
A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-1

Advanced Topics

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 3
LIST OF FIGURES .. 3
1 ... 4 Introduction
2 .. 4 Configuration and Status Registers (CSRs)

2.1 ... 4 CSR Name Definitions
2.2 ... 5 CSR Data Structures
2.3 .. 7 Accessing CSRs via CSR Definitions and Data Structures

2.3.1 9 Accessing CSR Fields Via OCTEON Model-Specific Typedefs
2.4 ... 12 Types of Control and Status Registers (CSRs)

2.4.1 .. 12 CSRs on the Register Slave Logic (RSL) Bus
2.4.2 ... 12 CSRs on the I/O Bus

3 ... 12 Physical Address Map and Device ID (DID)
4 .. 16 Race Condition Accessing CSRs

4.1 .. 17 Technical Details of the Race Condition
4.2 ... 19 Avoiding the Race Condition

5 20 Race Condition if buffer_free before Buffer Writes Complete
5.1 .. 20 Technical Details about the Race Condition
5.2 ... 22 Avoiding the Race Condition

6 .. 23 Don’t Write Back (DWB) Operations
6.1 .. 23 DWB Operation Effects
6.2 ... 24 The buffer_free Operation and DWB

6.2.1 ... 24 The buffer_free Operation Issued by Cores
6.2.2 25 The buffer_free Operation Issued by Other Hardware Units

6.3 ... 26 The pref Instruction and DWB
6.4 ... 27 DWB and the syncws Instruction
6.5 .. 28 DWB and Buffer Alignment and Size

7 .. 29 Scratchpad and IOBDMA Details
7.1 .. 29 Scratchpad Access: CVMSEG LM and CVMSEG IO
7.2 ... 34 Example IOBDMA Details

7.2.1 .. 34 Starting the IOBDMA Operation
7.2.2 .. 35 Verifying the IOBDMA Operation is Complete

7.2.2.1 .. 35 Using CVMX_SYNCIOBDMA
7.2.2.2 .. 35 Using Polling

7.2.3 .. 35 Reading the Scratchpad

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

7.3 .. 38 Modifying the Allocated Scratchpad Size
8 ... 39 Asynchronous CSR Read
9 .. 39 “Unprotected” Buffer Pools
10 .. 42 Pass_N Specific Code in the SDK
11 .. 43 Access to CSRs and Memory via xkphys, and CVMSEG

11.1 44 Accessing Kernel Address Ranges from User-Mode Applications
11.2 ... 45 Running in a 64-Bit Environment

11.2.1 ... 46 32-Bit Applications in 64-Bit Environment
11.3 .. 47 CSR Access

11.3.1 48 User-Mode Application Access to xkphys CSR Addresses
11.3.2 ... 48 32-Bit SE-S or SE-UM Applications Access to CSRs

11.4 ... 49 Memory Access (Accessing FPA-Managed Buffers)
11.4.1 ... 49 64-Bit Application Memory Access

11.4.1.1 50 User-Mode Application Access to xkphys Memory Addresses
11.4.2 ... 50 32-Bit Application Memory Access

11.5 ... 51 Accessing the Scratchpad via cvmseg Addresses
11.5.1 .. 52 32-Bit Application Access to Scratchpad via cvmseg

4-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-3

 LIST OF TABLES
Table 1: Accessing CSR Fields Using Subfields ... 9
Table 2: CN58XX Physical Addresses .. 14
Table 3: Converting a DID and Sub-DID into a Physical Address (CN58XX Example) 15
Table 4: Major Device ID (DID) and Sub-DID used in FPA IOBDMA ... 35
Table 5: Configuring CSR, xkphys Memory, and CVMSEG Access .. 44
Table 6: Configuring SE-UM Access to xkphys Addresses .. 45
Table 7: Configuring 64-Bit Operations and Addressing .. 46
Table 8: Accessing CSRs via the xkphys Segment .. 48
Table 9: Accessing Memory via the xkphys Segment ... 50
Table 10: Accessing CVMSEG ... 52

LIST OF FIGURES
Figure 1: Physical Address Format .. 13
Figure 2: Example: RSL Bus vs. I/O Bus Race Condition .. 18
Figure 3: Example: How to Avoid the RSL Bus vs. I/O Bus Race Condition 19
Figure 4: Write to L2/DRAM versus Write to I/O Space (CSRs) ... 21
Figure 5: Ladder Diagram: Write to Memory vs. Write to I/O Space .. 22
Figure 6: Don’t Write Back Commands from IOB ... 26
Figure 7: Ladder Diagram: buffer_free and DWB ... 28
Figure 8: DWB and Buffer Alignment and Size ... 29
Figure 9: CVMSEG and 64-bit Virtual Memory Map ... 31
Figure 10: IOBDMA Operation (Store Data) Format ... 32
Figure 11: Scratchpad Address Calculation for IOBDMA Operation ... 33
Figure 12: Example of Two Scratchpad Areas .. 37
Figure 13: Modifying CVMSEG Configuration .. 39
Figure 14: Accessing CSRs via the xkphys Segment ... 47
Figure 15: Accessing memory via xkphys -Linux kernel, 64-bit (SE-S, SE-UM) 49
Figure 16: Accessing the Scratchpad via cvmseg .. 51

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

1 Introduction
This chapter provides advanced information for readers who are adding code to the Simple
Executive API, writing a custom API, reading Simple Executive code, or debugging code running
on OCTEON. Before reading this chapter, please read the Essential Topics chapter which provides
an introduction to some of the advanced material in this chapter.

This chapter includes information on:

• Accessing CSRs from Software
• Control and Status Registers (CSRs)
• Physical Address Map and Device ID (DID)
• Potential race conditions when can occur when accessing CSRs or freeing a buffer
• Don’t Write Back Engine details
• Scratchpad and IOBDMA details
• “Unprotected” buffer pool details (advanced FPA pool configuration information)
• Accessing selected addresses in 64-Bit kernel mode segments from user mode applications,

including 32-bit applications

2 Configuration and Status Registers (CSRs)
This section provides information on accessing Configuration and Status registers (CSRs) from
software. CSRs provide additional functionality beyond the API.

