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1 Introduction 
This chapter provides information about various topics which are relevant to everyone who is 
writing or debugging applications to run on OCTEON processors: 

• Physical Addresses versus Virtual Addresses 
• Free Pool Allocator (FPA) Buffers and Buffer Pools 
• Scratchpad Areas 
• Fetch and Add Unit 
• Definitions:  SE Configuration, Unit Initialization, Unit Enable, Pool Population 
• Write Buffers 
• Synchronization Instructions 
• How to Measure the Cycles Used by a Section of Code 
• Common Software Issues 

 
This information is especially important for readers new to multicore programming or new to 
OCTEON processors.  For example, a common problem is writing data to shared memory from 
one core and attempting to read it from another core, only to find that the data read is not the 
expected value which was written.  This chapter provides details on the synchronization 
instructions which are necessary to ensure shared data is visible to other cores when required. 
 
This chapter also contains an example of using the SDK API functions to time how long it takes to 
execute a section of code, which is extremely useful in debugging performance issues (see Section 
9 – “How to Measure the Cycles Used by a Section of Code”). 
 
Advanced information for readers who are adding code to the Simple Executive API, writing a 
custom API, or reading the SDK code is provided in the Advanced Topics chapter.  This chapter 
contains information about register access, race conditions to avoid, etc.  Readers who are simply 
using the provided APIs do not need to read the Advanced Topics chapter. 
 
Directions on how to configuration resources (such as the FPA buffer pools, scratchpad areas, and 
FAU registers) are provided in the Configuration chapter. 

1.1 Conventions Used In this Chapter 
Note that in most cases the format REGISTER[FIELD] in this chapter refers to a hardware 
register and field combination, not a software ARRAY[INDEX]. 

2 Physical Addresses versus Virtual Addresses (Pointers) 
At the hardware level, transactions requiring addresses use physical addresses.  For example, the 
FPA unit provides “allocate” and “free” operations (discussed in Section 3 – “Buffers and Buffer 
Pools”).  These operations use the physical address of the buffer in DRAM, not a virtual address.  
The FPA is a hardware unit:  it has no concept of the TLB or of virtual address space. 
 
When using the API functions such as cvmx_fpa_alloc() and cvmx_fpa_free(), many of 
the functions will handle address translation between Virtual and Physical addresses, so application 
functions calling the API often use virtual addresses. 
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pic • cvmx_ptr_to_phys() – convert virtual address to physical address 

It is essential to stay alert to which type of address is being used when using the API.  The 
following API functions are provided to convert between the two types of addresses as needed: 

s 

• cvmx_phys_to_ptr() – convert physical address to virtual address 
 
See the Software Overview chapter for a discussion of physical versus virtual addresses.  

3 Buffers and Buffer Pools 
Packet input and output accelerators (IPD, SSO, cores, and PKO) within the OCTEON processor 
require three different types of FPA-managed buffers for various purposes as the packet transits 
OCTEON from ingress to egress port: 

• Packet Data Buffers 
• Work Queue Entry (WQE) Buffers (this type of buffer is optional on some OCTEON 

models) 
• PKO Command Buffers 

 
In addition to these packet IO (and core processing of the packet in transit) related uses, the 
TIMER, DFA/HFA, ZIP, RAID units, and the PCI DMA Engines also use FPA-managed buffers 
as part of their normal operation.  Users may also configure custom FPA-managed buffers for other 
uses (for example, pure software core-to-core messaging). 
 
All FPA-managed buffers must be multiples of 128 bytes (the cache line size), and must be aligned 
on the 128-byte boundary or else errors which are difficult to debug may result.  When using the 
Simple Executive configuration program and functions, these requirements are automatically met.  
This is only an issue when writing custom software. 
 
The Free Pool Allocator (FPA) manages pools of available buffers.  The cores and some of the 
hardware units as described above may request/allocate the address of an available buffer from the 
FPA via the buffer_allocate operation.  The FPA will return the memory address of an 
available buffer to the caller.  When the buffer is no longer needed, the cores and some of the 
hardware units can return/free buffer addresses back to a specified FPA pool via the 
buffer_free operation.  There is both a synchronous (software blocks waiting for operation to 
complete) and asynchronous (non-blocking) version of the buffer allocate operation. 
 

Note:  The asynchronous buffer_allocate operation allows the user to request 
multiple FPA-managed buffers, but this is not generally a good idea:  if 8 buffers are 
requested, and only 6 buffers are available, the FPA will return 0 buffers. 

 
The FPA manages up to 8 pools of buffer addresses.  Typically, each pool is dedicated to a 
different purpose.  Dedicating an FPA pool to manage buffers of a single type reduces 
programming errors and debugging complexity.  (Note that the PKO Command buffers are usually 
shared by various hardware units, but all of these have the common purpose “Instruction/Command 
buffer”.  Due to hardware requirements, Packet Data Buffers always come from FPA pool 0.   
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The buffer size and FPA pool number used for a given buffer type are set at Simple Executive 
configuration time.  The default configuration of the three FPA pools essential to packet IO is 
shown in the following table: 

Table 1:  Three Essential Buffer Pools 
Purpose Pool Name Pool 

Number 
Buffer Size 

Packet Data Buffers CVMX_FPA_PACKET_POOL 0 2048 bytes  
(16 cache 
lines) 

Work Queue Entry Buffers CVMX_FPA_WQE_POOL 1 128 bytes  
(1 cache line) 

PKO Queue Command 
Buffers 

CVMX_FPA_OUTPUT_BUFFER_POOL 2 1024 bytes  
(8 cache lines)

Notes    
Note1:  CVMX_FPA_PACKET_POOL is required by hardware to be pool 0. 
Note2:  Each buffer is a multiple of cache line size (CVMX_CACHE_LINE_SIZE) which is 
128 bytes.  Buffers must be 128-byte aligned. 

 
During the Simple Executive configuration step, macros are created for the buffer size and buffer 
pool number, but the number of FPA-managed buffers in the pool is not set until runtime.  For 
example, after the configuration step, the Work Queue Entry buffer size and pool number are 
defined:  
 

// Work Queue Entry buffer size in bytes, a multiple  
// of CVMX_CACHE_LINE_SIZE 

      #define CVMX_FPA_POOL_1_SIZE (1 * CVMX_CACHE_LINE_SIZE) 
// pool number 
#define CVMX_FPA_WQE_POOL              (1) /**< Work queue entrys */ 

      #define CVMX_FPA_WQE_POOL_SIZE         CVMX_FPA_POOL_1_SIZE 
 
(Note the extra characters “*<” seen in the “/**< Work queue entrys */” line, 
and the misspelling of “entries” is because this line is generated by the configuration utility from 
data in the cvmx-resources.config file.  See the Configuration chapter for more 
information.) 
 
Software can then use these macros, as seen in the passthrough example: 
 

cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, 0); 
 
At runtime, one (and only one) core populates the pool by allocating memory, dividing it into 
buffers, and freeing the buffers to the specified pool.  When using the Simple Executive function 
cvmx_helper_initialize_fpa() , the user simply specifies the desired count of each type 
of buffer:  

int cvmx_helper_initialize_fpa(int packet_buffers,  
                               int work_queue_entries, 
                               int pko_buffers, int tim_buffers,  
                               int dfa_buffers) 
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For each type of buffer, the function will allocate a chunk of 128-byte aligned memory, divide it 
into buffers, and free the buffers to the appropriate pool. 
 

Figure 1:  FPA Supports Eight Buffer Pools 
The FPA Unit Manages Up to 8 Pools of 

Available Buffers

Pool 0:  Packet Data Buffer Addresses

Pool 1:  WQE Buffer Addresses

Pool 2:  PKO Queue Command Buffer Addresses

Pool 3:  User-defined purpose

Pool 4:  User-defined purpose

Pool 5:  User-defined purpose

Pool 6:  User-defined purpose

Pool 7:  User-defined purpose

Packet Data Buffers must be in Pool 0.  Other common uses for FPA pools 
include timer buffers, DFA/HFA buffers, and ZIP buffers.

