input
ports

PCIe
input
ports

Packet
Interface

0

Packet
Interface

1

Packet
Interface

0

Packet
Interface

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

36
37
38
39

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

PCIe Config:
4 lanes PCIe +

1 XAUI
+

8 lanes PCIe

PCIe
input
ports

IPD
Port
Num

Input
Port
Num

0 X A 0Packet
Interface

0

0

1

0

1

0

1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

For the CN56XX andCN57XX, there are four Quad-Lane Modules (QLMs) which can be
configured in hardware in different ways. Although this is hardware-level information, it may be
useful to software engineers to visualize the system. Understanding this figure is also helpful for
understanding PCIe ring configuration. This figure shows the option of connecting a QLM to a
Gigabit Ethernet MAC Instance (GMX) controller, or a PCIe controller. On this processor, the
GMX can be configured in hardware to be in either SGMII or XAUI mode.

6-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-31

Figure 3: CN56XX and CN57XX QLM Configuration Choices

16
17
18
19

QLM 0

QLM 1

QLM 2

QLM 3

GMX
Controller

0

GMX
Controller

1

32
33
34
35

1
2
3

0

Ch
oic

e
A

Choice B

QLM 1 may be connected to
either:

A. PCIe Controller 0 or
B. GMX Controller 0

The selection is configured in
hardware via the
QLM1_MODE<0,1> pins:
Choice A:

0x0 = PCIe
Choice B:

0x1 = XAUI (IEEE 802.3-2005)
0x2 = SGMII (v1.8)
0x3 = PICMG 3.1

Cho
ice

 A

Choice B

Note: To get 8 Lanes of
PCIe (SerDes) going to the
same PCIe controller, either
[QLM0 and QLM1] must be
used or [QLM2 and QLM3]
must be used. For example,
It is not possible for QLM0
and QLM2 to go to the same
PCIe controller.

IPD
Port
Num

CN56XX, CN57XX Hardware Input to IPD Ports

QLM 3 may be connected to
either:

A. PCIe Controller 1 or
B. GMX Controller 1

The selection is configured in
hardware via the
QLM3_MODE<0,1> pins.

QLM
Lanes

Note: If the QLM is not
connected to the GMX
(because it is used as a PCIe
interface instead), the IPD ports
for the unused GMX are not
used. For example, if GMX0 is
not used, IPD ports (0-3) are
not used.

QLM: Quad-Lane Module: the SerDes Quad-
Lane module, which contains four lanes/ports.
The QLM is used for both input and output.
GMX: Gigabit Ethernet Mac Instance, as in
GMX0, GMX1.

If GMX is in SGMII or
PICMG mode, there are
4 IPD Ports.
If GMX is in XAUI mode,
there is only one IPD
Port.

If the GMX is in SGMII mode, there are up
to 4 IPD Ports, configurable via the
GMXn_RX_PRTS register.
If the GMX is in XAUI mode, there is only
one IPD Port.

32
33
34
35

PCIe Controllers 0
and 1 are both
connected to IPD
input ports
numbered (32-35)

PCIe-to-IPD port details are
provided in another figure.

PCI Port 1

PCIe
Controller

1

PCI Port 0

PCIe
Controller

0

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The connection from the two PCIe ports to the IPD port is via PCIe rings. There are eight PCIe
rings assigned to each IPD port. The assignment of the PCIe rings to the IPD ports is not
configurable. Software can configure which of the two PCIe ports provides input to which PCIe
ring, as shown in the following figure:

6-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-33

Figure 4: PCIe Rings: PCIe Port Connection to IPD Input Ports

PCIe
Controller 0

(PCIe Port 0)

PCIe
Controller 1

(PCIe Port 1)

IPD
Port
Num

CN54XX, CN55XX, CN56XX, CN57XX
PCIe Connection to IPD Input Ports

32

Choice 1:

PCIe Port 0

4
8

12
16
20
24
28

0

Ring Num

5
9

13
17
21
25
29

1

6
10
14
18
22
26
30

2

7
11
15
19
23
27
31

3

Cho
ice

 2:

PC
Ie

Po
rt

1

Each ring is assigned to either
PCIe port 0 or PCIe port 1.
The port assignment is made
in software via the
NPEI_PKT_IN_PCIE_PORT
register (2 bits per ring).

Each IPD Port has a
group of eight rings
attached to it. The
assignment of rings to
the IPD ports is not
configurable.

QLM(s)

QLM(s)

33

34

35

Relative
position of the

ring in the port
m 32 33 34 35
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
5 20 21 22 23
6 24 25 26 27
7 28 29 30 31

 Assigned Ring Numbers For
IPD Input Ports 32-35

Note: The ring number is calculated using the
following formula (results shown above):
ring_num = 4 * m + (port_num - 32) where
m is the relative position of the ring in the port
(0-7) and IPD input port numbers range from
(32-35) (the PCIe input ports).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

3.2 CN54XX and CN55XX IPD Input Ports
The CN54XX and CN55XX processors provide different hardware configuration options. The
essential information is the packet interface 0 is not available.

Table 10: CN54XX and CN55XX Packet Input Configuration Options
Choice PCIe Port 0 Packet

Interface 0
PCIe Port 1 Packet

Interface 1
1 8 lanes not available 4 lanes SGMII
2 8 lanes not available 4 lanes XAUI
3 8 lanes not available 8 lanes not available

Notes
QLM0 & QLM1 have been dedicated for PCIe Port 0 use only; Packet
Interface 0 is not available.

When PCIe port 1 is configured to use 8 lanes (instead of 4 lanes), QLM2
& QLM3 have been dedicated for PCIe Port 1 use only; Packet Interface 1
is not available.

The following figure illustrates the resultant IPD port numbers. Note that Packet Interface 0 is
missing, so that IPD port numbers start at “16”.

For example, if the processor is configured with one packet interfaces in SGMII mode, the first
PCIe controller configured with 8 PCIe lanes, and the second PCIe controller configured with of 4
PCIe lanes:

• Packet Interface 1 SGMII ports = 16-19
• PCIe ports = 32-35
• Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

In another example, if the processor is configured with no packet interfaces, and both PCIe
controllers configured for 8 PCIe lanes:

• PCIe ports = 32-35
• Loopback ports = 36-39 (PKO output ports 36-39 are connected to IPD input ports 36-39)

Note that from an IPD port point of view, the number of PCIe lanes is invisible.

6-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-35

Figure 5: CN54XX and CN55XX IPD Input Ports

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

For the CN54XX andCN55XX, there are four Quad-Lane Modules (QLMs) which can be
configured in hardware in different ways. The first two QLMS (QLM0 and QLM1) are dedicated
to PCIe. Although this is hardware-level information, it may be useful to software engineers to
visualize the system. Understanding this figure is helpful for understanding PCIe ring
configuration. This figure shows the option of connecting a QLM to a Gigabit Ethernet MAC
Instance (GMX) controller, or a PCIe controller. On this processor, the GMX can be configured in
hardware to be in either SGMII or XAUI mode.

6-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-37

Figure 6: CN54XX and CN55XX QLM Configuration Choices

16
17
18
19

QLM 0

QLM 1

QLM 2

QLM 3

PCIe
Controller

0

PCIe
Controller

1

GMX
Controller

1

32
33
34
35

Cho
ice

 A

Choice B

Note: To get 8 Lanes of
PCIe (SerDes) going to the
same PCIe controller, either
[QLM0 and QLM1] must be
used or [QLM2 and QLM3]
must be used. For example,
It is not possible for QLM0
and QLM2 to go to the same
PCIe controller.

IPD
Port
Num

CN54XX, CN55XX Hardware Input to IPD Ports

QLM 3 may be connected to
either:

A. PCIe Controller 1 or
B. GMX Controller 1

The selection is configured in
hardware via the
QLM3_MODE<0,1> pins:
Choice A:

0x0 = PCIe
Choice B:

0x1 = XAUI (IEEE 802.3-2005)
0x2 = SGMII (v1.8)
0x3 = PICMG 3.1

QLM
Lanes

Note: If the QLM is not
connected to the GMX
(because it is used as a PCIe
interface instead), the IPD ports
for the unused GMX are not
used. For example, if GMX1 is
not used, IPD ports (16-19) are
not used.

QLM: Quad-Lane Module: the SerDes Quad-
Lane module, which contains four lanes/
ports.The QLM is used for both input and output.
GMX: Gigabit Ethernet Mac Instance, as in
GMX0, GMX1.

If the GMX is in SGMII mode, there are up
to 4 IPD Ports, configurable via the
GMXn_RX_PRTS register.
If the GMX is in XAUI mode, there is only
one IPD Port.

32
33
34
35

PCIe Controllers 0
and 1 are both
connected to IPD
input ports
numbered (32-35)

PCIe-to-IPD port details are
provided in another figure.

PCI Port 1

PCI Port 0

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The connection from the two PCIe ports to the IPD port is via PCIe rings. There are eight PCIe
rings assigned to each IPD port. The assignment of the PCIe rings to the PCIe ports is not
configurable. Software can configure which of the two PCIe ports provides input to which PCIe
ring, as shown in Figure 4 – “PCIe Rings: PCIe Rings: PCIe Port Connection to IPD Input Ports”.

4 Incoming Packet Formats
Incoming packets can have a variety of formats. The most common format is simply an IP packet
with an L2 header, TCP/UDP header, data, and a CRC. This section introduces the supported
formats.

Whatever format is used, PIP/IPD has an overall goal which must be achieved.

4.1 Overall Processing Goal
PIP/IPD will attempt to receive the packet, and perform error checks on it. It will create a WQE
and save the packet data. When the WQE is created, the following information will be included:

• Hardware checksum
• Scheduling information needed by the SSO:

o QoS
o Group
o Tag Value
o Tag Type

• The total packet length
• The physical address of the start of packet data in the Packet Data Buffer (not the same as

the start of the Packet Data Buffer), unless the packet is entirely contained in the Work
Queue Entry (dynamic short)

• Packet information such as:
o Errors and error codes
o IP information (IPv4 or IPv6, TCP or UDP, Fragment, etc)
o VLAN information (VLAN, VLAN STACKED, VLAN ID, VLAN CFI bit)
o User-defined information

4.2 Parsing Modes
The exact packet information included in the WQE depends on the configured packet parse mode.

PIP/IPD supports three parse modes:

• Skip-to-L2 which parses the packet’s L2 header (L2 error check, VLAN information
provided, if packet is IP, IP information is provided)

• Skip-to-IP which parses the packet’s IP header (No L2 error check, IP error check, no
VLAN information, but IP information provided)

• Uninterpreted which does not parse the packet (no additional error checks, no VLAN or IP
information)

6-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-39

Figure 7: Parsing Mode Choices Without Packet Instruction Header

Uninterpreted

Formats for each Parse Mode With Optional Skip1 and Pad

Notes:
Note1: The CRC can be optionally removed from some ports.. By default, the CRCs are
removed.
Note2: Skip1 is optional data added to the packet by external hardware before the packet
is forwarded to the OCTEON processor.
Note3: Pad is optional data added to an IP packet by external hardware before the packet
is forwarded to the OCTEON processor.

Uninterpreted

CRC

L2/IP

Skip-to-L2

CRC

L2 Header

IP

Skip-to-IP

CRC

Skip I (SKip1) Skip I (Skip1) Skip I (Skip1)

Pad Pad

The parse mode is set in one of two ways:
1. All packets on this port have the same parse mode, which is set via the SDK configuration

variable CVMX_HELPER_INPUT_PORT_SKIP_MODE or the register configuration
variable (PIP_PRT_CFGn[MODE]).

2. The parse mode can vary per-packet. In this case, the packet has a Packet Instruction
Header or PCIe Instruction Header. The parse mode is one of the fields in the instruction
header. Instruction Headers are discussed later in this section.

Customers may also add customized data to the start of the packet (Skip1) and the end of an IP
packet (Pad). This is done by using external hardware which adds the customized data, then sends
the packet to OCTEON. All packet data is stored, allowing the customer to access the customized
data from software after the packet is received. Note: if Pad is added to the end of the IP packet,
set the register field PIP_PRT_CFGn[PAD_LEN]=1, to disable the length check.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The number of bytes in the Skip1 region is configured per-port using the configuration register
(PIP_PRT_CFGn[SKIP]). PIP/IPD skips over the specified number of bytes before beginning
packet parsing. Skip1 must always be less than the number of bytes of packet data or WORD2[RE]
will be set to 1. See the HRM for details.

The Pad field can be added to an IP packet. For example, a 40-byte IP packet arriving via a packet
interface may have been padded out to the minimum-defined packet size of 64 bytes. If any input
packet contains padding beyond the end of the IP packet, the PIP/IPD receives the pad and buffers
it along with the other packet data.

See the HRM for details on how to configure the optional Skip1 and Pad correctly.

4.2.1 Optionally removing the CRC (FCS) (CRC stripping)
The packet’s hardware CRC (Frame Check Sum (FCS)) can be removed (stripped) by IPD before
the packet is buffered. This option does not apply to PCIe ports.

Note: Software should not remove the CRC from ports for which Work Queue Entry’s hardware
checksum field (HW_Chksum) may be used by software. This is because the CRC bytes are
included in the hardware checksum, and software will probably need to reference the CRC value to
use the hardware checksum.

See Section 10 – “Packet Storage” for more information on optional FCS stripping.

4.3 Optional Packet Instruction Headers
PIP/IPD also supports incoming packets which have variable-length Packet Instruction Headers.
These headers are added by external hardware. The Packet Instruction Header specifies the
packet’s parse mode and may include the packet’s scheduling information: QoS Value, Work
Group ID, Tag Value, and Tag Type. Packet Instruction Headers allow an external device to
control packet scheduling and parsing on a packet-by-packet basis. Packet Instruction Headers
may be 2, 4, or 8 bytes long.

If a Packet Instruction Header is included with the packet, customized data may be added before
and after the Packet Instruction Header. In this case, PIP/IPD needs to know how many bytes to
skip before the Packet Instruction Header (Skip1), and how much to skip after the Packet
Instruction Header (Skip2). Skip2 is only used if a Packet Instruction Header is included.

The Skip2 region is the number of bytes of customized data added after the Packet Instruction
Header.

The total number of Skip bytes is the sum of the bytes in Skip1 + the number of bytes in the Packet
Instruction Header + the number of bytes in Skip2. The number of bytes in the Skip1 region is
specified in a configuration register. The remaining Skip bytes are provided via the SL (skip
length) field in the Packet Instruction Header. The SL (skip length) field is the number of bytes in
the Packet Instruction Header (2, 4, or 8 bytes), plus the number of bytes of customized data added
after the Packet Instruction Header.

6-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-41

Figure 8: Input Packet Format Options

Pad

Uninterpreted

Input Packet Formats Supported

Skip I is optional. There is no Skip1 if the packet is PCIe with a PCIe Instruction Header. SkipI
bytes can be used for customer-specific data.
PKT_INST_HDR (Packet Instruction Header) is optional, and is added by an external device.
The number of bytes in the instruction header varies, depending on the values of the instruction
header fields R (RAW) and RS (Real Short, a small packet).
Skip II (Skip2) is optional. There is no Skip II unless PKT_INST_HDR is present. Skip2I bytes
can be used for customer-specific data.
Pad is optional, and is only present in IP packets.
CRC may be optionally removed from some ports. By default, the CRCs are removed.

Uninterpreted

CRC

L2/IP

Skip-to-L2

CRC

L2 Header

IP

Skip-to-IP

CRC

PKT_INST_HDR PKT_INST_HDR PKT_INST_HDR

Skip I (Skip1) Skip I (Skip1) Skip I (Skip1)

Skip II (Skip2) Skip II (Skip2) Skip II (Skip1)

Pad

If Packet Instruction Headers are used for incoming packets on a port, set the port’s
PIP_PRT_CFGn[INST_HDR] to 1. The default value is 0 (no packets will contain Packet
Instruction Headers). When this variable is set to 1, all packets received on the port must include a
Packet Instruction Header. This variable is not used for PCIe ports.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 9: Packet Instruction Header – Hardware View

6-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-43

4.3.1 The cvmx_pip_inst_hdr_t Data Structure
This data structure is defined in cvmx-pip.h:
/**
 * Definition of the PIP custom header that can be pre-pended
 * to a packet by external hardware.
**/
typedef union
{
 uint64_t u64;
 struct
 {
 uint64_t rawfull : 1; // Documented as R - Set if the Packet is
 // RAWFULL. If set, this header must be
 // the full 8 bytes
 uint64_t reserved0 : 5; // Must be zero
 cvmx_pip_port_parse_mode_t parse_mode : 2; // PIP parse mode for

// this packet
 uint64_t reserved1 : 1; // Must be zero
 uint64_t skip_len : 7; // Skip amount, including this header,

// to the beginning of the packet
 uint64_t reserved2 : 6; // Must be zero
 uint64_t qos : 3; // POW input queue for this packet
 uint64_t grp : 4; // POW input group for this packet
 uint64_t rs : 1; // Flag to store this packet in the

// work queue entry, if possible
 cvmx_pow_tag_type_t tag_type : 2; // POW input tag type
 uint64_t tag : 32; // POW input tag
 } s;
} cvmx_pip_pkt_inst_hdr_t;

4.3.2 RAW, RAWFULL, RAWSCH
The HRM and this chapter mention the options “RAW”, “RAWFULL”, and “RAWSCH”.

A packet is considered to be “RAW” if it has a Packet Instruction Header and the RAW bit is set in
the instruction header. (The Packet Instruction Header data structure is shown in Figure 9 –
“Packet Instruction Header”.)

Depending on the parse mode, a RAW packet is either RAWSCH or RAWFULL. Both types of
raw packets provide scheduling information (QoS, Group, Tag Value, and Tag Type) for the
packet. The difference between the two types is in how the WQE WORD2 fields are created.

RAWSCH:

• RAW and
• Parse Mode = Skip-to-L2 or Skip-to-IP

In this case only the scheduling information comes from the header. The packet is parsed to create
the Work Queue Entry (WQE) WORD2 fields.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

RAWFULL:
• RAW and
• Parse Mode = Uninterpreted

Because the parse mode is “uninterpreted”, WORD2 data cannot be derived from parsing the
packet. In this case “FULL” WORD2 data comes from the port configuration register:
PIP_RAW_WORD[WORD]. Note that in this case, there is only one configuration of WORD2 for
the system, not one per port.

WQE WORD2 is discussed in more detail in Section 6 – “How Parse Mode Affects WQE WORD2
”.

6-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-45

Figure 10: WQE Information Copied From the Packet Instruction Header
Optional Packet Instruction Header

63 48 47 0

R
S

41

(5 bits) 1
Tag

(32 bits)

32 31

PM
2

Grp
(4)

QOS
(3)

SL
7 (6 bits)R TT

(2)

3438 354254565862

There are 3 sizes of packet instruction headers:

15 0

(5 bits) 1
PM
2

SL
7R

681014

If R==0 and RS is not used

31 1615

R
S

9

(5 bits) 1

0

PM
2

Grp
(4)

QOS
(3)

SL
7 (6 bits)R TT

(2)

26 31022242630

If R==0 and RS is used

63 48 47 0

R
S

41

(5 bits) 1
Tag

(32 bits)

32 31

PM
2

Grp
(4)

QOS
(3)

SL
7 (6 bits)R TT

(2)

3438 354254565862

If R==1

Note: If PIP_PKT_CFGn[INST_HDR] is set, then all packets arriving on the port must have a
Packet Instruction Header

WORD1 Tag
(32 bits)

TT
(3)

Grp
(4)

QOS
(3)

Len
(16 bits)

iprt
(6)

Work Queue Entry
(WQE)

Packet Instruction Header (variable length)

If R==1 (RAW), then the Parse Mode (PM) determines the scheduling type:
A. If PM==0 (unscheduled), then
Packet type = RAWFULL. PIP_RAW_WORD[WORD] is used to create WORD2 of the WQE
B. If PM==1 (skip-to-L2) or 2 (skip-to-IP), then
Packet type = RAWSCH. PIP/IPD create the contents of WORD2 of the WQE by examining
the packet information.

1.

2.

3.

RS is not used if any of the following conditions is true:
1. PIP_PRT_CFGn[DYN_RS] = 1 for the given port
2. PIP_GBL_CFG[IGNRS] = 1 AND the port is NOT a PCIe
port
3. The packet is not a dynamic short (does NOT fit entirely into
the WQE)

Note: Grayed out fields (reserved) must be set to zero.
R: RAW mode. Packet will be either RAWFULL or RAWSCH depending on the

value of PM.
PM: Parse Mode. One of: (0=uninterpreted), (1=skip-to-L2), or (2=skip-to-IP)
SL: Skip Length: The number of bytes to skip from the start of the Packet

Instruction Header to either the L2 or the IP section of the packet. (This value
is the sum of (size of Packet Instruction Header) + (size of Skip2 region)).

QOS: Set the QOS value in the Work Queue Entry to this value.
Grp: Set the Group (Grp) value in the Work Queue Entry to this value.
RS: Real Short. Packet data will fit into the WQE. No Packet Buffer is used.

See details on dynamic shorts in the text.
TT: Set the Tag Type (TT) in the Work Queue Entry to this value.
Tag: Set the Tag in the Work Queue Entry to this value.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

4.4 Optional PCIe Instruction Headers
When packets arrive via PCIe ports, they have a PCIe Instruction Header if either:

• The PCIE_INST_HRD[R] bit is set to 1 OR
• The NPEI_PKT(0-31)_INSTR_HEADER[USE_IHDR] bit is set for the PCIe ring the

packet arrived on

Skip1 does not apply to PCIe ports. There is no customized data allowed before the PCIe
Instruction Header.

PIP/IPD converts the PCIe Instruction Header into a Packet Instruction Header, as shown in the
next figure.

6-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-47

Figure 11: PCIe Instruction Header Conversion to Packet Instruction Header
Creating Packet Instruction Header From PCIe Instruction Header

63 4847 0

R
S

Note: Grayed out fields (reserved) must be set to zero.
R: RAW mode. If R==1, packet will be either RAWFULL or RAWSCH depending

on the value of the parse mode. If R==0, the QOS, Grp, TT, and Tag_Value
fields are ignored.

G: Gather is used
DLENGSX: If G==1 and DLENGSZ!=0 (indirect gather instruction): DLENGSZ

is the number of entries in the gather list.
If G==1 and DLENGSZ==0 (direct gather instruction): DLENGSZ is only used to select
the instruction mode
If G==0 (no gather): DLENGSZ must be nonzero. It represents the length of the
packet data (length in bytes) directly pointed at by DPTR.

FSZ: Front-data size: the number of bytes of packet data before the DPTR data
and after the optional Packet Instruction Header

QOS: If R==1, set the QOS value in the Work Queue Entry to this value.
Grp: If R==1, set the Group (Grp) value in the Work Queue Entry to this value.
RS: Real Short. Packet data will fit into the WQE. See details on dynamic shorts in the text.
TT: If R==1, set the Tag Type (TT) in the Work Queue Entry to this value.
Tag: If R==1, set the Tag in the Work Queue Entry to this value.

41

Tag
(32 bits)

32 31

Grp
(4)

QOS
(3)

DLENGSZ
(13 bits)

FSZ
(6 bits)R TT

(2)

3438 354261

PCIe Instruction Header

G

63 48 47 0

R
S

Note: Grayed out fields (reserved) must be set to zero.
R, QOS, Grp, RS, TT, and Tag: are the same as for the PCIe Instruction Header.
PM: Parse Mode. One of: (0=uninterpreted), (1=skip-to-L2), or (2=skip-to-IP).

If NPEI_PKTr[PBP]==1 (packet-by-packet mode) is set, this field is set to the value of
NPEI_PKTr[RPARMODE] (the raw parse mode set for this PCIe ring), otherwise the
value is set to NPEI_PKTr[PAR_MODE].

SL: Skip Length: The number of bytes to skip from the start of the Packet
Instruction Header to either the L2 or the IP section of the packet. (This value is the sum
of (size of Packet Instruction Header) + (size of Skip2 region)).
If NPEI_PKTr[PBP]==1 (packet-by-packet mode) is set this field is set to the value of
NPEI_PKTr[RSKP_LEN] (the raw skip length set for this PCIe ring), otherwise the
value is set to NPEI_PKTr[SKP_LEN].

41

(5 bits) 1
Tag

(32 bits)

32 31

PM
2

Grp
(4)

QOS
(3)

SL
7 (6 bits)R TT

(2)

3438 354254565862

Packet Instruction Header (variable length)

For PCIe packets, the Packet Instruction Header is created from the PCIe Instruction Header plus
per-ring register Parse Mode and Skip Length values. This header is pre-pended to the PCIe packet,
replacing the DPTR and PCIE_INST_HDR fields which were at the start of the PCIe packet.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

4.5 Registers to Configure Input Packet Format
These per-port configuration variables control PIP/IPD expectations about incoming packet
content, and how it should be handled. Note that PIP_PRT_CFGn[MODE] is not examined if
PIP_PRT_CFGn[INST_HDR]==1. In that case, the parse mode is determined by the PM field in
the packet’s Packet Instruction Header.

Note that Skip2 is specified in the Packet Instruction Header, and Pad is not specified, the extra
bytes are simply received. When Pad is used, the length check must be disabled.

Table 11: Registers to Configure Input Packet Format

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Parse Mode: Parse mode (Skip-to-L2 (1), Skip-to-IP
(2), or Uninterpreted (0))

PIP_PRT_CFGn
(one per port) MODE 0 1 (See

Note1)

Packet Instruction Header Present: When set, the
Packet Instruction Header is present on all packets
(except PCIe ports 32-35)

PIP_PRT_CFGn
(one per port) INST_HDR 0

0
(H/W

Default)

SKIP 1 Amount: Optional SKIP 1 amount: the
number of bytes PIP/IPD will skip before parsing the
packet.

PIP_PRT_CFGn
(one per port) SKIP 0

0
(H/W

Default)

Broadcom HiGig: Enable Broadcom HiGig parsing PIP_PRT_CFGn
(one per port) HIGIG_EN 0

0
(H/W

Default)
(See

Note2)

Notes
Note1: Configured via executive-config.h:
CVMX_HELPER_INPUT_PORT_SKIP_MODE = CVMX_PIP_PORT_CFG_MODE_SKIPL2

Note2: Can be configured via cvmx_higig_initialize()

6-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-49

5 The Work Queue Entry Data Structure (WQE)
The Work Queue Entry (WQE) can be located either in a Work Queue Entry Buffer (most common
case) or in the first 128 bytes of the Packet Data Buffer (this feature is supported on selected
OCTEON models).

The following table shows the registers used to select either the FPA pool used to supply the Work
Queue Entry buffers, or the variable to set to use the Packet Data Buffer instead.

If the WQE is in the first 128 bytes of the Packet Data Buffer, when the work is added to the SSO,
the WQE pointer is simply a pointer to the Packet Data Buffer. (See the passthrough example
for code that uses this configuration.) See Section 10.2.1 – “Storing WQE in Packet Data Buffer
instead of WQE Buffer”.

Table 12: Registers to Configure Work Queue Entry Details

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Select FPA Pool to Use for Work Queue Entry Buffers
Select WQE Pool: Select FPA Pool to
Use for Work Queue Entry Buffers.
This field is not used when
IPD_CTL_STATUS[NO_WPTR] is
set.

IPD_WQE_FPA_QUEUE WQE_QUE 0 1 (See
Note1)

Store WQE in first 128 bytes of Packet Data Buffer
Omit WQE Buffer: When set to 1,
Work Queue Entry buffers are not
used. The WQE data is located in the
first 128 bytes of the Packet Data
Buffer. Space must be reserved using
IPD_1ST_MBUFF_SKIP[SKIP_SZ].
See the HRM register field description
for details.

IPD_CTL_STATUS NO_WPTR 0
0

(H/W
Default)

WQE Endianness
Work Queue Entry Endian
specification. If set to 1, WQE is
written in little Endian.

IPD_CTL_STATUS WQE_LEND 0
0

(H/W
Default)

Notes
Note1: The pool WQE pool number is configured automatically by Simple Executive. See the Configuration
chapter for details.

5.1 Work Queue Entry Data Structure
The Work Queue Entry (WQE) data structure is shown in the following figure. The format is
dictated by hardware requirements. Notice that details for WORD2 are not provided. The
WORD2 fields depend on the parsing results. The different WORD2 data structures are shown as
“CASE1, CASE2, CASE3” in Figure 13 – “Parsing Cases”. The “CASE” notation is used in this

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

section to help the reader match the figures and tables to the appropriate data structure. (See
Section 6 – “How Parse Mode Affects WQE WORD2 ” for more information.)

Figure 12: Work Queue Entry Data Structure – Hardware View
Work Queue Entry Data Structure

WORD0
63 3948 047

WORD1

63 039 38

WORD2
63

WORD3 Back
(4)

Addr
(40 bits)

Size
(16 bits)

63 3956 55 0

Pool
(3)

40

I

Note: Grayed out fields (reserved) are set to zero by PIP/IPD. The software data structure field name is shown
in parenthesis in the list below.
HW_Chksum (hw_chksum): The hardware-calculated checksum of packet bytes.
POW_Next_Ptr (next_ptr): Used by the SSO to create linked lists.
Unassigned: Bits <40:47> are not used by hardware and are reserved for software use.
Len (len): Total packet length in bytes (from 1-65535).
iprt (ipprt): The input port number that the packet arrived on.
QOS (qos): This Work Queue Entry will be put on the specified SSO QoS queue. This value is used by the
SSO.
Grp((grp): This Work Queue Entry is in this Work Group. This value is used by the SSO.
TT (tag_type): The Tag Type for this Work Queue Entry (ATOMIC, ORDERED, or NULL). This value is used
by the SSO.
Tag (tag): The Tag Value for this Work Queue Entry. This value is used by the SSO.
I (i): The Invert bit (used by PKO). This value is set to 0 for an inbound packet (don’t free). This bit is used to
invert the state of the PKO command WORD0[DF] flag (don’t free). The Invert bit is used by software to free
only selected buffers in a buffer chain.
Back (back): The number of cache lines from Addr (start of packet) to the beginning of the first buffer (usually
0).
Pool (pool): The pool the buffer came from (0 for packet data buffers).
Size (size): The number of bytes from Addr to IPD_PACKET_MBUFF_SIZE[MB_SIZE] (not the same as the
size of the buffer). This represents the number of bytes of packet data in the buffer, unless there is only one
buffer. If there is only one buffer, the number of bytes of packet data will be smaller than Size unless the
packet data ends exactly at the end of the region reserved by IPD_PACKET_MBUFF_SIZE[MB_SIZE].
Addr (addr): The physical address of the start of the packet in the first Packet Data Buffer (not the start of the
buffer). Addr does not need to be cache-line aligned, but the start of the buffer must be cache-line aligned.

Packet Decode Information (details vary)

0

40

POW_Next_Ptr
(40 bits)

HW_Chksum
(16 bits)

Unassigned
(8 bits)

Tag
(32 bits)

32 31

TT
(3)

Grp
(4)

QOS
(3)

Len
(16 bits)

35 34

iprt
(6)

48 47 41

WORD4
. . .