CSRs sometimes provide additional functionality beyond what is supported in the current SDK
release API. The CSRs shown in this section are the FPA Control and Status registers present in
the OCTEON CN58XX processor. Exact CSR names and fields vary on different processor
models, but the naming convention used to convert hardware CSR and field names to a software
name apply to all processors.

The CSRs are fully documented in the Hardware Reference Manual. Note that there are sometimes
multiple registers CSR’s with a similar names, but using different numbers in the name to indicate
a specific CSR. In this case the name of the CSR appears in the text or SDK software containing
an “x” or “X”. For example: FPA_QUEx_AVAILABLE. “x” can be any value between 0-7,
inclusive, corresponding to one of 8 FPA pools.

Information about the system’s memory map and accessing CSRs can be found in Table 2
“CN58XX Physical Addresses”.

2.1 CSR Name Definitions
CSRs are defined in the Simple Executive include files located in the executive directory. If
you want to manipulate OCTEON CSRs, include cvmx-csr.h. (This include file will include
the necessary include files to get all of the CSR definitions.) Each CSR is assigned the appropriate
physical address in the include file. The CSR name which appears in the HRM will become a
name (in all upper case) which is used to access the CSR. This name is pre-pended with “CVMX”
(for example: CVMX_FPA_CTL_STATUS).

4-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-5

When there are multiple CSRs which only vary by the “X”, such as the CVMX_FPA_QUEX
registers, then the Simple Executive API convention is to create a macro that accepts “X” as a
parameter. The macro will use the number to calculate the address of the matching CSR. This
allows the code to easily multiple CSRs which perform the same function on different objects. For
example, the macro CVMX_FPA_QUEX_PAGE_INDEX() takes a pool number as a parameter:
To access the CSR for Pool 2 (CVMX_FPA_QUE2_PAGE_INDEX), use the macro
CVMX_FPA_QUEX_PAGE_INDEX(2).

For example, the of the FPA CSRs macros are:

CVMX_FPA_CTL_STATUS
CVMX_FPA_INT_ENB
CVMX_FPA_INT_SUM
CVMX_FPA_QUE_ACT
CVMX_FPA_QUE_EXP
CVMX_FPA_QUEX_AVAILABLE(offset)
CVMX_FPA_QUEX_PAGE_INDEX(offset)
CVMX_FPA_FPFX_MARKS(offset)
CVMX_FPA_FPFX_SIZE(offset)

Similarly, for the SSO, the macro POW_QOS_THRX() can be used to the threshold for QoS queue
5 (POW_QOS_THR5): POW_QOS_THRX(5).

2.2 CSR Data Structures
To access a field inside the CSR, instead of the entire CSR, read the CSR into a data structure, then
access the field. CSR data structures are given the same name as the CSR, except they are all
lower case. The typedefs end in the characters “_t”. The CSR data structure fields will also have
names (also in lower case) matching the Hardware Reference Manual names (see Table 1:
“Accessing CSR Fields”).

CSR data structures are unions. The CSR can be accessed as a uint64_t, by the subfields (s), or
by the chip-specific name, such as cn58xx.

The s structure is a subfields which contains all fields that don't conflict between the different
OCTEON models. Accessing common fields via the s structure streamlines common code. (See
Section 2.3- “Accessing CSRs via CSR Definitions and Data Structures”.)
The following data structure is shown without the endian considerations or the comments.

Note that the cvmx_ipd_bp_prt_red_end.s structure contains the same content as the
cvmx_ipd_bp_prt_red_end_cn30xx, but the field widths are different. The number of
ports supported varies with the OCTEON model, so the width of the fields in the data structures
vary. The ".s" version has the widest field, so it can safely be used on all chips, as shown in the
example code following the data structure.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Data Stucture:

/**
 * cvmx_ipd_bp_prt_red_end
 *
 * IPD_BP_PRT_RED_END = IPD Backpressure Port RED Enable
 *
 * When IPD applies backpressure to a PORT and the corresponding bit in this
CSR is set,
 * the RED Unit will drop packets for that port.
 */
typedef union
{
 uint64_t u64;
 struct cvmx_ipd_bp_prt_red_end_s
 {
 uint64_t reserved_40_63 : 24;
 uint64_t prt_enb : 40;
 } s;
 struct cvmx_ipd_bp_prt_red_end_cn30xx
 {
 uint64_t reserved_36_63 : 28;
 uint64_t prt_enb : 36;
 } cn30xx;
 struct cvmx_ipd_bp_prt_red_end_cn30xx cn31xx;
 struct cvmx_ipd_bp_prt_red_end_cn30xx cn38xx;
 struct cvmx_ipd_bp_prt_red_end_cn30xx cn50xx;
 struct cvmx_ipd_bp_prt_red_end_s cn52xx;
 struct cvmx_ipd_bp_prt_red_end_s cn56xx;
 struct cvmx_ipd_bp_prt_red_end_cn30xx cn58xx;
} cvmx_ipd_bp_prt_red_end_t;

Example Use (from cvmx-helper-util.c):
int cvmx_helper_setup_red(int pass_thresh, int drop_thresh)
{
 cvmx_ipd_portx_bp_page_cnt_t page_cnt;
 cvmx_ipd_bp_prt_red_end_t ipd_bp_prt_red_end;
 cvmx_ipd_red_port_enable_t red_port_enable;
 int queue;
 int interface;
 int port;

 <code omitted>

 ipd_bp_prt_red_end.u64 = 0;
 ipd_bp_prt_red_end.s.prt_enb = 0;
 cvmx_write_csr(CVMX_IPD_BP_PRT_RED_END, ipd_bp_prt_red_end.u64);