 
 
As mentioned in Section 2 – “Physical Addresses versus Virtual Addresses (Pointers)”, the 
buffer_allocate and buffer_free operations performed by the FPA always use the 
physical addresses of buffers, and many API functions such as the cvmx_fpa_alloc() and 
cvmx_fpa_free()use virtual addresses. 
 
In addition to the synchronous buffer_allocate operation, the FPA provides an asynchronous 
buffer allocation (prefetch) operation.  The SDK function 
cvmx_fpa_async_alloc() performs this operation.  When using asynchronous buffer 
allocation, software continues with other processing while the operation is performed by the FPA 
asynchronously.  The FPA unit stores the physical address of the requested buffer in a specified 
scratchpad area where software can later retrieve it.  After software retrieves the physical address, 
it must use cvmx_phys_to_ptr() to convert it to a virtual address.  Asynchronous buffer 
allocation is discussed in more detail in Section 4 – “Scratchpad Memory”. 
 

Note that after the application uses the buffer, it is essential to free the buffer to the 
appropriate FPA pool, and to only free the buffer once.  Also note that a write beyond the 
end of the buffer will corrupt adjacent memory.  Please see the FPA chapter for details of 
these and other common errors.  These types of errors can be difficult to debug because 
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when memory is corrupted, the symptoms of memory corruption can occur a long time 
after the erroneous write that resulted in the actual corruption. 
 

As shown in the following figure, many different units can use the FPA pools:  they are an 
essential component of OCTEON applications. 
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Figure 2:  Units Which Use the FPA Pools 
OCTEON® and OCTEON® Plus Architecture Superset

On-Chip Hardware Units

TCP/IP Acceleration 
Block

Up to 16 Cores

Simplified Packet 
Interface Block 

PKI:  Packet Input 
Block

FPA:  Free Pool 
Allocator:  Buffer 

management

SSO:  Schedule/
Synchronization

/Order

IPD:  
Input 

Packet 
Data

PIP:  
Packet 
Input 

Processor

PKO:  Packet Output 
Unit

IOB:
I/O Bridge

Interface 
RX Port

Interface 
TX Port

DRAM

L2 Cache Controller 
(L2C)

DRAM 
Controller 

(LMC)

Pattern Matching and Regular 
Expression Engine* (DFA):   Pattern 

matching, content inspection, regular 
expressions

RNG:  Random 
Number Generator

KEY*:  Key Memory 
(Secure Vault)

TIM:  Timer Unit

ZIP*:  Compression / 
Decompression Unit

FAU:  Fetch and 
Add Unit

PCI DMA Engines* 

IOBI and 
IOBO

CORE

MIO:  UARTs, USB*, 
TDM/PCM*, TWSI, 
SMI/MDIO, MII*, 
Boot Bus, GPIOs, 

LEDs

Pattern 
Memory

CMB

Note:  OCTEON model-specific hardware components are marked with an asterisk (*).

IP
D

B
 

P
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B
 

POB  

Receive

Transmit

Pattern 
Memory 

Controller* 

PCIe / PCI /PCI-X 
CTL*

IOBI / 
IOBO  

Color/Pattern  KEY

Units which can 
allocate and/or 
free FPA buffers

RAID Engine*
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4 Scratchpad Memory (CVMSEG) and IOBDMA Operations 
The OCTEON processor-specific CVMSEG virtual address segment, scratchpad memory, and 
IOBDMA operations were introduced in the Software Overview chapter.   
 
The scratchpad is a core-local memory, accessible to software via CVMSEG LM virtual addresses.  
Some of the hardware units (FPA, SSO, RNG, FAU, RAID, etc.) can DMA directly to the core’s 
scratchpad.  This DMA operation is called an IOBDMA operation because the DMA is from 
hardware units on the I/O Bus.  IOBDMA operations are initiated by the core.   
 
The scratchpad can also be used for software-specific purposes.  In this case, it is not configured to 
be the target of an IOBDMA operation.  (Note:  Software uses for scratchpad are rare.  If a cache 
line is frequently accessed, it is already in Dcache, limiting the value gained from using the 
scratchpad.)  
 
When running Linux, scratchpad memory is saved and restored on each context switch. 
 
IOBDMA operations are asynchronous; compared to a normal IO read which stalls the core for 
some time until the CSR targeted by the read has supplied the requested data, an IOBDMA allows 
a core to continue with program execution, while in parallel the accelerator that was targeted by the 
IOBDMA writes the requested data directly into the specified location of the initiating core’s 
scratchpad memory. 
 
In pseudo code (which contains fragments of real code, but is in no way complete): 
start IOBDMA operation; // do not wait for result 
do other processing;    // during this time the target hardware unit DMAs  
                        // the data to the scratchpad area 
CVMX_SYNCIOBDMA;       // use this macro to issue the synciobdma instruction. 
                        // This will stall the core until the IOBDMA operation 
                        // has completed. 
retrieve the result of the IOBDMA operation from the scratchpad area 
 
(The CVMX_SYNCIOBDMA macro is discussed in Section 8 – “Synchronization Instruction (sync) 
Variations”.) 
 
These operations are commonly called prefetch operations, because data is requested before it is 
actually needed.  On successful completion of an IOBDMA operation, the requested data is stored 
in the specified location in the scratchpad.  Before retrieving the data, the core must issue a 
synciobdma instruction to ensure the IOBDMA operation has completed.  (The alternative to 
using synciobdma instruction is to write a known-bad value to the scratchpad and poll until the 
value changes.  This option is shown in Section 9.2 – “Asynchronous Operation Timed”.)  
Variations on the MIPS sync instruction supported by OCTEON processors are shown in section 
8 – “Synchronization Instruction (sync) Variations”. 
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IOBDMA operations which may be initiated by the core include: 
• FPA Buffer Prefetch:  Software may prefetch FPA buffer pointers (the asynchronous buffer 

allocate operation).  The API function is cvmx_fpa_async_alloc().   opics • SSO Work Prefetch:  Software may prefetch work from the SSO (POW).  The API function is 
cvmx_pow_work_request_async(). 

• Random Number Prefetch:  Software can prefetch a random number from the Random Number 
Generator (RNG).  The API function is cvmx_rng_request_random_async().  (The 
Random Number Generator hardware unit is sometimes referred to as Random Number 
Memory (RNM)).  Up to 128 bytes of random data can be requested with one IOBDMA 
command. 

• Asynchronous FAU Register Add:  The Fetch and Add Unit (FAU) supports asynchronous 
requests from the core to add a value to a FAU register.  On request, the FAU will delay the 
operation until after the prior tag switch completes (the SSO notifies the FAU when the tag 
switch completes).  If required, the FAU DMAs the new value of the register to the scratchpad 
when the operation completes. 

 
Note:  Sometimes the extra code needed for IOBDMA is not worth the savings, particularly 
in the case of buffer prefetch, which is not very expensive.  For high-performance code, 
timing studies with and without IOBDMA might be needed to determine which is best for the 
specific application.  See Section 9 – “How to Measure the Cycles Used by a Section of 
Code”. 

 
Figure 3:  Asynchronous get_work Operation:  SSO Writes to Scratchpad 

Asynchronous get_work Operation:  IOBDMA to Scratchpad 
from SSO

SSO:  Schedule/
Synchronization

/Order

IOB:
I/O Bridge

Schedule / 
Synchronization / 
Order (Packet-
Management Accel.)

Core Processing

IOBI and 
IOBO

CORE

Scratchpad

CMB

Color/Pattern  KEY

I/O Bridge
IOBI / 
IOBO  

IOBDMA
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4.1 Scratchpad Memory Allocation 
Scratchpad memory is allocated from the per-core L1 data cache (Dcache).  Up to 54 blocks of L1 
Dcache can be configured as scratchpad memory instead of normal L1 Dcache.  Each cache block 
is 128 bytes (matching cache line size).  By default, the SDK configures 4 Dcache lines for the 
scratchpad. 
 