Word 15 Packet Data (details vary)

63 0

WORD3 is a pointer to the first Packet Data Buffer

6-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-51

5.2 Software WQE Data Structures
WQE data structures are:

• WQE: the WQE data structure is defined in cvmx_wqe_t in cvmx-wqe.h
• WORD0: the fields are defined in cvmx_wqe_t in cvmx-wqe.h
• WORD1: the fields are defined in cvmx_wqe_t in cvmx-wqe.h
• WORD2: the fields are defined in cvmx_pip_wqe_word2 in cvmx-wqe.h , a union

of:
o uint64_t u64
o struct s – used if the hardware determines the packet is IP (CASE 2 shown in

figures below).
o struct svlan – used to access the 16 VLAN bits
o struct snoip – used if the hardware could not determine whether the packet is

IP (CASE 3 shown in figures below)
o The CASE 1 data structure is not defined

• WORD3: The fields are defined in the cvmx_buf_ptr_t data structure in
cvmx-packet.h

Note: the “CASE 1, CASE 2, CASE 3” notation is explained in Section 6 – “How Parse Mode
Affects WQE WORD2 Data Structure”.

The data structures used in the Work Queue Entry are shown below.

Note: hardware field names tend to be short, such as “VV”. This short name fits well into the
figures showing the hardware data structure. Software field names are longer to help code
readability, such as “vlan_valid” instead of “VV”. To help cross-connect the HRM with the
SDK, both the hardware and software field names are shown when possible:

• In the software data structures below, the hardware name is shown as the first part of the
field comment. See Section 5.2.1 – “WQE The cvmx_wqe_t Data Structure” for an
example.

• In the tables which accompany the figures showing hardware data structures, the software
field names are shown in parenthesis after the hardware field name. See Table 13 –
“Fields: WQE WORD2 Fields if L1/L2 Error (CASE 3C)” for an example.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

5.2.1 WQE The cvmx_wqe_t Data Structure
The Work Queue Entry software data structure is defined in cvmx-wqe.h:
/**
 * Work queue entry format
 *
 * must be 8-byte aligned
 */
typedef struct
{
 // WORD0
 uint16_t hw_chksum; // HW_Chksum - hardware checksum
 uint8_t unused; // Unassigned - available for
 // software use
 uint64_t next_ptr : 40; // POW_Next_Ptr – used by the
 // SSO (POW) to create lists
 // WORD 1
 uint64_t len :16; // Len - total bytes in the packet
 uint64_t ipprt : 6; // iprt - input port
 uint64_t qos : 3; // QOS - calculated QoS value
 uint64_t grp : 4; // Grp- calculated Group value
 cvmx_pow_tag_type_t tag_type : 3; // TT - calculated tag type
 uint64_t tag :32; // Tag_value (Tag) - calculated
 // tag value
 // WORD 2
 cvmx_pip_wqe_word_t word2; // status and error conditions

 // WORD 3
 cvmx_buf_ptr_t packet_ptr; // pointer to first packet
 // data buffer
 // WORD4 to WORD15

 /**
 * HW WRITE: Hardware will fill in a programmable amount from the
 * packet, up to (at most, but perhaps less) the amount
 * needed to fill the work queue entry to 128 bytes
 * If the packet is recognized to be IP, the hardware starts (except that
 * the IPv4 header is padded for appropriate alignment) writing here
 * where the IP header starts.
 * If the packet is not recognized to be IP, the hardware starts writing
 * the beginning of the packet here.
 */
 uint8_t packet_data[96]; // WORD4 to WORD15 = 96 bytes

 /**
 * The WQE is usually 128 bytes (one cache line). Software can make the
 * WQE any length, but the hardware only manages the first 128 bytes.
 * (Making the WQE larger will not change the amount of packet data
 * stored in the WQE).
 */
} CVMX_CACHE_LINE_ALIGNED cvmx_wqe_t;

5.2.2 WQE WORD2: The cvmx_pip_wqe_word2 Data Structure
The contents of the WQE WORD2 data structure depend on the results of the hardware parsing.
There are three possible data structures (a union).

6-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-53

There are three different possible data structures:

• CASE 1 (Uninterpreted, RAW, and No receive error). The SDK does not supply this data
structure since this is not the usual case.

• CASE 2 (IP)
• CASE 3 (Not IP)

CASE 2 and CASE 3 are contained in the cvmx_pip_wqe_word2 data structure shown below,
and also appear in the following figures.

typedef union
{
 uint64_t u64;

 // Use this structure if the hardware determines that the packet
 // is IP (CASE 2) */
 struct
 {
 uint64_t bufs : 8; // Bufs - number of buffers
 uint64_t ip_offset : 8; // IP_offset - offset to
 // start of IP packet
 uint64_t vlan_valid : 1; // VV - VLAN or VLAN STACKED
 uint64_t vlan_stacked : 1; // VS - VLAN STACKED
 uint64_t unassigned : 1; // is set to all 0
 uint64_t vlan_cfi : 1; // VC - VLAN CFI bit
 uint64_t vlan_id :12; // VLAN_id - VLAN ID
 uint64_t pr : 4; // PR - PCIe ring position
 // [0-7]
 uint64_t unassigned2 : 8; // is set to all 0
 uint64_t dec_ipcomp : 1; // CO - IP decompression
 // needed
 uint64_t tcp_or_udp : 1; // TU - TCP or UDP packet
 uint64_t dec_ipsec : 1; // SE - decryption needed
 uint64_t is_v6 : 1; // V6 - set if packet is IPv6
 uint64_t software : 1; // Reserved for software use
 uint64_t L4_error : 1; // LE - L4 error
 uint64_t is_frag : 1; // FR - fragment
 uint64_t IP_exc : 1; // IE - IP exception
 uint64_t is_bcast : 1; // B - broadcast
 uint64_t is_mcast : 1; // M - multicast
 uint64_t not_IP : 1; // NI - not IP
 uint64_t rcv_error : 1; // RE – L1/L2 receive error
 uint64_t err_code : 8; // opcode - error code (see
 // cvmx_pip_err_t)
 } s; // packet is IP (CASE 2)

 // VLAN view of the structure - use this structure to get at the
 // 16 VLAN bits */
 struct
 {
 uint64_t unused1 :16;
 uint64_t vlan :16;
 uint64_t unused2 :32;
 } svlan;

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

 // use this structure if the packet
 // is NOT IP, including if an L1/L2 error occurs (CASE 3)
 // Note this data structure is used of the hardware cannot determine
 // that the packet is IP.
 struct
 {
 uint64_t bufs : 8; // Bufs - number of buffers
 uint64_t unused : 8; // is set to 0
 uint64_t vlan_valid : 1; // VV - VLAN or VLAN STACKED
 uint64_t vlan_stacked : 1; // VS - VLAN STACKED
 uint64_t unassigned : 1; // is set to 0
 uint64_t vlan_cfi : 1; // VC - VLAN CFI bit
 uint64_t vlan_id :12; // VLAN_id - VLAN ID
 uint64_t pr : 4; // PR - PCIe ring position
 // [0-7]
 uint64_t unassigned2 :12; // is set to 0
 uint64_t software : 1; // reserved for software use,
 // hardware will clear on
 // packet creation
 uint64_t unassigned3 : 1; // is set to 0
 uint64_t is_rarp : 1; // IR - RARP
 uint64_t is_arp : 1; // IA - ARP
 uint64_t is_bcast : 1; // B - broadcast
 uint64_t is_mcast : 1; // M - multicast
 uint64_t not_IP : 1; // NI - Not IP
 uint64_t rcv_error : 1; // RE - L1/L2 receive error
 uint64_t err_code : 8; // opcode - error code (see
 // cvmx_pip_err_t)
 } snoip; // structure if NOT IP (CASE 3)
} cvmx_pip_wqe_word2;

6-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-55

5.2.3 WQE WORD3: The cvmx_buf_ptr_t data structure
The cvmx_buf_ptr_t data structure (WQE WORD3) is defined in cvmx-packet.h:

typedef union
{
 void* ptr;
 uint64_t u64;
 struct
 {
 uint64_t i : 1; // set to 0 for inbound packet
 uint64_t back : 4; // Back - Indicates the number of cache lines
 // to back up to access the start of the buffer
 // relative to addr. In most cases the amount to
 // back up is less than a complete cache line, so
 // this value is set to 0
 uint64_t pool : 3; // Pool - The pool the buffer came from (pool
 // 0 for packet data buffers)
 uint64_t size :16; // Size - The size of the segment pointed to
 // by addr (in bytes)
 uint64_t addr :40; // Addr - Pointer to the first byte of data
 } s;
} cvmx_buf_ptr_t;

6 How Parse Mode Affects WQE WORD2 Data Structure
The packet’s parse mode is essential to how the packet is parsed. Parsing affects the information
stored in the WQE WORD 2 data structure and field values. The parsing mode does not change
the packet data (all received bytes are stored). This section presents the different parse modes and
the resultant WQE WORD2 data structures. The options are shown in the figure below. To
navigate this section most easily, use the next figure to locate the case applicable to your specific
application, then use the specific “CASE” notation to locate the relevant figure and table.

Parsing details are shown in the flow chart in section 16 – “Appendix C: Input Packet Parsing”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 13: Parsing Cases

Parse Mode = Uninterpreted

RAWFULL
(Uninterpreted AND

RAW)
Skip-to-L2 Skip-to-IP

PCIe
AND

PIP_GBL_CTL[RING_EN]==1

((NOT PCIe)
OR

(PIP_GBL_CTL[RING_EN]==0))

IP NOT IP

No L2/
L2 Error

L1/L2
Error

No L1/
L2 Error

L1/L2
Error

No L1/
L2 Error

L1/L2
Error

Uninterpreted AND
NOT RAW

NO L1/
L2 Error

L1/L2
Error

Uninterpreted

RAW NOT RAW

NO L1/
L2 Error

L1/L2
Error

CASE
2A

CASE
3C

CASE
3A

CASE
3C

CASE
2B

CASE
3C

CASE
3B

CASE
3C

NO L1/
L2 Error

L1/L2
Error

CASE
1B

CASE
3C

CASE
1A

CASE
3C

Parse Mode = Skip-to-L2 Parse Mode =
Skip-to-IP

Packet Parsing and WQE WORD2 Cases

There are three parsing modes available: “Skip-to-L2” where the packet’s L2 header is parsed, “Skip-to-IP” which skips
directly to the IP portion of the packet, and “Uninterpreted” which does not examine the packet contents.

A packet with the parse mode “skip-to-L2” is further classified as either being an IP packet or Non-IP packet. The
packet is an IP packet if the L2 header’s type field contains either 0x800 (for IPv4) or 0x86DD (for IPv6).

There are three different data structures used for WORD2, depending on the parsing results: CASE 1, 2, and 3.
Within each case, field values depend on parsing results (A, B, C). Each of these WQE WORD2 variations are shown
in other figures. Cases which do not have L1/L2 receive errors may be found on the Parsing flowchart.

(Includes RAWSCH packets)
(Includes RAWSCH

packets)

6.1 All Parse Modes if L1/L2 Error Occurs
If there is an L1/L2 error during parsing, for any of the parsing modes (skip-to-L2, skip-to-IP,
uninterpreted), the WQE WORD2 fields are set as shown in the following figure:

6-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-57

Figure 14: WORD2 if L1/L2 Error (CASE 3C)

Table 13: Fields: WQE WORD2 Fields if L1/L2 Error (CASE 3C)

Field
Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

B
(is_bcast)

Broadcast: set when the packet's destination MAC address field in the L2 header is the
broadcast address (all ones).
Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Bufs
(bufs)

Number of Buffers: The number of buffers used to store the packet data. A zero value means
that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

IA
(is_arp)

Is ARP: Set when the packet's L2 header type field ==0x0806 (an ARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

IR
(is_rarp)

Is RARP: Set when the packet's L2 header type field ==0x0835 (an RARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

M
(is_mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a
multicast address (the group bit is set, and at least one of the remaining bits is a zero).
Note: M is always zero when NOT in skip-to-L2 mode.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Definition
Field (Fields are in alphabetical order.

The SDK software field names are shown in parenthesis.)
NI
(not_IP) Not IP: Not an IP Packet or an L1/L2 receive error has occurred.

Opcode
(err_code)

Error Code: Numeric code indicating specific error which occurred: If there is an error (any
of WORD2[RE] or WORD2[IE] or WORD2[LE] is set), then Opcode contains an error
code, otherwise Opcode=0. The error codes values depend on which error bit is set (RE,
IE, or LE). See those specific errors for details.

PR
(pr)

PCIe Ring: The relative position of the PCIe ring in the PKI input port [0-7].
PR is enabled if PIP_GBL_CTL[RING_EN]==1.
If the packet was not received on a PCIe port OR PIP_GBL_CTL[RING_EN]==0, then
PR=0.
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCIe port.

RE
(rcv_error)

Receive error (L1/L2 error): For CASE 2, by definition RE==0 because CASE 2 only occurs
there is NO L1/L2 error.

S
(software) Software Use: Reserved for software use.

VC
(vlan_cfi)

VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).
If VV==0 (NOT VLAN), then VC=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to
select which VLAN CFI will be used (VLAN0 or VLAN1). If
PIP_GBL_CTL[VS_WQE]==0, then VLAN0 CFI is selected, otherwise VLAN1 CFI is
selected.
Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN_id
(vlan_id)

VLAN ID: VLAN_id is the VLAN ID field (VLAN bits <11:0>).
If VV==0 (NOT VLAN), then VLAN_id=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VLAN_id is set to the packet's VLAN
id.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to
select which VLAN id will be used. If PIP_GBL_CTL[VS_WQE]==0, then VLAN0 id is
selected, otherwise VLAN1 id is selected.
Note: VLAN_id is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VS
(vlan_stacked)

VLAN STACKED: This bit is only set if VV==1 (VLAN) AND the packet is VLAN
STACKED.
Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

VV
(vlan_valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

6.2 Parse Mode = Skip-to-L2
When the parse mode is set to “skip-to-L2”, the L2 header is analyzed and appropriate fields are set
the WQE WORD2.

The industry-standard L2 Header options are shown in Figure 49 – “L2 Header Formats”.

6-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-59

Figure 15: WORD2 if PM=Skip-to-L2, No L1/L2 Errors (CASE 2A, CASE 3A)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 14: WQE WORD2 Fields for Skip-to-L2 and Is_IP (CASE 2A)

Field
Definition

 (Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

B
(is_bcast)

Broadcast: set when the packet's destination MAC address field in the L2 header is the
broadcast address (all ones).
Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

Bufs
(bufs)

Number of Buffers: The number of buffers used to store the packet data. A zero value means
that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

CO
(dec_ipcomp)

IP Compression: The CO bit (IP compression protocol bit) is set when the packet is IPCOMP
(the IPv4 header protocol field or the initial IPv6 next header field == 108.) This bit is
always clear when WORD2[IE]==1 (IP error), and when WORD2[V6] and WORD2[FR] are
both set. This bit indicates that the packet needs to be decompressed.

FR
(is_frag)

Fragment: Set when the packet is a fragment. For IPv4, this bit is set when either the IPv4
header's MF (More Fragments) flag is set, or the IPv4 header fragment offset field is
non-zero (the last fragment has the MF flag cleared and a non-zero fragment offset). For
IPv6, this bit is set when the initial next header value is fragmentation (44). (For IPv6, FR
is never set when WORD2[IE]==1 (IP error) .)

IE
(IP_exc)

IP Error: Set when the packet has an IP exception condition. When the IE bit is set,
WORD2[Opcode] contains an error code specific to this type of error. The exact error codes
will be provided in a separate table. Note the bit only applies if (!RE) && (!NI).

IP_offset
(ip_offset)

IP Offset: The number of bytes from the first byte of packet data to the first byte of the IP
packet (the IP header).

LE
(L4_error)

IP L4 Error: This bit is set when WORD2[TU] is set and the PIP/IPD hardware found an error
in the TCP/UDP header and /or data. When the LE bit is set, WORD2[Opcode] contains an
error code specific to this type of error. The exact error codes will be provided in a separate
table. Note this bit only applies if only applies if (!RE) && (!NI) && (!IE) && (!FR).

M
(is_mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a multicast
address (the group bit is set, and at least one of the remaining bits is a zero).
Note: M is always zero when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

NI
(not_IP)

Not IP: Not an IP Packet or an L1/L2 error has occurred. For CASE 2, by definition NI==0
because CASE 2 only occurs if the packet is IP. (Note this bit is set if the hardware cannot
determine that the packet is IP. This does not necessarily mean that the packet is in fact not
IP.)

Opcode
(err_code)

Error Code: Numeric code indicating specific error which occurred: If there is an error (any of
WORD2[RE] or WORD2[IE] or WORD2[LE] is set), then Opcode contains an error code,
otherwise Opcode=0. The error codes values depend on which error bit is set (RE, IE, or
LE). See those specific errors for details.

PR
(pr)

PCIe Ring: The relative position of the PCIe ring in the PKI input port [0-7].
PR is enabled if PIP_GBL_CTL[RING_EN]==1.
If the packet was not received on a PCIe port OR PIP_GBL_CTL[RING_EN]==0, then
PR=0.
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCIe port.

RE
(rcv_error)

Receive error (L1/L2 error): For CASE 2, RE==0 because CASE 2 only occurs there is NO
L1/L2 error.

S
(software) Software Use: Reserved for software use.

6-60 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-61

TU
(tcp_or_udp)

Is TCP or UDP: The TU bit is set when an IP packet is TCP or UDP (when the IPv4
protocol value or the IPv6 initial next header ==6 (TCP) or ==17 (UDP)). This bit is
always 0 when WORD2[IE]==1, and when WORD2[V6] and WORD2[FR] are both set.

V6
(is_v6) Is IPv6: Set if IP header version field ==6

VC (vlan_cfi)

VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).
If VV==0 (NOT VLAN), then VC=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to select
which VLAN CFI will be used (VLAN0 or VLAN1). If PIP_GBL_CTL[VS_WQE]==0,
then VLAN0 CFI is selected, otherwise VLAN1 CFI is selected.
Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN_id
(vlan_id)

VLAN ID: VLAN_id is the VLAN ID field (VLAN bits <11:0>).
If VV==0 (NOT VLAN), then VLAN_id=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VLAN_id is set to the packet's VLAN
id.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to select
which VLAN ID will be used. If PIP_GBL_CTL[VS_WQE]==0, then VLAN0 id is selected,
otherwise VLAN1 ID is selected.
Note: VLAN_id is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VS
(vlan_stacked)

VLAN STACKED: This bit is only set if VV==1 (VLAN) AND the packet is VLAN
STACKED.
Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

VV
(vlan_valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 15: WQE WORD2 Fields for Skip-to-L2 and NOT IP (CASE 3A)

Field
Definition

(Fields are in alphabetical order. The SDK software field names are shown
in parenthesis.)

B
(is_bcast)

Broadcast: set when the packet's destination MAC address field in the L2 header is the
broadcast address (all ones).
Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Bufs
(bufs)

Number of Buffers: The number of buffers used to store the packet data. A zero value means
that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

IA
(is_arp)

Is ARP: Set when the packet's L2 header type field ==0x0806 (an ARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

IR
(is_rarp)

Is RARP: Set when the packet's L2 header type field ==0x0835 (an RARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

M
(is_mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a
multicast address (the group bit is set, and at least one of the remaining bits is a zero).
Note: M is always zero when NOT in skip-to-L2 mode.

NI
(not_IP) Not IP: Not an IP Packet or an L1/L2 receive error has occurred.

Opcode
(err_code)

Error Code: Numeric code indicating specific error which occurred: If there is an error (any
of WORD2[RE] or WORD2[IE] or WORD2[LE] is set), then Opcode contains an error
code, otherwise Opcode=0. The error codes values depend on which error bit is set (RE,
IE, or LE). See those specific errors for details.

PR
(pr)

PCIe Ring: The relative position of the PCIe ring in the PKI input port [0-7].
PR is enabled if PIP_GBL_CTL[RING_EN]==1.
If the packet was not received on a PCIe port OR PIP_GBL_CTL[RING_EN]==0, then
PR=0.
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCIe port.

RE
(rcv_error)

Receive error (L1/L2 error): For CASE 2, by definition RE==0 because CASE 2 only occurs
there is NO L1/L2 error.

S
(software) Software Use: Reserved for software use.

VC
(vlan_cfi)

VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).
If VV==0 (NOT VLAN), then VC=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to
select which VLAN CFI will be used (VLAN0 or VLAN1). If
PIP_GBL_CTL[VS_WQE]==0, then VLAN0 CFI is selected, otherwise VLAN1 CFI is
selected.
Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

6-62 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-63

Field
Definition

(Fields are in alphabetical order. The SDK software field names are shown
in parenthesis.)

VLAN_id
(vlan_id)

VLAN ID: VLAN_id is the VLAN ID field (VLAN bits <11:0>).
If VV==0 (NOT VLAN), then VLAN_id=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VLAN_id is set to the packet's VLAN
id.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to
select which VLAN id will be used. If PIP_GBL_CTL[VS_WQE]==0, then VLAN0 id is
selected, otherwise VLAN1 id is selected.
Note: VLAN_id is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VS
(vlan_stacked)

VLAN STACKED: This bit is only set if VV==1 (VLAN) AND the packet is VLAN
STACKED.
Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

VV
(vlan_valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

6.3 Parse Mode = Skip-to-IP
When the parse mode is “skip-to-IP”, the IP header is analyzed, and appropriate fields in WQE
WORD2 are set.

(For reference, the IPv4 and IPv6 headers, including the IPv4 TCP/IP combined header may be
found in Section 15 – “Appendix B: Industry-Standard Reference Information”.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 16: WORD2 if PM=Skip-to-IP and No L1/L2 Errors (CASE 2B)
Parse Mode = Skip-to-IP and the WQE WORD2 Data Structure

This case applies if:
The packet’s parse mode is Skip-to-IP
There are no L1/L2 errors

A packet with the parse mode “skip-to-IP” is always classified as an IP packet.

In the case of skip-to-IP parsing mode, the information from the L2 header, such as
VLAN is not available. These fields are set to zero. The packet’s IP information
(such as whether the packet is TCP or UDP) is determined by parsing the IP
header.

The data structure for WORD2 of the Work Queue Entry is shown below. Fields
which require IP parsing are highlighted in green.

Reserved fields in WQE are not named and are highlighted in gray. They are set to
0.

The different fields in the data structures are explained in the next table.

44 16

CASE 2B:
Skip-to-IP

63 0

(8 bits)

VV=0

VLAN_id
(12 bits)

Opcode
(8 bits)

Bufs
(8 bits)

IP_offset
(8 bits)

VS=0 VC=0 B=0 M=0 NI=0 RE=0S LE FR IECO TU SE V6

(12 bits)

20 1928 2756 55 48 47

PR
(4)

32 31

8

8 7

(4)

44 43

9101112131415171819454647

Table 16: WQE WORD2 Fields for Skip-to-IP (CASE 2B)

Field
Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

B
(is_bcast)

Broadcast: set when the packet's destination MAC address field in the L2 header is the
broadcast address (all ones).
Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

Bufs
(bufs)

Number of Buffers: The number of buffers used to store the packet data. A zero value means
that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

CO
(dec_ipcomp)

IP Compression: The CO bit (IP compression protocol bit) is set when the packet is IPCOMP
(the IPv4 header protocol field or the initial IPv6 next header field == 108.) This bit is
always clear when WORD2[IE]==1 (IP error), and when WORD2[V6] and WORD2[FR] are
both set. This bit indicates that the packet needs to be decompressed.

6-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-65

Field
Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

FR
(is_frag)

Fragment: Set when the packet is a fragment. For IPv4, this bit is set when either the IPv4
header's MF (More Fragments) flag is set, or the IPv4 header fragment offset field is
non-zero (the last fragment has the MF flag cleared and a non-zero fragment offset). For
IPv6, this bit is set when the initial next header value is fragmentation (44). (For IPv6, FR
is never set when WORD2[IE]==1 (IP error) .)

IE
(IP_exc)

IP Error: Set when the packet has an IP exception condition. When the IE bit is set,
WORD2[Opcode] contains an error code specific to this type of error. The exact error codes
will be provided in a separate table. Note the bit only applies if (!RE) && (!NI).

IP_offset
(ip_offset)

IP Offset: The number of bytes from the first byte of packet data to the first byte of the IP
packet (the IP header).

LE
(L4_error)

IP L4 Error: This bit is set when WORD2[TU] is set and the PIP/IPD hardware found an error
in the TCP/UDP header and /or data. When the LE bit is set, WORD2[Opcode] contains an
error code specific to this type of error. The exact error codes will be provided in a separate
table. Note this bit only applies if only applies if (!RE) && (!NI) && (!IE) && (!FR).

M
(is_mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a multicast
address (the group bit is set, and at least one of the remaining bits is a zero).
Note: M is always zero when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

NI
(not_IP)

Not IP: Not an IP Packet or a L1/L2 error has occurred. For CASE 2, by definition NI==0
because CASE 2 only occurs if the packet is IP. (Note this bit is set if the hardware cannot
determine that the packet is IP. This does not necessarily mean that the packet is in fact not
IP.)

Opcode
(err_code)

Error Code: Numeric code indicating specific error which occurred: If there is an error (any of
WORD2[RE] or WORD2[IE] or WORD2[LE] is set), then Opcode contains an error code,
otherwise Opcode=0. The error codes values depend on which error bit is set (RE, IE, or
LE). See those specific errors for details.

PR
(pr)

PCIe Ring: The relative position of the PCIe ring in the PKI input port [0-7].
PR is enabled if PIP_GBL_CTL[RING_EN]==1.
If the packet was not received on a PCIe port OR PIP_GBL_CTL[RING_EN]==0, then
PR=0.
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCIe port.

RE
(rcv_error)

Receive error (L1/L2 error): For CASE 2, RE==0 because CASE 2 only occurs there is NO
L1/L2 error.

S
(software) Software Use: Reserved for software use.

TU
(tcp_or_udp)

Is TCP or UDP: The TU bit is set when an IP packet is TCP or UDP (when the IPv4
protocol value or the IPv6 initial next header ==6 (TCP) or ==17 (UDP)). This bit is
always 0 when WORD2[IE]==1, and when WORD2[V6] and WORD2[FR] are both set.

V6
(is_v6) Is IPv6: Set if IP header version field ==6 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Definition
Field (Fields are in alphabetical order.

The SDK software field names are shown in parenthesis.)

VC (vlan_cfi)

VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).
If VV==0 (NOT VLAN), then VC=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to select
which VLAN CFI will be used (VLAN0 or VLAN1). If PIP_GBL_CTL[VS_WQE]==0,
then VLAN0 CFI is selected, otherwise VLAN1 CFI is selected.
Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN_id
(vlan_id)

VLAN ID: VLAN_id is the VLAN ID field (VLAN bits <11:0>).
If VV==0 (NOT VLAN), then VLAN_id=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VLAN_id is set to the packet's VLAN
id.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to select
which VLAN ID will be used. If PIP_GBL_CTL[VS_WQE]==0, then VLAN0 id is selected,
otherwise VLAN1 ID is selected.
Note: VLAN_id is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VS
(vlan_stacked)

VLAN STACKED: This bit is only set if VV==1 (VLAN) AND the packet is VLAN
STACKED.
Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

VV
(vlan_valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

6.4 Parse Mode = Uninterpreted
When the parse mode is “uninterpreted”, there are two cases for setting WQE WORD2:

1. The packet has a Packet Instruction Header and the RAW bit is set to 1 in the instruction
header

2. Either the packet does not have a Packet Instruction Header, or the RAW bit is set to 0.

6-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-67

Figure 17: WORD2 if PM=Unint., RAW, No L1/L2 Errors (CASE 1A, CASE 1B)
Parse Mode = Uninterpreted and RAW (RAWFULL): WQE WORD2 Data Structure

This case applies if the packet is RAWFULL. For the packet to be RAWFULL, all of the
following must be true:

The packet has a Packet Instruction Header or PCI Instruction Header
The instruction header’s parse mode field is “Uninterpreted”
The RAW bit is set in the instruction header
There are no L1/L2 errors

RAWFULL packets use PIP_RAW_WORD[WORD] to create WQE WORD2. There is no
requirement for the contents of PIP_RAW_WORD[WORD].

If PIP_GBL_CTL[RING_EN]==1, and the packet is received on a PCI/PCIe port, PCI ring
information is automatically inserted into WORD2 instead of PIP_RAW_WORD[WORD] bits
<31:28>.

The different fields in the data structures are explained in the next table.

Case 1A:
RAWFULL

AND
PCIe
AND

PIP_GBL_CTL[RING_EN]==1

63 0

PIP_RAW_WORD[WORD] bits
<27:0>

(28 bits)

Bufs
(8 bits)

PIP_RAW_WORD[WORD] bits
<55:32>
(24 bits)

PRR
(4)

28 2732 3156 55

Case 1B:
RAWFULL

AND
((NOT PCIe) OR

PIP_GBL_CTL[RING_EN]=0)

63 0

Bufs
(8 bits)

PIP_RAW_WORD[WORD]
(56 bits)

56 55

As of SDK 1.9, there is no software data structure for CASE1 fields, so the following table does
not specify a software field name after the hardware field name.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 17: WQE WORD2 Fields for RAWFULL (CASE 1A and CASE 1B)
Field Definition

(Fields are in alphabetical order.)

Bufs

Number of Packet Data Buffers: The number of buffers used to store the
packet data. A zero value means that a dynamic short packet is stored
entirely in the WQE (there is no Packet Data Buffer).

PIP_RAW_WORD

RAW Word: Set to the value of the PIP_RAW_WORD configuration
register. Incoming packets may optionally contain a Packet Instruction
Header. If the R (RAW) bit is set in the Packet Instruction Header, and
the parse mode is uninterpreted, then the packet is RAWFULL.
RAWFULL packets are not parsed and decoded by PIP/IPD to fill in the
WQE WORD2 fields. Instead, the value of the PIP_RAW_WORD
register is used to populate WQE WORD2.

PIP_RAW_WORD<55:32>

RAW Word bits <55:32>: If the packet is RAWFULL and arrived on
a PCIE port and PIP_GBL_CTL[RING_EN]==1, then bits <31:28>
of WQE WORD2 are replaced by PRR. This causes the
PIP_RAW_WORD to be split into two parts, with PRR occupying WQE
WORD2 bits <31:28>.

PIP_RAW_WORD<27:0>
RAW Word bits <27:0>: The value of PIP_RAW_WORD configuration
register, bits <27:0>. See PIP_RAW_WORD<55:32>.

PRR

PCIe Ring RAW: If the packet is RAWFULL and arrived on a PCIE
port and PIP_GBL_CTL[RING_EN]==1, then bits <31:28> of WQE
WORD2 set to the relative position of the PCIe ring in the PKI input port
[0-7]. (Technically, there is only one data structure: if the packet was
not received on a PCIe port or PIP_GBL_CTL[RING_EN]==0, then
PRR=PIP_RAW_WORD<31:38>. To reduce complexity, this is shown
in the figure above as a different data structure with
PIP_RAW_WORD<55:0> uninterrupted.)

