
C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-1

Configuration

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 3
LIST OF FIGURES .. 3
1 ... 4 Introduction

1.1 .. 5 Conventions Used In this Chapter
2 ... 5 Configuration Overview

2.1 .. 5 Getting Started
2.2 .. 5 Configuration Steps

3 ... 6 Linux
3.1 ... 6 Configuring the Linux Kernel (make menuconfig)

3.1.1 .. 6 SE-UM Applications: FPA Buffer Access
3.1.2 7 SE-UM Applications: Configuration and Status (CSR) Register Access

3.2 .. 7 The Cavium Networks Ethernet Driver
3.2.1.1 8 Ethernet Driver: Configuring the Number of Packet Data Buffers

3.3 .. 9 Configuring the Simple Executive (SE) Library for Linux
3.3.1 .. 9 SE Library Configuration for Linux: SDK 1.9 and Below
3.3.2 .. 9 SE Library Configuration for Linux: SDK 2.0

4 .. 9 Simple Executive Library Configuration
4.1 .. 11 Simple Executive Configuration Overview

4.1.1 .. 11 Input Files to the Configuration Utility
4.1.2 ... 13 All Software Running Must Agree on the Configuration

4.2 .. 13 Configuration Utility
4.2.1 .. 14 Configuration Utility Grammar

4.3 .. 15 Required Include Files
4.3.1 .. 15 Essential Include Files
4.3.2 .. 15 Hardware Unit-Specific Include Files

5 .. 16 Application Configuration Steps
5.1 .. 16 Start with an Existing Example
5.2 .. 17 Edit the Configuration Files as Needed
5.3 ... 17 Edit the Makefile as Needed
5.4 .. 17 Configure and Build the Application

6 .. 17 Configuration Limitations
7 ... 18 Configuring executive-config.h
8 ... 22 Configuring cvmx-resources.config

8.1 ... 24 Enabling Creation of Default Pools and Scratchpads

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

8.2 .. 24 Configuring Buffers and Buffer Pool Definitions
8.2.1 ... 26 Unprotected pools

8.3 .. 26 Configuring Scratchpad Areas
8.3.1 ... 28 Permanent Scratchpads

8.4 ... 28 Configuring Fetch and Add (FAU) Register Resources
9 .. 29 Adding a Custom *-config.h File

9.1 ... 30 Example of Using the define Keyword
10 .. 31 Configuration Output File (cvmx_config.h) Contents
11 .. 31 Adding Custom Configuration While Using the SDK API
12 .. 34 “Unprotected” Buffer Pools

3-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-3

 LIST OF TABLES
Table 1: Three Essential Include Files ... 15
Table 2: Example Hardware Unit Include Files .. 16
Table 3: Configuration Variables are Provided for Some Options .. 18
Table 4: Other Options are Set Without a Configuration Variable ... 18
Table 5: Definitions in executive-config.h ... 19
Table 6: How to Enable Creation of Commonly-Used Pools and Scratchpads 24
Table 7: Configuration Keywords for Buffer Pools .. 25
Table 8: Configuration Keywords for Scratchpad Areas .. 27
Table 9: Configuration Keywords for FAU Registers ... 29
Table 10: Configuration Override Functions for PIP/IPD and PKO .. 32

LIST OF FIGURES
Figure 1: What Software Needs Simple Executive Configuration .. 4
Figure 2: Configuring the Simple Executive ... 11
Figure 3: Use Configuration Files with Identical Content ... 13

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

1 Introduction
This chapter provides basic information on how to configure and customize Simple Executive.
Since improper configuration can lead to runtime problems, everyone who is writing or debugging
code running on OCTEON should read this chapter to become familiar with the issues.

Note that Simple Executive configuration affects:

• SE-S applications
• SE-UM applications
• SDK Linux (the Linux supplied with the SDK), which uses the Simple Executive library
• Drivers which use the Simple Executive library, such as the Cavium Networks Ethernet

driver, or the USB driver

Incorrect Simple Executive configuration can result in difficult-to-debug runtime problems.

Figure 1: What Software Needs Simple Executive Configuration

SE-S

A: Simple Executive Standalone (SE-S) application

SE-S, SE-UM, Linux, and Drivers Which Call the Simple Executive Library Functions
All Depend on Simple Executive Configuration

LinuxSE-
UM

B, C: Simple Executive User-Mode
(SE-UM) application on Linux

A. SE-S Applications

B. SE-UM Applications

Simple Executive configuration
affects:

A. SE-S applications
B. SE-UM applications
C. SDK Linux kernel C. SDK Linux (uses SE library)

Linux

C, D: Linux with Cavium
Networks Ethernet Driver

Driver

C. SDK Linux (uses SE library)
D. Drivers which uses SE library

D. Drivers which use the
Simple Executive as a library,
such as the Cavium Networks
Ethernet driver or USB driver.

Before reading this chapter, please read the Essential Topics chapter, which introduces the
resources being configured.

Advanced readers who are adding code to the Simple Executive API, writing a custom API, or
reading the SDK code must read the Advanced Topics chapter. This chapter contains information
about register access, race conditions to avoid, etc.

3-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-5

1.1 Conventions Used In this Chapter
Note that in most cases the format REGISTER[FIELD] in this chapter refers to a hardware
register and field combination, not a software ARRAY[INDEX].

2 Configuration Overview
Ninety percent of users can use Simple Executive without further modification, and speed their
application to market if they:

• Start with a suitable example program such as linux-filter or passthrough
• Make the minor configurations described in this chapter

2.1 Getting Started
Typically, users create a custom application by using the passthough or linux-filter
example as a base: If the Cavium Networks Ethernet driver will be used with the custom
application, then select linux-filter as a base, otherwise select the passthough example:

• The passthrough example is designed to run without the Cavium Networks Ethernet
driver loaded. At startup, one core running a Simple Executive application configures the
hardware units and populates the FPA pools.

• The linux-filter example is designed to run with the Cavium Networks Ethernet
driver loaded. In this case, the driver configures the hardware units and populates only the
three essential FPA pools (Packet Data buffers, WQE buffers, and PKO Command buffers).
In this case, it is essential that the application not reinitialize the hardware units. For
example if the application reinitializes the FPA, any buffers put in the FPA pools by the
driver will become lost: neither allocated, nor free, and not a member of any pool.)

Copy the example to a new sub-directory in the examples directory, and then modify the code to
create the custom application. (See the Software Development Kit (SDK) Tutorial chapter, in the
section “Hands-on: Creating a Custom Application”.)

2.2 Configuration Steps
The exact configuration steps depend on the software architecture:

• Simple Executive Library Configuration for SE-S and SE-UM Applications: see Section 4
– “Simple Executive Library Configuration”).

• Linux Configuration (menuconfig): see Section 3.1 – “Configuring the Linux Kernel
(make menuconfig)”.

• Simple Executive Library Configuration for the Linux Kernel and Drivers: See Section 3.3
– “Configuring the Simple Executive (SE) Library for Linux”.

• Cavium Networks Ethernet Driver Configuration (number of buffers): See Section 3.2 –
“The Cavium Networks Ethernet Driver”.

This chapter focuses on standard configuration options available via Simple Executive files which
are processed by a configuration utility. The output of the configuration utility is a header file
which can be included by the application. Customized hardware unit configuration is not covered
in this chapter. Customization details are provided in the chapter about the specific hardware unit,
such as the PIP/IPD chapter. Before attempting customizations beyond those provided by the

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

configuration utility, please read the Advanced Topics and FPA chapters. These chapters contain
critical information necessary to avoid race conditions and difficult-to-debug runtime problems.

3 Linux
When running Linux:

• The kernel must be configured (via make menuconfig)
• The Simple Executive library which is used by the kernel must be configured
• If the Cavium Networks Ethernet driver is used, the number of Packet Data buffers must be

configured via make menuconfig.

3.1 Configuring the Linux Kernel (make menuconfig)
Linux configuration via make menuconfig is covered in the Software Overview chapter, and
also in the documentation provided with the SDK.

3.1.1 SE-UM Applications: FPA Buffer Access
For SE-UM applications (SDK 1.9 and SDK 2.0), use make menuconfig to configure the
kernel to enable/disable access to memory via xkphys addresses for SE-UM applications:
 Allow User space to access memory directly (Allowed) --->
 (X) Allowed
 () Per process
 () Disabled

CONFIG_CAVIUM_OCTEON_USER_MEM:
 Allows user applications to use xkphys addresses directly access to memory. This option allows
user space direct access to shared memory not in use by Linux. This memory is suitable for use
with the OCTEON hardware. Cavium Networks Simple Executive applications also share this
memory. Since this bypass all of the Linux memory protection, only use this option on embedded
devices where all user applications are strictly controlled.

By default, all SE-UM applications are allowed access.

If the Allowed or Per Process option is selected, a process running as root can enable or
disable access via the cvmx_linux_enable_xkphys_access() Simple Executive library
call. If the argument to this library call is 0, then a warning message is printed if there is an error.
If the argument is 1, then no warning message will be printed if there is an error.

The cvmx_linux_enable_xkphys_access() library call enables access to the entire
xkphys region, so both memory and CSR access are enabled.

Processes not running as root may only disable access using the system call.

Information on how 32-bit applications access these addresses is provided in the Advanced Topics
chapter.