Note that since space for the scratchpad comes from Dcache, keeping the size of the 
scratchpad to a minimum will help maximize system performance for applications that 
access large amounts of data by leaving more Dcache blocks available for the application 
stack & local variables. 

 
Warning:  If an illegal address is provided in an IOBDMA instruction, or the requested 
number of bytes will exceed the allocated cache lines for the scratchpad, but is within the 
range of CVMSEG LM in the virtual address map, then the adjacent Dcache memory may 
be overwritten.  (An address error will occur, but stores to these illegal addresses may not 
be stopped by the hardware, so they may corrupt the Dcache.) 

 
For directions on how to change the default scratchpad size, see the Advanced Topics chapter. 

4.2 Naming Scratchpad Areas 
The scratchpad can be divided into areas designated for different purposes.  Scratchpad areas are 
specified in the Simple Executive configuration files:  name, element size, number of elements, and 
whether it will be used for IOBDMA operations.  The Simple Executive configuration utility 
(discussed in the Configuration chapter) will allocate the requested scratchpad area (given the 
number of bytes in the scratchpad and whether the scratchpad area will be the target of an 
IOBDMA operation).  The configuration utility will create a macro equating the scratchpad name 
to the offset of the named scratchpad area relative to the beginning of the entire scratchpad. 
 
For example, the default configuration provides a generic scratchpad:  8 bytes, the target of an 
IOBDMA.  This scratchpad is named CVMX_SCR_SCRATCH.  In this example, the offset of 
CMVX_SCR_SCRATCH is 0 bytes (the configuration tool will create the offsets, locating the first 
scratchpad area at offset 0 relative to the start of the scratchpad area). 
 
#define CVMX_SCR_SCRATCH          (0) /* Generic scratch IOBDMA area         */ 
 
API functions which cause the core to issue IOBDMA instructions (such as 
cvmx_fpa_async_alloc())  use the scratchpad area’s name to calculate the physical address 
of the scratchpad.  This physical address is included in the IOBDMA instruction which is issued to 
the target hardware unit.  API functions which retrieve the result of the IOBDMA operation from 
the scratchpad area (cvmx_scratch_read*()) use the scratchpad area’s name to calculate the 
virtual address to be read. 
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4.3 Reading Scratchpad Memory 
Scratchpad memory may be read using the Simple Executive functions 
cvmx_scratch_read8(), cvmx_scratch_read16(), cvmx_scratch_read32(), or 
cvmx_scratch_read64().  The 8, 16, 32, and 64 in the function names represent the number 
of bits to read from the specified scratchpad area. 

4.4 The Format of the Data Returned by the IOBDMA Operation 
For each IOBDMA operation, the format of the data returned depends on the specific operation 
performed.  In the case of the IOBDMA used to prefetch work from the SSO (an asynchronous 
get_work operation), the data returned has the following format: 
 

Figure 4:  Data Stored in Scratchpad when get_work IOBDMA Completes 
The Result of an Asynchronous get_work Operation

This result is written to the specified scratchpad are when the IOBDMA operation completes.
Reserved areas are gray and are set to all zeroes.

no_work:  set when no new WQE address was returned
addr: 

Case 1:  If no_work==0, addr is the physical address of the WQE buffer returned by the SSO. 
Case 2:  If no_work==1, addr is unpredictable.

Note:  The no_work bit is set if there the SSO scheduler did not find work for this core.  In this case work for 
other cores could be available.  For instance, if there is work for group 2, but this core only processes work 
for group 1, if there is no group 1 work available, then there is no work for this core, and the no_work bit will 
be set in the result.

63 62 0
addr

(40 bits)
N
W

no_ work

40 39

(23 bits)

 
 
The corresponding software data structure is cvmx_pow_tag_load_resp_t (defined in 
executive/cvmx-pow.h).  The SSO (POW) unit supports multiple IOBDMA operations, so 
cvmx_pow_tag_load_resp_t  is a union containing the different data structures 
corresponding to the different IOBDMA operations.  In the case of the get_work IOBDMA 
operation, this data structure is: 
 

struct { 
        uint64_t    no_work        :  1; // Set when no new WQE buffer  
                                         // address was returned 
        uint64_t    reserved_40_62 : 23; // Must be zero 
        uint64_t    addr           : 40; // The Work Queue Entry 
                                         // buffer physical address 
} s_work; 
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4.5 Example IOBDMA Operation:  Prefetch Work from the SSO 
The scratchpad is commonly used to prefetch work (a pointer to a Work Queue Entry (WQE) 
buffer) from the SSO.  The following pseudo code is taken from the traffic-gen example.  
(Note that the WQE data structure is discussed in more detail in the PIP/IPD chapter.  This 
information is not needed to understand the use of IOBDMA to prefetch the WQE buffer.) 
 
In the following pseudo code, confusion can occur because the term prefetch is used in two 
different ways: 

1. The physical address of a WQE is prefetched from the SSO (POW) using an IOBDMA 
operation. 

2. The MIPS pref instruction is used to prefetch the WQE buffer contents into the cache. 
 
The following pseudo code is not the complete packet_transmitter() function:  the code 
was simplified to highlight the use of prefetch.  The format of the data returned by the IOBDMA 
operation is shown in Figure 4 – “Data Stored in Scratchpad when get_work IOBDMA 
Completes”. 
 
Note that the Work Queue Entry data type, cvmx_wqe_t, is discussed in detail in the PIP/IPD 
Chapter. 
 
static void packet_transmitter(int low_port) 
{ 
    cvmx_wqe_t *work = NULL;  // the WQE buffer pointer, initialized to NULL 
 
    // write a 0 to the scratchpad area.  When the IOBDMA successfully 
    // completes, a non-zero value is written to the scratchpad area, so  
    // if code reads a zero, the IOBDMA operation is not complete 
    // TRAFFICGEN_SCR_WORK is the offset in the scratchpad where the result of 
    // the IOBDMA operation will be stored 
    cvmx_scratch_write64(TRAFFICGEN_SCR_WORK, 0); 
 
    //start work prefetch IOBDMA operation 
    cvmx_pow_work_request_async(TRAFFICGEN_SCR_WORK, CVMX_POW_NO_WAIT); 
 
    while (1)  // forever transmit loop 
    { 
        // the first time through the loop, work will be NULL 
        if (work != NULL) 
        { 
            process the work 
            work = NULL; 
        } 
         
        // Don't use the normal get work routines to avoid a CVMX_SYNCIOBDMA 
        // Instead of CVMX_SYNCIOBDMA, use polling until result != 0 
 
        cvmx_pow_tag_load_resp_t result; // create result data structure 
 
        // read the scratchpad to retrieve the result of the IOBDMA operation 
        result.u64 = cvmx_scratch_read64(TRAFFICGEN_SCR_WORK); 
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   // polling for IOBDMA to complete 
        if (result.u64 != 0) // if non-zero, IOBDMA operation has completed 
        { 
            // reinitialize scratchpad area to 0 for next IOBDMA 
            cvmx_scratch_write64(TRAFFICGEN_SCR_WORK, 0); 
 
            if (!result.s_work.no_work) // if the SSO returned work to do  
            { 
                // convert physical address of the WQE buffer to a 
                // virtual address 
 
 
               work = (cvmx_wqe_t*)cvmx_phys_to_ptr(result.s_work.addr); 

                // use MIPS pref instruction to prefetch WQE contents  
                
                CVMX_PREFETCH(work, 0); // (address, byte offset) 

// into L1 cache 

 
            } // end if the SSO returned work to do 
            // start work prefetch IOBDMA operation 
            cvmx_pow_work_request_async(TRAFFICGEN_SCR_WORK, 
                                                CVMX_POW_NO_WAIT); 
        } // end if IOBDMA operation has completed 
    }  // end while forever loop 
} // end packet_transmitter() 
 
Note:  In the actual traffic-gen code, the function used to initiate the get_work IOBDMA 
operation is cvmx_pow_work_request_async_nocheck().  The 
cvmx_pow_work_request_async_nocheck() function is an advanced function which 
should not generally be used because it is essential that no tag switches are pending when the 
function is called.  Performing the get_work operation while a tag switch is pending is an illegal 
operation, and the result is undefined.  In general, users should not use any of the "nocheck" 
functions. 