6-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-69

Figure 18: WORD2 if PM=Unint., NOT RAW, No L1/L2 Errors (CASE 3B)
Parse Mode = Uninterpreted and NOT RAW (NOT RAWFULL):

WQE WORD2 Data Structure

This case applies if:
The packet has a Packet Instruction Header or PCI Instruction Header, AND
The instruction header’s parse mode field is “Uninterpreted”, AND
The RAW bit is NOT set in the instruction header
There are no L1/L2 errors

This case also applies if:
If there is no Packet Instruction Header or PCI Instruction Header AND
The port’s configured parse mode is set to “Uninterpreted”
((PIP_PRT_CFGn[MODE])==0 (no packet inspection)).
There are no L1/L2 errors

Note: “RAW” cannot be set without an instruction header.

In this case, NI is set to 1 to indicate this is not an IP packet.

Reserved fields in WQE are not named and are highlighted in gray. They are set to 0.

The different fields in the data structures are explained in the next table.

1244

CASE 3B:
Uninterpreted

AND
NOT RAW

63
0

(14 bits)

VV=0

VLAN_id=0
(12 bits)

Opcode
(8 bits)

Bufs
(8 bits) (8 bits)

VS=0 0 VC=0 B=0 M=0 NI=1 RE=0IR=0 IA=0

20 1928 2756 55 48 47

PR
(4)

32 31 8 7

(4)

44 43

(6 bits)

14 13

89101113454647

Table 18: WQE WORD2 Fields for Uninterpreted and not RAW (CASE 3B)

Field
Definition

(Fields are in alphabetical order.
The SDK software field names are shown in parenthesis.)

B
(is_bcast)

Broadcast: set when the packet's destination MAC address field in the L2 header is the
broadcast address (all ones).
Note: B always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there is
an L1/L2 error because the packet may be corrupted.

Bufs
(bufs)

Number of Buffers: The number of buffers used to store the packet data. A zero value means
that a dynamic short packet is stored entirely in the WQE (there is no Packet Data Buffer).

IA
(is_arp)

Is ARP: Set when the packet's L2 header type field ==0x0806 (an ARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Definition
Field (Fields are in alphabetical order.

The SDK software field names are shown in parenthesis.)
IR
(is_rarp)

Is RARP: Set when the packet's L2 header type field ==0x0835 (an RARP packet).
Note: IA=0 when NOT in skip-to-L2 mode. The value is unpredictable when there is an
L1/L2 error because the packet may be corrupted.

M
(is_mcast)

Multicast: Set when the packet's destination MAC address field in the L2 header is a
multicast address (the group bit is set, and at least one of the remaining bits is a zero).
Note: M is always zero when NOT in skip-to-L2 mode.

NI
(not_IP) Not IP: Not an IP Packet or an L1/L2 receive error has occurred.

Opcode
(err_code)

Error Code: Numeric code indicating specific error which occurred: If there is an error (any
of WORD2[RE] or WORD2[IE] or WORD2[LE] is set), then Opcode contains an error
code, otherwise Opcode=0. The error codes values depend on which error bit is set (RE,
IE, or LE). See those specific errors for details.

PR
(pr)

PCIe Ring: The relative position of the PCIe ring in the PKI input port [0-7].
PR is enabled if PIP_GBL_CTL[RING_EN]==1.
If the packet was not received on a PCIe port OR PIP_GBL_CTL[RING_EN]==0, then
PR=0.
Note: Zero is both 1) a legal ring position value and 2) the value if the packet is not received
on a PCIe port.

RE
(rcv_error)

Receive error (L1/L2 error): For CASE 2, by definition RE==0 because CASE 2 only occurs
there is NO L1/L2 error.

S
(software) Software Use: Reserved for software use.

VC
(vlan_cfi)

VLAN CFI bit: The VC bit is the VLAN CFI bit (VLAN bit <12>).
If VV==0 (NOT VLAN), then VC=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VC is set to the packet's VLAN CFI bit.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to
select which VLAN CFI will be used (VLAN0 or VLAN1). If
PIP_GBL_CTL[VS_WQE]==0, then VLAN0 CFI is selected, otherwise VLAN1 CFI is
selected.
Note: VC is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VLAN_id
(vlan_id)

VLAN ID: VLAN_id is the VLAN ID field (VLAN bits <11:0>).
If VV==0 (NOT VLAN), then VLAN_id=0.
If VV==1 and VS==0 (NOT VLAN STACKED), then VLAN_id is set to the packet's VLAN
id.
If VV==1 and VS==1 (VLAN STACKED), then PIP_GBL_CTL[VS_WQE] is used to
select which VLAN id will be used. If PIP_GBL_CTL[VS_WQE]==0, then VLAN0 id is
selected, otherwise VLAN1 id is selected.
Note: VLAN_id is always 0 when NOT in skip-to-L2 mode because VV==0. The value is
unpredictable when there is an L1/L2 error because the packet may be corrupted.

VS
(vlan_stacked)

VLAN STACKED: This bit is only set if VV==1 (VLAN) AND the packet is VLAN
STACKED.
Note: VS is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

VV
(vlan_valid)

VLAN Valid: This bit is only set if the packet is VLAN or VLAN STACKED.
Note: VV is always 0 when NOT in skip-to-L2 mode. The value is unpredictable when there
is an L1/L2 error because the packet may be corrupted.

6-70 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-71

6.5 Registers to Configure WQE WORD2 Content
Work Queue Entry WORD1 and WORD2 field content is controlled by user-configured variables.
In addition to the variables shown in this section, see Section 9 – “Error Check Configuration”.

The specific FPA pool used for WQE buffers is configurable via the
IPD_WQE_FPA_QUEUE[WQE_QUE] field.

Table 19: Registers to Configure Work Queue Entry WORD2

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Add PCIe Ring Information: If set to 1, add PCIe ring
information to WQE WORD2. PIP_GBL_CTL RING_EN 0

0
(H/W

Default)

Select Which VLAN to Use: Which VLAN CFI bit to
use for VLAN Stacking:
0=use first VLAN (network order)
1=use second VLAN (network order)

PIP_GBL_CTL VS_WQE 0
0

(H/W
Default)

Specify WORD2 for RAWFULL Packets: Contains the
WQE WORD2 value for RAWFULL packets. The 8-bit
bufs field is still set by IPD. Note there is only one
configuration register for all ports.

PIP_RAW_WORD WORD 0
0

(H/W
Default)

6.6 Where to Find More Information About Parsing
For readers who need more details, see Section 16 – “Appendix C: Input Packet Parsing”, and the
HRM.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

7 Scheduling (WQE WORD1)
The PIP/IPD unit is responsible for setting packet information needed by the scheduler: the
packet’s Group, QoS, Tag Type, and Tag Value. These are all fields in the WQE which is
submitted to the SSO via the add_work operation.

The PIP/IPD provides various options in how these fields are set. This section introduces the
various options, and presents technical details.

Note that if a Packet Instruction Header is used, and the RAW bit in the instruction
header is set, then Group, QoS, Tag Type, and Tag Value are all taken directly from the
instruction header: register configuration fields are ignored.

In addition to register variables which control how these fields are set, PIP/IPD provides port
watchers, which look for specific types of packets. Port watchers can be used to set either the
group or QoS value of matched packets.

7.1 Work Group Assignment (WQE WORD1 Group Field)
There are four methods for setting the group value:

1. Specify group in the Packet Instruction Header (RAWFULL, RAWSCH)
2. Derive group from the packet’s Tag Value (GRPTAG)
3. Set group via a Port Watcher (for matched packets) (See Section 7.5 – “Using Watchers to

Set QoS and Group”)
4. Take Default value for the port

The per-port GRPTAG feature can be used to direct all the traffic from a flow to one work group
(“flow steering”), which can reduce the locking needed by an application. If all locking is per-
flow, this feature could be used to implement a completely lockless system. Flow steering is also
sometimes used to improve L1 cache hits (core affinity). The problem is that having only one core
process a flow, where the Tag Type is ORDERED means that the power of parallel processing
(multiple cores processing the same flow) is not being used.

This feature can also be used for load balancing. Since the tag is based on a CRC, the bits in it are
fairly evenly distributed. Including these bits in the group value results in a random distribution of
flows over the groups. The groups are then mapped to the available cores (load balancing). One
caveat occurs when the number of groups created does not evenly map to the number of cores used
to process the groups. No matter what the GRPTAGMASK value is, the result is always a power-of-
two number of groups (1, 2, 4, 8, and 16). If the number of available cores is not a power of two
(3, 5-7, or 9-15), then the groups will not map evenly to the cores, and the traffic load will be
unbalanced between cores.

Note: This feature is not generally useful for load balancing because the incoming
traffic load is not balanced.

The GRPTAG formula is:
Group=

6-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-73

((WQE_WORD1[TAG] & ~PIP_PRT_TAGn[GRPTAGMASK]) + PIP_PRT_TAGn[GRPTAGBASE]) & 0xF

Note that GRPTAGMASK specifies the bits to be excluded (the bits that should not be considered).
When the AND operation is done it is with the NOT of GRPTAGMASK: TAG & ~GRPTAGMASK.

GRPTAGBASE is an offset which allows low group numbers to be excluded from the GRPTAG
calculation. The lower group numbers can then be used for special traffic mapping. For example,
For example, the group number for ARP packets (which are not part of a specific flow) can be set
to 0, while flows are directed to group numbers greater than 0.

For example, to process a mixture of IP and non-IP traffic, the IP traffic will use the GRPTAG
feature while the non-IP traffic will not. GRPTAGBASE allows you to differentiate between the
two. Non-IP can use groups 0 through (GRPTAGBASE-1), while IP uses groups GRPTAGBASE
through 15.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 19: Group Assignment Flow Chart

“Match” means that both
the type and the
masked value match.

L1/L2 Receive Error
?

Start Group
Assignment

Group Assignment

Group=
PIP_QOS_WATCHn[GRP]

YES (Group is default value, Exit)

END Group
Assignment

Set Default Value: Group = PIP_PRT_TAGn[GRP]

RAWFULL or RAWSCH
?

NO

YES Group = PKT_INST_HDR[GRP] Exit

NO

Set mask and match values

(Watcher type == protocol/next header)
AND !(IE) and !(LE) AND Match

?

YES, Match
(Protocol/Next

Header)

NO

Watcher (i)
enabled

?

NO

YES

For all watchers (i= 0; i <MAX_WATCHERS; i++)

YES, Match
(TCP Dest)

NO

(Watcher type == ETHERTYPE)
AND Match

?

NO
YES, Match
(EtherType)

i >= MAX_WATCHERS
?

YES
(No more
watchers)

NO

YES, Match
(UDP Dest)

EX
IT

M
AT

C
H

NO

Note that if multiple
watchers could match,
the lowest-numbered
watcher which matches
will determine the
packet’s group value.

Note that watchers may only set the group if
a prior test has not caused the group-setting
function to exit.

!(IE) means no IP packet errors
!(LE) means no TCP/UDP errors
!(FR) means not a fragment
IPv4.HL==5 matches IPv4 packets without
options
(HL = header length)

(Watcher type == UDP)
AND !(IE) and !(LE) AND

!(FR) AND (IPv6 or IPv4.HL==5) AND Match
?

LOOP
AGAIN

(Watcher type == TCP)
AND !(IE) and !(LE) AND

!(FR) AND(IPv6 or IPv4.HL==5) AND Match
?

EXIT

Note that if parse mode == Uninterpreted, and the
packet is not RAW, it drops through the code and exits
with the default Group value.

PIP_PRT_TAGn[GRPTAG]
AND (IP OR

PIP_PRT_TAGn[GRPTAG_MSKIP])
?

YES

Group = ((WQE_WORD1[TAG] &
~PIP_PRT_TAGn[GRPTAGMASK]) +

PIP_PRT_TAGn[GRPTAGBASE]) & 0xF Exit

NO
(Exit)

6-74 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-75

7.1.1 Registers to Configure Group Assignment
The registers fields in the following table are in logical order, not in HRM order.

Table 20: Registers to Configure WQE WORD1 Group Assignment

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Default Group for the Port

Default Group: Set the default work
group number for the packet

PIP_PRT_TAGn
(one per port) GRP 0

0
(H/W

Default)

Calculate Group from Tag Value

IP GRPTAG: GRPTAG enable for IP
packets: If GRPTAG==1, use WQE tag
value to create the Work Group value for
an IP packet

PIP_PRT_TAGn
(one per port) GRPTAG 0

0
(H/W

Default)

Non-IP GRPTAG: Additional enable for
non-IP packets: If GRPTAG==1 and
GRPTAG_MSKIP==1, use the WQE tag
value to create the Work Group value
even if the packet is not an IP packet

PIP_PRT_TAGn
(one per port) GRPTAG_MSKIP 0

0
(H/W

Default)

GRPTAG Mask: If GRPTAG==1, specify
which bits of WQE Tag value to exclude
from the Work Group computation

PIP_PRT_TAGn
(one per port) GRPTAGMASK 0

0
(H/W

Default)

GRPTAG Base: If GRPTAG==1, specifies
the offset to use to compute the WQE
Work Group from tag value

PIP_PRT_TAGn
(one per port) GRPTAGBASE 0

0
(H/W

Default)

7.2 QoS Assignment
The QoS value can be controlled in various ways. It can come from:

1. A default value
2. The Packet Instruction Header (for RAWFULL and RAWSCH packets)
3. A Broadcom HiGig Header priority converted to a QoS
4. A VLAN or VLAN stacked priority converted to a QoS
5. An IP Diffserv priority (which can be configured to take precedence over VLAN priority)
5. A Port Watcher (similar process as for group value setting) (See Section 7.5 – “Using

Watchers to Set QoS and Group”)

The function cvmx_pip_config_vlan_qos() can be used to configure the VLAN-to-QoS
mapping Table0 (shown in the figure below). As of SDK 1.9, there is no function to configure
VLAN-to-QoS mapping Table1.

The function cvmx_pip_config_diffserv_qos() can be used to configure the diffserv-to-
QoS mapping table.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 20: Deriving QoS From VLAN Priority
Deriving QoS from VLAN Priority

V
LA

N

P
rio

rit
y

There are two tables used to map VLAN priority to QoS.
Each port can select which table to use via PIP_PRT_CFGn[QOS_VSEL]:
0=table0
1=table1

1
2
3
4
5
6
7

0

Q
O

S

Table0

To enable setting QoS using VLAN information for the port:
PIP_PRT_CFGn[QOS_VLAN]=1

If VLAN stacking (two
VLAN entries in the L2
header), decide which
VLAN to use for all ports
to get the VLAN priority
field:
PIP_GBL_CTL[VS_QOS]
0=Use VLAN0
1=Use VLAN1

PCP
(3)

VLAN ID
(12 bits)

0 153 4 7 8

C
FI

PCP:
Priority 0=lowest, 7=highest

Ethernet II
+

VLAN Stacked 0x
81

00

VL
AN

1

Ty
peDMAC

(6 bytes)
Uninterpreted

(6 bytes)

0x
81

00

VL
AN

0

0x
81

00

VL
A

N
0Ethernet II

+
VLAN

Ty
peUninterpreted

(6 bytes)
DMAC

(6 bytes)

If the L2 header contains VLAN or VLAN Stacking (two VLAN entries), then the VLAN
“priority” field (PCP) can be used to set the packet’s QoS value.

The VLAN priority is extracted from the selected VLAN
entry in the L2 header (VLAN0 if no VLAN stacking).

This priority is used as an index into a VLAN-to-QoS
mapping table.

V
LA

N

P
rio

rit
y

1
2
3
4
5
6
7

0

Q
O

S1

Table1

Table0
PIP_QOS_VLAN0[QOS]
PIP_QOS_VLAN1[QOS]
PIP_QOS_VLAN2[QOS]
PIP_QOS_VLAN3[QOS]
PIP_QOS_VLAN4[QOS]
PIP_QOS_VLAN5[QOS]
PIP_QOS_VLAN6[QOS]
PIP_QOS_VLAN7[QOS]

Table1
PIP_QOS_VLAN0[QOS1]
PIP_QOS_VLAN1[QOS1]
PIP_QOS_VLAN2[QOS1]
PIP_QOS_VLAN3[QOS1]
PIP_QOS_VLAN4[QOS1]
PIP_QOS_VLAN5[QOS1]
PIP_QOS_VLAN6[QOS1]
PIP_QOS_VLAN7[QOS1]

The user configures the VLAN priority-to-QoS
mapping values in the two VLAN-to_QoS
mapping tables, using the PIP_QOS_VLANn
register, where n is the VLAN priority.

6-76 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-77

Figure 21: QoS Assignment Flowchart, part 1

“Match” means that
both the type and
the masked value
match.

L1/L2 Receive Error
?

Start QoS
Assignment

QoS Assignment, part 1

QOS=
PIP_QOS_WATCHn[WATCHER]

YES (QoS is default value, Exit)

Set Default Value: QOS=PIP_PRT_CFGn[QOS]

RAWFULL or RAWSCH
?

NO

YES QOS=PKT_INST_HDR[QOS] Exit

NO

Set mask and match values

(Watcher type == protocol/next header)
AND !(IE) and !(LE) AND Match

?

YES, Match
(Protocol/Next

Header)

NO

Watcher (i)
enabled

?

NO

YES

For all watchers i= 0; I <MAX_WATCHERS; i++)

YES, Match
(TCP Dest)

NO

(Watcher type == ETHERTYPE)
AND Match

?

NO

YES, Match
(EtherType)

i >= MAX_WATCHERS
?

YES
(No more
watchers)

NO

YES, Match
(UDP Dest)

NO

Note that if multiple
watchers could
match, the lowest-
numbered watcher
which matches will
determine the
packet’s QoS value.

Note that watchers may only set the QoS if a
prior test has not caused the QoS-setting
function to exit.

!(IE) means no IP packet errors
!(LE) means no TCP/UDP errors
!(FR) means not a fragment
IPv4.HL==5 matches IPv4 packets without options
(HL = header length)

(Watcher type == UDP)
AND !(IE) and !(LE) AND

!(FR) AND (IPv6 or IPv4.HL==5) AND Match
?

LOOP
AGAIN

(Watcher type == TCP)
AND !(IE) and !(LE) AND

!(FR) AND(IPv6 or IPv4.HL==5) AND Match
?

EXIT

Note that if parse mode == Uninterpreted, and the packet
is not RAW, it drops through the code and exits with the
default QoS value.

END QoS
Assignment

Processing
Continues in the

Next Figure

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 22: QoS Assignment Flowchart, part 2

EX
IT

6-78 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-79

7.2.1 Registers to Configure QoS Assignment
In the following table, ignore fields which are not applicable. For example, if you are not using
Broadcom HiGig, or VLAN STACKING, then ignore the variables.

The packet’s QoS value can also be set by a global watcher. See Section 7.5 – “Using Watchers to
Set QoS and Group” for watcher configuration.

The register fields in the following table are in logical order, not HRM order.

Table 21: Registers to Configure WQE WORD1 QoS Assignment

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Default QoS for the Port

Default QoS: One register per port.
Default QoS for the port

PIP_PRT_CFGn
(one per port) QOS 0

0
(See

Note1)

VLAN

Enable VLAN Priority over QoS:
One register per port. If set to 1, If
VLAN, then VLAN priority will be
used to set QoS

PIP_PRT_CFGn
(one per port) QOS_VLAN 0

0
(H/W

Default)

Select VLAN-to-QoS MappingTable:
One register per port. If VLAN,
Select which VLAN-to-QoS mapping
table to use for this port
0=PIP_QOS_VLANn[QOS]
(Table0)
1=PIP_QOS_VLANn[QOS1]
(Table1)

PIP_PRT_CFGn
(one per port) QOS_VSEL 0

0
(H/W

Default)

Configure VLAN-to-QoS mappping
Table0: One entry per VLAN priority
(0-7).
(See PIP_PRT_CFGn[QOS_VSEL])

PIP_QOS_VLAN(0-7)
(one per VLAN priority) QOS 0

0
(H/W

Default)
(See

Note2)

Configure VLAN-to-QoS mappping
Table1: One entry per VLAN priority
(0-7).
(See PIP_PRT_CFGn[QOS_VSEL])

PIP_QOS_VLAN(0-7)
(one per VLAN priority) QOS1 0

0
(H/W

Default)

VLAN STACKING (VLAN registers also apply if VLAN stacking is used)

For VLAN STACKING, Select which
VLAN field will be used: Global
setting (for all ports): select which
VLAN field in the L2 header will
provide the VLAN priority
0=VLAN0
1=VLAN1

PIP_GBL_CTL VS_QOS 0
0

(H/W
Default)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

H/W SDK
Brief Description Register Fields Default Default

Value Value
Broadcom HiGig

Enable Broadcom HiGig: One
register per port. Enables HiGig QoS
lookup based on HiGig Priority

PIP_PRT_CFGn
(one per port) HG_QOS 0

0
(H/W

Default)
(See

Note3)

Select Table Entry to Update: The
HiGig Priority (index to the
HG_QOS_TABLE). (See also
UP_QOS)

PIP_HG_PRI_QOS PRI 0

0
(H/W

Default)
(See

Note3)

Set QoS Value for Table at Index PRI:
Map the priority PRI (used as an
index to the HG_QOS_TABLE) to
this QoS value. (See also UP_QOS)

PIP_HG_PRI_QOS QOS 0

0
(H/W

Default)
(See

Note3)

Configure HiGig QoS mapping table:
Global register. When set, updates the
entry in the HiGig QoS table, where
the table index is specified by PRI and
the value is specified by QOS. This
table maps the HiGig priority to a QoS
level.

PIP_HG_PRI_QOS UP_QOS 0

0
(H/W

Default)
(See

Note3)

Diffserv

Enables QoS for Diffserv: One
register per port. This enables using
the diffserv value in the packet header
to determine the destination SSO QoS
queue.

PIP_PRT_CFGn
(one per port) QOS_DIFF 0

0
(H/W

Default)
(See

Note4)

Diffserv Maping Table: One register
per Diffserv value. For each Diffserv
value (level), specifies the QoS value
(maps 64 Diffserv levels to 8 QoS
levels)

PIP_QOS_DIFF(0-63)
(one per Diffserv level) QOS 0

0
(H/W

Default)
(See

Note4)

VLAN over Diffserv
VLAN over Diffserv: One register
per port. The VLAN QoS value takes
priority over Diffserv in setting the
QoS

PIP_PRT_CFGn
(one per port) QOS_VOD 0

0
(H/W

Default)

Notes
Note1: When using the helper functions, the SDK configures the QoS value so that each port sends packets to a
different SSO queue:
port_config.s.qos = ipd_port & 0x7;
Note2: Can be configured via cvmx_pip_config_vlan_qos()
Note3: Can be configured via cvmx_higig_initialize()
Note4: Can be configured via
cvmx_pip_config_diffserv_qos()

6-80 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-81

7.3 Tag Type Assignment

7.3.1 WQE WORD1 Tag Type
Tag Type can be any of:

• ATOMIC: Use ATOMIC tag type if there are shared resources which need to be protected
with a packet-linked lock: packets with the same tag tuple will be processed one-at-a-time
in ingress order. The SSO will maintain the packets in ingress order.

• ORDERED: Use ORDERED tag type if there are no shared resources to protect: packets
with the same tag tuple can be processed in parallel. The SSO will maintain the packets in
ingress order.

• NULL: Use NULL if neither shared resources nor ingress order need to be protected:
packets with the same tag tuple can be processed in parallel. The SSO will not maintain the
packets in ingress order.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 23: Tag Type Assignment Flowchart

L1/L2 Receive Error
?

Start Tag Type
Assignment

Tag Type Assignment

YES (Tag Type is default value, Exit)

END Tag Type
Assignment

Set Default Value:
Tag_type=PIP_PRT_TAGn[NON_TAG]

RAWFULL or RAWSCH
?

NO

YES Tag_type=PKT_INST_HDR[TT] Exit

NO

IPv6
?

No (IPv4)

Is IP
?

NO (Tag Type = default value, Exit)

YES

EX
IT

Note that if parse mode == Uninterpreted, and the packet
is not RAW, it drops through the code and exits with the
default Tag Type value.

YES (IPv6)

proto_nh=IPv6.next_headerproto_nh=IPv4.protocol

(!IE) AND
proto_nh==TCP)

?

YES,
(TCP)

IPv6
?

YES Tag_Type=
PIP_PRT_TAGn[TCP6_TAG] Exit

NO
(IPv4)

Tag_Type=
PIP_PRT_TAGn[TCP4_TAG] Exit

IPv6
?

NO (Not TCP)

YES Tag_Type=
PIP_PRT_TAGn[IP6_TAG] Exit

Tag_Type=
PIP_PRT_TAGn[IP4_TAG] ExitNO (IPv4)

!(LE) means no
TCP/UDP errors

6-82 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-83

7.3.2 Registers to Configure Tag Type Assignment

Specify Tag Type in the fields in the table below as:

0=ORDERED (CVMX_POW_TAG_TYPE_ORDERED)
1=ATOMIC (CVMX_POW_TAG_TYPE_ATOMIC)
2=NULL (CVMX_POW_TAG_TYPE_NULL)

Table 22: Registers to Configure WQE WORD1 Tag Type Assignment

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Non-IP Tag Type (Default Value)

Default Tag Type: Set tag type if not IP (See Note1) PIP_PRT_TAGn
(one per port) NON_TAG 0

0
(See

Note2)

IP Tag Type - TCP
IPv6 TCP Tag Type: Set tag type of TCP packet (See
Note1)

PIP_PRT_TAGn
(one per port) TCP6_TAG 0

0
(See

Note2)

IPv4 TCP Tag Type: Set tag type of TCP packet (See
Note1)

PIP_PRT_TAGn
(one per port) TCP4_TAG 0

0
(See

Note2)

IP Tag Type - NOT TCP
IPv6 !TCP Tag Type: set tag type if NOT TCP (See
Note1)

PIP_PRT_TAGn
(one per port) IP6_TAG 0

0
(See

Note2)

IPv4: !TCP Tag Type set tag type if NOT TCP (See
Note1)

PIP_PRT_TAGn
(one per port) IP4_TAG 0

0
(See

Note2)

Notes
Note1: Three choices:
0=ORDERED (CVMX_POW_TAG_TYPE_ORDERED)
1=ATOMIC (CVMX_POW_TAG_TYPE_ATOMIC)
2=NULL (CVMX_POW_TAG_TYPE_NULL)

Note2: Configured via executive-config.h:
CVMX_HELPER_INPUT_TAG_TYPE = CVMX_POW_TAG_TYPE_ORDERED
The helper function sets the values for all these fields to the same value: ORDERED.

When using Simple Executive, all fields are set to the same configuration variable which is defined
in executive-config.h:
CVMX_HELPER_INPUT_TAG_TYPE:

This variable is set to ORDERED by default:
#define CVMX_HELPER_INPUT_TAG_TYPE CVMX_POW_TAG_TYPE_ORDERED

This variable is used in the internal-use function __cvmx_helper_port_setup_ipd().

7.4 Tag Value Assignment
The tag value can be used to create multiple unique virtual work flows. Ideally, the unique work
flows correspond to IP header per-flow resources. Then, when a packet-linked lock (ATOMIC tag

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

type) is used to provide exclusive access to per-flow resources, non-related flows are not blocked
waiting for the lock. A tuple tag is recommended for this purpose.

Figure 24: Tag Value Data Structure
Tag Value Data Structure

31 0

PIP_INST_HDR[TAG]

RAWFULL AND RAWSCH PACKETS

ALL OTHER PACKETS

31 0

Hash of Specific Fields
(16 bits)

16 15

Always 0
(8 bits)

Either port
number or 0xFF

(8 bits)

24 23

There are four tag mode choices (selected via TAG_MODE):

• Create tag value using the tuple tag algorithm (only useful for IPv4 or IPv6 packets)
• Create tag value using the mask tag algorithm
• Create tag value using tuple tag if IP, else use mask tag
• Create tag value using tuple tag XOR mask tag

The tuple tag is a hash which optionally includes the IP source and destination addresses, the IP
protocol (IPv4) or next header (IPv6) value, the TCP/UDP source and destination ports, and the
VLAN ID. There are per-port configuration variables which control these options. The tuple tag
also includes a secret value. The hash results change with different secret values.

The mask tag is a hash which optionally includes/excludes any of the first 128 bytes of packet data
(starting at byte 0). A 128-bit mask is used to select which of the 128 bytes are included: each bit
in the mask represents a corresponding byte. The mask consists of 16 8-bit registers (16*8=128
bits), the PIP_TAG_INCr (PIP tag include) registers. There are four global masks. The specific
mask used by a port is selected via the PIP_PRT_CFGn[TAG_INC] field. The following figures
show how the bits in the PIP_TAG_INCr registers correspond to the first 128 bytes of packet
data. The PIP_TAG_INCr registers are used in the tag mask algorithm (hw_mask_tag()), and
are not used for the tag tuple algorithm (hw_tuple_tag()). Byte 0 in the figure below
corresponds to the first byte of the packet received.

6-84 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-85

Figure 25: Using Tag Mask to Include/Exclude Bytes in Mask Tag

The following figure shows an example of how the bits in the PIP_TAG_INCr registers
correspond to bytes of packet data. These registers are used in the tag mask algorithm. The
registers are not used for the tag tuple algorithm. In this example, only the first of the four tag
masks (registers 0-15) are shown.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 26: Tag Mask Register Bits Correspondence to Packet Data Bytes
PIP_TAG_INC[EN] Register Masks

How 128 Bits in the Mask Correspond to the First 128 Bytes of Packet Data

Packet Data Bytes
(packet data is shown in Big Endian mode)

Mask
Registers

15 120 121 122 123 124 125 126 127

14 112 113 114 115 116 117 118 119

13 104 105 106 107 108 109 110 111

12 96 97 98 99 100 101 102 103

11 88 89 90 91 92 93 94 95

10 80 81 82 83 84 85 86 87

9 72 73 74 75 76 77 78 79

8 64 65 66 67 68 69 70 71

567 57 58 59 60 61 62 63

486 49 50 51 52 53 54 55

405 41 42 43 44 45 46 47

324 33 34 35 36 37 38 39

243 25 26 27 28 29 30 31

162 17 18 19 20 21 22 23

81 9 10 11 12 13 14 15

7 0

00 1 2 3 4 5 6 7

Some of these options are easily tunable via Simple Executive configuration variables; other
configuration variables require knowledge of the register fields.

6-86 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-87

When using Simple Executive, relevant fields are set using the following configuration variables,
which are defined in executive-config.h:

// if 1, include PIP/IPD port
CVMX_HELPER_INPUT_TAG_INPUT_PORT

IPv4:
// if 1, include source IP address
CVMX_HELPER_INPUT_TAG_IPV4_SRC_IP
// if 1, include destination IP address
CVMX_HELPER_INPUT_TAG_IPV4_DST_IP
// if 1, include TCP/UDP source port
CVMX_HELPER_INPUT_TAG_IPV4_SRC_PORT
// if 1, include TCP/UDP destination port
CVMX_HELPER_INPUT_TAG_IPV4_DST_PORT
// if 1, include protocol value
CVMX_HELPER_INPUT_TAG_IPV4_PROTOCOL

IPv6:
// if 1, include source IP address
CVMX_HELPER_INPUT_TAG_IPV6_SRC_IP
// if 1, include destination IP address
CVMX_HELPER_INPUT_TAG_IPV6_DST_IP
// if 1, include TCP/UDP source port
CVMX_HELPER_INPUT_TAG_IPV6_SRC_PORT
// if 1, include TCP/UDP destination port
CVMX_HELPER_INPUT_TAG_IPV6_DST_PORT
// if 1, include next_header value
CVMX_HELPER_INPUT_TAG_IPV6_NEXT_HEADER

These fields are used in the internal-use function __cvmx_helper_port_setup_ipd(),
which is called by cvmx_helper_initialize_packet_io_global().