 <code omitted>

 return 0;
}

4-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-7

In the following CSR data structure, all the OCTEON models share identical CSR fields (shown in
big endian format):
/**
 * cvmx_fpa_ctl_status
 *
 * FPA_CTL_STATUS = FPA's Control/Status Register
 *
 * The FPA's interrupt enable CSR.
 */
typedef union
{
 uint64_t u64;
 struct cvmx_fpa_ctl_status_s // the subfields
 {
 uint64_t reserved_18_63 : 46;
 uint64_t reset : 1;
 uint64_t use_ldt : 1;
 uint64_t use_stt : 1;
 uint64_t enb : 1;
 uint64_t mem1_err : 7
 uint64_t mem0_err : 7
 } s;

 struct cvmx_fpa_ctl_status_s cn30xx;

struct cvmx_fpa_ctl_status_s cn3020;

 struct cvmx_fpa_ctl_status_s cn31xx;
 struct cvmx_fpa_ctl_status_s cn36xx;
 struct cvmx_fpa_ctl_status_s cn38xx;
 struct cvmx_fpa_ctl_status_s cn56xx;
 struct cvmx_fpa_ctl_status_s cn58xx;
} cvmx_fpa_ctl_status_t;

2.3 Accessing CSRs via CSR Definitions and Data Structures
To read a CSR, call the function cvmx_read_csr(). Use this function to access the register by
providing it with name of the CSR to be accessed (either a CSR name or CSR macro) as a
parameter.

To write a CSR, use cvmx_write_csr(), providing the function with the name of the CSR or
CSR macro. By using this function, the race condition shown in Section 4 – “Race Condition
Accessing CSRs” is easily avoided.

To access a field inside the CSR, first read the CSR into the appropriate data structure, and then
access the field.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Example 1: Read from a CSR, modify a field, and then write to the CSR

This example enables the FPA, the step are:

• Read the CVMX_FPA_CTL_STATUS CSR,
• Write a “1” to the Enable field (setting the Enable bit)
• Write the new value to the CSR

 cvmx_fpa_ctl_status_t status;

 status.u64 = cvmx_read_csr(CVMX_FPA_CTL_STATUS);
 status.s.enb = 1;
 cvmx_write_csr(CVMX_FPA_CTL_STATUS, status.u64);

Example 2: Read from a CSR using the CSR macro, which requires a pool number

In the case of CVMX_FPA_QUEX_AVAILABLE, the pool number is (also) provided as an
argument to the CSR name macro. This number is then used in calculating the address of the
appropriate FPA_QUEx_AVAILABLE address for this pool. For example:

cvmx_fpa_quex_available_t queue_size_CSR;

// Ask FPA the number of buffers available
printf("\nReading the FPA CSR to see how many buffers"
 " are available.\n");
queue_size_register.u64 =
 cvmx_read_csr(CVMX_FPA_QUEX_AVAILABLE(MY_POOL));

// que_siz, a bit field, is declared uint64_t, but is modified by the
// compiler to be a unsigned int, thus is printed %u instead of %lu
printf("The number of buffers available in MY POOL (pool# %u) = %u\n",
 MY_POOL, queue_size_register.s.que_siz);

The following table shows CSR field access for the FPA as of SDK 1.9. Note that, for the FPA
unit, the subfields works well to access CSR fields.

4-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-9

Table 1: Accessing CSR Fields Using Subfields
CSR Field

Name
Access from Simple Executive
typedef (union)For example:
cvmx_fpa_available_t avail;

Field (N is one
of pool 0-7) For

example:
avail.s.que_siz

FPA_CTL_STATUS ENB cvmx_fpa_ctl_status_t s.enb

FPA_FPFn_SIZE FPF_SIZ cvmx_fpa_fpf0_size_t s.fpf_siz

FPA_FPFn_MARKS FPF_RD cvmx_fpa_fpf_marks_t s.fpf_rd

FPA_FPFn_MARKS FPF_WR cvmx_fpa_fpf_marks_t s.fpf_wr

FPA_INT_ENB FED0_SBE cvmx_fpa_int_enb_t s.fed0_sbe

FPA_INT_ENB FED0_DBE cvmx_fpa_int_enb_t s.fed0_dbe

FPA_INT_ENB FED1_SBE cvmx_fpa_int_enb_t s.fed1_sbe

FPA_INT_ENB FED1_DBE cvmx_fpa_int_enb_t s.fed1_dbe

FPA_INT_ENB Qn_UND cvmx_fpa_int_enb_t s.qN_und

FPA_INT_ENB Qn_COFF cvmx_fpa_int_enb_t s.qN_coff

FPA_INT_ENB Qn_PERR cvmx_fpa_int_enb_t s.qN_perr

FPA_INT_SUM FED0_SBE cvmx_fpa_int_sum_t s.fed0_sbe

FPA_INT_SUM FED0_DBE cvmx_fpa_int_sum_t s.fed0_dbe

FPA_INT_SUM FED1_SBE cvmx_fpa_int_sum_t s.fed1_sbe

FPA_INT_SUM FED1_DBE cvmx_fpa_int_sum_t s.fed1_dbe

FPA_INT_SUM Qn_UND cvmx_fpa_int_sum_t s.qN_und

FPA_INT_SUM Qn_COFF cvmx_fpa_int_sum_t s.qN_coff

FPA_INT_SUM Qn_PERR cvmx_fpa_int_sum_t s.qN_perr

FPA_QUEn_PAGES_AVAILABLE QUE_SIZ cvmx_fpa_quex_available_t s.que_siz

FPA_QUEn_PAGE_INDEX PG_NUM cvmx_fpa_quex_page_index_t s.pg_num

FPA_QUE_EXP EXP_INDX cvmx_fpa_que_exp_t s.exp_indx

FPA_QUE_EXP EXP_QUE cvmx_fpa_que_exp_t s.exp_que

FPA_QUE_ACT ACT_INDX cvmx_fpa_que_act_t s.act_indx

FPA_QUE_ACT ACT_QUE cvmx_fpa_que_act_t s.act_que

2.3.1 Accessing CSR Fields Via OCTEON Model-Specific Typedefs
The cvmx_mio_fus_dat3 data structure is a good example of the difference between the
subfields structure and the chip-specific structure: zip_info (in CN63XX) and zip_crip

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

conflict, so the chip-specific data structure must be used to access those fields. No other fields
conflict, so all others are in the subfields.