4.6 The Scratchpad and Linux SE-UM Applications 
When accessing the scratchpad from Linux user-mode (SE-UM applications), use the same 
functions as for SE-S applications.  The scratchpad is saved/restored on process context switch.  
Multiple threads in the same process share access to the scratchpad without protection.  Details on 
how to configure the scratchpad for Linux are provided in the Software Overview chapter. 

4.7 Where to Find More Information About the Scratchpad 
For more information about the scratchpad and IOBDMA operations, see the Software Overview 
and Advanced Topics chapters. 
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5 Fetch and Add Unit (FAU) 
The FAU is a 2 KByte register bank supporting atomic read-modify-write operations to 8, 16, 32 or 
64 bit counters. 
 

Figure 5:  FAU Connections 
FAU ConnectionsUp to 16 Cores

SSO:  Schedule/
Synchronization

/Order

PKO:  Packet Output 
Unit

IOB:
I/O Bridge

FAU:  Fetch and Add 
Unit
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Example Use 1: Software can monitor the length of backlog of packets awaiting transmission 
(performed by the PKO) using the following method:
1)  Prior to adding the PKO command to the PKO Output Queue, core software increments a FAU 
counter.
2)  The PKO command can optionally cause the PKO to decrement the same counter after the PKO 
command has been processed (i.e. the packet has egressed).

Example Use 2: An alternative use of FAU counters is as a shared counter/variable that is updated 
asynchronously without need for spinlocks by multiple cores.  Use of this feature ensures that 
updates of the shared FAU register are performed in the order enforced by the SSO.
1)  The core requests a tag switch
2)  The same core sends a request to the FAU to update a counter after the tag switch completes.  
The tag switch complete is signaled by the SSO directly to the FAU via the switch bus.

POB  

Instruction from Core

Instruction from PKO

The switch bus goes to every core.  Each 
core can have one outstanding tag switch.
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The cores and the PKO can both send commands to the FAU.  For example, PKO can issue up to 
two FAU operations on every PKO command, which can be used to count bytes and packets as 
they are transmitted.  The SSO is also able to tie tag switches to FAU operations, which can be 
used to ensure that an atomic operation happens in synchronization with a tag switch.  FAU 
register offsets (within the 2 KByte  register bank) can be given names via Simple Executive 
configuration. 
 

Figure 6:  Core and PKO Use FAU Register to Monitor Output Queue Size 

TI
M

E

CORE 
A

FAU 
Register

PKO

Increment register(counter)

The Core and PKO Use a FAU Register to Monitor PKO Output Queue Length

Send Packet to PKO

Transmit Packet

1.  The Core updates a counter in the FAU indicating a packet has been sent 
to the PKO output queue.  

2.  The PKO decrements the counter when the packet ships.  

This allows the core to track the length of the PKO output queue.

Packet 
Interface

Decrement register
(counter)

Increment register(counter)

Send Packet to PKO
Increment register(counter)

Decrement register
(counter)

Transmit Packet

Send Packet to PKO

Decrement register
(counter)

Transmit Packet

 
 
FAU IOBDMA operations always return a 64-bit result to the core, but the actual operation 
performed by the hardware, and the effective result returned, may be 8-bit, 16-bit, 32-bit, or 64-bit 
(an 8-bit result is returned in bits <7:0> of the 64-bit register, and the other bits are zero).  The 
result is the value of the register before the update occurs. 
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The FAU is only used in specialized situations, since other instructions, such as the OCTEON 
processor-specific SAA and SAAD instructions can perform atomic memory read-modify-write 
operations (see the Hardware Reference Manual (HRM ) for details).  An example showing use of 
the FAU is in Section see Section 9 – “How to Measure the Cycles Used by a Section of Code”.  
For more information, see the HRM  (I/O Bridge section). 

6 Definitions 
When configuring Simple Executive, initializing the units, enabling the units, and populating the 
FPA pools, it is essential to understand the order in which these steps must be done.  Especially 
when using the FPA, doing these steps in the wrong order can result in corrupted FPA pools. 

6.1 Simple Executive Configuration (build time) 
Configuring the Simple Executive is a build-time step which configures resources such as buffer 
sizes and pool numbers for FPA pools, and names and number of bytes to reserve for specific 
scratchpad areas.  Configuring the Simple Executive requires an understanding of the application 
design, especially when configuring FPA pools.  FPA pool design decisions are discussed in the 
FPA chapter. 

6.2 Unit Initialization (runtime) 
The Simple Executive configuration options presented in this chapter do not include all possible 
ways to configure the hardware.  Custom configuration registers are discussed in the specific 
hardware unit’s, for example, the PIP/IPD chapter.  Custom configuration must be done before the 
hardware unit is enabled. 

6.3 Unit Enable (runtime) 
Enabling the hardware unit is done at runtime by the application initialization function after the 
hardware unit has been configured. 

6.4 FPA Pool Population (runtime) 
Buffers are added to the FPA pools at runtime by allocating a chunk of memory, dividing it into 
buffers, and freeing the buffers to a specific FPA pool using the cvmx_fpa_free() function.   
 
Pool population must be done after the hardware unit has been initialized and enabled. 
 
Note that the API functions sometimes refer to this as initialization.  It is important to distinguish 
between the different steps because the order is critical:  Simple Executive configuration; FPA 
initialization; FPA enable; and FPA pool population. 
 
When using the Cavium Networks Ethernet driver, FPA pool population is done by the Ethernet 
driver for the Packet Data buffers, WQE buffers, and PKO command buffers. 
 
When not running the Cavium Networks Ethernet driver, the application usually populates the FPA 
pools FPA at runtime by the application function. 
 
See the FPA chapter for a discussion about adding more FPA-managed buffers at a later time. 
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p
cs 7 Per-Core Write Buffers 

 

This section describes the per-core Write Buffer.  Understanding the Write Buffer is essential for 
correct multicore programming. 
 
Each core has a Write Buffer.  The Write Buffer enhances system performance by merging 
multiple L2/DRAM stores to a cache line instead of committing each store immediately to 
L2/DRAM.  Each Write Buffer contains 16 entries, corresponding to 16 128-byte DRAM memory 
blocks that are normally loaded into separate cache lines. 
 
When a core writes to memory, the write is not immediately visible to other cores because it may 
be temporarily delayed in the Write Buffer (see Section 7.2 – “When are Write Buffer Contents 
Committed to L2/DRAM?”).  A sync instruction must be executed to guarantee the Write Buffer 
has been flushed.  The sync instruction will flush the Write Buffer to the Coherent Memory Bus 
(CMB), destined for the L2 cache, and from there to possibly to DRAM.  (The data will not be 
flushed from L2 cache to DRAM if the dirty bit was cleared by a DWB operation.  See the 
Advanced Topics chapter for more information.)  If other cores also have a copy of the data in their 
L1 Dcache, those copies are invalidated by the L2 Cache controller.  Then if other cores later 
attempt to read data, they will automatically read the latest copy from L2 cache.  See Section 8 – 
“Synchronization Instruction (sync) Variations” for details about the sync instruction. 
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Figure 7:  Write Buffer Entry 

If other cores also have a copy of j
and x in their L1 Dcache, those 
copies are invalidated by the L2 
Cache Controller automatically once 
the write buffer of the core altering 
the variables has been flushed to 
the CMB.