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 27: Tag Value Flow Chart

L1/L2 Receive Error
?

Tag Value Assignment
(See the pseudo code in the HRM for more details.)

YES (Receive Error)

Set Default Value:
Tag_value=0

RAWFULL OR RAWSCH
?

NO

YES
inc_port=FALSE
Tag_value=
PKT_INST_HDR[TAG]

NO

TAG_MODE==0
?

NO

inc_port=TRUE
(default tag value)

inc_port=TRUE

YES
(tuple tag)

TAG_MODE==1
?

NO

YES
(mask tag)

TAG_MODE==2
?

YES Is_IP
?

NO
(mask tag)

Tag_value<15:0>=
hw_mask_tag() XOR
hw_tuple_tag()

NO (XOR both together)

PIP_PRT_TAGn[TAG_MODE]:
0: use tuple tag
1: use mask tag
2: if IP, use tuple tag, else use mask tag
3: tuple tag XOR mask tag

Tag_value<15:0>=
hw_tuple_tag()

Tag_value<15:0>=
hw_mask_tag()

YES
(tuple_tag)

inc_port==1
?

Tag<23:16>=0xFF Tag<23:16>=port

PIP_PRT_TAGn[INC_PORT]==1
?

YES

NO

YES

End Tag Value
Assignment

NO (don’t change bits <23:16>)

Tag_value<15:0>=
hw_tuple_tag()

Tag_value<15:0>=
hw_mask_tag()

Start Tag Value
Assignment

6-88 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-89

Figure 28: Flowchart for hw_tuple_tag() Function

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 29: Flowchart for hw_ipv4_hash() Function
hw_ipv4_hash() Function

(See the pseudo code in the HRM for more details.)

IP4_SRC==1
?

NO

NO

IP Error
?

YES

IP4_DST==1
?

NO

YES

include destination IP address + secret in dst_crc

IP4_PCTL==1
?

NO

YES

Include protocol in prot_crc

NO

Include source IP address + secret in src_crc

Vlan_valid AND
((INC_VS==1) OR
(INC_VS==3))

?

Vlan_stacked AND
((INC_VS==2) OR
(INC_VS==3))

?

Include VLAN0 in prot_crc

Include VLAN1 in prot_crc

YES

YES

NO

(TCP OR UDP)
AND (NOT FRAGMENT)
AND (NO LE Error)

AND
(No options (HL==5))

?

Result=
(src_crc XOR dst_crc XOR prot_crc) & ~PIP_TAG_MASK[MASK]

(clear bits not set in MASK)

YES

IP4_SPRT==1
?

NO

IP4_DPRT==1
?

NO

IF TCP AND
(SYNC AND !ACK packet)

AND (TAG_SYN==1
?

Include source port in src_crc

Include destination port in
dst_crc

Exclude src_crc
by setting
src_crc=0

YES

YES

NO

End
hw_ipv4_hash()

YES

NO

Start
hw_ipv4_hash()

Result = 0

Return(result);

6-90 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-91

Figure 30: Flowchart for hw_ipv6_hash() Function
hw_ipv6_hash() Function

(See the pseudo code in the HRM for more details.)

IP6_SRC==1
?

NO

NO

IP Error
?

YES

IP6_DST==1
?

NO

YES

include destination IP address + secret in dst_crc

IP6_NXTH==1
?

NO

YES

Include next header in prot_crc

NO

Include source IP address + secret in src_crc

Vlan_valid AND
((INC_VS==1) OR
(INC_VS==3))

?

Vlan_stacked AND
((INC_VS==2) OR
(INC_VS==3))

?

Include VLAN0 in prot_crc

Include VLAN1 in prot_crc

YES

YES

NO

(TCP OR UDP)
AND (NOT FRAGMENT)
AND (NO LE Error)

?

Result=
(src_crc XOR dst_crc XOR prot_crc) & ~PIP_TAG_MASK[MASK]

(clear bits not set in MASK)

YES

IP6_SPRT==1
?

NO

IP6_DPRT==1
?

NO

IF TCP AND
(SYNC AND !ACK packet)

AND (TAG_SYN==1)
?

Include source port in src_crc

Include destination port in
dst_crc

Exclude src_crc
by setting
src_crc=0

YES

YES

NO

End
hw_ipv6_hash()

YES

NO

Start
hw_ipv6_hash()

Result = 0

Return(result);

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 31: Flowchart for hw_mask_tag() Function

Start
hw_mask_tag()

hw_mask_tag() Function
(See the pseudo code in the HRM for more details.)

For all bits in the mask (i=0; i<128; i++; pkt_cnt++)

LOOP
AGAIN

Data=packet[pkt_cnt]

(Is the bit set in the mask)
AND

(pkt_cnt > pkt_size)
?

YES

Create CRC of Data using
prior CRC as initial value

i <128
?

YES

result = 0
crc = 0xFFFF
pkt_cnt = 0

NO (exit loop)

Result =
crc &~PIP_TAG_MASK[MASK]

End
hw_mask_tag()

NO

Data=0

If the packet is less than
128 bytes long, a value of 0
is used for bytes off the end
of the packet (Data=0).

6-92 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-93

7.4.1 Registers to Configure Tag Value Assignment

Table 23: Registers to Configure WQE WORD1 Tag Value Assignment

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Select Tag Mode
Tag Algorithm: One register per port. Specifies
the tag value algorithm to use:
0=create tag value using the tuple tag algorithm
1=create tag value using the mask tag algorithm
2=create tag value using tuple tag if IP, else use
mask tag
3=create tag value using tuple tag XOR mask tag

PIP_PRT_TAGn
(one per port) TAG_MODE 0

0
(H/W

Default)
(See

Note1)

Select Global Tag MASK
Mask: Global Register. This mask applies to all
tag modes. It is a mask for the lower 16 bits of
computed tag. (result & ~MASK)

PIP_TAG_MASK MASK 0
0

(H/W
Default)

Select Whether to Include PIP/IPD Port in Tag Value

Include PIP/IPD Port: One register per port.
Include the PIP/IPD port in tag value

PIP_PRT_TAGn
(one per port) INC_PRT 0

1
(See

Note3)

Values Used with Mask Tag Option

Which Register: One register per port. Specify
which of the 64 PIP_TAG_INC registers to use
when calculating mask tag hash (four 16-entry
masks are used to cover 128 bytes). Note that the
mask is always applied to the first 128 bytes of the
packet, without skiping any bytes.
0=use registers 0-15;
1=use registers 16-31;
2=use registers 32-47;
3=use registers 48-63

PIP_PRT_CFGn
(one per port) TAG_INC 0

0
(See

Note2)

Include Bytes: Each EN field is 8 bits. Each bit
represents a byte. The 64 registers can be used to
create four different masks used if TAG_MODE is
1 (create mask tag). The
PIP_PRT_CFG[TAG_INC] field specifies
which of the four masks to use. For example,
registers 0-15 are used to create a (8 * 16) = 128
bit mask. Bit <7> corresponds to the MSB and bit
<0> corresponds to the LSB of the corresponding
8-byte word.

PIP_TAG_INC(0-
63)
(Grouped into
four
128-bit masks)

EN 0
0

(See
Note2)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

H/W SDK
Brief Description Register Fields Default Default

Value Value
Values Used with Tuple Tag Option
Dest Secret: Global register. Secret initial value
for destination tuple tag CRC calculation. This
provides a mechanism for each OCTEON
processor to be unique.

PIP_TAG_SECRET DST 0
0

(H/W
Default)

Src Secret: Global register. Secret initial value for
source tuple tag CRC calculation. This provides a
mechanism for each OCTEON processor to be
unique.

PIP_TAG_SECRET SRC 0
0

(H/W
Default)

Omit Src CRC: Global register. Do not include
src_crc for TCP SYN&!ACK packets
(dst_crc is always included):
0=include src_crc
1=do not include src_crc

PIP_GBL_CFG TAG_SYN 0
0

(H/W
Default)

VLAN STACKING - Include VLAN ID: One
register per port. Specifies the VLAN ID to be
include in the tag value when VLAN stacking:
0=do not include VID
1=include VID (VLAN0) in hash
2=include VID (VLAN1) in hash
3=include VID {VLAN0, VLAN1} in hash

PIP_PRT_TAGn
(one per port) INC_VS 0

0
(H/W

Default)

VLAN and NOT VLAN STACKING - Include
VLAN ID: One register per port. Include VLAN
ID in tag value when not VLAN stacked:
0=do not include VID in hash
1=include VID in hash

PIP_PRT_TAGn
(one per port) INC_VLAN 0

0
(H/W

Default)

IPv4

IPV4 Dst Port: One register per port. Include
TCP/UDP dst port in tag value

PIP_PRT_TAGn
(one per port) IP4_DPRT 0

0
(See

Note4)

IPv4 Src Port: One register per port. Include
TCP/UDP src port in tag value

PIP_PRT_TAGn
(one per port) IP4_SPRT 0

0
(See

Note5)

IPv4 Protocol: One register per port. Include
protocol in tag value

PIP_PRT_TAGn
(one per port) IP4_PCTL 0

0
(See

Note6)

IPv4 Dst Addr: One register per port. Include dst
address in tag value

PIP_PRT_TAGn
(one per port) IP4_DST 0

0
(See

Note7)

IPv4 Src Addr: One register per port. Include src
address in tag value

PIP_PRT_TAGn
(one per port) IP4_SRC 0

0
(See

Note8)

IPv6

IPV6 Dst Port: One register per port. Include
TCP/UDP dst port in tag value

PIP_PRT_TAGn
(one per port) IP6_DPRT 0

0
(See

Note9)

IPv6 Src Port: One register per port. Include
TCP/UDP src port in tag value

PIP_PRT_TAGn
(one per port) IP6_SPRT 0

0
(See

Note10)

6-94 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-95

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

IPv6 Next_Header: One register per port. Include
next_header in tag value

PIP_PRT_TAGn
(one per port) IP6_NXTH 0

0
(See

Note11)

IPv6 Dst Addr: One register per port. Include dst
address in tag value

PIP_PRT_TAGn
(one per port) IP6_DST 0

0
(See

Note12)

IPv6 Src Addr: One register per port. Incude src
address in tag vaue

PIP_PRT_TAGn
(one per port) IP6_SRC 0

0
(See

Note13)

Notes
Note1: Available defines are: CVMX_TAG_MODE_TUPLE, CVMX_TAG_MODE_MASK,
CVMX_TAG_MODE_IP_OR_MASK, CVMX_TAG_MODE_XOR. The default SDK does not change the H/W
default.
Note2: This field is cleared and set via the functions cvmx_pip_tag_mask_clear() and
cvmx_pip_tag_mask_set().

For the following notes, when using Simple Executive, relevant fields are set using the following configuration
variables, which are defined in executive-config.h. The user may change the definition to alter the default
configuration.
Note3: CVMX_HELPER_INPUT_TAG_INPUT_PORT
Note4: CVMX_HELPER_INPUT_TAG_IPV4_DST_PORT
Note5: CVMX_HELPER_INPUT_TAG_IPV4_SRC_PORT
Note6: CVMX_HELPER_INPUT_TAG_IPV4_PROTOCOL
Note7: CVMX_HELPER_INPUT_TAG_IPV4_DST_IP
Note8: CVMX_HELPER_INPUT_TAG_IPV4_SRC_IP
Note9: CVMX_HELPER_INPUT_TAG_IPV6_DST_PORT
Note10: CVMX_HELPER_INPUT_TAG_IPV6_SRC_PORT
Note11: CVMX_HELPER_INPUT_TAG_IPV6_NEXT_HEADER
Note12: CVMX_HELPER_INPUT_TAG_IPV6_DST_IP
Note13: CVMX_HELPER_INPUT_TAG_IPV6_SRC_IP

7.5 Using Watchers to Set QoS and Group
Depending on the processor model, there are 4 or 8 global watchers. These watchers can set the
packet’s QoS value or Group value, or both. The watchers are enabled on a per-port basis (for each
port, one bit enables the QoS setting, the other bit enables the Group setting).

If the watcher’s QoS bit is enabled for the port and the watcher’s configuration matches the packet
configuration, then the packet’s QoS is set to the watcher’s QoS.

If the watcher’s Group bit is enabled for the port and the watcher’s configuration matches the
packet configuration, then the packet’s Group is set to the watcher’s Group.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 24: Registers to Configure Watchers

Description Register Field
H/W
Default
Value

SDK
Default
Value

Watcher Configuration
Type of Packet To Match: One register per
Watcher. Watcher will match this type of
incoming packets: 0=disable across all ports
1=match protocol (IPv4) or next_header
(IPv6)
2=match TCP destination port
3=match UDP destination port
4=match Ethertype field
5-7=reserved

PIP_QOS_WATCH(0-7)
(one per watcher) TYPE 0

0
(H/W

Default)

Value to Match: One register per watcher.
Value to watch for

PIP_QOS_WATCH(0-7)
(one per watcher) MATCH 0

0
(H/W

Default)

Match Mask: One register per watcher. Mask
a range of values (16 bits: set the bit to mask
(match & ~mask)

PIP_QOS_WATCH(0-7)
(one per watcher) MASK 0

0
(H/W

Default)

Group Value to Set If Match Group Watcher:
One register per watcher. Group number of
watcher (set group of matched packet to this
value)

PIP_QOS_WATCH(0-7)
(one per watcher) GRP 0

0
(H/W

Default)

QoS Value to Set if Match QoS Watcher: One
register per watcher. QoS value of watcher
(set QoS of matched packet to this value)

PIP_QOS_WATCH(0-7)
(one per watcher) WATCHER 0

0
(H/W

Default)

Per Port: Enable Watcher to Set Matched Packet's QoS Value
Enable QoS Watchers 0-3: One register per
port. Enable QoS for watchers 0-3. (An
enable bit is provided for each watcher. Set
bit to 1 to enable the watcher.)

PIP_PRT_CFGn
(one per port) QOS_WAT 0

0
(H/W

Default)

Enable QoS Watchers 4-7: One register per
port. Enable QoS for watchers 4-7. (An
enable bit is provided for each watcher. Set
bit to 1 to enable the watcher.)

PIP_PRT_CFGn
(one per port) QOS_WAT_47 0

0
(H/W

Default)

Per Port: Enable Watcher to Set Matched Packet's Group Value
Enable Group Watchers 0-3: One register per
port. Enable group for watchers 0-3. (An
enable bit is provided for each watcher. Set
bit to 1 to enable the watcher.)

PIP_PRT_CFGn
(one per port) GRP_WAT 0

0
(H/W

Default)

Enable Group Watchers 4-7: One register per
port. Enable group for watchers 4-7. (An
enable bit is provided for each watcher. Set
bit to 1 to enable the watcher.)

PIP_PRT_CFGn
(one per port) GRP_WAT_47 0

0
(H/W

Default)

Note
As of SDK 2.0, the SDK does not provide a function to set these values.

Note: Some OCTEON models do not support an Ethertype watcher. ARP packets must be
handled at a high priority, but watchers cannot uniquely classify ARP packets because they are not

6-96 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-97

IP. To handle ARP packets at a high priority when the Ethertype option is not available on the
OCTEON model, set all non-IP packets to a higher QoS.

The following examples show how to use watchers.
Example 1:
Separate IPv4 traffic from IPv6 traffic, and cause IPv4 traffic to go to Group 2 while IPv6 traffic
goes to Group 5, configure the watchers as follows:
Watcher 0 will watch for IPv4 traffic:
PIP_QOS_WATCH0[TYPE] = 0x4; // Match EtherType field
PIP_QOS_WATCH0[MATCH] = 0x8000; // IPv4
PIP_QOS_WATCH0[MASK] = 0; // no masking
PIP_QOS_WATCH0[GRP] = 2;

Watcher 1 will watch for IPv6 traffic:
PIP_QOS_WATCH1[TYPE] = 0x4; // Match EtherType field
PIP_QOS_WATCH1[MATCH] = 0x86DD; // IPv6
PIP_QOS_WATCH1[MASK] = 0; // no masking
PIP_QOS_WATCH1[GRP] = 5

Then, for every port which should be watched, enable the bits corresponding to the watchers to be
enabled (watcher 0 and 1 in this example):
PIP_PRT_CFGn[GRP_WAT] = 0x3

Example 2:
Use watcher 1 to match all values in the range 128-255, and set group to 4:
PIP_QOS_WATCH1[TYPE] = 0x2 // Match TCP dest field
PIP_QOS_WATCH1[MATCH] = 128 // 1 0000 0000b
PIP_QOS_WATCH1[MASK] = 127 // 1111 1111b
PIP_QOS_WATCH1[GRP] = 4
(255 is the maximum value for the 16-bit match field.)

Note: When using Simple Executive to read and write CSRs, “PIP_QOS_WATCH1[GRP] = 4"
translates to:

cvmx_pip_qos_watchx_t watcher;
watcher.u64 = cvmx_read_csr(CVMX_PIP_QOS_WATCHX(1));
watcher.s.grp = 4;
cvmx_write_csr(CVMX_PIP_QOS_WATCHX(1), watcher.u64);

8 Security
The WORD2[SE] (dec_ipsec) field is set when the packet is IP and may require IPsec
decryption. This bit is set when:

• The packet is IPsec ESP (i.e. the IPv4 protocol or the initial IPv6 next header
equals 50).

• The packet is IPsec AH (i.e. the IPv4 protocol or the initial IPv6 next header equals
51).

• The packet is TCP (i.e. the IPv4 protocol or the initial IPv6 next header equals 6)
and the packet’s TCP destination port matches one of four possible programmed values and
(WORD2[V6] || (IPv4.HL==5)).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

• The packet is UDP (i.e. the IPv4 protocol or the initial IPv6 next header equals 17)
and the packet’s UDP destination port matches one of four possible programmed values and
(WORD2[V6] || (IPv4.HL==5)).

There are four programmable destination ports set via the PIP_DEC_IPSECn registers, shared by
TCP and UDP. Each programmed port can match TCP and/or UDP.

Table 25: Registers to Configure IP Security

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Dest Port to Match On: UDP or TCP
destination port to match on.

PIP_DEC_IPSEC(0-3)
(Four destination
port values)

DPRT 0
0

(H/W
Default)

Dest Port for TCP Packets: This DPRT
should be used for TCP packets.

PIP_DEC_IPSEC(0-3)
(Four destination
port values)

TCP 0
0

(H/W
Default)

Dest Port for UDP Packets: This DPRT
should be used for UDP packets.

PIP_DEC_IPSEC(0-3)
(Four destination
port values)

UDP 0
0

(H/W
Default)

9 Error Check Configuration
The following registers control error-check configuration. When errors occur, they are reported in
the opcode field in the WQE data structure. The meaning of the opcode field depends on which
error bit is set in the WQE (RE, LE, IE). There are also registers to enable exception/error
interrupts. These interrupts are seldom used because the information is already provided in the
packet’s WQE. In addition, when the interrupt occurs, there is no way to tell which packet caused
the interrupt.

Table 26: Registers To Configure Error Checking

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Packet Length Checks

Byte Count for max-sized frame check: Two
registers (see Note1). Failing packets set the
MAXERR interrupt and are optionally sent with
WQE WORD2[opcode]==MAXERR (see
MAXERR_EN field). The effective MAXLEN
used by the hardware is
PIP_FRM_LEN_CHK[MAXLEN] + (4 x VV)
+ (4 x VS) where (VV==1 if VLAN or
VLAN STACKING) and (VS==1 if VLAN
STACKING)

PIP_FRM_LEN_CHK(0-1)
(PIP_FRM_LEN_CHK0 is
used for packets on
packet interface0, PCIe
(except RAW packets),
and loopback ports;
PIP_FRM_LEN_CHK1 is use
for packets on packet
interface1 ports and
PCIe RAW packets)

MAXLEN 0x600

0x600
(H/W

Default)
(See

Note1)

6-98 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-99

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Byte count for min-sized frame check: Two
registers (see Note1). Failing packets set the
MINERR interrupt and are optionally sent with
WQE WORD2[opcode]=MINERR (see
MINERR_EN field).

PIP_FRM_LEN_CHK(0-1)
(PIP_FRM_LEN_CHK0 is
used for packets on
packet interface0, PCIe
(except RAW packets),
and loopback ports;
PIP_FRM_LEN_CHK1 is use
for packets on packet
interface1 ports and
PCIe RAW packets)

MINLEN 0x40

0x40
(H/W

Default)
(See

Note1)

Select largest L2 frame size: The value of the
type/length field can be considered either a
type or a length. Values under the cutoff are
considered to be length. For example, if
MAX_L2==0, packets with a type/length value
of > 1500 are considered to specify type, not
length.
0=1500 / 0x5dc
1=1535 / 0x5ff

PIP_GBL_CFG MAX_L2 0 (1500)
0 (1500)

(H/W
Default)

L2 length error check enable: One register
per port. Frame was received with length
error. This check is typically not enabled for
incoming packets on PCIe ports.

PIP_PRT_CFGn
(one per port) LENERR_EN 0

0
(H/W

Default)

Max frame error check enable: One register
per port. Frame was received with length >
max_length

PIP_PRT_CFGn
(one per port) MAXERR_EN 0

0
(H/W

Default)
(See

Note2)

Min frame error check enable: One register
per port. Frame was received with length <
min_length. This check is typically not
enabled for incoming packets on PCIe ports.

PIP_PRT_CFGn
(one per port) MINERR_EN 0

0
(H/W

Default)
(See

Note2)

Disable length check for packets with
padding in client data: One register per port.
(set to 1 to disable)

PIP_PRT_CFGn
(one per port) PAD_LEN 0

0
(H/W

Default)

Disable length check for VLAN packets:
One register per port. (set to 1 to disable)

PIP_PRT_CFGn
(one per port) VLAN_LEN 0

0
(H/W

Default)

Other Error Checks (alphabetical order)
Configure IPv6/UDP checksum:
0=allow optional checksum code
1=do not allow optional checksum code
(See the HRM for details.)

PIP_GBL_CFG IP6_UDP 1

1
(H/W

Default)

Enable IPv4 header checksum check: Set to 1
to enable. Indicates that an IPv4 packet
contained IPv4 header checksum violations.
Only applies to packets classified as IPv4.

PIP_GBL_CTL IP_CHK 1

1
(H/W

Default)
(See

Note3)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

H/W SDK
Brief Description Register Fields Default Default

Value Value

Enable TTL (IPv4) / hop (IPv6) check: Set to
1 to enable. Indicates that the IPv4 TTL field
or IPv6 HOP field is zero.

PIP_GBL_CTL IP_HOP 1

1
(H/W

Default)
(See

Note3)

Enable IP malformed check: Set to 1 to
enable. Indicates that the packet was
malformed. Malformed packets are defined
as packets that are not long enough to cover
the IP header or not long enough to cover the
length in the IP header.

PIP_GBL_CTL IP_MAL 1

1
(H/W

Default)
(See

Note3)

Enable IPv4 options check: Set to 1 to
enable. Indicates the presence of IPv4
options. It is set when the length != 5. This
only applies to packets classified as IPv4.

PIP_GBL_CTL IP4_OPTS 1

1
(H/W

Default)
(See

Note3)

Enable IPv6 early extension headers: Set to 1
to enable. Indicate the presence of IPv6 early
extension headers. These bits only apply to
packets classified as IPv6. Bit 0 will flag
early extensions when next_header is any one
of:
 * hop-by-hop (0)
 * destination (60)
 * routing (43)
Bit 1 will flag early extentions when
next_header is NOT any of:
 * TCP (6)
 * UDP (17)
 * fragmentation (44)
 * ICMP (58)
 * IPSEC ESP (50)
 * IPSEC AH (51)
 * IPCOMP

PIP_GBL_CTL IP6_EEXT 1

1
(H/W

Default)
(See

Note3)

Enable L2 malformed check: Set to 1 to
enable.

PIP_GBL_CTL L2_MAL 1

1
(H/W

Default)
(See

Note3)

Enable TCP/UDP checksum check: Set to 1
to enable. Indicates that a packet classified as
either TCP or UDP contains an L4 checksum
failure.

PIP_GBL_CTL L4_CHK 1
1

(H/W
Default)

Enable TCP/UDP length check: Set to 1 to
enable. Indicates that the TCP or UDP length
does not match the the IP length.

PIP_GBL_CTL L4_LEN 1

1
(H/W

Default)
(See

Note3)

6-100 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-101

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Enable TCP/UDP malformed packet check:
Set to 1 to enable. Indicates that a TCP or
UDP packet is not long enough to cover the
TCP or UDP header.

PIP_GBL_CTL L4_MAL 1

1
(H/W

Default)
(See

Note3)

Enable TCP/UDP illegal port check: Set to 1
to enable. Indicates that a TCP or UDP
packet has an illegal port number: either the
source or destination port is zero.

PIP_GBL_CTL L4_PRT 1

1
(H/W

Default)
(See

Note3)

Enable TCP flags check: Set to 1 to enable.
Indicates any of the following conditions
[URG, ACK, PSH, RST, SYN, FIN] :
tcp_flag
 * 6'b000001: (FIN only)
 * 6'b000000: (0)
 * 6'bxxx1x1: (RST+FIN+*)
 * 6'b1xxx1x: (URG+SYN+*)
 * 6'bxxx11x: (RST+SYN+*)
 * 6'bxxxx11: (SYN+FIN+*)

PIP_GBL_CTL TCP_FLAG 1

1
(H/W

Default)
(See

Note3)

Notes
Note1: PIP_FRM_LEN_CHK0 is used for packets on packet interface0, PCIe, and PKO loopback ports.
PIP_FRM_LEN_CHK1 is used for packet on packet interface1 ports and PCIe RAW packets.

Note2: The SDK sets this value to 0 in the internal-use function __cvmx_helper_npi_enable() (an internal
PCIe block)

Note3: By disabling the checker, the exception will not be flagged and the packet will be parsed as best it can. Note,
by disabling conditions, packets can be parsed incorrectly (.i.e. IP_MAL and L4_MAL could cause bits to be seen in
the wrong place. IP_CHK and L4_CHK mean that the packet was corrupted).

9.1 CRC Check Configuration
Some processors have CRC Check configuration registers in the PIP/IPD register set (for example,
CN58XX).

When using CRC, the term reflect means to flip the bits (mirror image), so that bit 0 becomes bit
31, and bit 31 becomes bit 0. The sequence 11000100 becomes 00100011.

The term invert means to change all zeros to ones and all ones to zeroes. The sequence 11000100
becomes 00111011.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 27: Registers Used to Configure CRC Check

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

CRC Calculation: Datapath Reflection Control

Invert: If set, invert the result.

Ports 0-15:
PIP_CRC_CTL0
(one bit for all ports)
Ports 16-31:
PIP_CRC_CTL1
(one bit for all ports)

INVRES 1
1

(H/W
Default)

(See Note1)

Reflect: Reflect the bits in each byte.
The byte order does not change:
0=calculate CRC MSB-to-LSB
1=calculate CRC LSB-to-MSB

Ports 0-15:
PIP_CRC_CTL0
(one bit for all ports)
Ports 16-31:
PIP_CRC_CTL1
(one bit for all ports)

REFLECT 1
1

(H/W
Default)

(See Note1)

CRC Calculation: Initial Value

Initial Value: Set initial value (IV) used
by the CRC algorithm. The default is
FCS32.

Ports 0-15:
PIP_CRC_IV0
(one bit per port)
Ports 16-31:
PIP_CRC_IV1
(one bit per port)

IV 0x46AF6449

0x46AF6449
(H/W

Default)
(See Note1)

Notes
Note1: These registers can be configured via the SDK function cvmx_pip_config_crc().

10 Packet Storage
This section covers:

1. What part of the packet is stored in Packet Data Buffer(s) and the WQE Buffer
2. Choices for writing Packet Data Buffers to L2/DRAM
3. Packet Storage in Packet Data Buffers, including optional storage of the WQE in the Packet

Data buffer
4. Packet Storage in the Work Queue Entry data structure, including dynamic shorts
5. Accessing packet data when some packets are dynamic shorts and some are not
6. Registers used to configure packet storage options

Usually, PIP/IPD writes the entire packet into Packet Data Buffers, and also writes the first 96
bytes (92 bytes if IP and not IPv6 because 4 bytes are used for alignment) of the packet to the
Work Queue Entry data structure (WORD4-WORD15).

PIP/IPD does not write the packet to Packet Data Buffers if:

6-102 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-103

1. All the bytes of the packet will fit into WQE WORD4-WORD15 and the dynamic short
option is enabled for the port. This packet is referred to as a dynamic short packet.
(Dynamic shorts are discussed in more detail in Section 10.4.2 –“Dynamic Short Storage in
WQE”.)

2. The packet is dropped due to Per-Port Packet Drop or Per-QoS RED. In this case, there is
also no WQE. (This is discussed in more detail in Section 12 – “Congestion Control
(Backpressure, Packet Drop, RED, WRED)”.)

3. The packet is dropped due to receive buffer overflow before reaching PIP/IPD. (A partial
packet may be received before the receive buffer overflows, resulting in partial packets. In
this case WORD2[RE]==1 and WORD2[OPCODE]==1 (partial error).) A WQE exists
even if there was a partial receive.

PIP/IPD can support a maximum of 255 buffers for a packet and a maximum packet size of
65535 bytes. The maximum Packet Data Buffer size is 16384 bytes (2048 8-byte words).

10.1 The Part of the Received Data Which is Stored
The packet (packet data) received by PIP/IPD usually starts after the Start Frame Delimiter (SFD)
(the preamble is typically excluded), and continues to the CRC. The CRC is optionally not stored
(available only for ports (0-31, 36-39): the CRC cannot be removed from packets arriving on
PCI/PCIe/DPI ports or sRIO ports.

Packet Data Stored in Packet Data Buffers:

• All received bytes after the SFD to the end of the frame, optionally including the CRC

Packet Data Stored in Work Queue Entry WORD4-WORD15 (See Figure 36 – “Format of Packet
Data Stored in WQE WORD4-WORD15” for an illustration.). In all cases, the CRC at the end of
the frame is optionally not stored.:

• If IP and PIP_IP_OFFSET[OFFSET]==0:
o Stored packet data starts at IP Header and continues until the end of the packet data

or the end of WORD15.
• If IP and PIP_IP_OFFSET[OFFSET]!=0:

o PIP_IP_OFFSET[OFFSET] specifies the number of 8-byte words to reserve in
the WORD4-WORD15 portion of the WQE for packet data which is immediately
prior to the IP header.

 If PIP_IP_OFFSET[OFFSET] is large enough to accommodate all of the
packet data preceding the IP header, including byte0, then the stored packet
data starts at the first byte of packet data and continues until the end of the
packet data. If there is any space remaining (header is short), PIP/IPD will
fill it with zeroes.

 Otherwise, the PIP/IPD will backfill any byte before the IP header until
OFFSET x 8 bytes are used. (The alignment pad is reserved.)