The cvmx_mio_fus_dat3 data structure (shown in big endian only):
/**
 * cvmx_mio_fus_dat3
 */
union cvmx_mio_fus_dat3
{
 uint64_t u64;
 struct cvmx_mio_fus_dat3_s // the subfields
 {
 uint64_t reserved_58_63 : 6;
 uint64_t pll_ctl : 10;
 uint64_t dfa_info_dte : 3;
 uint64_t dfa_info_clm : 4;
 uint64_t reserved_40_40 : 1;
 uint64_t ema : 2;
 uint64_t efus_lck_rsv : 1;
 uint64_t efus_lck_man : 1;
 uint64_t pll_half_dis : 1;
 uint64_t l2c_crip : 3;
 uint64_t pll_div4 : 1;
 uint64_t reserved_29_30 : 2; // use neither of the conflicted names
 uint64_t bar2_en : 1;
 uint64_t efus_lck : 1;
 uint64_t efus_ign : 1;
 uint64_t nozip : 1;
 uint64_t nodfa_dte : 1;
 uint64_t icache : 24;
 } s;
 struct cvmx_mio_fus_dat3_cn30xx
 {
 uint64_t reserved_32_63 : 32;
 uint64_t pll_div4 : 1;
 uint64_t reserved_29_30 : 2; // no name conflict
 uint64_t bar2_en : 1;
 uint64_t efus_lck : 1;
 uint64_t efus_ign : 1;
 uint64_t nozip : 1;
 uint64_t nodfa_dte : 1;
 uint64_t icache : 24;
 } cn30xx;
 struct cvmx_mio_fus_dat3_cn31xx
 {
 uint64_t reserved_32_63 : 32;
 uint64_t pll_div4 : 1;
 uint64_t zip_crip : 2; // conflicts with zip_info
 uint64_t bar2_en : 1;
 uint64_t efus_lck : 1;
 uint64_t efus_ign : 1;
 uint64_t nozip : 1;
 uint64_t nodfa_dte : 1;
 uint64_t icache : 24;
 } cn31xx;
 struct cvmx_mio_fus_dat3_cn38xx

4-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-11

 {
 uint64_t reserved_31_63 : 33;
 uint64_t zip_crip : 2; // conflicts with zip_info
 uint64_t bar2_en : 1;
 uint64_t efus_lck : 1;
 uint64_t efus_ign : 1;
 uint64_t nozip : 1;
 uint64_t nodfa_dte : 1;
 uint64_t icache : 24;
 } cn38xx;
 struct cvmx_mio_fus_dat3_cn38xx cn50xx;
 struct cvmx_mio_fus_dat3_cn38xx cn52xx;
 struct cvmx_mio_fus_dat3_cn38xx cn56xx;
 struct cvmx_mio_fus_dat3_cn38xx cn58xx;

struct cvmx_mio_fus_dat3_cn63xx
 {
 uint64_t reserved_58_63 : 6;
 uint64_t pll_ctl : 10;
 uint64_t dfa_info_dte : 3;
 uint64_t dfa_info_clm : 4;
 uint64_t reserved_40_40 : 1;
 uint64_t ema : 2;
 uint64_t efus_lck_rsv : 1;
 uint64_t efus_lck_man : 1;
 uint64_t pll_half_dis : 1;
 uint64_t l2c_crip : 3;
 uint64_t reserved_31_31 : 1;
 uint64_t zip_info : 2; // conflicts with zip_crip
 uint64_t bar2_en : 1;
 uint64_t efus_lck : 1;
 uint64_t efus_ign : 1;
 uint64_t nozip : 1;
 uint64_t nodfa_dte : 1;
 uint64_t reserved_0_23 : 24;
 } cn63xx;
};
typedef union cvmx_mio_fus_dat3 cvmx_mio_fus_dat3_t;

The use of the CSR in the octeon_model_get_string_buffer() function illustrates how
common fields are accessed as compared with chip-specific fields. In this example the
cvmx_mio_fus_dat2 union (a different data structure than the one shown above) is alternately
accessed either via the .s or the chip-specific data structure name. (Note that all early-access
version (PASS_N) references have been removed from the data structures shown in this chapter.
See Section 10 – “Pass_N Specific Code”).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

if (fus_dat3.s.nodfa_dte)
 {
 if (fus_dat2.s.nocrypto) // use subfields data structure
 suffix = "CP";
 else
 suffix = "SCP";
 }
<code omitted>
case 4: /* CN57XX, CN56XX, CN55XX, CN54XX */
 if (fus_dat2.cn56xx.raid_en) // use chip-specific data structure
 {
 if (fus3.cn56xx.crip_1024k)
 family = "55";
 else
 family = "57";
 if (fus_dat2.cn56xx.nocrypto)
 suffix = "SP";
 else
 suffix = "SSP";
 }
<code omitted>

2.4 Types of Control and Status Registers (CSRs)
There are two different types of Control and Status Registers (CSRs): those on the I/O Bus and
those on the Register Slave Logic (RSL) bus. The two types of CSRs are clearly marked in Table 2
– “CN58XX Physical Addresses”.

2.4.1 CSRs on the Register Slave Logic (RSL) Bus
RSL stands for "Register Slave Logic". It's a low-bandwidth internal bus bridged from a block
inside the IOB known as RML ("Register Master Logic"). There's an RSL sub-block inside each
block that has RSL CSRs. Because it is a low-bandwidth bus, it is also a slow bus, meaning that
the actual CSR update due to a write can occur a “long time” after the core has issued the store
instruction. When customizing software, after writing to CSRs on the RSL bus, take the special
steps which are explained in Section 4 – “Race Condition Accessing CSRs”. Note that the RSL
bus is not shown in the block diagrams, but it connects the RML block inside the I/O Bridge to the
hardware units which are also connected to the I/O Bus.