In this example, when the Write Buffer Entry is flushed, the L2 
cache line containing the copies of j and x is updated with the 
new values of 80 and 6 in a single transaction.  (The L2 cache line 
is later written to DRAM, updating the original j and x values.)
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Each cache line contains 128 bytes, shown in this figure 
as 16 64-bit words.

(One 128-Byte Write Buffer Entry)

Then if other cores later attempt 
to read j or x, they will 
automatically read the latest 
copy from L2 cache.
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7.1 Marked and Unmarked Memory 
For SE-S applications, the bootloader marks some memory and leaves other memory unmarked 
when it creates the TLB entry for the memory.  (The terms marked and unmarked are OCTEON 
processor-specific terms.): 

• Marked:  Private memory (heap, stack, and read/write data).  (Note:  In a load set, each core 
has its own copy of the heap, stack, and read/write data.  See the Software Overview chapter 
for information on load sets.) 

• Unmarked:  Shared memory (memory that might be the target of a DMA) and the 
cvmx_shared region.  Shared memory is located in DRAM.  See the Software Overview 
chapter for information on the cvmx_shared region.  (Code and read/only data are also 
unmarked, but since they are not writable, they are not included in this discussion:  sync 
instructions do not affect them.) 

 
Note:  This discussion does not apply to Linux kernel, drivers, or applications.  When 
running the SDK Linux, all memory is marked, and there is no separate synchronization 
instruction for unmarked memory.  This discussion only applies to cores running SE-S 
applications. 

 
Writes to shared memory may be buffered in the cores’ Write Buffer.  These writes must be 
flushed to L2/DRAM before the change can be seen by other cores.  Writes to process-private 
memory are also buffered in the Write Buffer, but do not need to be visible to other cores.  The 
separation of marked and unmarked writes allows writes to shared memory to be flushed without 
flushing all Write Buffer entries for marked memory.   
 
Variations on the standard MIPS sync instruction are provided to support the flush of marked 
and/or unmarked memory.  Synchronization instructions are discussed in Section 8 – 
“Synchronization Instruction (sync) Variations”.  See Figure 8 – “Marked and Unmarked 
memory, store and the sync Instruction” for an illustration of how sync variations affect marked 
and unmarked Write Buffer entries. 

7.2 When are Write Buffer Contents Committed to L2/DRAM? 
The selected contents of a Write Buffer entry are committed to L2/DRAM when (from the CN54-
5-6-7XX-HM-2.4E version of the HRM – this list may be slightly different on different OCTEON 
models): 

1. A sync or syncw instruction is issued. 
2. A syncws instruction is issued and at least one store in the Write Buffer entry contains at 

least one unmarked store. 
3. The Write Buffer entry times out.  (The register field CvmMemCtl[WBFLTIME] controls 

the expiration interval of unmarked L2/DRAM Write Buffer entries.) 
4. A Write Buffer entry contains updates to a memory location that is not currently present in 

Dcache, and a prefetch or load instruction targets the same memory block (i.e., the same 
Write Buffer entry).  In this case, the stores in the Write Buffer entry are first committed to 
memory.  (Note:  if it is not present in L2 cache already, the L2 Cache Controller will first 
identify a free L2 cache block and then read the targeted address from DRAM into the L2 
cache, and then complete the updates per the Write Buffer entry).  Then an available 
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Dcache block is identified and loaded with the now updated L2 cache block contents.  
(Note that only the affected Write Buffer entry is flushed.) 

5. A MIPS store conditional (sc or scd) instruction executes and hits in the Dcache block 
holding a memory block (address) that is already targeted for an update by an existing 
Write Buffer entry. 

6. The Write Buffer entry is ejected to make space for other write-buffer entries. 
 
Write operations to I/O space are not buffered in the Write Buffer; they go directly to the I/O bus.  
When writing code for OCTEON, it is essential to use sync appropriately to avoid the race 
condition shown in the following section. 
 
See the HRM for more information about the Write Buffer. 

8 Synchronization Instruction (sync) Variations 
This section describes the different synchronization instructions provided on OCTEON.  
Understanding the use of synchronization instructions is essential for correct high-performance 
multicore applications.  Note that for SDK Linux, all memory is unmarked.  See Section 7.1 – 
“Marked and Unmarked Memory” for more information. 
 
Cavium Networks has implemented the MIPS sync and synci (flush core Icache) instructions 
on the OCTEON processors, and has also provided special variations of the sync instruction to 
maximize hardware-specific features. 
 
The sync instruction variations are used to create a barrier:  load and store operations prior to the 
sync instruction will complete before subsequent load and store operations are allowed to issue. 
 
Store and load operations can occur to/from: 

• L2/DRAM 
o Unmarked memory (shared memory) 
o Marked memory (private memory) 

• I/O space (for example, the store operation used to perform the buffer_free operation).  
(I/O space is accessed when the I/O bit is set in the physical address.  See the Advanced  
Topics chapter for a ladder diagram showing the timing of the sync and the buffer free 
operation.) 

 
Note that marked and unmarked memory are only relevant for SE-S applications. 
 
There are two key reasons to use sync: 

1. To guarantee that an IOBDMA operation has completed before accessing the data in the 
scratchpad. 

2. To make sure that a write to shared memory is visible to other cores, and to the hardware 
units.  This is essential when accessing shared memory from multiple cores.  (See Section 
8.1 – “Multicore Programming and Shared Memory (Synchronization)”. 

 

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id 

Arn
old

M
an

ta
ra

08
/1

4/
20

12



  OCTEON Programmer’s Guide E
ssential T

o
 

The sync variations are (in order of potentially decreasing performance cost): 
• sync  (synchronize all):  Synchronize all store and load operations, including IOBDMAs.  

(The entire Write Buffer is ejected.) pics • syncs (synchronize shared):  Synchronize all store and load operations to shared memory 
and I/O space.  Do not synchronize store and load operations to private memory. 

• syncw (synchronize write):   Synchronize all store operations.  (The entire Write Buffer is 
ejected.) 

• syncsws (synchronize write shared):  Synchronize all store operations to shared memory 
and I/O space.  Do not synchronize store operations to private memory. 

• synciobdma (synchronize IOBDMA):  Synchronize all IOBDMA operations.  This 
instruction will not return until all outstanding IOBDMA commands have completed and 
the data is ready to be read from the scratchpad (potentially stalling the instruction 
pipeline). 

 
Performance Note: The relative performance cost of the sync variations depends on the contents 
of the Write Buffer.  For instance, syncw is not always more costly then syncws:  if the Write 
Buffer only contains writes targeting cache lines corresponding to unmarked (shared) pages, the 
cost is the same. 
 
(Note:  In this document, syncw is referred to as “synchronize shared”.  In the HRM it is referred 
to as “synchronize special”.  Similarly, this document refers to syncws as “synchronize shared”, 
but the HRM refers to it as “synchronize stores special”.) 
 
The syncs and syncws commands apply to any cores running SE-S applications. 
 
The Simple Executive API contains convenient macros which can be used from C-code for each 
sync variation: 

• sync:  CVMX_SYNC 
• syncs :  CVMX_SYNCS 
• syncw:  CVMX_SYNCW 
• syncsws:  CVMX_SYNCWS 
• synciobdma:  CVMX_SYNCIOBDMA 

 
Note:  For the SDK Linux Kernel, and Linux Applications, including Simple Executive 
compiled under Linux (SE-UM), all memory is unmarked and CVMX_SYNCWS is 
redefined to be the same as CVMX_SYNCW. 
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Table 2:  Various sync Instructions Available 
Sync 

Instruction L2/DRAM   I/O Space IODBMA Instruction Summary 

 
Unmarked 
(Shared) 
Memory 

Marked 
(Private) 
Memory 

    

 Load Store Load Store Load Store   

sync Yes Yes Yes Yes Yes Yes Yes 
Sync all load and store 
operations, and 
synciobdma.  See Note1. 

syncs Yes Yes   Yes Yes Yes 
Sync all load and store 
operations to shared 
memory and I/O space, and 
synciobdma.  See Note1. 

syncw  Yes  Yes  Yes  Sync all store operations.  
See Note1. 

syncws  Yes    Yes  
Sync all store operations to 
shared memory and I/O 
space.  See Note1.  See 
Note2. 

synciobdma       Yes Sync all IODBMAs. 
 