• If NOT IP:
o Stored packet data starts with the first byte after the SFD and continues until the end

of the packet data or the end of WORD15.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 32: Overview of Storing Received Data

Incoming Frame Packet Data Stored in
Packet Data Buffer(s)
(location in buffer not

shown)

Packet Data Stored in WQE WORD4-
WORD15

(location in WQE WORD4-WORD15 not
shown)

Preamble

Storing Packet Data
(Packet Data is defined to be the bytes of the received packet which are stored in

the Packet Data Buffer or WQE Data Structure)

Note1: The preamble is normally consumed before it reaches PIP/IPD.
Note2: The Optional Header includes any SKIP1, Packet Instruction Header, and SKIPII areas.
Note3: Padding is optional, and is only present in IP packets.
Note4: CRC is optionally not stored for ports (0-31, 36-39). This option is configured via the
IPD_SUB_PORT_FCS register, and is not available for PCIe or loopback ports. By default, the CRCs are not
stored.
Note5: For IP packets, the stored packet begins with the IP header unless PIP_IP_OFFSET[OFFSET]!=0.
For example, to store the L2 header prior to the IP header, set PIP_IP_OFFSET[OFFSET] to 2.
Note6: The L2 header is only present for Ethernet or 802.3 packets.

CRC

Packet Header
(IP Header and

TCP/UDP
Headers)

Payload

Padding
(See Note3)

CRC
(See Note4)

Packet Header
(IP Header and

TCP/UDP
Headers)

Payload

Padding
(See Note3)

CRC
(See Note4)

Packet Header
(IP Header and

TCP/UDP
Headers)

Payload

Padding
(See Note3)

IP

Optional Header
(See Note2,

Note5)

CRC
(See Note4)

Payload

NOT IP

Frame Header
(L2 Header)

(Ethernet or 802.3)

Optional Header
(See Note2)

Optional Header
(See Note2)

Frame Header
(L2 Header)

(Ethernet or 802.3)
(See Note5)

Optional Header
(See Note2)

Frame Header
(L2 Header)

(Ethernet or 802.3)
(See Note6)

Frame Header
(L2 Header)

(Ethernet or 802.3)

Stored packet data stops at
end of WORD15

10.2 Packet Storage in Packet Data Buffers
If the packet is not stored as a dynamic short in the WQE, then it is stored in one or more packet
data buffers.

6-104 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-105

The physical address of the packet data in the first packet data buffer is stored in WQE
WORD3[Addr]. When multiple buffers are needed to store the packet data, each buffer contains
the physical address of the next buffer in the buffer chain (Next_Buf_Ptr). The
Next_Buf_Ptr field is the same data structure as WQE WORD3, as shown in the following
figure:

Figure 33: Next Buffer Pointer (Next_Buf_Ptr) Data Structure

Note that Back is used by hardware units such as the PKO to determine the start of the packet data
buffer. (The PKO uses the start address in the buffer free operation.) It is critical to configure
these correctly: incorrect configuration causes FPA corruption.

For example, PKO finds the start address of the buffer using the following formula:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Buffer Start Address = ((Addr >> 7) - Back) << 7

Back is set to the value of IPD_1ST_NEXT_PTR_BACK[BACK] for the first Packet Data
Buffer and IPD_2ND_NEXT_PTR_BACK[BACK] for subsequent Packet Data Buffers. Back is
in units of 128-byte words (cache line size). The value of these registers must be consistent with
the corresponding IPD_1ST_MBUFF_SKIP[SKIP_SZ] and
IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ] variables. By default, the SDK sets these variables
using the MBUFF_SKIP sizes as shown in the following pseudo code:

// The +8 below is to include the Next_Buf_Ptr
first_back = CVMX_HELPER_FIRST_MBUFF_SKIP+8) / 128

// The +8 below is to include the Next_Buf_Ptr
second_back = VMX_HELPER_NOT_FIRST_MBUFF_SKIP+8) / 128

When the amount of data exceeds the size of one Packet Data buffer, linked buffers (mbufs) are
used, as shown in the following figure.

6-106 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-107

Figure 34: Packet Storage Using Multiple Packet Data Buffers (MBUFs)

Packet Data

Packet Data Storage if Data Exceeds One Mbuf

Alignment
Pad (0-7

bytes)

Next_Buf_Ptr

First
Unpredictable

Bytes

Second Unpredictable
Bytes

64 bits

IP
D

_P
A

C
KE

T_
M

B U
F_

S
IZ

E[
M

B
_ S

IZ
E]

Notes:
Alignment Pad:

* For IP packets, this pad is added by PIP/IPD:
* If IPv4, Pad = 32 bits
* If IPv6, Pad = 0
* If IP, but neither IPv4 or IPv6, Pad = 32 bits

* For non-IP packets, the user can configure the amount of padding. Pad must be
between 0-7 bytes.:

* If RAW, Pad = PIP_GBL_CFG[RAW_SHF]
* If not IP and not RAW, Pad = PIP_GBL_CFG[NIP_SHF]

Unpredictable bytes are areas in the mbuf reserved for customer software. The contents is not touched by
PIP/IPD (for example, not set to all zeroes), so the content is unpredictable.

First Unpredictable Bytes: The size of the first unpredictable bytes section is configured via
IPD_1ST_MBUFF_SKIP[SKIP_SZ]. This size is specified in 8-byte words.

Second Unpredictable Bytes: The size of the second unpredictable bytes section is the size of the Packet
Data Buffer minus IPD_PACKET_MBUFF_SIZE[MB_SIZE]. This size is specified in
8-byte words. Typically this variable is set to the size of the packet data buffer, so that the second
unpredictable bytes region does not exist.

Third Unpredicable Bytes: The size of the third unpredictable bytes section is configured via
IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ].

Next_Buf_Ptr: This field is used to point to the start of packet data in the next mbuf in the chain, and
provide other information about the buffer. The Addr field in the Next_Buf_Ptr in the last buffer is invalid.

Packet Data

Next_Buf_Ptr

Third Unpredictable
Bytes

Second Unpredictable
Bytes

64 bits

Packet Data

Next_Buf_Ptr

Third Unpredictable
Bytes

Second Unpredictable
Bytes

64 bits

Back
(4)

Addr
(40 bits)

Size
(15 bits)

63 3956 55 0

Pool
(3)

40

i

Address of First Byte of Packet D
ata

WQE
WORD3

Pa
ck

et
 D

at
a

B
uf

fe
r S

iz
e

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The Addr field in the Next_Buf_Ptr in the last buffer is invalid.

Any bytes in the buffer beyond the end of the stored packet data are invalid.

Note that the “unpredictable” areas in the mbuf are not over-written with any data by PIP/IPD, and
will contain “random” data. The intended use of these areas is to allow for example growth of
packet header length without needing to copy the whole packet payload to a new buffer that
includes the new (larger) header.

Note: The PIP/IPD always writes packet data in complete (128 byte) cache blocks,
including when it writes the first and last data. This is why the Packet Data Buffer must
be 128-byte aligned, and the size of the Packet Data Buffer must be a multiple of cache
line size. Otherwise, memory before or after the Packet Data Buffer may be corrupted.
The Simple Executive configuration code automatically takes care of this. This is only a
problem when not using Simple Executive to configure FPA buffers.

10.2.1 Storing WQE in Packet Data Buffer instead of WQE Buffer
On some OCTEON models, PIP/IPD can also be configured to not use WQE buffers
(IPD_CTL_STATUS[NO_WPTR]==1). In this case, the 128-byte WQE data structure is inserted
into the area of the first Packet Data Buffer reserved by the register field
IPD_1ST_MBUFF_SKIP[SKIP_SZ]. To reserve sufficient space for the WQE, set
IPD_1ST_MBUFF_SKIP[SKIP_SZ] to 16. (This variable’s units are in 8-byte words.)

When PIP/IPD adds the work to the SSO queues, it executes the add_work function with the
WQE pointer set to the location of the WQE in the Packet Data buffer. See the HRM for more
details.

6-108 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-109

10.3 Choices for Writing Packet Data Buffer(s) to L2/DRAM
Packet Data Buffers are stored in L2Cache/DRAM based on four configuration choices, as shown
in the following table. Option selection is global and affects all ports.

Table 28: Packet Data Buffer Write to L2/DRAM Choices (Global Option)
Choice Description

0 All Packet Data Buffers are written directly to memory (DRAM), bypassing the L2 cache.

1 All Packet Data Buffers are written to L2 cache. (If evicted, cache blocks are written to
memory (DRAM)).

2
The first aligned cache block holding the Next_Buf_Ptr and the packet data is written to
the L2 cache. All remaining cache blocks are written directly to memory (DRAM),
bypassing the L2 cache. (If evicted, cache blocks are written to memory (DRAM)).

3
The first two cache blocks holding the Next_Buf_Ptr and the packet data are written to
the L2 cache. All remaining cache blocks are written directly to memory (DRAM),
bypassing the L2 cache. (If evicted, cache blocks are written to memory (DRAM)).

When using the Simple Executive, these choices are defined as:
 CVMX_IPD_OPC_MODE_STT = 0LL; // Write all blocks DRAM, none are
 // cached in the L2 cache
 CVMX_IPD_OPC_MODE_STF = 1LL; // Write all blocks into L2 cache
 CVMX_IPD_OPC_MODE_STF1_STT = 2LL; // Write first cache block which
 // contains Next_Buf_Ptr to L2 cache,
 // others to DRAM
 CVMX_IPD_OPC_MODE_STF2_STT = 3LL; // Write first two cache blocks which
 // contain the Next_Buf_Ptr to
 // L2 cache, others to DRAM

The default Simple Executive configuration is CVMX_IPD_OPC_MODE_STT (choice 0: all
Packet Data Buffers are written directly to DRAM). In this mode, users typically access the first
96 bytes of packet data via the WQE, and access the Packet Data Buffer(s) as needed.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 35: Write Packet Data to L2/DRAM Choices
Write Packet Data Buffer to L2 Cache/DRAM Choices

Packet Data

Next_Buf_Ptr

Third
Unpredictable

Bytes

Second
Unpredictable

Bytes
64 bits

Packet Data

Next_Buf_Ptr

Third
Unpredictable

Bytes

Second
Unpredictable

Bytes
64 bits

Next_Buf_Ptr

Third
Unpredictable

Bytes

Second
Unpredictable

Bytes
64 bits

Choice 0: All
blocks written to

dram DRAM
(See Note1)

Choice 1: All
blocks written to
L2 Cache (See

Note2)

Choice 2: First
aligned cache line

containing
Next_Buf_Ptr

written to L2
Cache, all other

cache blocks
written directly to

DRAM (See
Note1, Note2)

Packet Data

Next_Buf_Ptr

Third
Unpredictable

Bytes

Second
Unpredictable

Bytes
64 bits

Packet Data

Choice 3: First
two aligned cache

lines containing
Next_Buf_Ptr

written to L2
Cache, all other

cache blocks
written directly to

DRAM (See
Note1, Note2,

Note3)

Notes:
Note1: Data written directly to DRAM bypasses the L2 cache.
Note2: Once data is written to L2 cache, then it can be automatically flushed to DRAM if the
cache block is evicted.
Note3: Choice 3 shows the Next_Buf_Ptr in the second half of the first cache line containing
the Next_Buf_Ptr.

Color Key
Write directly to DRAM,
bypassing L2 Cache

Write to L2 Cache

10.4 Packet Data Storage in WQE WORD4-15
WQE WORD4-15 contains packet data. The format of the packet data in the WQE depends on the
type of packet and is shown in the figure below.

6-110 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-111

Figure 36: Format of Packet Data Stored in WQE WORD4-WORD15
96

 b
yt

es

P
IP

_I
P

_O
FF

S
E

T[
O

FF
S

ET
]

P
IP

_I
P_

O
FF

S
E

T[
O

FF
S

E
T]

96
 b

yt
es

96
 b

yt
es

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The PIP_IP_OFFSET[OFFSET] field is used only for IP packets. PIP/IPD will copy the IP
header to the start of WQE WORD4 + alignment + PIP_IP_OFFSET[OFFSET]. Thus, for IP
packets, if PIP_IP_OFFSET[OFFSET]==0, the packet will not include the L2 header before
the IP header, as shown in the following figure:

Figure 37: Format of Packet Data in WQE if PIP_IP_OFFSET[OFFSET]==0
IP Packet Storage in WQE WORD[4-15] if PIP_IP_OFFSET[OFFSET]==0

(big-endian format)

64 bits

IP Dest Addr (128 bits)

IP Src Addr (128 bits)

FlowV LenClass HOPNHdr

If IP Version Field == 6
(96 bytes of packet data)

64 bits

IP Dest AddrIP Src Addr

If IP Version Field != 6
(92 bytes of packet data)

96
 b

yt
es

0s if packet ends
0s if packet ends

LengthV

ID TTL

H
L TOS

Offset Prot ChksumF

0s
(Alignment Pad)WORD4

WORD5

WORD6

WORD7

WORD8

WORD9

WORD10

WORD11

WORD12

WORD13

WORD14

WORD15

Remainder of Packet

Remainder of Packet

If PIP_IP_OFFSET[OFFSET] != 0, then PIP/IPD will automatically copy the number of
bytes specified by PIP_IP_OFFSET[OFFSET] to the WQE prior to the IP header (backfilling
from the IP header toward the start of WQE WORD4), as shown in Figure 36 – “Format of Packet
Data Stored in WQE WORD4-WORD15”. For example, to copy an Ethernet II header without
VLAN (14 bytes) into the WQE prior to the start of the IP header, set
PIP_IP_OFFSET[OFFSET]==2 (16 bytes). If there are fewer bytes in the packet than specified
by PIP_IP_OFFSET[OFFSET] (the header is “short”), then PIP/IPD will fill these bytes with
zeroes (in this example, two bytes are filled with zeroes).

6-112 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-113

10.4.1 Finding the Start of an IP Packet in the WQE
For IP packets, finding the start of the packet data in the WQE can be tricky. In particular, the
alignment bytes, and the PIP_IP_OFFSET[OFFSET] value need to be considered. The number
of bytes of packet data prior to the IP header may be less than (PIP_IP_OFFSET[OFFSET] *
8). This section describes the math to locate byte0 of the packet data in the WQE, given that
PIP_IP_OFFSET[OFFSET] is large enough so that byte0 is in the WQE.

If the packet is IP but not IPv6, then a 4-byte alignment pad is added to the start of WQE WORD4.

In the SDK, the work data structure contains the WQE. The WQE field work->packet_data
points to the start of WQE WORD4. This is not the same as the start of the IP packet data because
there may be an alignment pad and also zero-filled bytes.

The start of the IP Header is located at:

// (Start of WQE WORD4) + alignment + (OFFSET in bytes)
work->packet_data + alignment +(PIP_IP_OFFSET[OFFSET] x 8)

The following formula assumes that PIP_IP_OFFSET[OFFSET] is large enough to include all
the packet bytes prior to the IP header. Given the location of the start of the IP header, software
can calculate the start of the IP packet by subtracting the number of bytes from byte0 of packet data
to the IP header. This is provided in WQE WORD2 field ip_offset:

// (Start of IP Header) – (distance in bytes from byte0 to the IP header)
work->packet_data + alignment +
(PIP_IP_OFFSET[OFFSET] x 8) – (work->word2.s.ip_offset)

See Section 10.5 – “Accessing Packet Data When Some Packets are Dynamic Shorts” for example
code.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 38: Locating the Start of an IP Packet in the WQE
96

 b
yt

es

64 bits

In the SDK, the work data structure contains the WQE, and work->packet_data points to the start of WQE
WORD4.

If PIP_IP_OFFSET[OFFSET] specifies enough bytes to fit all bytes in the packet from byte0 to the start of the IP
header, then WQE WORD2[Ip_offset] can be used to locate the start of the packet in the WQE using the formula:

work->packet_data + alignment + (PIP_IP_OFFSET[OFFSET] x 8) - (work->word2.s.ip_offset)

Packet Data Prior to IP Header
(ip_offset bytes)

IP Dest Addr (128 bits)

IP Src Addr (128 bits)

FlowV LenClass HOPNHdr

If IP Version Field == 6

PI
P_

IP
_O

FF
SE

T[
O

FF
SE

T]

64 bits

IP Dest AddrIP Src Addr

If IP Version Field != 6

PI
P_

IP
_O

FF
SE

T[
O

FF
SE

T]

96
 b

yt
es

0s if packet ends 0s if packet ends

LengthV

ID TTL

H
L TOS

Offset Prot ChksumF

0s if header is
short

0s if header is
short

0s
(Alignment Pad)

Packet Data Prior to IP Header
(ip_offset bytes)

Remainder of Packet Remainder of Packet

Locating the Start of the IP Packet in WQE WORD4-WORD15
(PIP_IP_OFFSET[OFFSET] must be large enough to fit all packet bytes from

byte0 to the IP header)
(not drawn to scale, big-endian format)

10.4.2 Dynamic Short Storage in WQE
PIP/IPD analyzes whether the packet can fit entirely into WQE WORD4-WORD15. A packet
which can fit into this space is a dynamic short. A packet with an L1/L2 receive error can never be
a dynamic short. As shown in the figure above, for IP packets, if
PIP_IPD_OFFSET[OFFSET]==0, packet bytes prior to the IP header are not copied to the
WQE. An IP packet cannot be a dynamic short unless PIP_IPD_OFFSET[OFFSET] specifies
sufficient bytes to copy the entire packet to the WQE.

6-114 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-115

If PIP/IPD determines a packet is a dynamic short and the dynamic short option is enabled, it will
not create an additional copy of the packet data to a Packet Data Buffer (which would be
redundant). The dynamic short option is enabled if:

• PIP_PRT_CFGn[DYN_RS]==1 for the port
• or the RS bit is set in the Packet Instruction Header and either:

o PIP_GBL_CTRL[IGNRS]==0
o or the port is a PCI/PCIe/DPI port (ports 32-35)

Note that PIP/IPD ignores both PIP_PRT_CFGn[DYN_RS] and the RS bit in the Packet
Instruction Header for packets hardware does not classify as dynamic short: it is okay for these
fields to be set for all packets.

When the packet data is accessed via WQE WORD4-WORD15 instead of a Packet Data Buffer,
the WQE WORD2 Bufs field is set to 0, and WQE WORD3 fields Back, Size, and Addr are
unpredictable (set to 0 on some OCTEON models, not set on other OCTEON models). The entire
packet only exists in the WQE.

If the WQE is in the Packet Data Buffer: Note that in the case of a dynamic short when
IPD_CTL_STATUS[NO_WPTR]==1, the packet data is written to the WQE data structure, and
the WQE data structure is written to the Packet Data Buffer. In this case, no WQE Buffer is
allocated. The dynamic short function specifies where the packet data is written; the NO_WPTR
field specifies where the WQE data structure is written.

If the packet is a dynamic short, and dynamic shorts are enabled, and
IPD_CTL_STATUS[NO_WPTR]==0, then no Packet Data Buffer is allocated.

10.5 Accessing Packet Data When Some Packets are Dynamic Shorts
When packet data is stored in Packet Data Buffers, software gets the address of the packet data via
the address stored in WQE WORD3. The address in WQE WORD3 is unpredictable for dynamic
shorts (because they are stored in the WQE instead of in Packet Data Buffers).

 To allow the same software to access the packet data regardless of where it is stored, software can
create a buffer_ptr data structure which is the same data structure as WQE WORD3. Software
then initializes the buffer_ptr fields differently depending on whether the packet is a dynamic
short or not:

• If not a dynamic short: sets the value of buffer_ptr to WQE WORD3
• Is dynamic short: software fills in the pool, size, and addr fields in the buffer_ptr

data structure, setting the value of addr to point to the start of packet data in the WQE data
structure.

The example code below uses this technique. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The following code is from the traffic-gen example:
This code illustrates software creating a separate WQE[WORD3] data structure (which includes a
pointer to the start of packet data). This data structure can then be used by software without
needing to know whether the packet is stored in the Packet Data section of the Packet Data Buffer
or in the WQE.

/**
 * Given a WQE, return an OCTEON packet pointer for the beginning
 * of the packet data (NOT THE SAME AS A “C” pointer”.
 * For packets where data is stored in a packet data buffer, this is trivially
 * the packet pointer in the WQE. For packets where bufs is zero (dynamic
 * shorts), this is non trival.
 */
static inline cvmx_buf_ptr_t get_packet_buffer_ptr(const cvmx_wqe_t *work)
{
 cvmx_buf_ptr_t buffer_ptr;

 if (cvmx_likely(work->word2.s.bufs == 0)) // dynamic short if bufs==0
 {
 buffer_ptr.u64 = 0;

 buffer_ptr.s.pool = CVMX_FPA_WQE_POOL;
 buffer_ptr.s.size = CVMX_FPA_WQE_POOL_SIZE;

 // work->packet_data points to the start of WQE WORD4
 buffer_ptr.s.addr = cvmx_ptr_to_phys((void*)work->packet_data);

 // WARNING: This code assume that PIP_GBL_CFG[RAW_SHF]=0 and
 // PIP_GBL_CFG[NIP_SHF]=0. If this was not the case we'd
 // need to add these offsets depending on if the packet was
 // in RAW mode or not.
 // addr += PIP_GBL_CFG[RAW_SHF] for the RAW case.
 // addr += PIP_GBL_CFG[NIP_SHF]; for the non-IP case

 if (cvmx_likely(!work->word2.s.not_IP)) // likely is an IP packet
 {
 // add the IP alignment
 // alignment==0 for IPv6, otherwise == 4 bytes
 buffer_ptr.s.addr += (work->word2.s.is_v6^1)*4;

 // this code assumes PIP_IP_OFFSET[OFFSET] is large enough so that
 // all the packet bytes from byte0 to the IP header are all stored
 // in WQE WORD4 prior to the IP header. In this case, ip_offset
 // specifies the number of packet bytes prior to the IP header.
 // PIP_IP_OFFSET is in 8-byte units
 buffer_ptr.s.addr += (PIP_IP_OFFSET*8 - work->word2.s.ip_offset);
 }
 }
 else // not a dynamic short
 buffer_ptr = work->packet_ptr;

 return buffer_ptr;
}

6-116 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-117

10.6 Configuring Packet Storage

Table 29: Registers to Configure Packet Storage

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Packet Storage Choices

Packet Storage Choices:
0=All packets written to DRAM,
 bypassing L2 cache
1=All Packet Data Buffers
 written to L2 cache.
2=The first cache block
 containing the
 Next_Buf_Ptr is written to
 L2 cache, all others are written
 directly to DRAM, bypassing
 L2 cache.
3=First two cache blocks
 containing the Next_Buf_Ptr
 and packet data are written to
 L2 cache, all others are written
 directly to DRAM, bypassing
 L2 cache.

IPD_CTL_STATUS OPC_MODE 0 See Note1

Omit WQE Buffer: When set to
1, Work Queue Entry buffers are
not used. The WQE data is
located in the first 128 bytes of
the Packet Data Buffer. Space
must be reserved using
IPD_1ST_MBUFF_SKIP[SKIP_SZ].
See the HRM register field
description for details.

IPD_CTL_STATUS NO_WPTR 0
0

(H/W
Default)

MBUF Configuration

First MBUF skip amount. The
number of 8-byte words from the
start of the first mbuf at which to
store the next pointer. Legal
values are 0-32. See also the
IPD_1ST_NEXT_PTR_BACK
register. This field can be used to
reserve space in the Packet Data
Buffer for software use, or for the
WQE if the WQE will be stored
in the Packet Data Buffer instead
of a WQE Buffer.

IPD_1ST_MBUFF_SKIP SKIP_SZ 0 See Note2 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

H/W SDK
Brief Description Register Fields Default Default

Value Value

All other MBUF skip amounts.
The number of 8-byte words from
the start of all mbufs (except the
first) at which to store the next
pointer. Legal values are 0-32.
See also the
IPD_2ND_NEXT_PTR_BACK
register.

IPD_NOT_1ST_MBUFF_SKIP SKIP_SZ 0 See Note3

MBUF size. The number of 8-
byte words in an MBUF. Legal
values are in the range 32-2048.
(Pool 0 buffers must be a
minimum of 256 bytes.) If the
packet data buffers in the FPA
pool are smaller than this size,
packet data will be written to
adjacent memory, corrupting
the system. Packet data buffers
may be larger than the mbuf
size.

IPD_PACKET_MBUFF_SIZE MB_SIZE 0x20 (256
bytes) See Note4

Back Pointer Configuration

First Back: The number of 128-
byte words to subtract from WQE
WORD3[Addr] (the start of the
packet in the first mbuf). This is
used to locate the start of the
mbuf. Legal values are 0-15.
The value must be consistent with
the
IPD_1ST_MBUFF_SKIP[SKIP_SZ]
value.

IPD_1ST_NEXT_PTR_BACK BACK 0 See Note5

Not First Back: The number of
128-byte words to subtract from
the next_ptr value (the start of the
packet). This is used to locate the
start of the mbuf when it is not
the first mbuf. Legal values are
0-15. The value must be
consistent with the
IPD_NOT_1ST_MBUFF_SKIP[SKIP_

SZ] value.

IPD_2ND_NEXT_PTR_BACK BACK 0 See Note6

Length Compliance
Length compliance bit. When
this bit is set to 1, eight bytes are
subtracted from the data length
field so that it does not include 8
bytes for the Packet Instruction
Header.

IPD_CTL_STATUS LEN_M8 1
1

(See
Note7)

6-118 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-119

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Real Short (Dynamic Short) Options
Ignore RS bit. If set to 1, ignore
RS bit in Packet Instruction
Header (applies only to ports 0-
31).

PIP_GBL_CTL IGNRS 0
0

(H/W
Default)

Dynamic RS calculation. If set to
1, dynamically calculate RS
based on packet size.

PIP_PRT_CFGn
(one per port) DYN_RS 0

0
(H/W

Default)

Padding
RAW Packet Alignment Pad.
The number of bytes to pad a
RAW packet (0-7 bytes).

PIP_GBL_CFG RAW_SHF 0
0

(H/W
Default)

Non-IP Packet Alignment Pad.
The number of bytes to pad a
non-IP packet which is not RAW
(0-7 bytes).

PIP_GBL_CFG NIP_SHF 0
0

(H/W
Default)

Pre-IP Data Pad. The number of
8-byte words to include in the
WQE prior to IP data. PIP/IPD
will backfill packet data bytes
starting at the IP header until the
beginning of WORD4 or until
there is no more packet data
(byte0). PIP/IPD will zero-fill
any remaining space. IP packets
are automatically aligned by
PIP/IPD. OFFSET is calculated
from the start of the packet and
includes the automatic alignment.
If OFFSET==0, the IP header
starts at WQE WORD4. If
OFFSET==1, the IP header starts
at WQE WORD5.

PIP_IP_OFFSET OFFSET 0
0

(H/W
Default)

FCS Stripping

Strip FCS: For ports 0-31: When
a bit is set, the Frame Check Sum
(also known as CRC) is not
stored for packets arriving on the
port corresponding to that bit
position. This bit should only be
set if both the CRC is present and
should not be stored. FCS cannot
be stripped from PCI/PCIe/DPI or
sRIO Messaging ports.

IPD_SUB_PORT_FCS
(one bit per port) PORT_BIT 0xFFFFFFF

F

0xFFFFFFFF
(H/W

Default)
(See

Note8,
Note10,
Note11) Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

H/W SDK
Brief Description Register Fields Default Default

Value Value
Strip FCS: For ports 36-39:
When a bit is set, the Frame
Check Sum (also known as CRC)
is not stored for packets arriving
on the port corresponding to that
bit position. This bit should only
be set if both the CRC is present
and should not be stored. FCS
cannot be stripped from
PCI/PCIe/DPI or sRIO
Messaging ports.

IPD_SUB_PORT_FCS
(one bit per port) PORT_BIT2 0xF

0x0
(See

Note9,
Note11)

Endianness
Packet Endianness specification.
If set to 1, packet is written in
little Endian.

IPD_CTL_STATUS PKT_LEND 0
0

(H/W
Default)

Miscellaneous Settings
Packet buffering off. When set to
1, the IPD does not use its
internal buffers to buffer the
received packet data. This is not
used in normal operation.

IPD_CTL_STATUS PKT_OFF 0
0

(H/W
Default)

Notes
Note1: IPD_CTL_STATUS[OPC_MODE] is initialized to
CVMX_IPD_OPC_MODE_STT when
cvmx_helper_initialize_packet_io_global() is called.

Note2: IPD_1ST_MBUFF_SKIP[SKIP_SZ] is initialized to
(CVMX_HELPER_FIRST_MBUFF_SKIP / 8) when
cvmx_helper_initialize_packet_io_global() is called.

Note3: IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ] is initialized to
(CVMX_HELPER_NOT_FIRST_MBUFF_SKIP / 8) when
cvmx_helper_initialize_packet_io_global() is called.

Note4: IPD_PACKET_MBUFF_SIZE[MB_SIZE] is initialized to
(CMVX_FPA_PACKET_POOL_SIZE / 8) when
cvmx_helper_initialize_packet_io_global() is called.
IPD_PACKET_MBUFF_SIZE[MB_SIZE] must always be at least 18 64-bit words larger than
IPD_1ST_MBUFF_SKIP[SKIP_SZ], and at least 16 64-bit words larger than
IPD_NOT_1ST_MBUFF_SKIP[SKIP_SZ].

Note5: IPD_1ST_NEXT_PTR_BACK[BACK] is initialized to
(CVMX_HELPER_FIRST_MBUFF_SKIP + 8) / 128 (+8 is for next ptr) when
cvmx_helper_initialize_packet_io_global() is called.

Note6: IPD_2ND_NEXT_PTR_BACK[BACK] is initialized to
(CVMX_HELPER_NOT_FIRST_MBUFF_SKIP + 8) / 128 (+8 is for next ptr) when
cvmx_helper_initialize_packet_io_global() is called.

6-120 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-121

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Note7: IPD_CTL_STATUS[LEN_M8] is initialized to
TRUE (1) if CMVX_ENABLE_LEN_M8_FIX is defined when
cvmx_helper_initialize_packet_io_global() is called.
CN38XX/CN36XX pass-2 versions have a known issue in which the Size field is too large by 8
(incorrect). On other processors, if IPD_CTL_STATUS[LEN_M8]==0, the Size field is too large by 8
(incorrect). If IPD_CTL_STATUS[LEN_M8]==1, the Size field is correct.

Note8: Software should not remove the CRC (strip FCS) from ports for which Work Queue Entry’s
hardware checksum field (HW_Chksum) may be used by software. This is because the CRC bytes are
included in the hardware checksum, and software will probably need to reference the CRC value to use the
hardware checksum.
Note9: The default SDK turns off FCS stripping for the loopback ports.
Note10: There is no FCS stripping on ports 32-35 (PCI/PCIe/DPI) or 43-46 (sRIO
Messaging).

Note11: The FCS strip bit should only be set when both CRC is present and should be removed.

11 Statistics (Performance, Debugging)
The statistics registers are useful in debugging. There are two types of statistics registers:

• PIP_STATx_PRTn per-port registers which contain normal statistics and can be cleared
on read. These registers do not count dropped packets.

• PIP_STAT_INB_*n per-port registers which are used for system debugging and cannot
be cleared on read. These registers count all packets including dropped packets and packets
with errors.