2.4.2 CSRs on the I/O Bus
CSRs may also be on the I/O Bus. These CSRs are connected directly to the I/O Bus, and provide
much faster access than RSL CSRs.

The I/O Bus is a non-coherent bus: the ordering and transaction completion rules are much looser
than they are for the Coherent Memory Bus (CMB).

3 Physical Address Map and Device ID (DID)
This section includes a physical address map taken from the CN58XX HRM. This address map
shows the RSL (Register Slave Logic) and I/O Bus CSRs (Configuration and Status Registers), and
the Major DID and Sub-DID. This information is useful when looking into the details of the API.

4-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-13

In particular the DID definitions are not usually visible to the user, but are included here because
they are referenced in IOBDMA operations, as seen in Section 7.2.1 – “Starting the IOBDMA
Operation”.

Caveat: The CN58XX physical address map is included here(Table 2 – “CN58XX Physical
Addresses”) to help explain about RSL and I/O Bus CSRs and DIDs, and is not intended to
be the actual reference used when writing code. For precise and up-to-date information see
the current HRM for the desired OCTEON model. (Search on the string “physical
addresses” in the HRM to locate the table.)

Each physical address is 49 bits long and consists of an I/O bit, Major DID, sub-DID, and offset, as
shown in the next figure.

Figure 1: Physical Address Format

I/O
 B

it

The following table show an example Physical Addresses Map, with the unit’s Major DID and
Sub-Did shown in the columns on the right. Acronyms used in this table and similar tables may be
found in the Glossary chapter.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Table 2: CN58XX Physical Addresses
HW
Unit Physical Addresses Memory or BUS - Only DRAM is Cached Major

DID

Sub
-

DID
 FROM TO

DR0 0x0 0000 0000 0000 0x0 0000 0FFF FFFF DR0 DRAM (first 256 MB of DRAM) - CACHED

BOOT 0x0 0000 1000 0000 0x0 0000 1FFF FFFF Boot Bus (Uncached). Converted to
0x1 0000 1000 0000 - x1 0000 0FFF FFFF. See Note 1. 0x0 0x0

DR2 0x0 0000 2000 0000 0x0 0003 FFFF FFFF DR2 DRAM (add DRAM memory above the first 512
MB) - CACHED

DR1 0x0 0004 1000 0000 0x0 0004 1FFF FFFF DR1 DRAM (second 256 MB of DRAM) - CACHED

BOOT 0x1 0000 0000 0000 0x1 0000 FFFF FFFF
Boot Bus (Uncached) (converted from
0x0 0000 1000 0000 - 0x0 0000 1FFF FFFF). See Note
2.

0x0 0

CSR 0x1 0700 0000 0000 0x1 0700 0000 08FF CIU and GPIO I/O Bus type CSRs 0x3 0

CSR 0x1 1800 0000 0000 0x1 1800 0000 1FFF MIO BOOT, LED, FUS, TWSI, UART0, UART1, SMI
RSL type CSRs 0x3 0

CSR 0x1 1800 0800 0000 0x1 1800 0800 1FFF GMX0 RSL type CSRs 0x3 0
CSR 0x1 1800 1000 0000 0x1 1800 1000 1FFF GMX1 RSL type CSRs 0x3 0
CSR 0x1 1800 2000 0000 0x1 1800 2000 001F KEY RSL type CSRs 0x3 0
CSR 0x1 1800 2800 0000 0x1 1800 2800 01FF FPA RSL type CSRs 0x3 0
CSR 0x1 1800 3000 0000 0x1 1800 3000 07FF DFA RSL type CSRs 0x3 0
CSR 0x1 1800 3800 0000 0x1 1800 3800 00FF ZIP RSL type CSRs 0x3 0
CSR 0x1 1800 4000 0000 0x1 1800 4000 000F RNM RSL type CSRs 0x3 0
CSR 0x1 1800 5000 0000 0x1 1800 5000 1FFF PKO RSL type CSRs 0x3 0
CSR 0x1 1800 5800 0000 0x1 1800 5800 1FFF TIM RSL type CSRs 0x3 0
CSR 0x1 1800 8000 0000 0x1 1800 8000 07FF L2C RSL type CSRs 0x3 0
CSR 0x1 1800 8800 0000 0x1 1800 8800 007F LMC RSL type CSRs 0x3 0
CSR 0x1 1800 9000 0000 0x1 1800 9000 07FF SPX0, SRX0, and STX0 RSL type CSRs 0x3 0
CSR 0x1 1800 9800 0000 0x1 1800 9800 07FF SPX1, SRX1, and STX1 RSL type CSRs 0x3 0
CSR 0x1 1800 A000 0000 0x1 1800 A000 1FFF PIP RSL type CSRs 0x3 0
CSR 0x1 1800 A800 0000 0x1 1800 A800 00FF TRA RSL type CSRs 0x3 0
CSR 0x1 1800 B000 0000 0x1 1800 B000 03FF ASX0 RSL type CSRs 0x3 0
CSR 0x1 1800 B800 0000 0x1 1800 B800 03FF ASX1 RSL type CSRs 0x3 0
CSR 0x1 1800 F000 0000 0x1 1800 F000 07FF IOB RSL type CSRs 0x3 0
PCI 0x1 1900 0000 0000 0x1 190F FFFF FFFF PCI Bus Config/IACK/Special space (sub-DID 1) 0x3 1
PCI 0x1 1A00 0000 0000 0x1 1A0F FFFF FFFF PCI Bus IO space (sub-DID 2) 0x3 2
PCI 0x1 1B00 0000 0000 0x1 1B0F FFFF FFFF PCI Bus Memory space (sub-DID 3) 0x3 3
PCI 0x1 1C00 0000 0000 0x1 1C0F FFFF FFFF PCI Bus Memory space (sub-DID 4) 0x3 4
PCI 0x1 1D00 0000 0000 0x1 1D0F FFFF FFFF PCI Bus Memory space (sub-DID 5) 0x3 5
PCI 0x1 1E00 0000 0000 0x1 1E0F FFFF FFFF PCI Bus Memory space (sub-DID 6) 0x3 6
PCI 0x1 1F00 0000 0000 0x1 1F0F FFFF FFFF NPI I/O Bus type CSRs, doorbells (sub-DID 7) 0x3 7
KEY 0x1 2000 0000 0000 0x1 2000 0000 1FFF KEY Memory operation
FPA 0x1 2800 0000 0000 0x1 280F FFFF FFFF FPA Pool 0 Allocate/Free operations 0x5 0
FPA 0x1 2900 0000 0000 0x1 290F FFFF FFFF FPA Pool 1 Allocate/Free operations 0x5 1
FPA 0x1 2A00 0000 0000 0x1 2A0F FFFF FFFF FPA Pool 2 Allocate/Free operations 0x5 2
FPA 0x1 2B00 0000 0000 0x1 2B0F FFFF FFFF FPA Pool 3 Allocate/Free operations 0x5 3
FPA 0x1 2C00 0000 0000 0x1 2C0F FFFF FFFF FPA Pool 4 Allocate/Free operations 0x5 4
FPA 0x1 2D00 0000 0000 0x1 2D0F FFFF FFFF FPA Pool 5 Allocate/Free operations 0x5 5
FPA 0x1 2E00 0000 0000 0x1 2E0F FFFF FFFF FPA Pool 6 Allocate/Free operations 0x5 6
FPA 0x1 2F00 0000 0000 0x1 2F0F FFFF FFFF FPA Pool 7 Allocate/Free operations 0x5 7
DFA 0x1 3700 0000 0000 0x1 3707 FFFF FFFF DFA I/O Bus type CSRs and operations 0x6 7
ZIP 0x1 3800 0000 0000 0x1 3800 0000 0007 ZIP doorbell store operations 0x7 0
RNG 0x1 4000 0000 0000 0x1 4000 0000 07FF RNG Load/IOBDMA operations 0x8 0