Notes         
Note1:  An I/O store is complete when it reaches the coherent memory bus.  L2/DRAM stores are complete 
when the stored value is visible to every other core and to all OCTEON I/O units. 
Note2:  For Linux Kernel, or Linux Applications, including Simple Executive compiled under Linux, these 
CVMX_SYNCWS is defined to be the same as CVMX_SYNCW, so both marked and unmarked memory are 
synchronized if CVMX_SYNCWS is executed. 

 
Select the synchronization command which will satisfy the synchronization requirement with the 
least performance cost.  For example, to guarantee all IOBDMAs have completed, synciobdma, 
syncs, and sync will all satisfy the requirement.  The best choice is synciobdma, which has 
the least performance cost. 
 
Note:  Writes to I/O space go through the Write Buffer, but are not stored there.  The sync 
instructions which synchronize writes to I/O space guarantee that the I/O space store has not only 
been issued to the CMB, but the CMB has confirmed that it has been committed to the bus. 
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Figure 8:  Marked and Unmarked memory, store and the sync Instruction 
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Write Buffer.  
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The sync and syncs instructions 
will wait for all outstanding 
IOBDMA operations on the core to 
complete (potentially stalling the 
instruction pipeline), so if 
IOBDMAs completion is not 
important, then use CVMX_SYNCWS
for maximum performance.

Write buffer entries shown in 
yellow are affected by the 
instruction.

Note:  For Linux Kernel, or Linux 
Applications, including Simple 
Executive compiled under Linux, 
these CVMX_SYNCWS is defined to 
be the same as CVMX_SYNCW, and 
both marked and unmarked 
memory is synchronized.

 
 

8.1 Multicore Programming and Shared Memory (Synchronization) 
The following example is taken from the syncw instruction description in the HRM.  The 
command used in this example is syncws, which will only synchronize unmarked stores and 
stores to I/O space.  Note that this illustration applies to SE-S applications using unmarked memory 
(shared memory allocated via the cvmx_bootmem*() functions).  When using Linux, all 
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memory is unmarked.  The same code can be used for both Linux and SE-S applications because 
the macro CVMX_SYNCWS is defined to be CVMX_SYNCW. 
 
Two cores are used in this example, a reader and a writer.  There are two data structures in shared 
memory:  shared_flag, and shared_data.  The value of shared_flag is set to 1 when 
shared_data is valid.  The value of shared_flag is set to 0 when shared_data is 
invalid. 
  
On entry to this section of pseudo code, shared_flag is 0 and the value is observable by Core 
B (the L2 block holding a copy of shared_flag is 0). 
 

In the shared header file: 
-------------------------- 
extern volatile uint64_t shared_flag; 
extern volatile data_type_t shared_data; 

 
CORE A (WRITER) 
--------------- 
 // shared_flag == 0 in memory on entry 
  

shared_data = new value;// Write new value to shared memory 
CVMX_SYNCWS;            // flush shared_data value from 
                        // Core A Write Buffer to L2/DRAM now to 
                        // make sure it gets there before the 
                        // shared_flag update. 
 
shared_flag = 1;        // Notify Core B shared_data is now valid. 
CVMX_SYNCWS;            // Flush shared_flag value from Core A 
                        // Write Buffer to L2/DRAM.  (This step is 
                        // not required, but can improve 
                        // performance. 

 
CORE B (READER) 
--------------- 

// shared_flag == 0 in memory on entry 
 
// loop until shared_flag is set (shared_flag will be set when 
// shared_data is valid) 
while (shared_flag == 0)  
{ 
   read shared_flag from shared memory 
}; 
 
// shared_data is now valid 
read shared_data from shared memory 

 
Without any CVMX_SYNCWS instructions, it is unpredictable when the Write Buffer entry 
containing shared_flag and the Write Buffer entry containing shared_data will be flushed 
(in this example, they are assumed to be in two different Write Buffer entries).  This not only 
makes the performance unpredictable, but the order of completion of the two writes is not 
guaranteed:  the shared_flag might be written before the shared_data.  In this case, the 
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reader could (depending on the exact timing of events) receive an incorrect value for 
shared_data.  (See Figure 11 – “Ladder Diagram:  Bad Code – No sync Instructions”.) 
 
If only one CVMX_SYNCWS was used after the write to both shared_data and to 
shared_flag), since the order of completion of the two writes is not guaranteed, the 
shared_flag might be written before the shared_data (assuming they are in different Write 
Buffer entries).  In this case, the reader could (depending on the exact timing of events) receive an 
incorrect value for shared_data.  (See Figure 12 – “Ladder Diagram – Bad Code – One sync 
Instruction”.) 
 
The second CVMX_SYNCWS instruction is not necessary for correctness, but improves performance 
by flushing the write to shared_flag from the Write Buffer.  Without the CVMX_SYNCWS 
instruction, if Core A is not performing many store operations (which could cause the cache line 
to be flushed before reuse) then the flush of shared_flag might not occur until hundreds of 
thousands of cycles after the write to it.  Applications should therefore include this second 
CVMX_SYNCWS instruction after writes to flags or locks.  (See Figure 10 – “Ladder Diagram: 
Good Code – Two sync Instructions”.): 

• The first CVMX_SYNCWS  instruction guarantees the new value of shared_data is 
visible to Core B.  

• The second CVMX_SYNCWS guarantees the new value of shared_flag is visible to Core 
B. 
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Figure 9:  Multicore Programming and the syncws Instruction 

CORE B:  READER

L2 Cache Controller (L2C)L2 Cache
Cache Line

Cache Line containing flag

Cache Line

Cache Line

Cache Line containing data

Cache Line

DDR Buffer 
(DRAM)

DRAM Controller 
(LMC)

Multicore Processing and syncws

This figure shows example steps a reader and writer must take to reliably share 
data.

CORE A:  WRITER

Write Buffer
Cache Line

Cache Line containing data

Code Code

Cache Line containing flag

Core A's Write Buffer must be flushed to L2/
DRAM before Core B can see the shared data.

The syncws instruction will flush stores to shared 
memory from the Write Buffer to L2/DRAM.  If 
other cores also have a copy of the data in their 
L1 Dcache, those copies are invalidated by the L2 
Cache controller.

The sequence of events is:
On entry shared_flag==0
CoreA-1:  Write value to shared_data
CoreA-2:  syncws to flush shared_data
CoreA-3:  Write value to shared_flag
CoreA-4:  syncws to flush shared_flag
L2 Cache Controller invalidates Core B Dcache entry
CoreB-1:  read shared_flag until it equals 1 (valid) 
(the loop reading shared_flag can begin any time)
CoreB-2:  read valid shared_data

L1 Dcache
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Figure 10:  Ladder Diagram: Good Code – Two sync Instructions 
TI

M
E

CORE 
A

Write 
Buffer

L2Cache/
DRAM

CORE 
B

Dcache
DATA STORE (write)To shared_data

Flush shared_data

Good Code:  Multicore Processing and Shared Memory Write With Two sync Instructions

GOOD CODE (two sync instructions):
CORE A (WRITER)
--------------------------
// shared_flag==0 in memory on entry

shared_data=new value;// Write new value to
// shared memory

CVMX_SYNCWS;          // flush shared_data 
// value from Core A 
// Write Buffer to 
// L2/DRAM now to
// make sure it arrives
// before the shared_flag
// update.

shared_flag=1;        // Notify Core B 
// shared_data is now
// valid.