The function cvmx_pip_get_port_status() will read all of these values and provide them
in the cvmx_pip_port_status_t data structure. (See Section 2.4.6 – “The
cvmx_pip_port_status_t Data Structure”.) The statistics are the same for the different
processors.

The register field PIP_STAT_CTL[RDCLR] is used to configure whether the
PIP_STATx_PRTn registers are cleared after they are read:

If RDCLR==0, then PIP_STATx_PRTn registers hold value when read
If RDCLR==1, then PIP_STATx_PRTn registers are cleared when read (default value)

Note: To count all packets dropped by the system, sum the (number of packets dropped by the
receiver) + (number of packets dropped by IPD).

In the list below, PIP_STAT_INB_*n register field counters include packets which are dropped
by IPD. PIP_STATx_PRTn registers do not include dropped packets.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 30: Statistics Register Fields (Read Only)
Brief Description Register Fields

Packets Dropped Statistics
Number of inbound packets dropped by IPD due to either Per-Port Packet
Drop or Per-QoS RED/WRED

PIP_STAT0_PRTn
(one per port) DRP_PKTS

Number of inbound octets dropped by IPD due to either Per-Port Packet
Drop or Per-QoS RED/WRED (See Note2)

PIP_STAT0_PRTn
(one per port) DRP_OCTS

Traffic Statistics

Number of packets processed by PIP per port PIP_STAT2_PRTn
(one per port) PKTS

Number of octets processed by PIP per port (both good and bad (with
errors)) (See Note 2)

PIP_STAT1_PRTn
(one per port) OCTS

RAWFULL and RAWSCH packets without an L1/L2 error processed by
PIP per port

PIP_STAT2_PRTn
(one per port) RAW

Broadcast and Multicast Statistics
Number of identified L2 broadcast packets processed by PIP per port.
Does not include multicast packets. Only includes packets whose parse
mode is skip-to-L2

PIP_STAT3_PRTn
(one per port) BCST

Number of identified L2 multicast packets processed by PIP per port.
Does not include broadcast packets. Only includes packets whose parse
mode is skip-to-L2

PIP_STAT3_PRTn
(one per port) MCST

Size Statistics

Number of 65-to-127 byte packets processed by PIP per port PIP_STAT4_PRTn
(one per port) H65to127

Number of 64-byte packets processed by PIP per port PIP_STAT4_PRTn
(one per port) H64

Number of 256-to-511 byte packets processed by PIP per port PIP_STAT5_PRTn
(one per port) H256to511

Number of 128-to255 byte packets processed by PIP per port PIP_STAT5_PRTn
(one per port) H128to255

Number of 1024-to-1518 byte packets processed by PIP per port PIP_STAT6_PRTn
(one per port) H1024to1518

Number of 512-to-1023 byte packets processed by PIP per port PIP_STAT6_PRTn
(one per port) H512to1023

Number of 1519-to-max byte packets processed by PIP per port PIP_STAT7_PRTn
(one per port) H1519

Error Statistics
Number of packets processed by PIP with FCS or Align opcode errors per
port. (Note: FCS is not checked on PCIe ports (32-35).)

PIP_STAT7_PRTn
(one per port) FCS

Number of packets processed by PIP with length < minimum and FCS
error per port. (Note: FCS is not checked on PCIe ports (32-25).)

PIP_STAT8_PRTn
(one per port) FRAG

Number of packets processed by PIP with length < minimum per port PIP_STAT8_PRTn
(one per port) UNDERSZ

Number of packets processed by PIP with length > maximum and FCS
error per port. (Note: FCS is not checked on PCIe ports (32-35).)

PIP_STAT9_PRTn
(one per port) JABBER

Number of packets processed by PIP with length > maximum PIP_STAT9_PRTn
(one per port) OVERSZ

Inbound Statistics (intended for system debug) (See Note3)
Number of octets from all packets received by PIP per port (includes
packets with errors and packets dropped by IPD) (See Note1)

PIP_STAT_INB_OCTSn
(one per port) OCTS

Number of packets with errors received by PIP per port (includes packets
with errors and packets dropped by IPD) (See Note1)

PIP_STAT_INB_ERRSn
(one per port) ERRS

6-122 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-123

Brief Description Register Fields
Number of packets without errors received by PIP per port (includes
packets with errors and packets dropped by IPD) (See Note1)

PIP_STAT_INB_PKTSn
(one per port) PKTS

Notes
Note1: PIP_STAT_INB* register field counters include packets which are dropped by IPD (all packets "received"
by PIP/IPD). Otherwise, only "processed" packets are counted (which excludes packets dropped by PIP/IPD or
which do not yet have an assigned WQE).
Note2: Octets (8 bit words) count every byte in each packet: If PIP/IPD receives a single 64-byte packet, the packet
statistic would increment by one while the octet statistic would increment by 64.
Note3: Both sets of registers can accumulate. Only when PIP_STAT_CTL[RD_CLR] is set will the
PIP_STATx_PRTn registers clear on reads. The PIP_STAT_INB_*n registers cannot be cleared on read; the values
continue to accumulate.

12 Congestion Control (Backpressure, Packet Drop, RED,
WRED)

This section provides:
• A system-level view of congestion causes and prevention
• Overview of the congestion control mechanisms provided by PIP/IPD
• Easy configuration information for PIP/IPD congestion control
• Detailed information on each PIP/IPD congestion control mechanism

12.1 System-Level View of Congestion: Causes and Prevention
Congestion can be caused by either a sudden increase in traffic (normal) or a design/software error
(unexpected).

12.1.1 Congestion Management Design Issues:
The design questions pertinent to congestion management:

• What is the expected traffic pattern?
• What should happen during a spike in traffic? (A spike is an unexpected higher than

average network load.)
• Can the sender respond to backpressure?
• Can some packets be dropped?
• Should high-priority traffic be protected?

12.1.2 Normal Congestion
A normal cause of temporary congestion is a sudden and temporary increase in traffic (a traffic
spike).

For example, if a system is designed to handle 100 packets per second, has a steady traffic of 75
packets per second, and then receives a spike of 500 packets per second, the number of available
buffers will drop abruptly, and then slowly recover when the system returns to the steady traffic of
75 packets per second. In this scenario, while the steady traffic continues, the system will be able
to process the steady traffic level + 25 buffers per second.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

12.1.3 Unexpected Congestion
If unexpected backpressure or packet drop occurs, use the following flow chart as a
troubleshooting guide. This chart shows a packet flowing through the system, and congestion
issues which can occur, along with user-configurable congestion-control points.

6-124 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-125

Figure 39: System View of Backpressure/Congestion, part 1
System View of Backpressure/Congestion, part 1

IPD
Backpressuring All ports or

this port?
?

Packet Received at IPD Port

NO (OKAY)

Start: Packet arrives at GMX

WQE Buffers Available
?

YES (OKAY)

YES (Packet
stays in GMX FIFO)

NO

Packet Data Buffers Available
?

NO

YES (OKAY)

Backpressure all GMX ports
(IPD stops receiving packets)

Exit

Exit

Note: This figure only shows GMX backpressure. Backpressure can also occur on other packet ports.

Pass
Packet Acceptance Test (QoS

Admission Control (RED/
WRED) or Per-Port Packet Drop

Tests)
?

NO

EXIT

Drop Packet,
freeing allocated

resources

Exit YES (OKAY)

Buffer exhaustion (Critical Backpressure):
This situation should be avoided if possible.
This PIP/IPD congestion control mechanism
is not configurable. It is important that the
system not run out of buffers. If it runs out
of buffers, then the PKI will backpressure all
ports on the GMX, preventing high-priority
traffic from being received.

Note that IPD prefetches about 100 buffers
at a time, and PKO frees buffers in similar
batches. If less than the requested number
of buffers are available, the prefetch will fail,
resulting in Critical Backpressure.

If the packet requires multiple Packet Data
buffers and the system runs out of Packet
Data buffers mid-packet, the packet will be
truncated and the WQE WORD2[RE]
(receive error) will be set. These packets
require special processing, adding to the
system load.

GMX will only drop packets if PIP/
IPD has run out of buffers (critical
backpressure) AND the sender
disregards flow control. In this case,
the GMX FIFO will become full, and the
GMX might receive a partial packet, or drop
packets.

1. These are configurable PIP/IPD
congestion control mechanisms.

2. The PIP/IPD will drop the packet if it does
not pass the Per-QoS Admission Control
(RED/WRED) or Per-Port Packet Drop tests.

3. Ideally, the Per-QoS Admission Control is
configured to drop low-priority traffic and
allow high-priority traffic to be received.

4. When using Per-Port Packet Drop
congestion control, software must decrement
the per-port counter when the buffer is freed.

PIP/IPD Congestion Control
Mechanisms are highlighted.

End Packet
Processing

GMX FIFO
Already Full

?

NO (OKAY)

GMX Backpressures at MAC
(Pause Frames used in flow
control) or drops packets if
the sender disregards flow

control.

YES

Processing
Continues in the

Next Figure

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 40: System View of Backpressure/Congestion, Part 2

Software sends packet
to PKO

Software frees WQE

PKO Sends Packet to GMX

Software or PKO frees Packet
Data Buffer

End Packet Processing

Verify WQE freed, and freed to correct FPA
pool.

Verify Packet Data Buffer is freed, and freed
to the correct FPA pool.

Only if packet is being forwarded.

GMX Transmits Packet

If GMX is receiving backpressure from the
receiver, it backpressures the PKO. If the
backpressure event is long enough, packets
will continue to be received and be buffered
in main memory until the either the Packet
Data buffers or WQE buffers are exhausted.
The IPD will then backpressure due to buffer
exhaustion.

YES (Loop Until
No Backpressure)

WQE sent to SSO
(add_work)

Software Calls
get_work

1. When configuring the SSO and writing
software, verify that low-priority work is not
allowed to consume all SSO Work
Descriptors (entries). If all Work Descriptors
are consumed and software only calls
get_work for high-priority work, a deadlock
will result.

2. Configure tag types and tag values to
create as many unique flows as possible to
maximize parallel processing. Minimize use
of ATOMIC tag types to essential processing
to allow work to be processed in parallel
when ever possible.

1. This is one of the PIP/IPD configurable
congestion control mechanisms.
2. Per-port backpressure can be used, but
this mechanism can block high-priority traffic
on the port, and requires software overhead
to decrement a per-port counter.

3. The user might use both Per-Port
Backpressure and Per-Port Packet Drop on
the same port. If drops are expensive,
backpressure as much as possible, but if
needed, drop packets.

4. Note that software must decrement the
per-port counter when the buffer is freed.

PKO Receiving
Backpressure from GMX

?

NO

Packet Flow and Congestion/Backpressure, Page 2

If Per-Port Backpressure is enabled, a separate
process monitors the threshold. If the counter is
at or over the threshold, the process applies per-
port backpressure. The current packet is
admitted.

Processing
continues from
previous figure.

Software decrements any Per-Port
counters used BEFORE freeing WQE.

6-126 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-127

12.2 Overview of Congestion-Control Mechanisms Provided by PIP/IPD
PIP/IPD provides several congestion-control mechanisms, as shown in the next table:

Table 31: Overview of PIP/IPD Congestion Control Mechanisms
Critical Backpressure

The IPD exerts internal backpressure on the all ports, causing the receivers FIFO to become full
(such as the GMX FIFO). Once the receiver’s FIFO becomes full, then depending on its
configuration it can backpressure/drop packets. This situation should be avoided.

Per-QoS Admission Control (WRED, RED)

The number of available Packet Data buffers is compared to the Per-QoS HIGH and LOW
watermarks. If the number of available Packet Data buffers is:
 • greater than the PASS (high) watermark: all packets are admitted
 • less than or equal to the DROP (low) watermark: all packets are dropped
 • equal to or less than PASS and greater than DROP: packets are randomly dropped
Each QoS queue can have different watermarks, which is the preferred congestion control
method because it allows high-priority traffic to flow while dropping lower priority traffic. This
feature may be combined with Per-Port Backpressure.

Per-Port Backpressure

A counter contains the number of in-use buffers for the port. If the counter exceeds the per-port
threshold, backpressure the port. (The current packet is accepted.) Software is responsible for
decrementing the counter when the buffer is freed. Per-Port Backpressure and Per-Port Packet
Drop use similar configuration registers and the same in-use buffer counter. This feature may
be combined with Per-QoS WRED/RED or Per-Port RED.

Per-Port Packet Drop

A counter contains the number of in-use buffers for the port. If the counter exceeds the per-port
threshold, drop all incoming packets for the port. Software is responsible for decrementing the
counter when the buffer is freed. Per-Port Backpressure and Per-Port Packet Drop use similar
configuration registers and the same in-use buffer counter.

Per-Port RED

Drop packets randomly on a per-port basis if the number of available buffers drops to a level at
or below the threshold set for the QoS queue. This is implemented using the Per-QoS RED
Congestion Control mechanism. To implement this, there must be less than 8 ports used in the
system (the same as the maximum number of QoS queues). This feature may be combined with
Per-Port Backpressure.

Each of these mechanisms is covered in greater detail in the sections below. For additional
information, see the HRM.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

12.3 Critical Backpressure (Buffer Exhaustion)
Critical Backpressure occurs if there are no more available Packet Data buffers or WQE buffers
(buffer exhaustion). Critical Backpressure results in IPD backpressuring all ports (no packets will
be received by IPD). This mechanism is not user-configurable.

If buffer exhaustion occurs, IPD will backpressure all ports, stopping the flow of all traffic
regardless of the traffic priority. Buffer exhaustion should be avoided by using one of the user-
configurable congestion control mechanisms.

The following figure illustrates Critical Backpressure due to buffer exhaustion.

Figure 41: Critical Backpressure Situation, Backpressure on All Ports

IP
D

 P
or

ts

P
ac

ke
t I

nt
er

fa
ce

s
(G

M
X

an
d

P
C

Ie
 a

nd

lo
op

ba
ck

)

6-128 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-129

Table 32: Critical Backpressure Overview
Critical Backpressure Overview

Action
The IPD exerts internal backpressure on the all ports, causing the receivers FIFO to
become full (such as the GMX FIFO). Once the receiver’s FIFO becomes full, then
depending on its configuration it can backpressure/drop packets.

Configuration
Options None. This feature is not configurable and cannot be disabled.

Based on Not enough Packet Data buffers or Work Queue Entry buffers to receive the entire
packet.

Pros This feature is automatic: no configuration is required.

Cons
If buffer exhaustion occurs, IPD will backpressure all ports, stopping the flow of all
traffic regardless of the traffic priority. Buffer exhaustion should be avoided by using
one of the user-configurable congestion control mechanisms.

Possible
Configuration
Errors

Failing to configure other mechanisms to prevent buffer exhaustion.

Note : Buffer exhaustion can occur when there are still available buffers in the FPA
pool in following case: The IPD prefetches a block of WQE and Packet Data buffer
pointers from the FPA. If there are not enough buffers available to satisfy the request,
the request will fail (all or nothing). The IPD prefetch amount is different for various
chips, and is approximately 100 buffers. If less than the prefetch amount of buffers are
available, buffer exhaustion will occur even though there are buffers remaining in the
pool. We recommend that congestion control mechanisms are configured so if there are
ever less than 128 buffers, all input is dropped. This maintains a stable number of
available buffers for IPD prefetch.

12.4 PIP/IPD Congestion-Control Configuration
To configure congestion control:

• First decide which traffic classes are to be assigned to the various QoS levels
• Then determine the expected steady-state traffic load for each of those traffic classes, and

make sure adequate Packet Data and Work Queue Entry buffers are available for routine
traffic

• Then determine the desired action during a traffic spike:
o Keep high priority traffic flowing while dropping random low-priority traffic: use Per-

QoS RED/WRED (recommended)
o Keep traffic flowing on some ports while blocking and/or dropping all packets

regardless of priority on some or all of the ports. Note these mechanisms do not let
high-priority traffic through and require software overhead to decrement each port’s In-
Use Buffer Counter: use Per-Port Backpressure or Per-Port Packet Drop

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

12.4.1 Basic QoS RED Configuration: cvmx_helper_setup_red()
The SDK provides the function cvmx_helper_setup_red(int pass_thresh, int
drop_thresh). This function can be called by the user to configure Per-QoS RED. The
function will turn off Per-Port Backpressure and Per-Port Packet Drop. All 8 QoS levels will be
configured with the same pass_thresh and drop_thresh, creating a Random Early Drop
(RED) solution which is not weighted (not WRED). The number of free packet data buffers will
be determined by a periodic snapshot of IPD_QUE0_FREE_PAGE_CNT.

This function only turns off Per-Port Backpressure and Per-Port Packet Drop for the packet
interfaces, not for PCI/PCIe rings.

See Section 12.5 – “Per-QoS Admission Control (RED and WRED)” for information about Per-
QoS RED.

12.4.2 Basic QoS WRED Configuration:
cvmx_helper_setup_red_queue()

After calling cvmx_helper_setup_red(), the user may call
cvmx_helper_setup_red_queue(int queue, int pass_thresh, int
drop_thresh) to adjust the thresholds for the QoS queue to a different value, and thus
implement Weighted Random Early Drop (RED).
See Section 12.5 – “Per-QoS Admission Control (RED and WRED)” for information about Per-
QoS RED.

12.4.3 Custom Configuration
Custom configuration details are discussed in the sections for each type of PIP/IPD congestion
control. There is no SDK function provided as of SDK 2.0 to simplify custom configuration.

12.5 Per-QoS Admission Control (RED and WRED) (PQ-RED)
The Per-QoS Random Early Drop (RED) and Weighted Random Early Drop (WRED) mechanism
compares the number of available Packet Data Buffers to each QoS queue’s HIGH and LOW
watermark values. If the number of available Packet Data buffers is:

• Greater than the PASS (high) watermark: all packets are admitted
• Less than or equal to the DROP (low) watermark: all packets are dropped
• Equal to or less than PASS and greater than DROP: packets are randomly dropped

RED is implemented when all QoS queues have the same PASS and DROP watermarks.

WRED is implemented when the PASS and DROP watermarks are unique for each queue
(weighting for the queue’s priority), allowing high-priority traffic to be received while lower-
priority traffic is randomly dropped.

This feature can be easily configured using the SDK functions cvmx_helper_setup_red()
and cvmx_helper_setup_red_queue().

6-130 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-131

This congestion control mechanism is recommended, especially when used with the WRED option,
a snapshot of the number of available Packet Data Buffers in the FPA. This combination it is the
best choice to keep high-priority traffic to flowing on all ports during times of congestion.

Note: The actual number of available Packet Data buffers may exceed the snapshot value because
the snapshot value does not include any buffers prefetched by IPD.

Note: The QoS value calculated for this congestion control mechanism may be different than the
value used for the WQE when the packet has one of the following:

• An L2/L1 receive error (WORD2[RE]==1)
• An IP error (WORD2[IE]==1)
• A TCP/UDP error (WORD2[LE]==1)

The difference in QoS value occurs because the Per-QoS RED-WRED QoS calculation occurs
before the entire packet is received.

Figure 42: Per-QoS Weighted Random Early Drop (WRED)

IP
D

 P
or

ts

P
ac

ke
t I

nt
er

fa
ce

s
(G

M
X

 a
nd

 P
C

Ie
 a

nd

lo
op

ba
ck

)

Fa
il

(D
ro

p)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 33: Overview of Per-QoS RED and WRED
Per-QoS Congestion Control (WRED or RED) Overview

Action

Implement either Random Early Drop (RED) or Weighted Random Early Drop
(WRED):
 • RED is implemented when all QoS queues have the same PASS and DROP
 watermarks.
 • WRED is implemented when the PASS and DROP watermarks are unique for
 each queue (weighting for the queue’s priority), allowing high-priority traffic
 to be received while lower-priority traffic is randomly dropped.

This mechanism compares the number of available Packet Data buffers to the PASS
and DROP watermarks for the target QoS queue. If the number of available Packet
Data buffers is:
 • greater than the PASS (high) watermark: all packets are admitted
 • less than or equal to the DROP (low) watermark: all packets are dropped
 • equal to or less than PASS and greater than DROP: packets are randomly
dropped

The number of available Packet Data buffers can be either a snapshot value
(recommended) or a calculated moving average.

Configuration
Options

Per-QoS enable
Per-QoS PASS and DROP watermarks
Snapshot or moving average
WRED or RED

The function cvmx_helper_setup_red() will configure RED based on a
snapshot value. The function cvmx_helper_setup_red_queue() can be used
to configure WRED based on a snapshot value after calling
cvmx_helper_setup_red().

Based on Number of available Packet Data Buffers (either a snapshot or a moving average).

Pros
This is the preferred congestion control method, when implemented with snapshot
and WRED, because it allows high-priority traffic to flow while dropping lower
priority traffic.

Pros/Cons If packet drop is not acceptable and the sender will respond to backpressure, use Per-
Port Backpressure instead.

Possible
Configuration
Errors

Setting the HIGH watermark to a value above the initial buffer count. Otherwise, the
HIGH watermark will never be crossed and the drop mechanism will not be activated.

6-132 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-133

Figure 43: Per-QoS Admission Control (RED/WRED) Options

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 44: Per-QoS RED – Using Snapshot Value

12.5.1 The Simplest Case: Snapshot Value (Recommended)
In the simplest case (recommended), when a packet is received, PIP/IPD uses the actual number of
available Packet Data Buffers (the value of IPD_QUE0_FREE_PAGE_CNT[Q0_PCNT])
(snapshot value) and compares it to two per-QoS queue watermarks: PASS (high watermark) and
DROP (low watermark).

There is a per-port enable bit. If the bit is not set, then the port does not participate in the Per-QoS
RED.

6-134 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-135

Figure 45: Configuring WRED: Different Watermarks for Each QoS Queue
Per-QoS Watermarks Using WRED

When using Weighted Random Early Drop (WRED), each QoS queue has different
PASS and DROP watermarks so higher-priority traffic is admitted while lower-priority
traffic is dropped.

QoS Queue 2:
High Watermark
(Pass)

QoS Queue 1:
Low Watermark
(DROP);
QoS Queue 0:
High Watermark
(PASS)

Configure Per-QoS High Watermark:
IPD_QOS(0-7)_RED_MARKS[PASS]
Configure Per-QoS Low Watermark:
IPD_QOS(0-7)_RED_MARKS[DROP]

The watermarks can be unique for
each QoS queue to provide Weighted
Random Early Drop (WRED).

This allows the user to protect the
high-priority traffic while dropping low-
priority traffic.

Note: When using a moving average instead
of a snapshot value, substitute “moving
average” for “snapshot” in the text in this
figure.

128

QoS Queue 0:
Low Watermark
(DROP)

Reserve for IPD prefetch

QoS Queue 2:
Low Watermark
(DROP);
QoS Queue 1:
High Watermark
(PASS)

Available
Buffers

0

In this example, QoS queue 0 is the
highest-priority queue, and QoS
Queue 2 is the lowest-priority queue.

The registers used to configure this feature are shown in the following table.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 34: Registers to Configure Per-QoS RED/WRED – Snapshot

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Global Snapshot of Number of Available Packet Data Buffers

Number of Available Packet Data Buffers:
This register is constantly updated by the
FPA with the number of buffers left in FPA
pool 0 (the Packet Data buffer pool).

IPD_QUE0_FREE_PAGE_CNT Q0_PCNT read only read only

Global Variables

Allow RAW packet Drop: Set to 1 to allow
IPD to drop RAW packets based on Per-
Port Packet Drop or Per-QoS RED
algorithm.

PIP_PRT_CFGn
(one per port) RAWDRP 0

0
(H/W

Default)

Pass-Drop Probability Calculation Delay:
The number of core-clock cycles to wait
before calculating the new packet drop
probability for each QoS level. The
interval is ([PRB_DLY + 68] x 8)
cycles.

IPD_RED_PORT_ENABLE PRB_DLY 0

0
(H/W

Default)
See

Note1,
Note 2

Per-QoS Variables

Port Enable for ports (0-35): Any bit that is
set enables the port's ability to have packets
dropped by Per-QoS RED.

IPD_RED_PORT_ENABLE
(for ports 0-35) PRT_ENB 0

0
(H/W

Default)

Port Enable for ports (36-39) (loopback
ports): Any bit that is set enables the port's
ability to have packets dropped by Per-QoS
RED.

IPD_RED_PORT_ENABLE2
(for loopback ports) PRT_ENB 0

0
(H/W

Default)

Select snapshot or moving average: Per-
QoS variable. Set to 1 to use snapshot
value instead of moving average
(recommended).

IPD_RED_QUE(0-7)_PARAM
(one per QoS queue) USE_PCNT 0

0
(H/W

Default)
See Note3

Pass Watermark (Threshold): Per-QoS
variable: Packets will be passed if the
queue size is greater than this value.

IPD_QOS(0-7)_RED_MARKS
(one per QoS queue) PASS 0

0
(H/W

Default)

Drop Watermark (Threshold): Per-QoS
variable: Packets will be dropped if the
queue size is equal to or less than this
value.

IPD_QOS(0-7)_RED_MARKS
(one per QoS queue) DROP 0

0
(H/W

Default)

Probability Constant: This value is used in
calculating the probability of a packet being
passed or dropped by the RED engine. Set
this to: (255ul<<24) / (PASS -
DROP).

IPD_RED_QUE(0-7)_PARAM
(one per QoS queue) PRB_CON 0

0
(H/W

Default)
See

Note4,
Note5

Interrupts

Interrupt: Global interrupt: Packet dropped
due to Per-QOS RED

PIP_INT_REG PKTDRP 0
0

(H/W
Default)

Enable interrupt: Global interrupt enable:
Packet dropped due to Per-QOS RED

PIP_INT_EN PKTDRP 0
0

(H/W
Default)

6-136 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-137

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Notes
Note1: Use the SDK functions cvmx_helper_setup_red()and cvmx_helper_setup_red_queue() to
configure this mechanism. First call cvmx_helper_setup_red(), then call
cvmx_helper_setup_red_queue() to adjust queue priorities to weighted RED.
Note2: We recommend a value of 0 for PRB_DLY so the calculation occurs as frequently as possible.

Note3: We recommend USE_PCNT be set to 1 to use the snapshot value.

Note4: (Although the hardware could be used to calculate the PRB_CON value from DROP and PASS, this has not
been implemented.)
Note5: "CON" stands for "CONSTANT"

Note the following variables are ignored when using a snapshot value:
IPD_RED_PORT_ENABLE[AVG_DLY], IPD_RED_QUEq_PARAM[NEW_CON, AVG_CON].

12.5.2 More Complex: Moving Average
A more complex option involves calculating a moving average based on periodic snapshots. The
moving average can be weighted either toward the new snapshot value or the prior moving
average, depending on the degree of responsiveness needed. As of SDK 2.0, the SDK does not
provide a function to configure this option.

Caveats: When using the moving average, buffer exhaustion can occur if traffic is accepted but
there are not enough buffers to accommodate it. Traffic can also be dropped unnecessarily when
the moving average is lower than the actual value. This situation can occur because:

• The moving average is not as precise as the snapshot value.
• IPD prefetches about 100 packets at a time, causing the number of buffers to fluctuate even

in steady-state traffic.

When using the moving average option, the variables IPD_RED_PORT_ENABLE[AVG_DLY],
IPD_RED_QUEq_PARAM[NEW_CON, AVG_CON] are used.

• AVG_DLY – controls how often the moving average is recalculated
• NEW_CON – a high value weights the moving average toward the most recent snapshot

value
• AVG_CON – a high value weights the moving average toward the current average value

NEW_CON + AVG_CON must == 256.

See the HRM for more detail.

Note the registers in Table 34 – “Registers to Configure Per-QoS RED/WRED – Snapshot” are
also used to configure the Per-QoS RED/WRED using the moving average. In addition to those
registers, the following registers are required.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 35: Registers to Configure Per-QoS RED/WRED – Moving Average

Brief Description Register Fields
H/W

Default
Value

SDK
Default
Value

Global Variables

Moving Average Calculation Delay:
The number of core-clock cycles to
wait before calculating the new packet
drop probability for each QoS level.

IPD_RED_PORT_ENABLE AVG_DLY 0
0

(H/W
Default)

Per-QoS Variables

Select snapshot or moving average:
Per-QoS variable. Set to 1 to use
snapshot value instead of moving
average (recommended). The interval
is ([AVG_DLY + 10] x 8) cycles.

IPD_RED_QUE(0-7)_PARAM
(one per QoS queue) USE_PCNT 0

0
(H/W

Default)

New Snapshot Weight: When
calculating the moving average, a
higher value will place more weight
on the new snapshot value than the
current moving average value.
NEW_CON + AVG_CON must = 256.

IPD_RED_QUE(0-7)_PARAM
(one per QoS queue) NEW_CON 0

0
(H/W

Default)

Moving Average Weight: When
calculating the moving average, a
higher value will place more weight
on the current moving average value
than the snapshot value. NEW_CON +
AVG_CON must = 256.

IPD_RED_QUE(0-7)_PARAM
(one per QoS queue) AVG_CON 0

0
(H/W

Default)

Notes
Note: The registers used for the Per-QoS RED/WRED also apply. These registers are used in addition to those, with
the exception of the USE_PCNT field which is 1 to use the snapshot and 0 to use the moving average.

Note: See the HRM for details.

6-138 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-139

12.6 Per-Port Congestion Control (Backpressure, Packet Drop) (PP-B,
PP-PD)

The Per-Port Backpressure (PP-B) and Per-Port Packet Drop (PP-PD) are user-configurable
congestion control mechanisms. Both mechanisms share many configuration registers.

Each port has a per-port in-use buffer counter, which usually is configured to count the number of
Packet Data buffers currently used by the port. Each port also has a per-port in-use buffer limit
(threshold) which is the limit on how many buffers it can use. Software is responsible for
decrementing the in-use buffer counter when the buffer is freed, adding software overhead.

Per-Port Backpressure will cause IPD to backpressure the port when the per-port in-use buffer limit
is reached.

Per-Port Packet Drop will cause IPD to drop all incoming packets on the port when the per-port in-
use buffer limit is reached.

Each port’s counter can be configured to count Packet Data Buffers (recommended), Work Queue
Entry Buffers, or both.

There is both a global-enable and a per-port enable. Both need to be set for the mechanism to
function on a specific port.

Both mechanisms are turned off by default when using the cvmx_helper_setup_red()
function to configure the Per-QoS RED/WRED mechanism.

The threshold value must be configured carefully or the mechanism will not function as desired.

Warning: If the threshold is set above the actual number of free buffers, the threshold
will never be crossed (the actual count will always be below the threshold). For example,
if the threshold was set to 2048 packets but the initial buffer count is only 1024 Packet
Data Buffers, buffer exhaustion would occur before the threshold was reached. In this
case, Per-Port Backpressure and/or Per-Port Packet Drop will never be turned on.

Setting the per-port thresholds becomes even more complicated when you have multiple
ports. The sum of all the port’s thresholds must be below the initial buffer count.