3-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-7

3.1.2 SE-UM Applications: Configuration and Status (CSR) Register Access
For SE-UM applications (SDK 1.9 and SDK 2.0), use make menuconfig to configure the
kernel to enable/disable access to memory via xkphys addresses for SE-UM applications:
 Allow User space to access hardware IO directly (Allowed) --->
 (X) Allowed
 () Per process
 () Disabled

CONFIG_CAVIUM_OCTEON_USER_IO: This option allows user applications to directly access
the OCTEON hardware IO addresses (0x1000000000000 - 0x1ffffffffffff). This
allows high-performance networking applications to run in user space with minimal performance
penalties. This also means a user application can bring down the entire system. Only use this
option on embedded devices where all user applications are strictly controlled.

By default, all SE-UM applications are allowed access.

If the Allowed or Per Process option is selected, a process running as root can enable or
disable access via the cvmx_linux_enable_xkphys_access() system call.

Processes not running as root may only disable access using the system call.

Information on how 32-bit applications access these addresses is provided in the Advanced Topics
chapter.

3.2 The Cavium Networks Ethernet Driver
When running Linux, if the Cavium Networks Ethernet driver will be run (as in linux-filter),
then the Ethernet driver is responsible for initializing the following OCTEON hardware units:
SSO, FPA, CIU, PIP, IPD, PKO, and the FAU. When the Ethernet driver is in use, applications
must not reconfigure these hardware units.

The Ethernet driver populates the Packet Data buffer, WQE buffer, and PKO Command buffer
FPA pools. In this case, the number of Packet Data buffers and an equal number of WQE buffers
are configured by using make menuconfig (make menuconfig steps are introduced in the
Software Overview chapter (see the “Linux Memory Configuration Steps” section)). The kernel
configuration tool only allows the user to control the number of Packet Data buffers (an identical
number of WQE buffers are allocated), and the number of PKO Command buffers is fixed.

Note that the buffer size and buffer pool name and other attributes are configured via Section 3.3
“Configuring the Simple Executive (SE) Library for Linux”. Since pool population is done at
runtime, Simple Executive configuration does not include the number of buffers. The make
menuconfig step is used to inform the Cavium Networks Ethernet driver the number of buffers
desired.

For other buffer pools, such as Timer buffers, after the Ethernet driver is running, then the
application must populate the pools. No coordination with the Ethernet driver is needed because it

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

doesn’t use these pools. SE-UM applications follow the same steps as a SE-S application to
allocate memory and populate the pools.

3.2.1.1 Ethernet Driver: Configuring the Number of Packet Data Buffers
Note that this discussion only applies to applications running the Cavium Networks Ethernet driver
(such as linux-filter). The Cavium Networks Ethernet driver will populate the Packet Data
buffer pool, WQE buffer pool, and PKO Command buffer pools. Only the number of Packet Data
buffers is configurable. The number of WQE buffers equals the number of Packet Data buffers.
The number of PKO Command buffers is not configurable: it is hard-coded. (This information
applies to SDK 2.0 and lower.)

To configure the Cavium Networks-specific options, select “Machine selection”. The next screen
will look similar to this:

System type (Support for the Cavium Networks OCTEON reference board) --->
 [*] Enable OCTEON specific options
 [] Build the kernel to be used as a 2nd kernel on the same chip
 [*] Enable support for Compact flash hooked to the OCTEON Boot Bus
 [*] Enable hardware fixups of unaligned loads and stores
 [*] Enable fast access to the thread pointer
 [*] Support dynamically replacing emulated thread pointer accesses
 (2) Number of L1 cache lines reserved for CVMSEG memory
 [*] Lock often used kernel code in the L2
 [*] Lock the TLB handler in L2
 [*] Lock the exception handler in L2
 [*] Lock the interrupt handler in L2
 [*] Lock the 2nd level interrupt handler in L2
 [*] Lock memcpy() in L2
 [*] Allow User space to access hardware IO directly
 [*] Allow User space to access memory directly
 (0) Memory to reserve for user processes shared region (MB)
 [*] Use wired TLB entries to access the reserved memory region
(5000) Number of packet buffers (and work queue entries) for the Ethernet
 driver
 <M> POW based internal only Ethernet driver
 <*> OCTEON watchdog driver
 [] Enable enhancements to the IPSec stack to allow protocol offload.

When using make menuconfig:

• Type “?” for help with a highlighted option.
• Items marked with [*] are “on”. To turn them to off, change the star to a space (“*”

becomes “ “).

To see the configured values, look in the file
linux/kernel_2.6linux/include/linux/autoconf.h. This file is created during
the build.

Items marked with [*] are “on”. To turn them to off, change the star to a space (“*” becomes “ ”).

3-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-9

3.3 Configuring the Simple Executive (SE) Library for Linux
The kernel will call the Simple Executive library, so Simple Executive must be configured. This
configuration must be match the configuration for a SE-UM or SE-S application (shown in Section
4 – “Simple Executive Library Configuration”, but different files may be involved (depending on
which SDK is used, as shown below), so care must be taken when changing one configuration file
to change the corresponding file.

3.3.1 SE Library Configuration for Linux: SDK 1.9 and Below
For SDK 1.9 and below, follow the directions for configuring Simple Executive. In addition to
copying the executive-config.h file to the application’s config directory, copy the file to
the kernel’s config directory:
./kernel_2.6/linux/arch/mips/Cavium-octeon/gpl-executive/config/ex
ecutive-config.h.

The kernel uses the copy of cvmx-resources.config in the $OCTEON_ROOT/executive
directory, which is in the kernel build's search path. If the user needs to customize
cvmx-resources.config, then the copy in $OCTEON_ROOT/executive must be
modified.

The file cvmx-config.h, is created as part of the kernel build (the kernel build calls the
configuration utility). This file is included in the kernel and driver source files as needed.

3.3.2 SE Library Configuration for Linux: SDK 2.0
For SDK 2.0, the kernel configuration file is cvmx-config.h:
./kernel_2.6/linux/arch/mips/include/asm/octeon/cvmx-config.h.

This file needs to be edited directly with any changes needed to match the application’s
configuration. (The output of the Simple Executive application configuration is a
cvmx-config.h file in the application’s config directory. This file can be used as a guide
when editing the kernel version of the file.)

For SDK 2.0, the executive-config.h file is no longer included in various Simple Executive
.c files when building Simple Executive for the Linux kernel, as seen in cvmx-pip.h:

#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include "cvmx-pip-defs.h"
#else
#ifndef CVMX_DONT_INCLUDE_CONFIG
#include "executive-config.h"
#endif // end CVMX_DONT_INCLUDE_CONFIG
#endif // end CVMX_BUILD_FOR_LINUX_KERNEL

4 Simple Executive Library Configuration
This section describes how to configure the Simple Executive library for use with a SE-S or SE-
UM application. The same directions apply when configuring the Linux kernel, with minor
exceptions such as which file to edit, or which directory contains the configuration files. Before

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

configuring Simple Executive for the Linux kernel, configure Simple Executive for the application.
Then use that information to configure the Linux kernel:

• For SDK 1.9, the same directions are used to configure Simple Executive for the Linux
kernel and drivers, but the configuration files may be located in different directories (See
Section 3.3.1 – “SE Library Configuration for Linux: SDK 1.9 and Below”.

• For SDK 2.0, see Section 3.3.2 – “SE Library Configuration for Linux: SDK 2.0”.

Note: It is important to understand Simple Executive configuration, and verify that the
information in the configuration files is correct. Simple Executive configuration is not
difficult, but incorrect configuration can lead to difficult-to-debug errors.

In addition to configuration variables and keywords presented in this chapter, SE-S application
virtual memory configuration information is located in the Software Overview chapter. See the
Software Overview chapter, in the section labeled “Simple Executive Virtual Memory
Configuration Options” for more information. (We strongly recommend that the 1-1 physical-to-
virtual memory mapping (which is the default) be disabled using instructions in this section.)

3-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-11

4.1 Simple Executive Configuration Overview
A configuration utility, host/bin/cvmx-config takes various files as input and creates a
cvmx-config.h file.

4.1.1 Input Files to the Configuration Utility
The figure below shows the host/bin/cvmx-config utility processing the input
configuration files to create a cvmx-config.h file which can then be included in all source code
files:

Figure 2: Configuring the Simple Executive

Customizations
(To add custom pools.)

Standard Simple Executive Configuration (To configure
in the five commonly used pools.)

Either executive/cvmx-resources.config (default)
or

config/cvmx-resources.config (custom version)
(this file is included by executive-config.h) Custom

config/*-config.h

config/executive-config.h

host/bin/cvmx-config utility

config/cvmx_config.h
(include this file in all source code)

O
U

TP
U

T

IN
PU

TINPUT

Simple Executive Configuration Files

The key input files for the cvmx-config utility are:

• executive-config.h: The template for this file is in the executive directory.
Copy executive-config.h.template to the config directory in your specific

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

example directory, rename it executive-config.h, and then make modifications to
the local copy. This file is used to configure hardware unit-specific configuration variables,
global helper functions, and feature-specific configuration variables. Note that the
executive-config.h file is also included by Simple Executive code, so using this
name is essential.

• cvmx-resources.config: The file cvmx-resources.config is included at the
end of executive-config.h. This file is located in the executive directory. If
changes are to be made to the file, then copy the file to the local config directory, and
then make modifications to the local copy. If no changes are to be made to this file, then a
copy of the file located in the config directory is not necessary. This file is used to
configure buffer, buffer pools, and scratchpads for any of the 5 commonly-used pools:
Packet Data buffers, WQE buffers, PKO Command buffers, TIMER buffers, and DFA
buffers. Resource configuration is done via keywords which are interpreted by the
configuration utility. Note that the cvmx-resources.config file is included by
executive-config.h, so using this name is essential.