4-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-15

HW
Unit Physical Addresses Memory or BUS - Only DRAM is Cached Major

DID

Sub
-

DID
CSR 0x1 4F00 0000 0000 0x1 4F00 0000 07FF IPD I/O Bus type CSRs
PKO 0x1 5200 0000 0000 0x1 5200 0003 FFFF PKO doorbell store operations 0xA 2

SSO 0x1 6000 0000 0000 0x1 600F FFFF FFFF SSO getwork loads/IODBMAs, store work operations 0xC 0

SSO 0x1 6100 0000 0000 0x1 610F FFFF FFFF SSO status loads, store work operations (sub-DID 1) 0xC 1
SSO 0x1 6200 0000 0000 0x1 6200 0000 FFFF SSO memory loads (sub-DID 2) 0xC 2
SSO 0x1 6300 0000 0000 0x1 630F FFFF FFFF SSO index loads, store operations (sub-DID 3) 0xC 3
SSO 0x1 6300 0000 0000 0x1 6300 0000 0007 SSO NullRd loads (sub-DID 4) 0xC 4
CSR 0x1 6700 0000 0000 0x1 6700 0000 03FF SSO I/O Bus type CSRs
FAU 0x1 F000 0000 0000 0x1 F00F FFFF FFFF FAU Operations 0x1E 0

Notes
Note1: The first one is primarily for booting (0x0 0000 1000 0000 - 0x0 0000 1FFF FFFF), and is required by the MIPS specification, which
says that execution shall start at 0xBFC00000 coming out of reset. But it's teeny. The rest of the boot bus is reachable via the I/O space (0x1
0000 1000 0000 - x1 0000 0FFF FFFF). It's still uncached.

The following table shows the conversion between DID and physical address bits (address bits are
shown in binary and in hex).

Table 3: Converting a DID and Sub-DID into a Physical Address (CN58XX
Example)

H
A

R
D

W
A

R
E

 U
N

IT

M
A

JO
R

 D
ID

 (D
ecim

al)

M
A

JO
R

 D
ID

 (H
E

X
)

M
A

JO
R

 D
ID

 (5 bits:
<47:43>) (binary)

SU
B

-D
ID

 (3 bits: <42:40>)

I/O
 B

it (bit 48)

M
ajor-D

ID

M
ajor-D

ID

M
ajor-D

ID

M
ajor-D

ID

M
ajor-D

ID

Sub-D
ID

 (bit 42)

Sub-D
ID

 (bit 41)

Sub-D
ID

 (bit 40)

H
igh 9 bits of
physical

A
ddress (“X

” m
eans

0 or 1)

Device Addressed

Boot Bus 0 0x0 00000 0 0,1 0 0 0 0 0 0 0 0 0xX_00XX Boot bus uncached I/O space

PCI / PCI-X 3 0x3 00011 0 1 0 0 0 1 1 0 0 0 0x1_18XX RML CSRs

PCI / PCI-X 3 0x3 00011 1 1 0 0 0 1 1 0 0 1 0x1_19XX PCI Bus config/IACK/Special
Space

PCI / PCI-X 3 0x3 00011 2 1 0 0 0 1 1 0 1 0 0x1_1AXX PCI Bus I/O space

PCI / PCI-X 3 0x3 00011 3 1 0 0 0 1 1 0 1 1 0x1_1BXX PCI Bus Memory Space

PCI / PCI-X 3 0x3 00011 4 1 0 0 0 1 1 1 0 0 0x1_1CXX PCI Bus Memory Space

PCI / PCI-X 3 0x3 00011 5 1 0 0 0 1 1 1 0 1 0x1_1DXX PCI Bus Memory Space

PCI / PCI-X 3 0x3 00011 6 1 0 0 0 1 1 1 1 0 0x1_1EXX PCI Bus Memory Space

PCI / PCI-X 3 0x3 00011 7 1 0 0 0 1 1 1 1 1 0x1_1EXX NPI I/O Bus type CSRs, doorbells