Note: The per-port in-use buffer counters will wrap around if not decremented by software.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

When using per port congestion control, decrement the per-port in-use buffer counter using the
following code fragment BEFORE freeing the WQE (this code accesses fields in the WQE):

 cvmx_ipd_sub_port_bp_page_cnt_t page_cnt;

 page_cnt.u64 = 0; // initialize all fields in the register to 0
 page_cnt.s.page_cnt = -work->word2.s.bufs; // 2s complement
 page_cnt.s.port = work->ipprt; // specify which port’s counter

 cvmx_write_csr(CVMX_IPD_SUB_PORT_BP_PAGE_CNT, page_cnt.u64);

Figure 46: Per-Port In-Use Buffer Limit (Threshold)

12.6.1 Per-Port Backpressure (PP-B)
Per-Port Backpressure is applied if the port’s in-use buffer counter exceeds the port’s in-use buffer
limit. Per-Port Backpressure can be combined with Per-QoS RED/WRED or Per-Port RED: if the
sender does not respond to backpressure, packets can be dropped to prevent buffer exhaustion.
(See Section 17 – “Appendix D: A Note about Configuring GMX Backpressure” for a brief
introduction to configuring Pause Frames for GMX. This is a hardware-level view.)

6-140 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-141

Figure 47: Congestion Control: Per-Port Backpressure
Per-Port Backpressure (Example of Four Ports)

IP
D

 P
or

ts

P
ac

ke
t I

nt
er

fa
ce

s
(G

M
X

 a
nd

 P
C

Ie
 a

nd

lo
op

ba
ck

)

PIP/IPD backpressures
any port which has

reached the per-port in-
use buffer limit

(threshold)

Occurs if:
1. The number of in-use buffers for the port exceeds the port’s threshold
2. Port has been configured to assert backpressure if this occurs

Potential problems with this technique include:
1. Software is required to decrement the per-port in-use buffer counter when the buffer is
freed. Which buffers are counted is configurable: Packet Data buffers, WQE buffers, or
both.

2. High-priority traffic on the port cannot be selectively received by PIP/IPD: all traffic on
the port is backpressured, not just low-priority traffic.

3. Some senders do not respond to backpressure. In this case, use Per-Port Packet
Drop or Per-QoS Admission Control (RED/WRED).

IPD Backpressures Port

Traffic Flows Normally

RX

Traffic Flows Normally

Traffic Flows Normally

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 36: Per-Port Backpressure Overview
Per-Port Backpressure Overview

Action
Backpressure the port if the number of buffers in-use by the port (in-use buffer
counter) exceeds the configurable per-port in-use buffer limit (threshold).
Backpressure continues until the number of in-use buffers drops below the threshold.

Configuration
Options

Each port's in-use buffer limit (threshold). The in-use buffer counter is also
configurable: it can count the number of Packet Data Buffers (recommended), the
number of Work Queue Entry Buffers (used if all packets are short enough to fit into
a WQE), or both.

Based on Each port's in-use buffer limit and in-use buffer counter.

Pros

If some ports are by definition higher priority than other ports, then this mechanism
might be the right choice. It is possible to implement a lossless flow control system.
Because many registers are used in common, it is easy to configure some ports for
Per-Port Backpressure and others for Per-Port Packet Drop.

Cons

Software is responsible for decrementing the counter when the buffer is freed, adding
software overhead. This method blocks all traffic on the port, including high-priority
traffic. This mechanism only works if the sender responds to the backpressure.
When configuring this option, verify that the sum of all in-use buffer limits can use
does not exceed the total number of available buffers. The fixed limit may mean
backpressure is applied on a port because the threshold is reached, but there are still
available buffers.

Possible
Configuration
Errors

The sum of all in-use buffer limits must not exceed the total number of available
buffers. Failing to decrement the per-port in-use buffer counter.

Table 37: Registers to Configure Per-Port Backpressure
Register Details

Global Enable: Global per-port backpressure enable

IPD_CTL_STATUS[PBP_EN]
(See Note 1, Note2)

Global configuration register. Global backpressure
enable for per-port backpressure and per-port packet
drop functionality.
(Reset value == 0).

Per-Port Enable: Individual per-port backpressure enable

IPD_PORTn_BP_PAGE_CNT[BP_ENB]
(one per port)

There is one register per port. Both the global and per-
port enable must be on for the per-port packet drop
functionality to be enabled. If this field is set to 1, the
port's per-port backpressure is enabled.
(Reset value == 0)

6-142 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-143

Register Details
Threshold Configuration: Configure per-port in-use buffer limit

RGMII/SPI-4/SGMII/XAUI (ports 0-31):
IPD_PORT[0-31]_BP_PAGE_CNT[PAGE_CNT]

PCI/PCIe (ports 32-35):
I

PD_PORT[32-35]_BP_PAGE_CNT[PAGE_CNT]

Loopback (ports 36-39):
IPD_PORT[36-39]_BP_PAGE_CNT2[PAGE_CNT]

sRIO (ports 40-43):
IPD_PORT[40-43]_BP_PAGE_CNT3[PAGE_CNT]
(See Note 1)

There is one register per port. Maximum number of
buffers (WQE and/or Packet Data Buffers, depending
on configuration) which the port may use. The register
IPD_PORT_BP_COUNTERS[2]_PAIRn[CNT_VAL] count
the actual number of buffers in use by the port. When
this number is exceeded, backpressure is applied to the
port. Note that PAGE_CNT is in units of 256 buffers, so
1=256 buffers, 2=512 buffers.
Note that the threshold must be configured to be
lower than the number of buffers in the FPA pool to
prevent buffer exhaustion.
(Reset value == 0)

Configure Counter, Part 1: Configure per-port in-use buffer counter configuration for WQE buffers.

IPD_CTL_STATUS[ADDPKT]
(See Note 1)

Global configuration register. If set to 1, count the
number of packets which have arrived on the port (the
number of WQE buffers sent by the port to the SSO).
(Reset value == 0)

Configure Counter, Part 2: Configure per-port in-use buffer counter configuration for Packet Data
buffers.

IPD_CTL_STATUS[NADDBUF]
Global configuration register. If set to 1, do NOT count
the Packet Data buffers allocated by IPD for the port.
(Reset value == 0)

Counter: Per-port in-use buffer count value

RGMII/SPI-4/SGMII/XAUI (ports 0-31):
IPD_PORT_BP_COUNTERS_PAIR[0-31][CNT_VAL]

PCI/PCIe (ports 32-35):
IPD_PORT_BP_COUNTERS_PAIR[32-35][CNT_VAL]

Loopback (ports 36-39):
IPD_PORT_BP_COUNTERS2_PAIR[36-39][CNT_VAL]

sRIO (ports 40-43):
IPD_PORT_BP_COUNTERS3_PAIR[40-43][CNT_VAL]
(See Note 1)

There is one register per port. Automatic count of
buffers in-use by the port. Depending on ADDPKT and
NADDBUF configuration, will count one of:
1) All in-use Packet Data buffers
2) All in-use WQE buffers
3) Both in-use Packet Data buffers and WQE buffers
(Reset value == 0)

Counter Decrement Selector: Specify Which Port's Counter to Decrement

IPD_SUB_PORT_BP_PAGE_CNT[PORT]
(See Note 1, Note 3)

There is one in-use buffer counter per port. This field
specifies which counter to decrement. (Software
decrements the in-use buffer count when the buffers are
freed).
(Reset value == 0)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Register Details
Counter Decrement: Decrement per-port in-use buffer count value

IPD_SUB_PORT_BP_PAGE_CNT[PAGE_CNT]
(See Note 1, Note 3)

There is one register per port. Software decrements the
in-use buffer count when the buffers are freed via this
register. Software writes the twos-complement value to
be added to
IPD_PORTn_BP_COUNTERS[2]_PAIRn[CNT_VAL].
The port is specified via
IPD_SUB_PORT_BP_PAGE_CNT[PORT].
(Reset value == 0)

Notes
Note1: Register(s) also used by the per-port drop mechanism.

Note2: Key Issue Regarding IPD_CTL_STATUS[PBP_EN]: There is a known issue related to
this bit for all CN3XXX and CN5XXX. This bit cannnot be programmed arbitrarily and
actually must be transitioned from zero to one on a specific cycle. It should never be set to zero
after being set once. Our SDK goes to great lengths to make sure IPD_CTL_STATUS[PBP_EN]
is set a the right time to avoid the issue The cvmx-helper function does extensive cleanup on
packet shutdown. Uboot sets this bit during early boot on some processors. To get reliable per-
port backpressure, you must use the cvmx-helper functions for initialization and shutdown.

Note 3: To subtract X from the counter, create a twos-complement of X (negative X). Store the
twos-complement value in IPD_SUB_PORT_BP_PAGE_CNT[PAGE_CNT], which will add the twos-
complement value to IPD_PORT_BP_COUNTERS_PAIRn[CNT_VAL], decrementing the counter.
(A twos-complement number is created by taking the one's complement of the number (invert
every bit in the binary number), then add 1 to the result.)

Note: GMX_INF_MODE[EN] must be set to 1 for each packet interface that requires port
backpressure prior to setting PBB_EN to 1. Once enabled, the sending of per-port backpressure
cannot be disabled by changing the value of IPD_CTL_STATUS[PBP_EN]. See the HRM for
more details.

12.6.2 Per-Port Packet Drop (PP-PD)
Per-Port Packet Drop is applied if the port’s in-use buffer count exceeds the port’s in-use buffer
limit (threshold). This mechanism will drop all packets on the port until the in-use buffer count is
below the threshold. Although the HRM calls this "RED", there is no randomness to the drop, so it
is misnamed.

6-144 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-145

Figure 48: Congestion Control: Per-Port Packet Drop

Potential problems with this technique include:
1. Software is required to decrement the per-port in-use buffer counter when the buffer is
freed. Which buffers are counted is configurable: Packet Data buffers, WQE buffers, or
both.

2. High-priority traffic on the port cannot be selectively received by PIP/IPD: all traffic on
the port is dropped if the threshold is exceeded, not just low-priority traffic.

3. Some system suffer substantial performance penalties due to packet loss. In this case,
use a lossless/backpressure scheme.

Per-Port Packet Drop (Example of Four Ports)

IP
D

 P
or

ts

P
ac

ke
t I

nt
er

fa
ce

s
(G

M
X

 a
nd

 P
C

Ie
 a

nd

lo
op

ba
ck

)
PIP/IPD drops all packets on

any port which has reached the
per-port in-use buffer limit

(threshold)
Test Number of
In-Use Buffers

Against Threshold
Value

Pass

Fa
il

(D
ro

p)

Occurs if:
1. The number of in-use buffers for the port exceeds the port’s threshold
2. Port has been configured to drop packets if this occurs

RX
At In-Use Limit: Drop All

Traffic Flows Normally

Traffic Flows Normally

Traffic Flows Normally

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 38: Per-Port Packet Drop Overview
Per-Port Packet Drop Overview

Action Drop all incoming packets on the port if the number of buffers in-use by the port (in-
use buffer counter) exceeds the configurable per-port in-use buffer limit (threshold).
Packet drop continues until the number of in-use buffers drops below the threshold.

Configuration
Options

Each port's in-use buffer limit (threshold). The in-use buffer counter is also
configurable: it can count the number of Packet Data Buffers (recommended), the
number of Work Queue Entry Buffers (used if all packets are short enough to fit into
a WQE), or both.

Based on Each port's in-use buffer limit and in-use buffer counter.
Pros If some ports are by definition higher priority than other ports, then this mechanism

might be the right choice. Because many registers are used in common, it is easy to
configure some ports for Per-Port Backpressure and others for Per-Port Packet Drop.

Cons Software is responsible for decrementing the counter when the buffer is freed, adding
software overhead. This method drops all traffic on the port, including high-priority
traffic. When configuring this option, verify that the sum of all in-use buffer limits
can use does not exceed the total number of available buffers. The fixed limit may
mean backpressure is applied on a port because the threshold is reached, but there are
still available buffers.

Possible
Configuration
Errors

The sum of all in-use buffer limits must not exceed the total number of available
buffers. Failing to decrement the per-port in-use buffer counter.

6-146 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-147

Table 39: Registers to Configure Per-Port Packet Drop
Register Details

Global Enable: Global per-port backpressure enable

IPD_CTL_STATUS[PBP_EN]
(See Note 1, Note 2)

Global configuration register. Global backpressure
enable for per-port backpressure and per-port packet
drop functionality.
(Reset value == 0)

Per-Port Enable: Individual per-port packet drop enable

IPD_BP_PRT_RED_END[PRT_ENBn]
(one bit per port)

One configuration register, one bit per port. Both the
global and per-port enable must be on for the per-port
packet drop functionality to be enabled. Each port
corresponds to a bit in this field. When the port’s bit
is set to 1, the per-port packet drop check for the port
is enabled. (Reset value == 0)

Allow Raw Packet Drop: Optionally allow raw packets to be dropped by this mechanism

PIP_PRT_CFGn[RAWDRP]
(one per port)

Global configuration register. If set to 0, then
RAWFULL and RAWSCH packets are never dropped
by per-port packet drop. (Reset value == 0)

Threshold Configuration: Configure per-port in-use buffer counter

RGMII/SPI-4/SGMII/XAUI (ports 0-31):
IPD_PORT[0-31]_BP_PAGE_CNT[PAGE_CNT]

PCI/PCIe (ports 32-35):
IPD_PORT[32-35]_BP_PAGE_CNT[PAGE_CNT]

Loopback (ports 36-39):
IPD_PORT[36-39]_BP_PAGE_CNT2[PAGE_CNT]

sRIO (ports 40-43):
IPD_PORT[40-43]_BP_PAGE_CNT3[PAGE_CNT]
(See Note 1)

There is one register per port. Maximum number of
buffers (WQE and/or Packet Data Buffers, depending
on configuration) which the port may use. The
register
IPD_PORT_BP_COUNTERS[2]_PAIRn[CNT_VAL]
count the actual number of buffers in use by the port.
When this number is exceeded, packets arriving on
this port are dropped. Note that PAGE_CNT is in units
of 256 buffers, so 1=256 buffers, 2=512 buffers.
Note that the threshold must be configured to be
lower than the number of buffers in the FPA pool
to prevent buffer exhaustion.
(Reset value == 0)

Configure Counter, Part 1: Configure per-port in-use buffer counter configuration for WQE buffers.

IPD_CTL_STATUS[ADDPKT]
(See Note 1)

Global configuration register. If set to 1, count the
number of packets which have arrived on the port (the
number of WQE buffers sent by the port to the SSO).
(Reset value == 0)

Configure Counter, Part 2: Configure per-port in-use buffer counter configuration for Packet Data
buffers.

IPD_CTL_STATUS[NADDBUF]

Global configuration register. If set to 1, do NOT
count the Packet Data buffers allocated by IPD for the
port.
(Reset value == 0)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Register Details
Counter: Per-port in-use buffer count value

RGMII/SPI-4/SGMII/XAUI (ports 0-31):
IPD_PORT_BP_COUNTERS_PAIR[0-31][CNT_VAL]

PCI/PCIe (ports 32-35):
IPD_PORT_BP_COUNTERS_PAIR[32-35][CNT_VAL]

Loopback (ports 36-39):
IPD_PORT_BP_COUNTERS2_PAIR[36-39][CNT_VAL]

sRIO (ports 40-43):
IPD_PORT_BP_COUNTERS3_PAIR[40-43][CNT_VAL]
(See Note 1)

There is one register per port. Maximum number of
buffers (WQE and/or Packet Data Buffers, depending
on configuration) which the port may use. The
register
IPD_PORT_BP_COUNTERS[2]_PAIRn[CNT_VAL]
count the actual number of buffers in use by the port.
When this number is exceeded, backpressure is
applied to the port. Note that PAGE_CNT is in units of
256 buffers, so 1=256 buffers, 2=512 buffers.
Note that the threshold must be configured to be
lower than the number of buffers in the FPA pool
to prevent buffer exhaustion.
(Reset value == 0)

Counter Decrement Selector: Specify Which Port's Counter to Decrement

IPD_SUB_PORT_BP_PAGE_CNT[PORT]
(See Note 1, Note 3)

There is one in-use buffer counter per port. This field
specifies which counter to decrement. (Software
decrements the in-use buffer count when the buffers
are freed).
(Reset value == 0)

Counter decrement: Decrement per-port in-use buffer count value

IPD_SUB_PORT_BP_PAGE_CNT[PAGE_CNT]
(See Note 1, Note 3)

There is one register per port. Software decrements
the in-use buffer count when the buffers are freed via
this register. Software writes the twos-complement
value to be added to
IPD_PORTn_BP_COUNTERS[2]_PAIRn[CNT_VAL].
The port is specified via
IPD_SUB_PORT_BP_PAGE_CNT[PORT].
(Reset value == 0)

Notes
Note1: Register(s) also used by the per-port backpressure mechanism.

Note2: Key Issue Regarding IPD_CTL_STATUS[PBP_EN]: There is a known issue related to
this bit for all CN3XXX and CN5XXX. This bit cannnot be programmed arbitrarily and actually
must be transitioned from zero to one on a specific cycle. It should never be set to zero after
being set once. Our SDK goes to great lengths to make sure IPD_CTL_STATUS[PBP_EN] is set
a the right time to avoid the issue The cvmx-helper function does extensive cleanup on packet
shutdown. Uboot sets this bit during early boot on some processors. To get reliable per-port
backpressure, you must use the cvmx-helper functions for initialization and shutdown.

6-148 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-149

Register Details

Note 3: To subtract X from the counter, create a twos-complement of X (negative X). Store the
twos-complement value in IPD_SUB_PORT_BP_PAGE_CNT[PAGE_CNT], which will add the twos-
complement value to IPD_PORT_BP_COUNTERS_PAIRn[CNT_VAL], decrementing the counter. (A
twos-complement number is created by taking the one's complement of the number (invert every
bit in the binary number), then add 1 to the result.)

12.7 Per-Port RED
Per-Port RED allows packets to be randomly dropped on a per-port basis rather than per-QoS.
There is no unique mechanism to support this, but if there are less than 8 ports used in the system
(the same as the maximum QoS queues), then by setting the default QoS for the port to the port
number, each port’s traffic will go to a different QoS. By setting each QoS to the same threshold
value, all ports will have an equal chance to receive packets. Because the per-QoS mechanism
uses random drop, per-port RED will have been implemented.

This feature can also be combined with Per-Port Backpressure.

13 Per QoS/Port Buffer Tracking
This feature is listed in the HRM as “Per-Port and QoS Threshold Interrupts”. In this feature, the
PIP/IPD hardware maintains a counter per port/QoS that PIP/IPD increments when it sends a
packet to the SSO. There is one counter for each port/QoS combination of port number (up to 16)
and the SSO QoS level (0-7). PIP/IPD maintains 128 counters (16 ports times 8 QoS levels),
corresponding interrupt bits and enables, and corresponding watermarks (one for each QoS level
and port combination).

This feature is only used in special cases and is not documented here.

14 Appendix A: PIP/IPD Registers and Register Fields
The registers and fields contained in this chapter are specifically for CN54/55/56/57XX. Many of
these registers and register fields are identical on the other processors.

This chapter does not include register fields used for BIST (power on memory test), reset, enable,
Per QoS/Port Buffer Tracking registers, or registers or fields reserved for internal use.

Registers are divided into different tables by purpose. The following links will help locate the
tables in the chapter:
Table 11: Registers to Configure Input Packet Format – Page 48
Table 12: Registers to Configure Work Queue Entry Details – Page 49
Table 19: Registers to Configure Work Queue Entry WORD2 – Page 71
Table 20: Registers to Configure WQE WORD1 Group – Page 75
Table 21: Registers to Configure WQE WORD1 QoS Assignment – Page 79
Table 22: Registers to Configure WQE WORD1 Tag Type- Page 83

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Table 23: Registers to Configure WQE WORD1 Tag Value Assignment – Page 93
Table 24: Registers to Configure Watchers – Page 96
Table 25: Registers to Configure IP Security - 98
Table 26: Registers To Configure Error Check - Page 98
Table 27: Registers Used to Configure CRC Check – Page 102
Table 29: Registers to Configure Packet Storage – Page 117
Table 30: Statistics Register Fields – Page 122
Table 34: Registers to Configure Per-QoS RED/WRED – Snapshot – Page 136
Table 35: Registers to Configure Per-QoS RED/WRED – Moving Average – Page 138
Table 37: Registers to Configure Per-Port Backpressure – Page 142
Table 39: Registers to Configure Per-Port Packet Drop- Page 147

15 Appendix B: Industry-Standard Reference Information
These industry-standard data structures are provided here for quick reference.

6-150 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-151

15.1 L2 Header Formats
Figure 49: L2 Header Formats

Ethernet II
(14 bytes)

IEEE 802.3
22 bytes)

Ethernet II
+

VLAN
(18 bytes)

IEEE 802.3
+

VLAN
(26 bytes)

Ethernet II
+

VLAN
Stacked

(22 bytes)

DMAC
(6 bytes)

Uninterpreted
(6 bytes)

IEEE 802.3
+

VLAN
STACKED
30 bytes)

Uninterpreted
(6 bytes)

DMAC
(6 bytes)

DMAC
(6 bytes)

Uninterpreted
(6 bytes)

DMAC
(6 bytes)

Uninterpreted
(6 bytes)

DMAC
(6 bytes)

Uninterpreted
(6 bytes)

DMAC
(6 bytes)

Uninterpreted
(6 bytes)

ETHERNET II

IEEE 802.3

Skip-to-L2 Parsing of ETHERNET II and IEEE 802.3 Packets

Uninterpreted
(6 bytes)

Uninterpreted
(6 bytes)

Uninterpreted
(6 bytes)

Notes: Is_IP is TRUE if Type is either 0x8000 (IPv4) or 0x86DD (IPv6).

The Type field can be used as a length field if it is less than 1500 or 1535
(configurable via PIP_PRT_CFG[MAX_LEN]).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

15.1.1 L2 Header Type Field Values (EtherType)
Table 40: L2 Header Type Field Values (EtherType)

Type Value
ARP 0x0806

IPv4 0x0800

IPv6 0x86DD

MAC_CTRL 0x8808

RARP 0x0835

VLAN_ID 0x8100

15.1.2 L2 Header VLAN, VLAN 1 Field Details

Figure 50: L2 Header and VLAN, VLAN1 Field Details – CFI, VLAN ID
L2 Header VLAN and VLAN1 Field Formats

PCP
(3)

VLAN ID
(12 bits)

0 153 4 7 8

C
FI

PPC: Priority Point Code. This is the IEEE 802.1p priority, a
number from 0-7 (0=lowest, 7=highest). This number indicates
the packet’s priority.
CFI: Canonical Format Indicator: If 1, MAC address is in non-
canonical format. If 1, MAC address is in canonical format.
VLAN ID: Identifies the VLAN the frame belongs to. A value
of 0 means the frame doesn’t belong to any VLAN.

6-152 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-153

15.2 L3: IPv4 Header

Figure 51: IPv4 Header
IPv4 Header

Total Length
(16 bits)

IP
Version
(4 bits)

Identification
(16 bits)

Time to Live
(8 bits)

Source Address
(32 bits)

Destination Address
(32 bits)

Header
Length
(4 bits)

Differentiated
Services
(8 bits)

Fragment Offset
(13 bits)

Protocol
(8 bits)

IP Header Checksum
(16 bits)

Options (if Header Length > 5)
(either zero or (N*32 bits))

Data (not part of the IP header)

16 310 153 4 7 8

Flags

D
F

M
F

Note: Fields shown in gray are reserved and must be set to
zero.

Field descriptions are in the table following this figure.

Note: In this figure, the zero bit is shown on the left. The
figure was drawn this way to match figures in commonly-
used networking reference books.

Table 41: IPv4 Header Fields
Field Description

Version Version Number: For IPv4, the version number is four.
Header Length Header Length: The number of 32-bit words in the header. If header length is

5 (20 bytes), there are no options. The minimum value is 5.
Differentiated
Services

Diffserve Value: (Originally Type of Service (TOS)), now is Differentiated
Services (diffserv). This is used to specify a packet-handling preference, such
as low delay or high reliability.

Total Length Total Datagram Length: Size of header plus data, in bytes. The minimum
value is 20 bytes (header, and zero data).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Field Description
Identification Identification: Optional, and primarily used to uniquely identify each fragment

of an original datagram.
Flags Flags:

DF (Don't Fragment): If the DF bit is set and the datagram must be
fragmented to be routed, then it is dropped.
MF (More Fragments): If the packet is not fragmented, the MF bit is set to
zero. If the packet is fragmented, all fragments except the last fragment have
this bit set to one. The last fragment has the bit set to zero.
Note: The third flag is reserved and must be set to zero.

Fragment
Offset

Fragment Offset: The offset of the fragment relative to the beginning of the
original unfragmented datagram. This value is specified in eight-byte blocks.
The first fragment will have an offset of zero.

Time to Live Time to Live: Used to prevent a datagram from going in circles on the Internet
forever. Also considered to be a "hop count": each switch or router which
handles the packet decrements the TTL field by 1. When TTL equals zero, the
packet is discarded.

Protocol Protocol: The format of the data portion, such as TCP or UDP.
Header
Checksum

Header Checksum: The checksum of the IP header. Note that the data is part
of the IP header, and therefore is not included in the checksum.

Source Address Source Address: The IPv4 address of the sender. Note this may not be the
true address, if network address translation is used.

Destination
Address

Destination Address: The IPv4 address the receiver. Note this may not be a
true address if network address translation is used.

Options Options: These are rarely used. They must be padded out to make 32-bit
words.

Data Data: Not part of the header, and not included in the IP header checksum. The
format of the contents is specified in the Protocol field.

6-154 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-155

15.2.1 IPv4 Protocol Field Values

Table 42: IPv4 Protocols
IPv4 Protocols

HOP_BY_HOP 0

TCP 6

UDP 17

ROUTING 43

FRAG 44

IPSEC_ESP 50

IPSEC_AH 51

ICMP 58

DESTINATION 60

IPCOMP 108

OTHER 255

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

15.3 L3: IPv6 Header
Figure 52: IPv6 Header

IPv6 Header

Flow Label
(20 bits)

IP
Version
(4 bits)

Payload Length
(16 bits)

Source Address
(128 bits)

Destination Address
(128 bits)

Traffic Class
(8 bits)

Hop Limit
(8 bits)

Extension Headers (up to six)

12 310 113 4

Note: Fields shown in gray are reserved and must be set to zero.

Field descriptions are in the table following this figure.

Note: In this figure, the zero bit is shown on the left. The
figure was drawn this way to match figures in commonly-
used networking reference books.

Next Header
(8 bits)

Data (not part of the IPv6 header)

6-156 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-157

Table 43: IPv6 Header Fields
Field Description

Version Version Number: For IPv6, the version number is six.
Traffic Class Traffic Class: The number of 32-bit words in the header. If header length is 5

(20 bytes), there are no options. The minimum value is 5.
Flow Label Flow Label: (Originally Type of Service (TOS)), now is Differentiated

Services (diffserv). This is used to specify a packet-handling preference, such
as low delay or high reliability.

Payload Length Payload Length: Size of header plus data, in bytes. The minimum value is 20
bytes (header, and zero data).

Next Header Next Header: Optional, and primarily used to uniquely identify each fragment
of an original datagram.

Hop Limit Hop Limit:

Source Address Source Address: The IPv6 address of the sender. Note this may not be the
true address, if network address translation is used.

Destination
Address

Destination Address: The IPv6 address the receiver. Note this may not be a
true address if network address translation is used.

Extension
Headers

Extension Headers: These are rarely used. They must be padded out to make
32-bit words.

Data Data: Not part of the header, and not included in the IP header checksum. The
format of the contents is specified in the Protocol field.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

15.4 L4: TCP Header
Figure 53: IPv4 Header with TCP/IP

TCP/IP Combined Header (IPv4)

Total Length
(16 bits)

IP
Version
(4 bits)

Identification
(16 bits)

Time to Live
(8 bits)

Source Address
(32 bits)

Destination Address
(32 bits)

Header
Length
(4 bits)

Differentiated
Services
(8 bits)

Fragment Offset
(13 bits)

Protocol
(8 bits)

IP Header Checksum
(16 bits)

Options (if Header Length > 5)
(either zero or (N*32 bits))

Flags

D
F

M
F

16 310 153 4 7 8

Destination Port
(16 bits)

Source Port
(16 bits)

Sequence Number
(32 bits)

Data
Offset
(4 bits)

Acknowledgement Number
(32 bits)

Reserv-
ed

(4 bits)

Flags
(8 bits)

Window Size
(16 bits)

Urgent Offset
(16 bits)

TCP checksum
(16 bits)

options (if Data Offset > 5)

data (if any)

Note: The TCP header is highlighted in green.

6-158 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-159

15.5 L4: UDP Header

Figure 54: UDP Header

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

16 Appendix C: Input Packet Parsing Details
The HRM includes parsing pseudo code. The following figures show the different options and a
parsing flow chart. The “Cases” in these figures match the cases shown in the WQE WORD2
figures. This figure is identical to the figure shown earlier in this chapter.

Figure 55: Input Packet Parsing Cases

Parse Mode = Uninterpreted

RAWFULL
(Uninterpreted AND

RAW)
Skip-to-L2 Skip-to-IP

PCIe
AND

PIP_GBL_CTL[RING_EN]==1

((NOT PCIe)
OR

(PIP_GBL_CTL[RING_EN]==0))

IP NOT IP

No L2/
L2 Error

L1/L2
Error

No L1/
L2 Error

L1/L2
Error

No L1/
L2 Error

L1/L2
Error

Uninterpreted AND
NOT RAW

NO L1/
L2 Error

L1/L2
Error

Uninterpreted

RAW NOT RAW

NO L1/
L2 Error

L1/L2
Error

CASE
2A

CASE
3C

CASE
3A

CASE
3C

CASE
2B

CASE
3C

CASE
3B

CASE
3C

NO L1/
L2 Error

L1/L2
Error

CASE
1B

CASE
3C

CASE
1A

CASE
3C

Parse Mode = Skip-to-L2 Parse Mode =
Skip-to-IP

Packet Parsing and WQE WORD2 Cases

There are three parsing modes available: “Skip-to-L2” where the packet’s L2 header is parsed, “Skip-to-IP” which skips
directly to the IP portion of the packet, and “Uninterpreted” which does not examine the packet contents.

A packet with the parse mode “skip-to-L2” is further classified as either being an IP packet or Non-IP packet. The
packet is an IP packet if the L2 header’s type field contains either 0x800 (for IPv4) or 0x86DD (for IPv6).

There are three different data structures used for WORD2, depending on the parsing results: CASE 1, 2, and 3.
Within each case, field values depend on parsing results (A, B, C). Each of these WQE WORD2 variations are shown
in other figures. Cases which do not have L1/L2 receive errors may be found on the Parsing flowchart.

(Includes RAWSCH packets)
(Includes RAWSCH

packets)

6-160 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-161

Figure 56: Input Packet Parsing Flowchart, Part 1

Read
Packet

Parse Mode ==
Uninterpreted

?

Is_IP=FALSE
Ethertype_val=FALSE
L2_size=0 bytes
VV=FALSE
VS=FALSE
VLAN0=0
VLAN1=0

Start Packet
Parsing

YES
(Uninterpreted)

Parse Mode ==
skip-to-IP

?