• *-config.h: Any file in the local config directory named with the convention “*-
config.h”, such as “my-config.h” will be used as input to the cvmx-config
utility. This file is typically used to create custom pools (other than the 5 standard pools).
An example can be seen in the fpa_simplified example, which is located on support
site in the same directory as the OCTEON Programmer’s Guide. This code contains only
FPA code, no code for other hardware units, and is an easy way to get acquainted with
configuring FPA pools and scratchpad areas. More than one *-config.h file can be
used; the configuration utility will process them automatically.

Note: All applications running on the same OCTEON chip should share the same
config directory to most easily and reliably use the same configuration files. For
example, it is essential that they share the FPA name-to-pool-number relationship, and
the same buffer sizes. Otherwise buffers can be freed to the wrong pool, and memory
may be overwritten by writing off the end of a buffer.

Note: It is essential to read the FPA chapter before configuring FPA pools.

We recommend that customizations be, as much as possible, put in a custom *-config.h file
(such as my-config.h). When new versions of the SDK are released, the old executive-
config.h and cvmx-resources.config files will need to be compared with the new
versions and updated when the SDK is updated. Minimizing the changes makes this comparison
and update process simpler. (Multiple *-config.h files may be used if desired. The
configuration utility reads all *-config.h files and combines them.)

Note: The executive-config.h file is also directly included by many of the .c and
.h source files in the executive directory, and cvmx-resources.config is included
by executive-config.h, so the impact of the configuration in these files is not
limited to the configuration utility and the included cvmx-config.h file.

3-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-13

4.1.2 All Software Running Must Agree on the Configuration
When configuring multiple SE-UM applications to run on multi-core Linux, all SE-UM
applications, the Linux kernel, and drivers which call Simple Executive functions must use
configuration files with identical content. For example, if the configurations differ too greatly
between linux-filter and the Cavium Networks Ethernet driver then runtime problems can
occur. The driver and the linux-filter application need to exactly agree on the buffer sizes,
queue to port mapping, and PIP/IPD configuration.

Figure 3: Use Configuration Files with Identical Content
Use SE Configuration File(s) with Identical Content

SE-SLinuxLinux

SMP Linux (single copy)

LinuxSE-
UM

SE-
UM

Driver

SE
-S

 A
pp

lic
at

io
ns

SE
-U

M
 A

pp
lic

at
io

ns
Li

nu
x

Dr
ive

r w
hi

ch
 u

se
s

SE
 lib

ra
ry

SE
-U

M
 A

pp
lic

at
io

ns

Simple Executive Configuration files with
identical content

4.2 Configuration Utility
The configuration utility reads the input files, ignoring all input until it sees the cvmxconfig
keyword, so it is okay to have other code in the file (such as preprocessor directives). Once the
configuration utility sees cvmxconfig, it expects a configuration section (enclosed in {}). After
reading the section it ignores all input until it sees cvmxconfig again, then the process repeats.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

Since a cvmxconfig block (configuration block) is not valid C, the #ifdef
CAVIUM_COMPONENT_REQUIREMENT must precede the configuration block so that normal C
files won't attempt to process it. This definition allows the C preprocessor and the configuration
utility to share the same files:

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{
 <configuration information for the tool>
}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

4.2.1 Configuration Utility Grammar
The following list is the simple grammar recognized by the configuration utility:

// <comment delimiter>
cvmxconfig {} // surrounds a configuration block

description "Just a string to name the config"

define NAME
 description="foo"
 value=<number>

define NAME value = <number>

#if
#else
#endif

fpa NAME
 description="foo"
 pool=<0-7>
 priority=<1-8>
 protected=<true|false, on|off, 1|0>
 size=<1-512> // in 128-byte cache lines

fau
 description="foo"
 size=<1,2,4,8> // size is in bytes
 count=<number, no range checking>

scratch
 description="foo"
 size=<1,2,4,8> // number of bytes per element in bytes
 count=<number, no range checking> // number of elements (default = 1)
 iobdma=<true|false, on|off, 1|0>
 permanent=<true|false, on|off, 1|0>

Notes:

• If the scratchpad area keyword iobdma is set to true, then size must be 8
• The two “define” descriptions shown above are the same: the configuration utility ignores

whitespace.

3-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-15

• The limit of 512 cache lines (65,536 bytes) on FPA buffer size is arbitrary. Hardware units
(other than the FPA) may set maximum size limits on buffers such as Packet Data buffers,
but the FPA does not impose a maximum size limit. (The Packet Data buffer maximum
size is 128 cache lines (16,384 bytes).)

An example of using the #if, #else, #endif inside the cvmvconfig {} block is:

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{

 #if CVMX_LLM_CONFIG_NUM_PORTS == 2
 define VARIABLE_1 value = 2;
 #else
 define VARIABLE_1 value = 1;
 #endif // end CVMX_LLM_CONFIG_NUM_PORTS

}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

4.3 Required Include Files
User code needs to include three essential include files, and the include files for hardware unit-
specific functions (such as cvmx-fpa.h for cvmx_fpa_alloc()).
This section presents the essential include files, some of the hardware unit-specific include files,
and also provides an overview of the different categories of other include files in the executive
directory to help the user sort the approximately 100 include files in the executive directory
into those which can be ignored and those worthy of attention.

4.3.1 Essential Include Files
Application source files must include cvmx_config.h, cvmx.h, and any unit-specific include
files. Unit-specific include files follow the first two required include files. Many headers depend
on cvmx-helper.h, so it is best to include it before the unit-specific include files. Other than
that, there is no required order for include files.

Table 1: Three Essential Include Files
Include File Purpose

cvmx-config.h Created in the local config directory by the configuration utility. This file
should be the first Simple Executive header included in the source code.

cvmx.h Common macros and inline functions required by all programs running on
OCTEON. This file should be the second Simple Executive header included
in the source code, after cvmx-config.h.

cvmx-helper.h Helper functions for common but complicated tasks.

4.3.2 Hardware Unit-Specific Include Files
Hardware Unit-specific include files generally have names which match the hardware unit name.
Many of these include files are included by cvmx-helper.h. The table below shows some of
the hardware unit-specific include files.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

Table 2: Example Hardware Unit Include Files
Unit Include File Purpose

DFA cvmx-dfa.h DFA: Interface to the hardware DFA engine.
FAU cvmx-fau.h FAU: Interface to the hardware Fetch and Add Unit (FAU).
FPA cvmx-fpa.h FPA: Interface to the hardware Free Pool Allocator (FPA).
FPA cvmx-helper-fpa.h FPA: Helper functions for FPA setup.
IPD cvmx-ipd.h IPD: Interface to the hardware Input Packet Data (IPD) unit.
PIP cvmx-pip.h PIP: Interface to the hardware Packet Input Processor (PIP).
PKO cvmx-pko.h PKO: Interface to the hardware Packet Output (PKO) unit.
SSO
(POW)

cvmx-pow.h SSO (POW): Interface to the hardware SSO unit (also known as
the Packet/Order/Work unit, or POW).

RNG cvmx-rng.h RNG: Functions and structure definitions for Random Number
Generator (RNG) hardware.

TIM cvmx-tim.h TIM: Interface to the hardware TIMER unit.
ZIP cvmx-zip.h ZIP: Header file for the ZIP hardware unit.

5 Application Configuration Steps
The next step is to create a private workspace. To create a private workspace, follow the directions
in the Software Development Kit (SDK) Tutorial chapter to install the software and become
familiar with the steps needed to configure, build, and run example code.

5.1 Start with an Existing Example
Create a sub-directory in the examples directory for the custom application, for example:
my_application. It is usually easiest to copy an existing example which has functionality
similar to the desired application functionality, and then modify it. We recommend using either
passthrough or linux-filter as a base application. Select linux-filter if the
Cavium Networks Ethernet driver will be run under Linux. Other examples are not designed to do
real work, so they are not sufficient to use as a base for a real-world application.

A simple example program (fpa_simplified) is also provided. This example can be used to
test out the FPA configuration and API functions without involving other units. The
fpa_simplified example can be downloaded from the Cavium Networks Technical Support
Site in the same directory where an electronic copy of this chapter may be found. The
downloadable file is a tar file. Untar it into the examples directory of the SDK. To build and
run the example, follow the directions in the README.txt file provided with the example.

Note that the fpa_simplified example code only shows the FPA API, and is not useful for
doing any actual work.

3-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-17

5.2 Edit the Configuration Files as Needed
The example code contains a config subdirectory (the local config directory). When the
configuration utility is run, the resultant cvmx-config.h file is created in this directory.

The directory should contain executive-config.h. This file is copied from
executive/executive-config.h.template to config/executive-config.h,
and changes are made to the local copy. (See Section 7 – “Configuring
executive-config.h”.)

If the cvmx-resources.config file is not modified from the
executive/cvmx-resources.config file, then there is no need for a local copy;
otherwise, copy executive/cvmx-resources.config to
config/cvmx-resources.config and make changes to the local copy. (See Section 8 –
“Configuring cvmx-resources.”.)