FPA 5 0x5 00101 0 1 0 0 1 0 1 0 0 0 0x1_28XX FPA Pool 0

FPA 5 0x5 00101 1 1 0 0 1 0 1 0 0 1 0x1_29XX FPA Pool 1

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

H
A

R
D

W
A

R
E

 U
N

IT

M
A

JO
R

 D
ID

 (D
ecim

al)

M
A

JO
R

 D
ID

 (H
E

X
)

M
A

JO
R

 D
ID

 (5 bits:
<47:43>) (binary)

SU
B

-D
ID

 (3 bits: <42:40>)

I/O
 B

it (bit 48)

M
ajor-D

ID

M
ajor-D

ID

M
ajor-D

ID

M
ajor-D

ID

M
ajor-D

ID

Sub-D
ID

 (bit 42)

Sub-D
ID

 (bit 41)

Sub-D
ID

 (bit 40)

H
igh 9 bits of
physical

A
ddress (“X

” m
eans

0 or 1)

Device Addressed

FPA 5 0x5 00101 2 1 0 0 1 0 1 0 1 0 0x1_2AXX FPA Pool 2

FPA 5 0x5 00101 3 1 0 0 1 0 1 0 1 1 0x1_2BXX FPA Pool 3

FPA 5 0x5 00101 4 1 0 0 1 0 1 1 0 0 0x1_2CXX FPA Pool 4

FPA 5 0x5 00101 5 1 0 0 1 0 1 1 0 1 0x1_2DXX FPA Pool 5

FPA 5 0x5 00101 6 1 0 0 1 0 1 1 1 0 0x1_2EXX FPA Pool 6

FPA 5 0x5 00101 7 1 0 0 1 0 1 1 1 1 0x1_2FXX FPA Pool 7

DFA 6 0x6 00110 7 1 0 0 1 1 0 1 1 1 0x1_37XX DFA I/O Bus type CSRs and
operations.

ZIP 7 0x7 00111 0 1 0 0 1 1 1 0 0 0 0x1_38XX ZIP doorbell store operations.

RNG /
RNM 8 0x8 01000 0 1 0 1 0 0 0 0 0 0 0x1_40XX RNG Load/IOBDMA operations

PKO 10 0xA 01010 2 1 0 1 0 1 0 0 1 0 0x1_52XX PKO doorbell store operations

SSO
(POW) 12 0xC 01100 0 1 0 1 1 0 0 0 0 0 0x1_60XX getwork loads/IOBDMAs, store

work operations

SSO
(POW) 12 0xC 01100 1 1 0 1 1 0 0 0 0 1 0x1_61XX status loads, store work operations

SSO
(POW) 12 0xC 01100 2 1 0 1 1 0 0 0 1 0 0x1_62XX memory loads

SSO
(POW) 12 0xC 01100 3 1 0 1 1 0 0 0 1 1 0x1_63XX Index loads, store operations

SSO
(POW) 12 0xC 01100 4 1 0 1 1 0 0 1 0 0 0x1_64XX NullRd loads

FAU 30 0x1E 11110 0 1 1 1 1 1 0 0 0 0 0x1_F0XX FAU Accesses

4 Race Condition Accessing CSRs
If the application does not use the cvmx_csr_write() function provided in the SDK, it is
important to be aware of this race condition and design code accordingly.

Race conditions can happen if a RSL CSR write (for example, to configure the FPA) has not
completed before the unit is used (for example, populating a FPA pool).

To ensure an RSL CSR write has completed, read an RSL CSR to guarantee that the write has
completed, otherwise a race condition may occur. (The cvmx_write_csr() function performs

4-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-17

the fast and harmless CVMX_MIO_BOOT_BIST_STAT RSL CSR read to ensure the CSR write
has completed.)

This section contains the technical details of the race condition.

This problem is especially applicable to the FPA unit: the CSR initialization must complete before
the FPA can be used. After CSR initialization, the allocated memory buffers are freed to the FPA
to populate the FPA buffer pool. The CSR initialization write travels down a different bus (RSL
bus) than the free buffer write (I/O Bus). If the CSR write has not completed before the buffers are
freed, a race condition may occur. In particular, if the buffers are freed to the FPA before the FPA
is enabled, the FPA will be incorrectly initialized.

4.1 Technical Details of the Race Condition
Details:

1. Most configuration CSRs are RSL type CSRs.
2. The I/O Bridge controls access to both the RSL Bus and the I/O Bus.
3. Some CSR reads and writes, such as unit initialization, go over the RSL Bus.
4. The requests to allocate and free FPA buffers go over the I/O Bus.
5. The RSL Bus is much slower than the I/O Bus.
6. This can create a race condition which is particularly problematic for the FPA.
7. Because of this, after initializing the FPA RSL CSRs, verify that the RSL CSR write

has completed before freeing any buffers to the FPA.
8. To verify that all the RSL CSR writes have completed, after sending all the “writes” to

initialize the RSL CSRs, send a “read” to read one of the RSL CSRs. (Note: the API
function cvmx_write_csr() will handle this correctly.)

9. Otherwise the buffer_free transaction used to populate the buffer pool may arrive
at the FPA before the CSRs are initialized, including the CSR write to enable the FPA.
The data in the FPA could then be incorrect.