CMMX_SYNCWS;          // Flush shared_flag
// value from Core A 
// Write Buffer to 
// L2/DRAM

CORE B (READER)
-------------------------
// shared_flag==0 in memory on entry

// loop until shared_flag is set (shared_flag
// will be set when shared data is valid
do {

// force C compiler to assume 
// shared_flag could have changed
COMPILER_BARRIER;

} while (shared_flag == 0);

// shared_data is now valid
read shared_data from shared memory

CORE 
B

DATA STORE (write)To shared_flag

READ shared_flag

READ shared_data

Flush shared_flag

CORE B Dcache efor shared_data invalidated

ntry 

This example 
assumes 

shared_flag 
and 

shared_data 
are resident in 

CORE B’s 
Dcache from a 
previous read.

CVMX_SYNCWS

CVMX_SYNCWS

READ shared_fla
g

shared_flag value 0 returned

READ shared_fla
g

shared_flag value 0 returned

READ shared_fla
g

shared_flag value 0 returned

CORE B Dcache entryfor shared_flag invalidated

shared_flag value 1 returned

Good Data!
GOOD shared_data value returned
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Figure 11:  Ladder Diagram:  Bad Code – No sync Instructions 
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CORE 
B

Dcache
DATA STORE (write)To shared_data

Flush shared_flag(upredictable whenflush will occur)

Bad Code:  Multicore Processing and Shared Memory Write Without sync Instruction
BAD CODE (no sync instruction):
CORE A (WRITER)
--------------
// shared_flag==0 in memory on entry

shared_data=new value;// Write new value
// to shared memory

shared_flag=1;        // Notify Core B
// shared_data is 
// now valid.

CORE B (READER)
-------------------------
// shared_flag==0 in memory on entry

// loop until shared_flag is set (shared_flag
// will be set when shared data is valid
do {

// force C compiler to assume 
// shared_flag could have changed
COMPILER_BARRIER;

} while (shared_flag == 0);

// shared_data is now valid
read shared_data from shared memory

CORE 
B

DATA STORE (write)To shared_flag

READ shared_fla
g

READ shared_
data

Flush shared_data(unpredictable when flush will occur)

Core B reads 
updated 

shared_flag
and stale 

shared_dataWithout an 
explicit sync

instruction, it is 
unknown when 
the flush of the 

Write Buffer entry 
will occur, and 
the order of the 

writes is not 
guaranteed.  

(In this example, 
shared_flag

and 
shared_data 
are not in the 
same Write 

Buffer entry.)

READ shared_fla
g

shared_flag value 0 returned

READ shared_fla
g

shared_flag value 0 returned

CORE B Dcache entry for shared_flaginvalidated

This example 
assumes 

shared_flag 
and 

shared_data 
are resident in 

CORE B’s 
Dcache from a 
previous read.

Stale 
shared_data

read!!!

CORE B Dcachefor shared_dainvalidated

shared_flag value 1 returned

BAD shared_data value returned

 entry 
ta
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Figure 12:  Ladder Diagram – Bad Code – One sync Instruction 
TI
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CORE 
B
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DATA STORE (write)To shared data

Flush shared_flag(order is unpredictable)

Bad Code:  Multicore Processing and Shared Memory Write With 
Only One sync Instruction

BAD CODE (only one sync instruction):
CORE A (WRITER)
--------------
// shared_flag==0 in memory on entry

shared_data=new value; // Write new value to
// shared memory

shared_flag=1;         // Notify Core B
// shared_data is now
// valid.

CMMX_SYNCWS;           // Flush shared_flag and
// shared_data value from
// Core A’s Write Buffer
// to L2/DRAM.

CORE B (READER)
-------------------------
// shared_flag==0 in memory on entry

// loop until shared_flag is set (shared_flag
// will be set when shared data is valid
do {

// force C compiler to assume 
// shared_flag could have changed
COMPILER_BARRIER;

} while (shared_flag == 0);

// shared_data is now valid
read shared_data from shared memory

CORE 
B

DATA STORE (write)To shared_flag

READ shared_fla
g

Core B reads 
updated 

shared_flag
and stale 

shared_data

READ shared_
data

Flush shared_data(order is unpredictable)

The sync
instruction does 

not guarantee the 
order in which 

the Write Buffer 
entries will be 

flushed.  In this 
case, the flag is 

written before the 
data, creating a 
race condition.

CORE B Dcache entry for shared_flaginvalidatedThis example 
assumes 

shared_flag 
and 

shared_data 
are resident in 

CORE B’s 
Dcache from a 
previous read.

Stale 
shared_data

read!!!

CVMX_SYNCWS

READ shared_fla
g

shared_flag value 0 returned

READ shared_fla
g

shared_flag value 0 returned

shared_flag value 1 returned

CORE B Dcache enfor shared_datainvalidated

BAD shared_data value returned

try 
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9 How to Measure the Cycles Used by a Section of Code 
This section shows how to measure the number of cycles which are consumed by a section of code.  
This section also shows how to determine whether there is any value of using asynchronous 
operations in a specific section of time critical code.  
 
The actual value of using asynchronous operations will vary depending on the processor, which 
core is performing the operation, and the system load.  (On some processor models, lower-
numbered cores have a smaller delay than higher-numbered cores.  Different core priority rules 
apply on different processors.)  Performance tuning is an art.  (See the Packet Processing Math 
figure in the Software Overview chapter.)  (Note that this example will perform quite differently on 
OCTEON II which has faster FAU access time because accesses go through the L2 cache.) 
 
This example (performed on an unloaded (not busy) system) shows the cycles saved by using 
asynchronous versus synchronous read of FAU registers, and shows how to determine the number 
of cycles consumed by a section of code.  The function 
cvmx_clock_get_count(CVMX_CLOCK_CORE) will return the current cycle value. 
 
Note:  The functions used to read the clock cycle have changed in SDK 2.0 due to the presence of 
more clocks in CN63XX: 

• SDK 2.0:  use cvmx_clock_get_count(CVMX_CLOCK_CORE) 
• Earlier SDKs:  cvmx_get_cycle() 

9.1 Synchronous Operation Timed 
uint64_t startCycle; 
unit64_t stopCycle; 
int64_t pktCnt = 8; 
 
startCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
// Add 1 to the FAU register FAU_INGRESS_PKT_CNT atomically, and return  
// the previous register value 
pktCnt = cvmx_fau_fetch_and_add64(FAU_INGRESS_PKT_CNT, 1); 
 
stopCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
// Note cvmx_fau_fetch_and_add64() returns the previous register value, 
// so add 1 when printing pktCnt 
cvmx_dprintf("cvmx_fau_fetch_and_add64: Packet Count = %lld (cycles = %lld)\n", 
             (unsigned long long)pktCnt+1, 
             (unsigned long long)stopCycle - startCycle); 
 
startCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
Console message:  
PP0:~CONSOLE-> cvmx_fau_fetch_and_add64: Packet Count = 9 (cycles = 71) 
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9.2 Asynchronous Operation Timed 
The following pseudo code shows how to time an asynchronous operation. 
 
uint64_t startCycle; 
unit64_t stopCycle; 
int64_t pktCnt = 8; 
 
 
startCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
 
// Write a known pattern to the scratchpad area.  When this value is  
// overwritten, the IOBDMA operation has completed. 
cvmx_scratch_write64(SCRATCH_INGRESS_PKT_CNT, 0xACEDC0DE); 
 
// Add 1 to the FAU register FAU_INGRESS_PKT_CNT asynchronously, and return  
// the previous register value in the scratchpad area SCRATCH_INGRESS_PKK_CNT 
cvmx_fau_async_fetch_and_add64(SCRATCH_INGRESS_PKT_CNT,  
                               FAU_INGRESS_PKT_CNT, 1); 
 
stopCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
// Since this is an asynchronous operation, it will not stall the core, but the 
// IOBDMA operation may not have completed yet (written the old FAU register 
// value to the scratchpad area). 
cvmx_dprintf("scratch_write64 & async_fetch_and_add64: cycles = %lld\n", 
              (unsigned long long)stopCycle - startCycle); 
 