If custom pools are needed, create a file named config/*-config.h (such as the
my-config.h file in the fpa_simplified directory), and put the customizations there. (See
Section 9 – “Adding a Custom *-config.h File”.)

5.3 Edit the Makefile as Needed
If the C source file is renamed, make any needed Makefile changes, such as changing the name of
the C source file.

5.4 Configure and Build the Application
In the my_application directory, run make to build the application. This step will build a
custom cvmx-config.h file in your local config directory. The Simple Executive source
code already contains “#include “cvmx-config.h””, so executive source code will include
the file from the local config directory.

The resultant target will appear in the my_application directory. The object files will be in
my_application/obj.

6 Configuration Limitations
Simple Executive configuration supports the most commonly modified configuration items, but
does not provide support for all possible configuration options. The other options are set to either
hardware default values, or are set to values which are optimal for most applications. The PIP/IPD
is an example of a unit which provides a rich selection of options. Details on all options supported
by each hardware unit can be obtained from the HRM. Chapters in the OCTEON Programmer’s
Guide, such as the PIP/IPD chapter provide more information about the options from a software
perspective.

At the hardware level, every register field corresponds to a variable controlling the hardware unit’s
behavior. These register fields are initialized to a hardware default value on power-on/reset. In

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

some cases, Simple Executive code will change the hardware default to either a user-configured
value, or a preferred SDK default value.

Both the hardware default and SDK default values are shown in the table describing the option, for
example the PIP/IPD chapter contains the following entry for the Parse Mode. Parse Mode can be
changed via the Simple Executive configuration variable
CVMX_HELPER_INPUT_PORT_SKIP_MODE.

Table 3: Configuration Variables are Provided for Some Options

Brief Description Register Fields
H/W
Default
Value

SDK
Default
Value

Parse Mode: Parse mode (Skip-to-L2 (1), Skip-to-IP
(2), or Uninterpreted (0))

PIP_PRT_CFGn
(one per port) MODE 0 1 (See

Note1)

Notes
Note1: Configured via executive-config.h:
CVMX_HELPER_INPUT_PORT_SKIP_MODE = CVMX_PIP_PORT_CFG_MODE_SKIPL2

The SDK code often sets the register fields to reasonable values without using a configuration
variable. For example, by default the size of each MBUF is set to the size of the Packet Data
Buffers as shown in the following table. The divide by 8 seen below is needed to adjust the units
to 8-byte words.

Table 4: Other Options are Set Without a Configuration Variable
MBUF Configuration
MBUF size. The number of 8-
byte words in an mbuf. Legal
values are in the range 32-2048.
(Pool 0 buffers must be a
minimum of 256 bytes.)

IPD_PACKET_MBUFF_SIZE MB_SIZE 0x20 (256
bytes) See Note1

Notes
Note1: IPD_PACKET_MBUFF_SIZE[MB_SIZE] is initialized to
(CMVX_FPA_PACKET_POOL_SIZE / 8) when
cvmx_helper_initialize_packet_io_global() is called.

Note: In most cases, Simple Executive doesn’t change the hardware default register field value.

7 Configuring executive-config.h
To configure features into Simple Executive, modify the local copy of executive-config.h.
Edit the file to remove the comment delimiters (“//”) before the #define to enable needed
functionality (see the table below). Note that enabling PKO, DFA, or TIM functions also enables
the supporting FPA functions. It is recommended that the helper functions also be enabled.

3-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-19

For example, change:
/* Define to enable the use of simple executive packet output functions.
** For packet I/O setup enable the helper functions below.
*/
//#define CVMX_ENABLE_PKO_FUNCTIONS

to the following, by removing the comment delimiters “//”:

/* Define to enable the use of simple executive packet output functions.
** For packet I/O setup enable the helper functions below.
*/
#define CVMX_ENABLE_PKO_FUNCTIONS

Table 5: Definitions in executive-config.h

Define
(alphabetical order)

Default
Value

Recommended
Value

CVMX_CONFIG_ENABLE_DEBUG_PRINTS* (See Note1)

CVMX_CONFIG_ENABLE_DEBUG_PRINTS enables all prints in the executive. This macro should
be set to 1 (TRUE). None of the debugging prints are in the fast path, so performance affect is
negligible. If this macro is set to FALSE, there is no notification of failure because the prints are disables
and this is the primary error-reporting mechanism. If this variable is defined in executive-config.h,
cvmx-resources.config will define CVMX_ENABLE_DEBUG_PRINTS to the value of
CVMX_CONFIG_ENABLE_DEBUG_PRINTS otherwise the value of
CVMX_ENABLE_DEBUG_PRINTS is set to 1 (TRUE). If this variable is not defined, cvmx.h will
define it to 1 (TRUE). Default=1 (TRUE).

1 (TRUE) 1 (TRUE)

CVMX_CONFIG_NULL_POINTER_PROTECT* (See Note1)

If CVMX_CONFIG_NULL_POINTER_PROTECT is defined to 1 (TRUE), then accesses to virtual
address 0 will result in an access error (TLB trap). The low 1 MByte is reserved for bootloader and
exception vectors, so protecting this space is wise. If this variable is defined in executive-
config.h, cvmx-resources.config will define the variable
CVMX_NULL_POINTER_PROTECT to the value of this variable, otherwise
CVMX_NULL_POINTER_PROTECT is set to 1 (TRUE). Default=1 (TRUE).

1 (TRUE) 1 (TRUE)

CVMX_ENABLE_DFA_FUNCTIONS

This macro controls needed function definitions and creates FPA pool definitions for the DFA buffer
pool, and a FAU register. Only DFA functions and the DFA buffer pool are affected. Default=not
defined.

not
defined

define if DFA
will be used

CVMX_ENABLE_HELPER_FUNCTIONS

CVMX_ENABLE_HELPER_FUNCTIONS should always be defined. The only time it would not be
defined is if the system was not used for Packet I/O. This macro will enable some of the cvmx_helper*
functions and will also create the WQE buffer pool definitions. By default, this option is not defined; we
recommend it be defined for all applications doing packet I/O.

not
defined

define

CVMX_ENABLE_LEN_M8_FIX

See the PIP/IPD chapter. If this variable is not defined, cvmx-ipd.h will define it to 0 (FALSE).
When CVMX_ENABLE_LEN_M8_FIX is set to 0, it causes IPD_CTL_STATUS[LEN_M8] to be
cleared and the buffer next pointer includes the size of that next pointer. For performance reasons, this
should always be set to 1.

1 (TRUE) 1 (TRUE)

CVMX_ENABLE_PKO_FUNCTIONS (See Note2)

This macro controls needed function definitions, FPA pool definitions, and other PKO-related
definitions. For packet I/O, always define CVMX_ENABLE_PKO_FUNCTIONS. If
CVMX_ENABLE_HELPER_FUNCTIONS is defined, then a test in executive-resources.h will force
CVMX_ENABLE_PKO_FUNCTIONS to be defined. By default, this option is not defined; we
recommend it be defined for all applications doing packet I/O.

not
defined

define

CVMX_ENABLE_TIMER_FUNCTIONS (See Note3)

This macro controls needed function definitions and creates FPA pool definitions for the TIMER buffer
pool. Only TIMER functions and the TIMER buffer pool are affected. Default=not defined.

not
defined

define if
TIMERS will

be used

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

Define
(alphabetical order)

Default Recommended
Value Value

CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE

See Note4. If this macro is set to 1 (TRUE), then GMX[0,1]_TX_OVR_BP[EN] is set to 0xF and
GMX[0,1]_TX_OVR_BP[IGN_FULL] is set to 0xF, causing the GMX RX FIFO to be ignored when
computing backpressure for all 4 GMX ports. See the PIP/IPD chapter for a system-level view of
backpressure. GMX has three sources of BP: 1) IPD, 2) GMX RX FIFO, 3) software via CSRs.
GMX0/1/0_TX_OVR_BP IGN_FULL will only ever affect #2. Default=1 (TRUE), disabling RGMII
backpressure based on RX FIFO full; we recommend the value be set to 0 (FALSE).

1 (TRUE) 0 (FALSE)

CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE

See Note4. This should always be set to 0 (FALSE) so that backpressure is always enabled. Turning off
backpressure on the SPI interface is disastrous and can result in protocol errors such as losing the end of
packet markers. If this macro is set to 1 (TRUE) the SPI4000 will not stop sending packets when
receiving backpressure; it will also not generate backpressure packets when its internal FIFOs are full.
The default=1 (TRUE), disabling SPI 4000 backpressure; we recommend the value be set to 0 (FALSE).

1 (TRUE) 0 (FALSE)

CVMX_HELPER_ENABLE_BACK_PRESSURE

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will define it to 1
(TRUE), and print a warning (see Note5). Default=1 (TRUE). (Note this macro is not present in SDK
2.0.)

1 (TRUE) define to 1
(TRUE)

CVMX_HELPER_ENABLE_IPD

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will
define it to 1 (TRUE), and print a warning (see Note5). Default=1 (TRUE).

1 (TRUE) depends on
architecture

CVMX_HELPER_FIRST_MBUFF_SKIP

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will
define it to 184, and print a warning (see Note5). The file cvmx-resources.config will issue an
error if the value is > 256. Default=184 bytes.