NO
(Skip-to-L2

or Skip-to-IP)

Is_IP=TRUE
L2_size=0
VV=FALSE
VS=FALSE
VLAN0=0
VLAN1=0

YES
(Skip-to-IP)
(CASE 2B)

Variables used in this flow chart (in alphabetical order):
Ethertype: The Ethernet packet Type field (set if packet has an L2 header)
Ethertype_val: TRUE if the packet’s Ethertype is set
Is_IP: TRUE if the packet is an IP packet (Type==0x8100 (ipv4)) or

(Type==0x86DD (ipv6))
L2_size: the size of the L2 header in bytes (0 if not skip-to-L2)
PR, PRR: The position of the PCIe ring in the PKI port
VLAN0: if VLAN or Stacked VLAN, set to value of VLAN0 tag, otherwise=0
VLAN1: if VLAN Stacked, set to value of VLAN1 tag, otherwise=0
VS: TRUE if the packet is STACKED VLAN
VV: TRUE if packet is VLAN or STACKED VLAN (Type==0x8100)

L2 Header
Present

?

End Packet
Parsing

YES

Ethertype_val=TRUE
Ethertype=PKT.Type

NO Ethertype_val=FALSE

(Skip-to-L2)

NO
(CASE 2A

or CASE 3A)

Packet Instruction
Header AND

RAW
?

NO
(Uninterpreted

AND NOT
RAWFULL)
(CASE 3B)

YES

WQE WORD2 <55:0> =
PIP_RAW_WORD[WORD]

PCIe
Packet AND

(PIP_GBL_CTL[RING_EN]==1)
?

YES

PRR=PCIe ring
position in PKI port (CASE 1A)

NO
(CASE 1B)

Note this case includes all RAWSCH
packets, because RAWSCH packets
are RAW and (skip-to-L2 or skip-to-
IP).

RAWFULL
packets are
RAW and
uninterpreted
.

L2 header
may be
present
before IP
header. This
is checked.

PCIe
Packet AND

(PIP_GBL_CTL[RING_EN]==1)
?

NO

YES
PR=PCIe ring

position in
PKI port

PR=0
NO

Note: The CASE labels
(such as “CASE 2B”) can
be used to match to the
WORD2 data structures in
later figures.

Processing
Continues in the

Next Figure

Packet Parsing (assuming no parsing errors)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 57: Input Packet Parsing Flowchart, Part 2

Variables used in this flow chart (in
alphabetical order):

Ethertype: The Ethernet packet
Type field (set if packet
has an L2 header)

Ethertype_val: TRUE if the packet’s
Ethertype is set

Is_IP: TRUE if the packet is an IP packet
(type==0x8100 (ipv4)) or
(type==0x86DD (ipv6))

L2_size: The size of the L2 header in
bytes (0 if not skip-to-L2)

VLAN0: If VLAN or Stacked VLAN, set to
value of VLAN0 tag, otherwise=0

VLAN1: If VLAN Stacked, set to value of
VLAN1 tag, otherwise=0

VS: TRUE if the packet is Stacked VLAN
VV: TRUE if packet is VLAN or Stacked

VLAN (Type==0x8100)

Ethertype_val=TRUE
Ethertype=PKT.type
L2_size= 22 bytes
VV=TRUE
VS=TRUE
VLAN0=PKT.VLAN0
VLAN1=PKT.VLAN1

Skip-to-L2 Packet Parsing
(Continued from prior figure)

VLAN OR
VLAN STACKED

?

Ethertype_val=TRUE
Ethertype=PKT.type
L2_size=14 bytes
VV=FALSE
VS=FALSE
VLAN0=0
VLAN1=0

VLAN
STACKED

?

Ethertype_val=TRUE
Ethertype=PKT.type
L2_size=18 bytes
VV=TRUE
VS=FALSE
VLAN0=PKT.VLAN0
VLAN1=0

YES

NO
(VLAN)

IEEE 802.3
Packet

?

L2_size=L2_size+8

YES

NO

(VLAN STACKED)NO
(Neither)

IP Packet
(Type==0x8000) OR

(Type==0x86DD)
?

Is_IP=TRUE

YES (CASE 2A)

Is_IP=FALSE
NO

(CASE 3A)

YES

End Packet
ParsingSet WQE WORD2 fields

Processing
continues from
previous figure.

6-162 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-163

17 Appendix D: A Note about Configuring GMX Backpressure
This section is included in this chapter for reference only. It is not intended to be a complete
discussion of how backpressure is implemented at the MAC layer. See the HRM for more
information.

The GMX registers that control the pause frames are introduced in the table below. (These are
CN54/55/56/57 registers.)

Table 44: Overview of GMX Registers Used to Configure Backpressure
Register Description

GMXn_TX_OVR_BP[EN] Global enable. Set to 1 to turn backpressure on.
GMXn_TX_OVR_BP[BP] Per-Port enable. Set bit corresponding to port to

turn backpressure on for the port. The global
EN bit must be 1 for per-port backpressure to
work.

GMXn_TXn_PAUSE_PKT_TIME[TIME] The pause_time field placed in out bound
802.3 pause packets

GMXn_TXn_PAUSE_PKT_INTERVAL[INTERVAL] How often the pause packet is sent
GMXn_TXn_PAUSE_ZERO[SEND] If this variable is set to 1, the bus can be used

more efficiently. CN54/55/56/57 autogenerates
a pause packet with a pause time of 0 when
flow-control deasserts, which can allow the
remote transmitter to restart more quickly.

GMXn_TX_STAT9[CTL] Number of Control packets generated by
hardware

GMXn_TX_PAUSE_PKT_DMAC[DMAC] The DMAC field placed is outbound pause
packets

GMXn_TX_PAUSE_PKT_TYPE[TYPE] The TYPE field placed is outbound pause
packets

Notes
Note: n can be either 0 or 1.
Note: To find these registers in the HRM, use the search string of the form
"GMX0/1_TX0_PAUSE_PKT" (to find them in a block of text) or
"GMX0_TX0_PAUSE_PKT" (to find them in the registers description section).

Choosing proper values of GMX_TX_PAUSE_PKT_TIME[TIME] and
GMX_TX_PAUSE_PKT_INTERVAL[INTERVAL] can be challenging for the system
designer. It is suggested that TIME be much greater than INTERVAL and
GMX_TX_PAUSE_ZERO[SEND] be set. This allows a periodic refresh of the PAUSE
count and then when the backpressure condition is lifted, a PAUSE packet
with TIME==0 will be sent indicating that the OCTEON processor is ready for additional
data.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

If the system chooses to not set GMX_TX_PAUSE_ZERO[SEND], then it is suggested that TIME
and INTERVAL are programmed such that they satisfy the following rule:

 INTERVAL <= (TIME - (largest_pkt_size + IFG + pause_pkt_size))

where:

• largest_pkt_size is that largest packet that the system can send (normally 1518B)
• IFG is the Inter Frame Gap
• pause_pkt_size is the size of the PAUSE packet (normally 64B)

18 Appendix E: Example Code (linux-filter)
In the linux-filter example, the Ethernet driver configures PIP/IPD. (In the code example,
the term POW is used. POW is another term for SSO.) Linux filter modifies the group for the IPD
port, and gets all incoming packets from that port.

6-164 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-165

Figure 58: Linux-Filter

The hardware units and data plane cores perform a large amount of packet processing without requiring any
action from the cores running the control plane. Processing is shown in steps 1-12, below.

OCTEON HOST

Data Plane

SSO - Schedule/
Synchronization

/Order

PKO – Packet
Output Unit

1. Ping
(not broadcast)

2.
 ad

d_w
ork

–

gro
up

0

3. get_work result – group 0

5. a
dd_w

ork
- grou

p 15

6. get_work result –

group 15

8. add_work -
group 14

9.
get_

work
 res

ult
– grou

p 14

11
.
To
 P
KO
 C
om
ma
nd
 Q
ue
ue

12. Ping reply

Data Plane: Cores 1 and 2
Running linux-filter as
a SE-S application: accepts
work for groups 0 and 14

Note that either data-plane
core can handle the packet
processing.

Control Plane

Control Plane: Core 0
Running: Linux Operating System
accepts work for group=15

SE-S

SE-S

linux-filter: Forwarding a Packet to the Control Plane

Linux
Driver

PKI – Packet Input
Block

IPD –
Input

Packet
Data

PIP –
Packet
Input

Processor

Step 1: ping packet is received by PIP/IPD.
Step 2: PIP/IPD sets group to 0 sends the packet to the SSO.
Step 3: Data-plane core calls get_work() and receives the packet.
Step 4: Data-plane core tests the packet: Test if packet ((broadcast) &&

(IP)) = FALSE. Send packet to Linux.
Step 5: Data-plane core changes the group to 15 and sends the packet to

the SSO
Step 6: Control-plane core calls get_work() and receives the packet.
Step 7: Control-plane core processes the ping request and replies, using

Group 14
Step 8: Control-plane core sends the packet to the SSO.
Step 9: Data-plane calls get_work() and receives the packet.
Step 10: Data-plane receives the ping reply
Step 11: Data-plane core sends packet to PKO for transmit.
Step 12: PKO sends ping reply.

RX

TX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

The following code is from the linux-filter example:
Set up the definitions:
/* This POW group ID is used for packets destined to the Linux kernel. This
Group ID must match the kernel Ethernet driver's pow_receive_group parameter */
#define TO_LINUX_GROUP 15 // send work to linux kernel

/* This POW group ID is used by the Linux kernel for egress packets. This

river's pow_send_group parameter */ group ID must match the Ethernet d
#define FROM_LINUX_GROUP 14 // get work from linux kernel

/* This POW group ID is used for ingress packets that must be intercepted by
cores running the linux-filter Simple Executive application. Packets from the
intercept_port are assigned to this POW group instead of the normal ethernet
pow_receive_group */
#define FROM_INPUT_PORT_GROUP 0 // get all work from input port (group 0)

/* Packets ingressed on the intercept_port are intercepted by linux-filter and
processed. Packets received from the kernel Ethernet virtual POW0 device are
sent out this port. */
CVMX_SHARED int intercept_port = 0; // this value is board-dependent

At main(), the SE core responsible for SE-specific initialization waits for the IPD
initialization (performed by a core running Linux) to be complete:
/* Have one core do the hardware initialization */
 if (cvmx_coremask_first_core(sysinfo->core_mask))
 {
 printf("\n\nLoad the Linux ethernet driver with:\n"
 "\t $ modprobe cavium-ethernet pow_send_group=%d
pow_receive_group=%d\n",
 FROM_LINUX_GROUP, TO_LINUX_GROUP);

 printf("Waiting for ethernet module to complete
initialization...\n\n\n");
 cvmx_ipd_ctl_status_t ipd_reg;
 do
 {
 ipd_reg.u64 = cvmx_read_csr(CVMX_IPD_CTL_STATUS);
 } while (!ipd_reg.s.ipd_en);
<code omitted>

Make sure all incoming traffic on IPD port 0 (intercept_port) sets Group value to zero
(the value of the FROM_INPUT_PORT_GROUP):
/* Change the group for only the port we're interested in */
 cvmx_pip_port_tag_cfg_t tag_config;
 // load data structure with current values
 tag_config.u64 = cvmx_read_csr(CVMX_PIP_PRT_TAGX(intercept_port));
 if (tag_config.s.grp == TO_LINUX_GROUP) // not the desired value
 {
 tag_config.s.grp = FROM_INPUT_PORT_GROUP;
 // change group for this port to 0 (FROM_INPUT_PORT_GROUP)
 cvmx_write_csr(CVMX_PIP_PRT_TAGX(intercept_port), tag_config.u64);
 }

6-166 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-167

Get ready to receive group 0 (FROM_INPUT_PORT_GROUP) and group 14:
(FROM_LINUX_GROUP) work:
/* Accept any packet except for the ones destined to the Linux group */
 cvmx_pow_set_group_mask(cvmx_get_core_num(),
 (1<<FROM_INPUT_PORT_GROUP)|(1<<FROM_LINUX_GROUP));
<code omitted>

In the following code segment, note the error check, and buffer free:
 while (1)
 {
#ifdef __linux__
 /* Under Linux there better thing to do than halt the CPU waiting for
 work to show up. Here we use NO_WAIT so we can continue processing
 instead of stalling for work */
 cvmx_wqe_t *work = cvmx_pow_work_request_sync(CVMX_POW_NO_WAIT);
 if (work == NULL)
 {
 /* Yield to other processes since we don't have anything to do */
 usleep(0);
 continue;
 }
#else
 /* In standalone CVMX, we have nothing to do if there isn't work, so
 use the WAIT flag to reduce power usage */
 cvmx_wqe_t *work = cvmx_pow_work_request_sync(CVMX_POW_WAIT);
 if (work == NULL)
 continue;
#endif

 /* Check for errored packets, and drop. If sender does not respond to
 backpressure or backpressure is not sent, packets may be truncated
 if the GMX fifo overflows. */
 if (work->word2.s.rcv_error) <<< receive error
 {
 /* Work has error, so drop */
 cvmx_helper_free_packet_data(work); << free Packet Data buffer
 cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, 0); << free WQE buffer
 continue;
 }

 /* See if we should filter this packet */
 if (is_filtered_packet(work))
 {
 printf("Received %u byte packet. Filtered.\n", work->len);
 cvmx_helper_free_packet_data(work); << free Packet Data buffer
 cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, 0); << free WQE buffer
 }
 else if (work->grp == FROM_LINUX_GROUP)
 {
<code omitted>

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

19 Appendix F: Input Port Configuration
This section contains port configuration information for additional processors.

For more information about CN54XX, CN55XX, CN56XX, and CN57XX, see Section 3 – “IPD
Input Ports”.

Links to the different figures in this section:

Figure 59: Input Ports: CN3005 – Page 169
Figure 60: Input Ports: CN3010 – Page 170
Figure 61: Input Ports: CN3020 – Page 171
Figure 62: Input Ports: CN31XX – Page 172
Figure 63: Input Ports: CN36XX – Page 173
Figure 64: Input Ports: CN38XX – Page 174
Figure 65: Input Ports: CN50XX – Page 175
Figure 66: Input Ports: CN52XX – Page 176
Figure 67: Input Ports: CN54XX and CN55XX – Page 177
Figure 68: Input Ports: CN56XX and CN57XX – Page 178
Figure 69: Input Ports: CN58XX – Page 179
Figure 70: Input Ports: CN63XX – Page 180

6-168 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-169

Figure 59: Input Ports: CN3005

Packet
Interface

0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1

0
1

Ports Available
CN3005 IPD Input Ports Example

Notes:

Note 1: Ports which are not colored in
are unused.

Note 2: There is no loopback available.

Note 3: The Media-Independent
Interface (MII) can be used as a packet
interface on these processors.

Note 4: Ports 2-31 are not used. The
unused port numbers correspond to
active ports on other processors. This
configuration is necessary to support
software re-use.

IPD
Port
Num

0

Input
Port
Num

0

CN3005 Ports 0-1 Options

Packet Interface Option 1

00

Packet Interface Option 2

RGMII or
MII

IPD
Port
Num

Input
Port
Num

11 GMII or MII

1

RGMII or
MII

1

00

RGMII

IPD
Port
Num

Input
Port
Num

O
pt

io
n

1
or

 2

PCI
Input
Ports

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 60: Input Ports: CN3010

Packet
Interface

0

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1

Input
Port
Num

0
1

Ports Available

CN3010 IPD Input Ports Example

Notes:

Note 1: Ports which are not colored in
are unused.

Note 2: There is no loopback available.

Note 3: The Media-Independent
Interface (MII) is used as a packet
interface on these processors.

Note 4: Ports 2-31 are not used. The
unused port numbers correspond to
active ports on other processors. This
configuration is necessary to support
software re-use.

00

CN3010 Ports 0-1 Options

Packet Interface Option 1

00

Packet Interface Option 2

RGMII or
MII

IPD
Port
Num

Input
Port
Num

11 GMII or MII

1

RGMII or
MII

1

00

RGMII

IPD
Port
Num

Input
Port
Num

22 Unused

22 RGMII

PCI
Input
Ports

6-170 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-171

Figure 61: Input Ports: CN3020

Packet
Interface

0

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1

Input
Port
Num

0
1

Ports Available

CN3020 IPD Input Ports Example

Notes:

Note 1: Ports which are not colored in
are unused.

Note 2: There is no loopback available.

Note 3: Ports 3-31 are not used. The
unused port numbers correspond to
active ports on other processors. This
configuration is necessary to support
software re-use.

00

2

PCI
Input
Ports

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 62: Input Ports: CN31XX

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33

O
pt

io
n

1
or

 2

1
2

Input
Port
Num

0
1

Ports Available

CN31XX IPD Input Ports Examples

Notes:

Note 1: Ports which are not colored in
are unused.

Note 2: There is no loopback port
available.

Note 3: Ports 3-31 are not used. The
unused port numbers correspond to
active ports on other processors. This
configuration is necessary to support
software re-use.

00

CN31XX Ports 0-1 Options

Packet Interface Option 1

00

Packet Interface Option 2

RGMII

IPD
Port
Num

Input
Port
Num

1

2

1

2

GMII

UNUSED

1

2

RGMII

1

2

00

RGMII

RGMII

IPD
Port
Num

Input
Port
Num

Packet
Interface

0

PCI
Input
Ports

6-172 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-173

Figure 63: Input Ports: CN36XX
CN36XX IPD Input Ports Examples

SPI-4.2 ModeRGMII Mode

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

R
G

M
II1

2
3

Input
Port

Num

0
1

00

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Input
Port

Num

00

S
P

I 4
.2

 M
od

e

PCI
input
ports

Packet
Interface

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Packet
Interface

0

2
3

0
1

PCI
input
ports

2
3

Notes:
Note 1: There is no loopback available.

Note 2: Ports which are not colored in are unused.

Note 3: In RGMII mode, ports 4-31 are not used. In SPI-4.2 mode,
ports 16-31 are not used. The unused port numbers correspond to
active ports on other processors. This configuration is necessary to
support software re-use.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 64: Input Ports: CN38XX
CN38XX IPD Input Ports Examples

SPI-4.2 ModeRGMII Mode

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

R
G

M
II1

2
3

Input
Port

Num

0
1

00

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Input
Port

Num

00

S
P

I 4
.2

 M
od

e

PCI
input
ports

Packet
Interface

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Packet
Interface

0

2
3

0
1PCI

input
ports 2

3

R
G

M
II1

2
3

0Packet
Interface

1

0

SP
I 4

.2
 M

od
e

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Packet
Interface

1

Notes:
Note 1: The packet interfaces may also be combined as one RGMII
and one SPI 4.2.

Note 2: There is no loopback available.

Note 3: For packet interface 0, In RGMII mode, ports 4-15 are not
used. For packet interface 1, in RGMII mode, ports 20-31 are not
used. Ports which are not colored in are unused.

6-174 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-175

Figure 65: Input Ports: CN50XX

Packet
Interface

0

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1
2

Input
Port
Num

Ports Available

CN50XX IPD Input Ports Examples

Notes:

Note 1: Ports which are not colored in
are unused.

Note 2: There is no loopback available.

Note 3: The Media-Independent
Interfaces (MII) are used as packet
interfaces on these processors.

Note 4: Ports 3-31 are not used. The
unused port numbers correspond to
active ports on other processors. This
configuration is necessary to support
software re-use.

00

CN50XX Ports 0-1 Options

Packet Interface Option 1

00

Packet Interface Option 2

RGMII or
MII

IPD
Port
Num

Input
Port
Num

1

2

1

2

GMII or MII

UNUSED

1

2

RGMII or
MII

1

2

00

RGMII

RGMII

IPD
Port
Num

Input
Port
Num

0
1

PCI
Input
Ports

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 66: Input Ports: CN52XX

PC
Ie

R

in
gs

S
G

M
II

PK
O

PC
Ie

R

in
gs

X A

PK
O

6-176 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-177

Figure 67: Input Ports: CN54XX and CN55XX

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 68: Input Ports: CN56XX and CN57XX
CN56XX, CN57XX IPD Input Ports Examples

4 Lanes PCIe + 1 XAUI
+ 8 Lanes PCIe

8 Lanes PCIe + 8
Lanes PCIe

XAUI MODE
(4+4 PCIe)

SGMII MODE
(4+4 PCIe)

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

S
G

M
II1

2
3

S
G

M
II0

1
2
3

Input
Port
Num

0

1

Note1: Input is provided by 4 Quad-Lane Input Modules (QLMs), each able to provide 4 lanes of SerDes.
QLM0: dedicated to PCIe, connected to PCIe controller 0.
QLM1: optionally either connected to PCIe controller 0 or to Packet Interface 0
QLM2: dedicated to PCIe, connected to PCIe controller 1.
QLM3: optionally either connected to PCIe controller 1 or to Packet Interface 1
If QLM1 is configured as PCIe, it is combined with QLM0 to provide 8 lanes of SerDes on PCIe controller 0.
If QLM3 is configured as PCIe, it is combined with QLM2 to provide 8 lanes of SerDes on PCIe controller 1.

Note2: If the QLM is configured as a packet interface, its packet interface type may be configured to be
SGMII, XAUI (shown as “XA” in the figure), or PICMG. QLM mode by configured in hardware.

Note3: IPD ports which shown in white are unused. This information is provided to emphasize the gap in IPD
port numbers.

Note4: The Media-Independent Interface (MII) does not supply packets to IPD. MII packets traverse memory
ring buffers outside of the IPD/PIP/SSO path.

00

36
37
38
39

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

0

36
37
38
39

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

IPD
Port
Num

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

0

Input
Port
Num

00

36
37
38
39

X A
X A

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

PCIe Config:
4 lanes PCIe

+
4 lanes PCIe

PCIe Config:
4 lanes PCIe

+
4 lanes PCIe

PCIe Config:
8 lanes PCIe

+
8 lanes PCIe

PCIe
input
ports

PCIe
input
ports

PCIe
input
ports

Packet
Interface

0

Packet
Interface

1

Packet
Interface

0

Packet
Interface

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PC
Ie

R

in
gs

36
37
38
39

Loopback

P
K

O

36
37
38
39

PKO
output
port
num

PCIe Config:
4 lanes PCIe +

1 XAUI
+

8 lanes PCIe

PCIe
input
ports

IPD
Port
Num

Input
Port
Num

0 X A 0Packet
Interface

0

0

1

0

1

0

1

6-178 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-179

Figure 69: Input Ports: CN58XX
CN58XX IPD Input Ports Example

SPI-4.2 ModeRGMII Mode

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

R
G

M
II1

2
3

Input
Port

Num

0
1

00

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Input
Port

Num

00

S
P

I 4
.2

 M
od

e

PCI
input
ports

Packet
Interface

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Packet
Interface

0

2
3

0
1PCI

input
ports 2

3

R
G

M
II1

2
3

0Packet
Interface

1

0

SP
I 4

.2
 M

od
e

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Packet
Interface

1

Notes:
Note 1: The packet interfaces may also be combined as one RGMII
and one SPI 4.2.

Note 2: There is no loopback available.

Note 3: For packet interface 0, In RGMII mode, ports 4-15 are not
used. For packet interface 1, in RGMII mode, ports 20-31 are not
used. Ports which are not colored in are unused.

Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide

PIP and IPD

Figure 70: Input Ports: CN63XX

sRIO0 Message Ports
(QLM0)

Lo
op

-
ba

ck

CN63XX IPD Input Ports Examples

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

S
G

M
II1

2
3

Input
Port

Num

Notes:
Note 1: The QLM0 and QLM1 can be independently configured as either PCIe or sRIO.
Note 2: sRIO memory accesses will arrive via the DPI ports and

sRIO messages will arrive via the sRIO ports.
Note 3: If the QLM0 is configured as PCIe, then sRIO ports 40-41 are unused. If QLM1 is
configured as PCIe, then sRIO ports 23-43 are unused.
Note 4: If the packet interface is configured as SGMII, ports 4-31 are unused. If the packet
interface is configured as XAUI (XA), then ports 1-31 are unused. If an sRIO-attached device
doesn't send sRIO messages, the sRIO ports are unused.
Note 5: IPD ports which shown in white are unused. This information is provided to emphasize
the gap in IPD port numbers.

00

36
37
38
39

P
K

O

36
37
38
39

Packet
Interface

0

sRIO1 Message Ports
(QLM1)

XAUI MODE

IPD
Port
Num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Input
Port

Num

00

36
37
38
39

X A

Lo
op

-
ba

ck
P

K
O

36
37
38
39

Packet
Interface

0

D
P

I
R

in
gs0

1

DPI
input
portsPKO

output
port
num

PKO
output
port
numD

P
I

R
in

gs0

1

DPI
input
ports

sRIO0 Message Ports
(QLM0)

sRIO1 Message Ports
(QLM1)

40
41
42
43

40
41
42
43

SGMII MODE

6-180 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

PI
P

an
d

IP
D

OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 6-181

19.1 Fast Links for Input Port Figures
The following links were provided at the beginning of this section, and are repeated here to provide
a fast way to access the different figures.

Links to the different figures in this section:

Figure 59: Input Ports: CN3005 – Page 169
Figure 60: Input Ports: CN3010 – Page 170
Figure 61: Input Ports: CN3020 – Page 171
Figure 62: Input Ports: CN31XX – Page 172
Figure 63: Input Ports: CN36XX – Page 173
Figure 64: Input Ports: CN38XX – Page 174
Figure 65: Input Ports: CN50XX – Page 175
Figure 66: Input Ports: CN52XX – Page 176
Figure 67: Input Ports: CN54XX and CN55XX – Page 177
Figure 68: Input Ports: CN56XX and CN57XX – Page 178
Figure 69: Input Ports: CN58XX – Page 179

 Figure 70: Input Ports: CN63XX – Page 180

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

	1 Introduction
	2 Simple Executive Configuration and APIs
	2.1 Simple Executive Configuration
	2.1.1 About FPA Pools

	2.2 Helper Functions
	2.3 PIP Functions
	2.4 PIP Data Structures and Defines
	2.4.1 The cvmx_pip_port_cfg_t Data Structure
	2.4.2 The cvmx_pip_port_tag_cfg_t Data Structure
	2.4.3 The cvmx_pip_parse_mode_t Defines (Parse Modes for Incoming Packets)
	2.4.4 The cvmx_pip_tag_mode_t Defines (control the initial SSO Tag Value)
	2.4.5 The cvmx_pow_tag_type_t Defines (control the initial SSO Tag Type)
	2.4.6 The cvmx_pip_port_status_t Data Structure
	2.4.7 The cvmx_pip_err_t Data Structure
	2.4.8 The Packet Instruction Header Data Structure
	2.4.9 L1/L2 Receive Error Codes (WQE WORD2[RE] ==1)
	2.4.10 L3 (IP) Error Codes (WQE WORD2[IE]==1)
	2.4.11 L4 Error Codes (WQE WORD2[LE]==1)

	2.5 IPD Functions
	2.6 IPD Defines
	2.6.1 The cvmx_ipd_mode_t Defines (How data is stored)

	2.7 Beyond the SDK: Custom Software

	3 IPD Input Ports
	3.1 CN56XX and CN57XX IPD Input Ports
	3.2 CN54XX and CN55XX IPD Input Ports

	4 Incoming Packet Formats
	4.1 Overall Processing Goal
	4.2 Parsing Modes
	4.2.1 Optionally removing the CRC (FCS) (CRC stripping)

	4.3 Optional Packet Instruction Headers
	4.3.1 The cvmx_pip_inst_hdr_t Data Structure
	4.3.2 RAW, RAWFULL, RAWSCH

	4.4 Optional PCIe Instruction Headers
	4.5 Registers to Configure Input Packet Format

	5 The Work Queue Entry Data Structure (WQE)
	5.1 Work Queue Entry Data Structure
	5.2 Software WQE Data Structures
	5.2.1 WQE The cvmx_wqe_t Data Structure
	5.2.2 WQE WORD2: The cvmx_pip_wqe_word2 Data Structure
	5.2.3 WQE WORD3: The cvmx_buf_ptr_t data structure

	6 How Parse Mode Affects WQE WORD2 Data Structure
	6.1 All Parse Modes if L1/L2 Error Occurs
	6.2 Parse Mode = Skip-to-L2
	6.3 Parse Mode = Skip-to-IP
	6.4 Parse Mode = Uninterpreted
	6.5 Registers to Configure WQE WORD2 Content
	6.6 Where to Find More Information About Parsing

	7 Scheduling (WQE WORD1)
	7.1 Work Group Assignment (WQE WORD1 Group Field)
	7.1.1 Registers to Configure Group Assignment

	7.2 QoS Assignment
	7.2.1 Registers to Configure QoS Assignment

	7.3 Tag Type Assignment
	7.3.1 WQE WORD1 Tag Type
	7.3.2 Registers to Configure Tag Type Assignment

	7.4 Tag Value Assignment
	7.4.1 Registers to Configure Tag Value Assignment

	7.5 Using Watchers to Set QoS and Group

	8 Security
	9 Error Check Configuration
	9.1 CRC Check Configuration

	10 Packet Storage
	10.1 The Part of the Received Data Which is Stored
	10.2 Packet Storage in Packet Data Buffers
	10.2.1 Storing WQE in Packet Data Buffer instead of WQE Buffer

	10.3 Choices for Writing Packet Data Buffer(s) to L2/DRAM
	10.4 Packet Data Storage in WQE WORD4-15
	10.4.1 Finding the Start of an IP Packet in the WQE
	10.4.2 Dynamic Short Storage in WQE

	10.5 Accessing Packet Data When Some Packets are Dynamic Shorts
	10.6 Configuring Packet Storage

	11 Statistics (Performance, Debugging)
	12 Congestion Control (Backpressure, Packet Drop, RED, WRED)
	12.1 System-Level View of Congestion: Causes and Prevention
	12.1.1 Congestion Management Design Issues:
	12.1.2 Normal Congestion
	12.1.3 Unexpected Congestion

	12.2 Overview of Congestion-Control Mechanisms Provided by PIP/IPD
	12.3 Critical Backpressure (Buffer Exhaustion)
	12.4 PIP/IPD Congestion-Control Configuration
	12.4.1 Basic QoS RED Configuration: cvmx_helper_setup_red()
	12.4.2 Basic QoS WRED Configuration: cvmx_helper_setup_red_queue()
	12.4.3 Custom Configuration

	12.5 Per-QoS Admission Control (RED and WRED) (PQ-RED)
	12.5.1 The Simplest Case: Snapshot Value (Recommended)
	12.5.2 More Complex: Moving Average

	12.6 Per-Port Congestion Control (Backpressure, Packet Drop) (PP-B, PP-PD)
	12.6.1 Per-Port Backpressure (PP-B)
	12.6.2 Per-Port Packet Drop (PP-PD)

	12.7 Per-Port RED

	13 Per QoS/Port Buffer Tracking
	14 Appendix A: PIP/IPD Registers and Register Fields
	15 Appendix B: Industry-Standard Reference Information
	15.1 L2 Header Formats
	15.1.1 L2 Header Type Field Values (EtherType)
	15.1.2 L2 Header VLAN, VLAN 1 Field Details

	15.2 L3: IPv4 Header
	15.2.1 IPv4 Protocol Field Values

	15.3 L3: IPv6 Header
	15.4 L4: TCP Header
	15.5 L4: UDP Header

	16 Appendix C: Input Packet Parsing Details
	17 Appendix D: A Note about Configuring GMX Backpressure
	18 Appendix E: Example Code (linux-filter)
	19 Appendix F: Input Port Configuration
	19.1 Fast Links for Input Port Figures