// PUT SOME OTHER USEFUL CODE HERE OR THIS WOULD ACTUALLY BE SLOWER 
cvmx_dprintf("Put some useful code here!\n\n"); 
 
// time delay before operation completes 
startCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
// Note:  if there is no useful work to do while waiting, use CVMX_SYNCIOBDMA 
// instead of the following loop 
do // read the scratch register, waiting for the result to arrive 
{ 
    // cvxm_scratch_read64() uses a volatile variable, so the read of pktCnt 
    // will occur each time 
    pktCnt = cvmx_scratch_read64(SCRATCH_INGRESS_PKT_CNT); 
} while (pktCnt == 0xACEDC0DE); 
 
stopCycle = cvmx_clock_get_count(CVMX_CLOCK_CORE); 
 
// Note cvmx_fau_async_fetch_and_add64() returns the previous  
// register value, so add 1 when printing pktCnt 
cvmx_dprintf("cvmx_scratch_read64: Packet Count = %lld (cycles = %lld)\n", 
              (unsigned long long)pktCnt+1, 
              (unsigned long long)stopCycle - startCycle); 
 
Console messages:  
PP0:~CONSOLE-> scratch_write64 & async_fetch_and_add64: cycles = 7 
PP0:~CONSOLE-> cvmx_scratch_read64: Packet Count = 9 (cycles = 4) 
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When using the asynchronous operation, the cycle count will reduce to approximately 11 cycles if 
sufficient work is done before retrieving the result from scratchpad (so that the do / while loop is 
only executed once). 

10 About the volatile Type Qualifier 
The compiler only knows about the program it is compiling.  If, in the compiler’s view, a variable 
being read hasn’t changed, there is no need to read it again.  If the variable is changed by another 
program or another core, the compiler doesn’t know that.  A common example is reading shared 
memory which is altered by another core, such as a lock, flag, or data.  It is important to stay alert 
to compiler optimizations which can change the code:  the code works until optimization is turned 
on, and then suddenly it stops working. 
 
The C language type qualifier volatile is used to define a variable that will be changed by 
something other than the program.  In the case of the code shown in Section8.1 – “Multicore 
Programming and Shared Memory (Synchronization)”, Core B accesses shared_flag which is 
changed by Core A. 
 
Typically, the compiler optimizer will only read the value of i once in the following expression: 

j = i + i; 
 

but if i is given the type qualifier volatile, it will be read each time it is used:  
      volatile int i; 

11 Strict Aliasing 
This issue pertains to GCC, not to OCTEON.  Aliasing is when the same memory location can be 
accessed by different symbolic names in a C program.  The C-language (edition C99) specifies that 
(with some exceptions) the pointers need to be of the same type (strict aliasing).  The strict aliasing 
rule does not apply to char *. 
 
The GNU compiler supports strict aliasing by default.  This can cause older code which was 
written depending on non-strict aliasing to break when the compiler uses strict aliasing to make 
certain optimizations.  If it is not possible to fix the code, then pass the option 
'-fno-strict-aliasing' to the compiler.  Note that warning-free compilation of source code 
is not a guarantee that there are no problems.  The typical warning message is "dereferencing type- 
punned pointer will break strict-aliasing rules". 
 
Signed and unsigned types can be aliased under the strict aliasing rule, as in: 

uint i;  
int j; 

 
The following two examples show the result of strict aliasing when types match, and when they do 
not. 
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Case1:  Types Match: 
--------------------------- 

void foo(long *p1, long *p2) 
{ 
  *p2 = 4; 
  // From the compiler's perspective, p1 and p2 can point to the 
  // same memory location, because they are the same type 
  *p1 = 5; 
  return (*p2 * 2); 
} 

 
Case 2:  Types Do Not Match: 
------------------------------------- 

void foo(long *p1, int *p2) 
{ 
  *p2 = 4; 
 
  // The C and C++ language definitions allow the compiler to 
  // assume that p1 and p2 point to different memory because they  
  // have different types 
 
  *p1 = 5; 
  return (*p2 * 2); 
} 
 
So the compiler can optimize this to: 
void foo(long *p1, int *p2) 
{ 
  *p2 = 4; 
  *p1 = 5; 
  return 8; 
} 

12 User-Mode Applications Access to Kernel Segments  
The virtual memory maps shown in the Software Overview chapter specify that SE-UM 
applications can access CSRs and physical memory (such as FPA-managed buffers) via xkphys 
segment addresses, and can access cvmseg (scratchpad) addresses (in kseg3).  User-mode 
application access to kernel segment addresses is only allowed in the specifically permitted address 
ranges. 
 
These accesses are configured via Linux make menuconfig options: 

• Access to CSRs:  CONFIG_CAVIUM_OCTEON_USER_IO 
• Access to Physical Memory:  CONFIG_CAVIUM_OCTEON_USER_MEM 
• Access to Scratchpad (cvmseg):  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE (if size is 

non-zero, the kernel will set access permissions appropriately for the application) 
 
Both CONFIG_CAVIUM_OCTEON_USER_IO and CONFIG_CAVIUM_OCTEON_USER_MEM 
can be configured to allow all, allow none, or conditionally allow user-mode application access.  
On startup, SE-UM applications request access (via cvmx_user_app_init()), which is either 
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granted or denied based on the values of these two variables.  See the Software Overview chapter 
for more information on Cavium Networks-specific kernel configuration variables. 
 

Once the kernel configuration variables are set properly, SE-UM applications access the 
scratchpad via the API functions, including cvmx_scratch_read*(), and access 
CSRs via cvmx_read_csr() and cvmx_write_csr().  The default API 
configuration allows SE-S applications to run correctly using the same functions without 
modifying the API. 

 
(Note that user-mode applications can use kernel-segment addresses without needing kernel-
segment TLB access because these addresses are not translated by the TLB.  Permission for user-
mode applications to access these addresses is granted via Cavium Networks-specific Coprocessor 
0 (CP0) CvmMemCtl register fields, bypassing the usual MIPS protection that prevents user-mode 
processes from accessing kernel segments.) 
 
SE-S applications always run in kernel mode, so access to kernel segments is automatically 
enabled. 
 
See the Advanced Topics chapter for more details. 

13 32-bit Application Access to 64-Bit Addresses 
32-bit SE-S and SE-UM applications need to access 64-bit CSRs and scratchpad addresses via 
kernel segment addresses.  These accesses are automatically handled by the SDK API.  This 
section provides a brief explanation of the problem and how it is solved. 
 
The problem is that the 32-bit applications have 32-bit pointers, not 64-bit pointers. 
 
Although the C compiler generates 32-bit pointers, on OCTEON processors the 32-bit applications 
run in a 64-bit environment with 64-bit operations and addressing.  SDK API functions (such as 
cvmx_scratch_read*(), and cvmx_read_csr())  use inline assembly code to store the 
needed 64-bit address into a general-purpose register and use 64-bit operations to load and store 
64-bit values (ld (load doubleword) and sd (store doubleword)).  (In the case of cvmseg accesses, 
the 32-bit address is automatically sign-extended when it is put into a 64-bit general-purpose 
register, creating the 64-bit cvmseg address.) 
 
Note that the 32-bit pointers are a compiler-level restriction, not a hardware-level restriction. 
 
(In contrast, standard Linux 32-bit applications execute in a 32-bit environment where hardware 
mechanisms restrict them to 32-bit addressing (a 2 Gbyte address range) and 32-bit operations 
which limit data sizes to 32 bits (“native machine” instructions such as lw (load word) and sw 
(store word)).) 
 
32-bit applications do not use inline assembly code to access physical memory via xkphys 
addresses because these accesses typically are done via a pointer, and pointers are only 32-bits.  32-
bit SE-UM applications use the reserve32 region to access memory allocated via the 
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cvmx_bootmem*() functions, such as FPA-managed buffers.  SE-S application access to 
bootmem is discussed in the Software Overview chapter. 
 
See the Advanced Topics chapter for more details. 
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