184
bytes

depends on
architecture

CVMX_HELPER_INPUT_PORT_SKIP_MODE

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will
define it to CVMX_PIP_PORT_CFG_MODE_SKIPL2, and print a warning (see Note5).
Default=CVMX_PIP_PORT_CFG_MODE_SKIPL2 (Skip to L2)

Skip to
L2

depends on
architecture

CVMX_HELPER_INPUT_TAG_INPUT_PORT

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will
print an error (see Note5). Default=1. 1 depends on

architecture
CVMX_HELPER_INPUT_TAG_IPV4_DST_IP

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV4_DST_PORT

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV4_PROTOCOL

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV4_SRC_IP

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV4_SRC_PORT

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV6_DST_IP

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV6_DST_PORT

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV6_NEXT_HEADER

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

3-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-21

Define
(alphabetical order)

Default
Value

Recommended
Value

CVMX_HELPER_INPUT_TAG_IPV6_SRC_IP

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_IPV6_SRC_PORT

See the PIP/IPD chapter. Default=0. 0 depends on
architecture

CVMX_HELPER_INPUT_TAG_TYPE

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will
define it to CVMX_POW_TAG_TYPE_ORDERED, and print a warning (see Note5).
Default=CVMX_POW_TAG_TYPE_ORDERED (ORDERED)

ORDERED depends on
architecture

CVMX_HELPER_IPD_DRAM_MODE

See the PIP/IPD chapter. This configuration variable is new with SDK 2.0.
Default=CVMX_IPD_OPC_MODE_STT (all blocks stored to DRAM).

All
blocks
stored
to DRAM

depends on
architecture

CVMX_HELPER_NOT_FIRST_MBUFF_SKIP

See the PIP/IPD chapter. If this variable is not defined cvmx-helper-check-defines.h will
define it to 0, and print a warning (see Note5). The file cvmx-resources.config will issue an
error if the value is > 256. Default=0.

0 bytes depends on
architecture

CVMX_HELPER_PKO_MAX_PORTS_INTERFACE0* (See Note1)

The number of hardware output ports to support on interface 0. A typical value is 4 for RGMII/SGMII.
In particular, when implementing lockless PKO queues, limit the number of ports to those actually used
to ensure enough queues are available. If this variable is not defined cvmx-pko.h defines it to 16, but
then the variable is never used. The variable which is used in Simple Executive code is
CVMX_PKO_MAX_PORTS_INTERFACE0, which is defined in cvmx-resources.config (if
CVMX_ENABLE_PKO_FUNCTIONS is defined) to be the value of
CVMX_HELPER_PKO_MAX_PORTS_INTERFACE0. Default=not defined.

not
defined

depends on
architecture

CVMX_HELPER_PKO_MAX_PORTS_INTERFACE1* (See Note1)

The number of hardware output ports to support on interface 1. A typical value is 4 for RGMII/SGMII.
In particular, when implementing lockless PKO queues, limit the number of ports to those actually used
to ensure enough queues are available. If this variable is not defined cvmx-pko.h defines it to 16, but
then the variable is never used. The variable which is used in Simple Executive code is
CVMX_PKO_MAX_PORTS_INTERFACE1, which is defined in cvmx-resources.config (if
CVMX_ENABLE_PKO_FUNCTIONS is defined) to be the value of
CVMX_HELPER_PKO_MAX_PORTS_INTERFACE0. Default=not defined.

not
defined

depends on
architecture

CVMX_HELPER_PKO_QUEUES_PER_PORT_INTERFACE0* (See Note1)

The number of queues per port for hardware interface 0. If CVMX_ENABLE_PKO_FUNCTIONS is
defined, the file cvmx-resources.config will create the variable
CVMX_PKO_QUEUES_PER_PORT_INTERFACE0 (if CVMX_ENABLE_PKO_FUNCTIONS is defined)
and set the value to the value of this variable. Default=1.

1 queue
per port

depends on
architecture

CVMX_HELPER_PKO_QUEUES_PER_PORT_INTERFACE1* (See Note1)

The number of queues per port for hardware interface 1. If CVMX_ENABLE_PKO_FUNCTIONS is
defined, the file cvmx-resources.config will create the variable
CVMX_PKO_QUEUES_PER_PORT_INTERFACE1 (if CVMX_ENABLE_PKO_FUNCTIONS is defined)
and set the value to the value of this variable. Default=1.

1 queue
per port

depends on
architecture

CVMX_HELPER_SPI_TIMEOUT

CVMX_HELPER_SPI_TIMEOUT is used to determine how many seconds the SPI initialization routines
wait for SPI training before timing out. If this variable is not defined, then in cvmx-helper-spi.c,
it is defined and set to 10 seconds. Default=10 seconds.

10
seconds 10 seconds

CVMX_LLM_CONFIG_NUM_PORTS* (See Note1)

CVMX_LLM_CONFIG_NUM_PORTS can be set to 1 or 2. This macro is used only for CN38XX and
CN58XX, which have two independent LLM memory ports (interfaces) used with the DFA unit. This
macro is used to tell software how many ports are present on the board. The file cvmx-resources.config
will create the variable CVMX_LLM_NUM_PORTS, limiting the legal values to 1 or 2 without warning
or error. Default=2.

2 LLM
ports

depends on
architecture
(used only
for CN38XX
and CN58XX)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

Define
(alphabetical order)

Default Recommended
Value Value

NOTES

Note1: * is used to mark defines which are used to create similarly-named defines. These similarly-named defines are shown in blue in the Notes
column, and are referenced in the .c and .h files.

Note2: A test for the CVMX_ENABLE_PKO_FUNCTIONS define appears in many .c files. We recommend this value be defined for all
applications doing packet I/O.

Note3: The CVMX_ENABLE_TIMER_FUNCTIONS define is a perfect example of how the resources defines are used. This macro creates the
definitions for the timer pool. Without these definitions, the functions accessing the timer pool will not compile, so the presence of these
functions is controlled by the define. In the case of CVMX_ENABLE_PKO_FUNCTIONS, the test for the define is in the many different .c and
.h files which have I/O-related functions.

Note4: In cvmx-spi4000.c, if neither CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE nor
CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE are defined, then CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE is defined to
0 (FALSE)

If CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE is not defined, then CVMX_HELPER_DISABLE_SPI4000_BACKPRESSURE is
defined to CVMX_HELPER_DISABLE_RGMII_BACKPRESSURE

Note5: cvmx-helper-check-defines.h is included by cvmx-helper.c.

See Section 10 – “Configuration Output File (cvmx_config.h) Contents” for the result of
running the config utility on this configuration file.

8 Configuring cvmx-resources.config
Edit a local copy of cvmx-resources.config to modify:

• Any of the five standard pools (Packet Data buffers, WQE buffers, PKO Command buffers,
TIMER buffers, or DFA buffers)

• Default scratchpads
• Default FAU register variables

To add custom resources, use a *-config.h file in the local config directory. This will
simplify comparing the cvmx-resources.config file against newer versions in newer SDK
releases.

All FPA-managed buffers must be aligned on a 128-byte boundary (the cache line size), and must
be a minimum of 1 cache line size (128 bytes). The Simple Executive APIs ensure these
requirements are met.

The following information contains requirements for specific types of FPA-managed buffers.
Recommendations for Packet Data buffers, PKO Command buffers, and Work Queue Entry buffers
can be found in the FPA chapter.

3-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-23

Buffer Requirements:
• Packet Data Buffers:

o Size is Multiple of Cache-Line Size: Buffer size is required to be a multiple of the
cache line size (128 bytes) (see the FPA chapter for details.)

o Minimum Size: PIP/IPD configuration rules impose minimum buffer size of 256 bytes
(2 * cache line size). Maximum Size: PIP/IPD configuration rules impose a maximum
buffer size of 16 Kbytes (128 * cache line size). The default configured size is 2048
bytes (16 * cache line size).

o Pool Number: This pool must always be FPA Pool 0.
o Buffer Count: This pool must never run out of buffers (see “buffer exhaustion and

critical backpressure” in the PIP/IPD chapter).
• Work Queue Entry Buffers:

o Size is Multiple of Cache-Line Size: Buffer size is strongly recommended to be a
multiple of the cache line size (128 bytes).

o Minimum Size: 128 bytes (1 * cache line size)
o Pool Number: The pool number can be any unused pool number from [1-7]. The pool

number by default is “1”.
o Buffer Count: This pool must never run out of buffers (see “buffer exhaustion and

critical backpressure” in the PIP/IPD chapter).
• Packet Output (PKO) Command Buffers:

o Size is Multiple of Cache-Line Size: Buffer size is strongly recommended to be a
multiple of the cache line size (128 bytes).

o Minimum Size: 8 * cache line size
o Maximum Size: 511 * cache line size (PKO_REG_CMD_BUF[SIZE] is in units of 64-

bit words (8 bytes), and the field is 13 bits wide, so the maximum number of 64-bit
words is 8,191. (8,191 * 8 bytes/word) / (128 bytes/cache line) = 511 cache lines.)

o Pool Number: The pool number can be any unused pool number from [1-7]. The pool
number by default is “2”.

o Buffer Count: It is okay for this pool to run out of buffers. See the FPA chapter for
more information.

• Other Buffers:
o Size is Multiple of Cache-Line Size: Buffer size is strongly recommended to be a

multiple of the cache line size (128 bytes). This size restriction provides support for
“Don’t Write Back” (DWB) functionality (see the Advanced Topics chapter for details).

o Minimum Size: 128 bytes (1 * cache line size) (Required by FPA internals – see the
FPA chapter for more information.)

o Pool Number: The pool number can be any unused pool number from [1-7].

The size of the buffer pool is not limited by the hardware; it is only limited by the amount of
physical memory available.

Note: Although more than one size of buffer can be in the same pool, this configuration is
incredibly difficult to manage and creates an impossibly complex debugging environment. For
example, if the IPD requests a Packet Data Buffer and receives a buffer which is smaller than the
expected mbuf size (IPD_PACKET_MBUFF_SIZE[MB_SIZE]), when it writes the packet data

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

to the buffer, it may overwrite adjacent memory. See the FPA chapter for more information on this
type of error.

8.1 Enabling Creation of Default Pools and Scratchpads
To enable the creation of the default pools, simply define the needed variable in the local
executive-config.h file, as shown in the table below. Later, call the appropriate API
function to allocate memory for and populate the pools.

Table 6: How to Enable Creation of Commonly-Used Pools and Scratchpads
Create Pools

Pool Created Configuration Option Default Pool Name
Input Packet Pool CVMX_ENABLE_HELPER_FUNCTIONS CVMX_FPA_PACKET_POOL

Work Queue Entry Pool CVMX_ENABLE_HELPER_FUNCTIONS CVMX_FPA_WQE_POOL

PKO Command Buffer Pool CVMX_ENABLE_PKO_FUNCTIONS CVMX_FPA_OUTPUT_BUFFER_POOL

DFA Pool CVMX_ENABLE_DFA_FUNCTIONS CVMX_FPA_DFA_POOL

Timer Pool CVMX_ENABLE_TIMER_FUNCTIONS CVMX_FPA_TIMER_POOL

ZIP Pool No config option to create pool
automatically.

N/A

Create Scratchpads
Scratchpad Created Configuration Option Default Scratchpad Name

Scratchpad for IOBDMA
operations such as
cvmx_fpa_async_alloc().

CVMX_ENABLE_HELPER_FUNCTIONS CVMX_SCR_SCRATCH

Notes

Note: If CVMX_ENABLE_HELPER_FUNCTIONS is defined, then
CVMX_ENABLE_PKO_FUNCTIONS will be automatically defined in executive-config.h

8.2 Configuring Buffers and Buffer Pool Definitions
The cvmx-resources.config file is in a format understood by the configuration utility. In the
example below, the Packet Data buffer pool (CVMX_FPA_PACKET_POOL) is configured.

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{

fpa CVMX_FPA_PACKET_POOL
pool = 0
size = 16
priority = 1
protected = 1
description = "Packet buffers";

}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

3-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-25

Table 7: Configuration Keywords for Buffer Pools
Configuration Keywords Description

pool = <integer> Pool number (0-7). Pool 0 is reserved for
CVMX_FPA_PACKET_POOL. If no number is specified, the
configuration system will select a pool number based on priority
(this strongly recommended). (Range = 0-7.)

size = <integer> Specifies the size of the pool's buffers in number of cache lines
(128 bytes each). (Range = 1-512.)

priority = <integer> The priority ranges from 1 through 8, specifies the desired
priority. (If a pool number is not specified in the data structure,
the system will assign a number: the highest priority gets the
lowest available pool number.) Note that "priority" is only used
to assign the pool numbers: there is no performance advantage to
lower-numbered pools. (1 = highest priority; if no priority is
specified, the default value = 8) (Range = 1-8.)

protected = <boolean> Recommended=1 (TRUE) (Legal values are: true|false, on|off,
1|0.)

description = <string> A doubly quoted string, which will appear as comment in the
generated cvmx-config.h, and the pool name in the
pool_info data structure.

The priority keyword is only used to assign a lower number to higher-priority pools: there is
no performance advantage to lower-numbered pools.

The protected keyword is only used by the configuration utility. This keyword does not
provide any runtime memory protection.

We recommend that the pool number should be unspecified, allowing the system to select the pool
number. There is no inconvenience to software since pools are referenced by their symbolic
names, not their pool number.

The WQE and PKO Command buffer pools definition shows that not all configuration keywords
are required:

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{

fpa CVMX_FPA_OUTPUT_BUFFER_POOL
size = 8 // 128-byte cache lines
protected = 1
description = "PKO queue command buffers";

fpa CVMX_FPA_WQE_POOL

size = 1 // 128-byte cache lines
priority = 1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

protected = 1
description = "Work queue entries";

}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

Note that because CVMX_FPA_WQE_POOL has priority 1, and
CVMX_FPA_OUTPUT_BUFFER_POOL has priority 8 (default), in the resultant cvmx-
config.h file, CVMX_FPA_WQE_POOL is assigned a lower pool number than
CVMX_FPA_OUTPUT_BUFFER_POOL (2 instead of 3).

See Section 10 – “Configuration Output File (cvmx_config.h) Contents” for the result of
running the config utility on this configuration file.

8.2.1 Unprotected pools
We recommend that protected always be set to 1 (TRUE). The “unprotected pools” feature should
not be used because it can result in difficult to debug problems. See Section 12 – “ “Unprotected”
Buffer Pools”.

8.3 Configuring Scratchpad Areas
The cvmx_fpa_async_alloc() function uses both the buffer pools and a scratchpad area.
The scratchpad area is defined using configuration keywords which are similar to those used for
the buffer pools.

Note the configuration keyword “iobdma” which specifies the scratchpad area will be a target for
an IOBDMA operation. This keyword tells the configuration utility to assign IOBDMA scratchpad
areas the lowest addresses. Note that the scratchpad area must be 64-bit aligned, so the low 3 bits
of the scratchpad address are zeroes. If all scratchpad areas are configured to be 8 bytes, a total of
[(16 cache lines) * (128 bytes per cache line / 8 bytes per scratchpad area)] = 256 scratchpad areas
are available. Usually only one 8-byte scratchpad area is used (CVMX_SCR_SCRATCH), so this
restriction is not a problem. (The CvmMemCtl register field IOBDMASCRMSB can be used to
allow IOBDMAs to access scratchpad areas above the first 16 cache lines. See the Advanced
Topics chapter and the HRM for details.)

Note: The scratchpad address provided to the IOBDMA instruction must be 64-bit aligned, and
IOBDMA operations always return a 64-bit result. Units (such as the FAU) that support 8-bit, 16-
bit, and 32-bit operations store the result in bits <7:0> (8-bit), <15:0> (16-bit), or <31:0> (32bit) of
the 64-bit register.

Warning: If the user configures more scratchpad areas than the number of cache lines
allocated for scratchpad, no error will occur, and the Dcache will become corrupted as
accesses to those scratchpad locations access Dcache.

3-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-27

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{

scratch CVMX_SCR_SCRATCH
size = 8 // number of bytes per element in bytes
count = 1 // number of elements (default = 1)
iobdma = true
permanent = false
description = "Generic scratch iobdma area";

}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

Note that the above definition sets permanent to false. This is an exception. We generally
recommend this value be set to true. See Section 8.3.1 – “Permanent Scratchpads”.

Table 8: Configuration Keywords for Scratchpad Areas
Configuration Keywords Default Description

size = <integer> 8 bytes

Specifies the number of bytes per element. The default
is 64 bits (8 bytes). (Legal values = 1, 2, 4, 8. If
scratchpad area will be used for IOBDMA, the only
legal value is 8.)

count = <integer> 1
Specifies the number of elements. (If count is not
specified, number of elements =1.) (Legal values =
number, no range checking.)

iobdma = <boolean> 1

If true, this scratch location can be used as an IOBDMA
destination. This keyword tells the configuration tool
to select a low address for the scratchpad area. (Legal
values are true|false, on|off, 1|0.)

permanent = <boolean> 1

Used to refer to the same scratchpad location by
different names. If false, defines for this scratchpad can
be shared with another scratchpad (recommended =
true). The config utility will only create shared
scratchpads if the sizes for the scratchpads are identical.
(Legal values are true|false, on|off, 1|0.)

description = <string> none A doubly quoted string, which will appear as comment
in the generated cvmx-config.h.

For example, the following entry is present in the default executive-config.h file (found in
the examples/traffic-gen directory). (Note that the ideal place for this entry would have
been in a custom *=config.h file.) (The CAVIUM_COMPONENT_REQUIREMENT define keeps
the C preprocessor from trying to interpret the cvmxconfig section. The cvmxconfig section
directs the configuration utility to process the contents of the section.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{
 scratch TRAFFICGEN_SCR_WORK

 size = 8 // number of bytes per element in bytes
 count = 1 // number of elements (default = 1)

 iobdma = true
 permanent = true
 description = "Async get work";
}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

8.3.1 Permanent Scratchpads
We recommend that permanent always be set to true. If permanent == false, and there is more than
one scratchpad area is defined with the same size, two different names will reference the same
scratchpad area. If this is not planned, then difficult-to-debug errors may occur (one part of the
application over-writes the scratchpad area in use by another part of the application).

See Section 12 - “Unprotected” Buffer Pools” for a description of the matching problem for buffer
pool definitions.

If two parts of the application must share the same scratchpad area, but use two different names for
it, then use a simple #define instead of this feature. This is easier to debug.

(The term “permanent” was chosen to indicate to the user that the scratchpad area has a specific,
long-term purpose. In contrast, a function can use a scratchpad area temporarily by initiating an
IOBDMA request using the scratchpad area address, and retrieving the reply within the same
function. Other functions which also need temporary scratchpad can use the same scratchpad area.
The “permanent” designation is an indication to the user that the scratchpad area is dedicated for
one use, and is not a temporary workspace. Other than not creating multiple names to refer to the
same scratchpad, this keyword does not make any functional difference.)

8.4 Configuring Fetch and Add (FAU) Register Resources
The DFA unit configuration uses Fetch and Add Registers. The example below shows how to
instruct the configuration utility to configure in FAU registers.

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{
 fau CVMX_FAU_DFA_STATE
 size = 8 // size is in bytes
 count = 1

 description = "FAU registers for the state of the DFA command queue";
}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

3-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-29

These resources are configured using the configuration keywords shown in the following table:

Table 9: Configuration Keywords for FAU Registers
Configuration Keywords Default Description

size = <integer> 8 bytes Specifies the number of bytes per element. The default
is 64 bits (8 bytes). (Legal values are 1, 2, 4, or 8.)

count = <integer> 1
Specifies the number of elements. (If count is not
specified, number of elements =1.) (Legal values are
numbers, no range checking.)

description = <string> none A doubly quoted string, which will appear as comment
in the generated cvmx-config.h.

9 Adding a Custom *-config.h File
To add custom resources, use a *-config.h file in the local config directory. This will
simplify comparing the cvmx-resources.config file against newer versions in newer SDK
releases. For pools, scratchpads, and FAU registers, follow the same configuration keyword
requirements shown in Section 8 – “Configuring cvmx-resources.config”.

The fpa_simplified example contains a custom config file, my-config.h, with the
contents:

#ifdef CAVIUM_COMPONENT_REQUIREMENT
cvmxconfig
{
 fpa CVMX_MY_FIRST_POOL
 size = 2 // 128-byte cache lines
 protected = 1
 description = "MY FIRST CUSTOM POOL";
 fpa CVMX_MY_SECOND_POOL
 size = 2 // 128-byte cache lines
 protected = 1
 description = "MY SECOND CUSTOM POOL";
 fpa CVMX_MY_THIRD_POOL
 size = 2 // 128-byte cache lines
 protected = 1
 description = "MY THIRD CUSTOM POOL";
}
#endif // end CAVIUM_COMPONENT_REQUIREMENT

After calling make to configure and build the example, the cvmx-config.h file contains the
new definitions:

/************************* FPA allocation *********************************/
/* Pool sizes in bytes, must be multiple of a cache line */
#define CVMX_FPA_POOL_0_SIZE (16 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_1_SIZE (1 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_2_SIZE (8 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_3_SIZE (2 * CVMX_CACHE_LINE_SIZE)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

#define CVMX_FPA_POOL_4_SIZE (2 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_5_SIZE (2 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_6_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_7_SIZE (0 * CVMX_CACHE_LINE_SIZE)

/* Pools in use */
#define CVMX_FPA_PACKET_POOL (0) /**< Packet buffers */
#define CVMX_FPA_PACKET_POOL_SIZE CVMX_FPA_POOL_0_SIZE
#define CVMX_FPA_WQE_POOL (1) /**< Work queue entrys */
#define CVMX_FPA_WQE_POOL_SIZE CVMX_FPA_POOL_1_SIZE
#define CVMX_FPA_OUTPUT_BUFFER_POOL (2) /**< PKO queue command buffers */
#define CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE CVMX_FPA_POOL_2_SIZE
#define CVMX_MY_FIRST_POOL (3) /**< MY FIRST CUSTOM POOL */
#define CVMX_MY_FIRST_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_SECOND_POOL (4) /**< MY SECOND CUSTOM POOL */
#define CVMX_MY_SECOND_POOL_SIZE CVMX_FPA_POOL_4_SIZE
#define CVMX_MY_THIRD_POOL (5) /**< MY THIRD CUSTOM POOL */
#define CVMX_MY_THIRD_POOL_SIZE CVMX_FPA_POOL_5_SIZE

Note that the pool numbers (3, 4, and 5) were chosen automatically. Allowing the configuration
utility to choose the pool number the best choice to set up the pools, except for pool 0: there is less
chance of an error in numbering the pools.

9.1 Example of Using the define Keyword
Given the input:

 #ifdef CAVIUM_COMPONENT_REQUIREMENT
 cvmxconfig
 {
 // the following item (description) is used only for
 // documentation: there is no corresponding output in the
 // cvmx-config.h file.
 description "This is an example configuration file"

 #if CVMX_LLM_CONFIG_NUM_PORTS == 2
 define VARIABLE_1 value = 2;
 #else
 define VARIABLE_1 value = 1;
 #endif // end CVMX_LLM_CONFIG_NUM_PORTS

 define VARIABLE_2 // a comment can be on the same line
 description="define the variable VARIABLE_2"
 value=9;

 define VARIABLE_2_STRING
 // Note that the description keyword is optional

 value="this will not work"; // note that this macro won’t
 // work: the resultant value is
 // not quoted, so it is not a
 // string

 // a comment can also be on a separate line
 }
 #endif // CAVIUM_COMPONENT_REQUIREMENTS

3-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-31

The output in cvmx-config.h is:
#define FRED 1
#define VARIABLE_2 9 /**< define the variable VARIABLE_2*/
#define VARIABLE_2_STRING this will not work

10 Configuration Output File (cvmx_config.h) Contents
To run the configuration utility and build the application, execute the make clean command in
the example directory, then the make command. See the Software Development Kit (SDK)
Tutorial chapter for more information.

After make has run, the file cvmx_config.h will have been created The exact contents will
depend on your configuration. The pool numbers are set in the order the pools were configured
into the Simple Executive, with the custom pools at the end. In this example, no FAU registers
were created.

/************************* FPA allocation *********************************/
/* Pool sizes in bytes, must be multiple of a cache line */
#define CVMX_FPA_POOL_0_SIZE (16 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_1_SIZE (1 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_2_SIZE (8 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_3_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_4_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_5_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_6_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_7_SIZE (0 * CVMX_CACHE_LINE_SIZE)

/* Pools in use */
#define CVMX_FPA_PACKET_POOL (0) /* Packet Data buffers */
#define CVMX_FPA_PACKET_POOL_SIZE CVMX_FPA_POOL_0_SIZE
#define CVMX_FPA_WQE_POOL (1) /* Work queue entries */
#define CVMX_FPA_WQE_POOL_SIZE CVMX_FPA_POOL_1_SIZE
#define CVMX_FPA_OUTPUT_BUFFER_POOL (2) /* PKO queue command buffers */
#define CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE CVMX_FPA_POOL_2_SIZE

#define CVMX_SCR_SCRATCH (8) /* Generic scratch iobdma area */

11 Adding Custom Configuration While Using the SDK API
Two functions pointers are provided with SDK 1.9+ which help the user easily change the default
values used by Simple Executive in configuring selected hardware units:

• PIP/IPD: cvmx_override_ipd_port_setup
• PKO: cvmx_override_pko_queue_priority

If the user has set this pointer to a function before calling any cvmx-helper* functions, then the
cvmx-helper* functions will call the override function at the appropriate time.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

Table 10: Configuration Override Functions for PIP/IPD and PKO
Configuration Override Functions

CVMX_SHARED void (*cvmx_override_ipd_port_setup)(int ipd_port)

This function pointer is initialized to NULL:
CVMX_SHARED void (*cvmx_override_ipd_port_setup)(int ipd_port) = NULL;
The user may initialize the function pointer to the address of a user-defined function.
This function is called by cvmx_helper_initialize_packet_io_global(). The calling
program will provide the ipd port. This function is called after the default PIP/IPD
configuration, but before IPD is enabled. Typically, the function will modify CSR values by
reading the prior CSR value into the CSR data structure defined in the SDK, changing fields in
the data structure as needed, then writing the new value.
ipd_port: which port to configure
Returns void.

CVMX_SHARED void (*cvmx_override_pko_queue_priority)(int pko_port,
uint64_t priorities[16])

This function pointer is initialized to NULL:
CVMX_SHARED void (*cvmx_override_pko_queue_priority)(int pko_port, uint64_t
priorities[16]) = NULL;
The user may initialize the function pointer to the address of a user-defined function.
This function is called by cvmx_helper_initialize_packet_io_global(), and is
used to allow customization of the PKO queue priorities based on the PKO port number.
pko_port: which port to configure
priorities[16]: Each packet output queue has an associated priority. The higher the
priority, the more often it can send a packet.
Returns void.

For Example:
The default PKO queues for the port configuration (as of SDK 2.0) is:
uint64_t priorities[16] = {8,7,6,5,4,3,2,1,8,7,6,5,4,3,2,1};

The following custom function can be used to override the PKO port priorities.

// this will modify the contents of the priorities array, the calling
// function can then use the modified values to configure the PKO
// The calling function is responsible for writing the appropriate PKO
// registers.
void custom_PKO(int pko_port, uint64_t priorities[16])
{
 int j; // loop control variable
 // The three arrays below show different examples of how the up-to-16 PKO
 // queues per port can be configured for different QoS scheduling.

 // prio_strict is using strict priorities (9) for all 4 queues
 uint64_t prio_strict[16] = {9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0};

 // prio_wrr (weighted round robin) uses one strict priority (9) for the
 // first queue, and weighted round robin for the other 3 queues, with
 // relative weights (8, 4, and 1)

3-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-33

 uint64_t prio_wrr[16] = {9,8,4,1,0,0,0,0,0,0,0,0,0,0,0,0};

 // prio_default is a set of default priorities
 int prio_default[16] = {8,7,6,5,4,3,2,1,8,7,6,5,4,3,2,1};

 switch (pko_port)
 {
 case 0:
 {
 cvmx_dprintf("configuring port 0 for strict priority\n");
 for (j = 0; j < 16; j++)
 {
 priorities[j] = prio_strict[j];
 }
 break;
 } // end case 0
 case 1:
 {
 cvmx_dprintf("configuring port 1 for SP0,WRR1,WRR2,WRR3:\n");
 for (j = 0; j < 16; j++)
 {
 priorities[j] = prio_wrr[j];
 }
 break;
 } // end case 1
 default:
 {
 cvmx_dprintf("configuring port %d for default priorities:\n",
 pko_port);
 for (j = 0; j < 16; j ++)
 {
 priorities[j] = prio_default[j];
 }
 break;
 } // end default case
 } // end switch on pko_port
} // end custom_PKO()

CVMX_SHARED void (*cvmx_override_pko_queue_priority)(int pko_port, uint64_t
priorities[16]) = custom_PKO;

This function is then called from a helper function:
while (num_ports--)
 {
 /* Give the user a chance to override the per queue priorities */
 if (cvmx_override_pko_queue_priority)
 cvmx_override_pko_queue_priority(ipd_port, priorities);

 // the following function writes the priorities to the PKO register
 cvmx_pko_config_port(ipd_port,
 cvmx_pko_get_base_queue_per_core(ipd_port, 0),
 cvmx_pko_get_num_queues(ipd_port), priorities);
 ipd_port++;
 }

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

C
onfiguration

12 “Unprotected” Buffer Pools
Readers who simply follow the buffer pool configuration instructions in Section 8.2 – “Configuring
Buffers and Buffer Pool Definitions” do not need to read this section. This section is provided to
explain the dangers of using unprotected pools, which can be configured via the Simple Executive
configuration.

Note that the keyword protected does not mean that there is any runtime protection
for the memory: it is only used in the limited way described in this section.

We recommend that the keyword protected always be set to 1 (TRUE). The “unprotected
pools” feature should not be used. Information about unprotected pools is provided in this section
to illustrate the type of difficult-to-debug problems which can occur if this configuration keyword
is not set appropriately.

If the “protected” field is set to “false” (0), AND two or more pools have the same buffer size, then
multiple macros can refer to the same pool. This is sometimes used if there are more than 8
different uses for FPA pools. In the example below, both CVMX_MY_POOL and
CVMX_MY_THIRD_POOL will refer to pool number three.

For example, given my-config.h with the following contents:

cvmxconfig
 {
 fpa CVMX_MY_POOL // shared with CVMX_MY_THIRD_POOL
 size = 2 // must be identical with shared pool
 protected = 0 // not protected
 description = "MY CUSTOM POOL";
 fpa CVMX_MY_SECOND_POOL
 size = 4
 protected = 1 // protected
 description = "MY SECOND CUSTOM POOL";
 fpa CVMX_MY_THIRD_POOL // shared with CVMX_MY_POOL
 size = 2 // must be identical with shared pool
 protected = 0 // not protected
 description = "MY THIRD CUSTOM POOL";
 }

The cvmx-config.h file will contain:
/************************* FPA allocation *********************************/
/* Pool sizes in bytes, must be multiple of a cache line */
#define CVMX_FPA_POOL_0_SIZE (16 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_1_SIZE (1 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_2_SIZE (8 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_3_SIZE (2 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_4_SIZE (4 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_5_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_6_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_7_SIZE (0 * CVMX_CACHE_LINE_SIZE)

/* Pools in use */
#define CVMX_FPA_PACKET_POOL (0) /**< Packet buffers*/

3-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

C
on

fig
ur

at
io

n
 OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 3-35

#define CVMX_FPA_PACKET_POOL_SIZE CVMX_FPA_POOL_0_SIZE
#define CVMX_FPA_WQE_POOL (1) /**< Work queue entrys */
#define CVMX_FPA_WQE_POOL_SIZE CVMX_FPA_POOL_1_SIZE
#define CVMX_FPA_OUTPUT_BUFFER_POOL (2) /**< PKO queue command
buffers*/
#define CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE CVMX_FPA_POOL_2_SIZE
#define CVMX_MY_POOL (3) /**< MY CUSTOM POOL*/
#define CVMX_MY_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_THIRD_POOL (3) /**< MY THIRD CUSTOM POOL */
#define CVMX_MY_THIRD_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_SECOND_POOL (4) /**< MY SECOND CUSTOM POOL */
#define CVMX_MY_SECOND_POOL_SIZE CVMX_FPA_POOL_4_SIZE

Note: If protected = false, and there more than one pool is defined with the same buffer size,
these pools will be shared. If this is not planned, then difficult-to-debug errors may occur.

Another error can occur if it is intended that the pools be shared, but different buffer sizes
were specified during configuration. An example of this type of error is shown in the next
section.

Example of Configuration Error:
Note: The pool will not be shared unless the buffer sizes are identical. If they are not identical, the
config utility (host/bin/cvmx-config) will quietly create different #defines for the pools:
they will not be shared.

cvmxconfig
 {
 fpa CVMX_MY_POOL // shared with CVMX_MY_THIRD_POOL
 size = 6 // ERROR: size does not match!
 protected = 0 // not protected
 description = "MY CUSTOM POOL";
 fpa CVMX_MY_SECOND_POOL
 size = 4
 protected = 1 // protected
 description = "MY SECOND CUSTOM POOL";
 fpa CVMX_MY_THIRD_POOL // shared with CVMX_MY_POOL
 size = 2 // ERROR: size does not match!
 protected = 0 // not protected
 description = "MY THIRD CUSTOM POOL";
 }

The cvmx-config.h file will contain:

/************************* FPA allocation *********************************/
/* Pool sizes in bytes, must be multiple of a cache line */
#define CVMX_FPA_POOL_0_SIZE (16 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_1_SIZE (1 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_2_SIZE (8 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_3_SIZE (6 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_4_SIZE (4 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_5_SIZE (2 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_6_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_7_SIZE (0 * CVMX_CACHE_LINE_SIZE)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

3-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

C
onfiguration

/* Pools in use */
#define CVMX_FPA_PACKET_POOL (0) /**< Packet buffers*/
#define CVMX_FPA_PACKET_POOL_SIZE CVMX_FPA_POOL_0_SIZE
#define CVMX_FPA_WQE_POOL (1) /**< Work queue entrys */
#define CVMX_FPA_WQE_POOL_SIZE CVMX_FPA_POOL_1_SIZE
#define CVMX_FPA_OUTPUT_BUFFER_POOL (2) /**< PKO queue command
buffers*/
#define CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE CVMX_FPA_POOL_2_SIZE
#define CVMX_MY_POOL (3) /**< MY CUSTOM POOL*/
#define CVMX_MY_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_SECOND_POOL (4) /**< MY SECOND CUSTOM POOL */
#define CVMX_MY_SECOND_POOL_SIZE CVMX_FPA_POOL_4_SIZE
#define CVMX_MY_THIRD_POOL (5) /**< MY THIRD CUSTOM POOL */
#define CVMX_MY_THIRD_POOL_SIZE CVMX_FPA_POOL_5_SIZE

If it is absolutely needed to refer to the same pool by different names, for ease in debugging it is
better to simply use a simple #define instead of configured-in sharing:

#define NAME_1 NAME2

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

	1 Introduction
	1.1 Conventions Used In this Chapter

	2 Configuration Overview
	2.1 Getting Started
	2.2 Configuration Steps

	3 Linux
	3.1 Configuring the Linux Kernel (make menuconfig)
	3.1.1 SE-UM Applications: FPA Buffer Access
	3.1.2 SE-UM Applications: Configuration and Status (CSR) Register Access

	3.2 The Cavium Networks Ethernet Driver
	3.2.1.1 Ethernet Driver: Configuring the Number of Packet Data Buffers

	3.3 Configuring the Simple Executive (SE) Library for Linux
	3.3.1 SE Library Configuration for Linux: SDK 1.9 and Below
	3.3.2 SE Library Configuration for Linux: SDK 2.0

	4 Simple Executive Library Configuration
	4.1 Simple Executive Configuration Overview
	4.1.1 Input Files to the Configuration Utility
	4.1.2 All Software Running Must Agree on the Configuration

	4.2 Configuration Utility
	4.2.1 Configuration Utility Grammar

	4.3 Required Include Files
	4.3.1 Essential Include Files
	4.3.2 Hardware Unit-Specific Include Files

	5 Application Configuration Steps
	5.1 Start with an Existing Example
	5.2 Edit the Configuration Files as Needed
	5.3 Edit the Makefile as Needed
	5.4 Configure and Build the Application

	6 Configuration Limitations
	7 Configuring executiveconfig.h
	8 Configuring cvmx-resources.config
	8.1 Enabling Creation of Default Pools and Scratchpads
	8.2 Configuring Buffers and Buffer Pool Definitions
	8.2.1 Unprotected pools

	8.3 Configuring Scratchpad Areas
	8.3.1 Permanent Scratchpads

	8.4 Configuring Fetch and Add (FAU) Register Resources

	9 Adding a Custom *-config.h File
	9.1 Example of Using the define Keyword

	10 Configuration Output File (cvmx_config.h) Contents
	11 Adding Custom Configuration While Using the SDK API
	12 “Unprotected” Buffer Pools