In the figure below, the buffer_free transaction arrives at the FPA before the CSRs are
initialized. In this incorrect code, the software did not wait for the initialization CSR write
transaction to complete before populating the FPA pool by freeing buffers to the pool.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Figure 2: Example: RSL Bus vs. I/O Bus Race Condition
RSL Bus and Race Condition: Incorrect Code

IOB:
I/O Bridge

RSL Request FIFO in IOB’s RML Sub-block: Requests to
read or write RSL Registers (For example: Initializing the

FPA Registers)

RSL
Write
#1

RSL
Write
#2

RSL
Write
#3

RSL
Write
#4

RSL Registers in
Hardware Unit (For
example, the FPA)

Slow RSL Bus

I/O (NCB) Bus Write Path (For Example: the FPA Buffer
free, or buffer alloc operations)

Buffer
Free
#1

Buffer
Free
#2

Buffer
Free
#3

Buffer
Free
#4

Fast I/O (NCB) Bus

Fast I/O (NCB) Bus

Fast I/O (NCB) Bus

FREE ARRIVES
BEFORE REGISTERS
ARE INITIALIZED!!

4-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-19

In correct code, all the initialization CSRs are written before freeing any buffers to the pools. The
figure below shows the read request following all the write requests. When the read request
returns, all the prior writes have completed. THEN it is okay to populate the pools by freeing the
buffers to the FPA.

Figure 3: Example: How to Avoid the RSL Bus vs. I/O Bus Race Condition
RSL Bus and Race Condition: Correct Code

IOB:
I/O Bridge

RSL Bus Request Buffer in IOB’s RML Area: Requests to read or
write RSL Registers (For example: Configuring the FPA Registers)

RSL
Write
#1

RSL
Write
#2

RSL
Write
#3

RSL
Write
#4

RSL
READ

#1

RSL Registers in
Hardware Unit

Slow RSL Bus

The custom software waits for the register read to return with
the data. The read is last in the line, so the register writes
finish first. When the read returns, you know for sure the
register writes have completed. THEN it is ok to write to the
hardware unit on the faster I/O Bus.

READ GUARANTEES
WRITES HAVE
COMPLETED

4.2 Avoiding the Race Condition
To avoid the race condition, either read a RSL CSR after writing a RSL CSR, or use the SDK
function cvmx_write_csr() (executive/cvmx-access-native.h):

static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
{
 cvmx_write64_uint64(csr_addr, val);

 /* Perform an immediate read after every write to an RSL CSR to force
 the write to complete. It doesn't matter what RSL read we do, so we
 choose CVMX_MIO_BOOT_BIST_STAT because it is fast and harmless */
 if ((csr_addr >> 40) == (0x800118)) // See the note in the text below
 cvmx_read64_uint64(CVMX_MIO_BOOT_BIST_STAT);
}

Note that this code is checking to see if the write is to an RSL CSR. The RSL CSRs contain the
physical address pattern 0x1 1800 0000 0000 (bits <48:0>) (see Table 2 – “CN58XX Physical
Addresses”). When addressing an RSL CSR using an xphys virtual address, the bits <63:49> are
0x800, resulting in an address of 0x8001 1800 0000 0000. Thus the test to see if the

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

address is an RSL CSR address is to look for the distinctive 0x800118 pattern in address bits
<63:40>. (Note that the I/O space is selected if bit 48 of the physical address is “1”. Physical
memory is selected if bit 48 of the physical address is “0”.) See the Software Overview chapter for
more information on virtual and physical memory addressing.

5 Race Condition if buffer_free before Buffer Writes Complete
A syncws (CVMX_SYNCWS) or syncw (CVMX_SYNCW) instruction should be issued before
freeing an FPA buffer or a race condition may occur. This section contains technical details about
the race condition which can occur if the syncw/syncws is omitted. The API function
cvmx_fpa_free() automatically manages this potential race condition.

This condition occurred in the following real-world example, and is why the cvmx_fpa_free()
function automatically handles this potential race condition:

1. Create a new packet with a bunch of writes
2. Attempt to allocate a PKO command buffer, it fails
3. Free the Packet Data buffer since we can't send it
4. IPD allocates the same Packet Data buffer
5. Original Packets write complete

5.1 Technical Details about the Race Condition
When software writes to a FPA-managed buffer (i.e. a store transaction to a L2/DRAM location),
the store transaction goes initially into the core’s Write Buffer, where it may be temporarily
delayed before being flushed to the CMB on its way to L2/DRAM.

When software frees a buffer, the buffer_free transaction is a store to the I/O Bus. The I/O
bus store goes initially into the core’s Write Buffer, but it is not delayed there. It goes immediately
out to the I/O Bus.

The difference in how these two store transactions are handled by the Write Buffer logic will cause
the buffer_free transaction to be committed to the CMB before the store transaction to the
buffer has been flushed to L2/DRAM.

The buffer can then potentially be re-allocated, and the new owner can write to it. Then, later, the
stale store completes, overwriting the new owner’s data.

This specific race condition problem only applies to store transactions from the cores. Other
hardware units, such as the IPD (which writes to Packet Data buffers), do not use a Write Buffer to
buffer store transactions.

4-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-21

Figure 4: Write to L2/DRAM versus Write to I/O Space (CSRs)

CORE

Writes to DRAM are buffered in the core’s Write Buffer. Writes to I/O Space, such as
the write to free the buffer are not stored in the core’s Write Buffer.

The write operaton to a buffer is a write to L2/DRAM, and is buffered in the core’s
Write Buffer. The buffer_free operation is a write transaction to I/O Space. Thus
the write transaction to free the buffer will complete before the write to the buffer.

The buffer can then be re-allocated, the new owner can write to it, then the stale
write completes, overwriting the new owner’s data.

Write Buffer

D
D

R
 S

to
re

 (W
rit

e
to

B

uf
fe

r)
 –

S
av

ed
 in

W

rit
e

B
uf

fe
r

I/O
 S

to
re

 (F
re

e
B

uf
fe

r)
 –

W
rit

es

Im
m

ed
ia

te
ly

Write to L2/DRAM versus Write to I/O Space (CSRs)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Figure 5: Ladder Diagram: Write to Memory vs. Write to I/O Space
TI

M
E

DATA STORE (write)

I/O STORE (Free Buffer A)

I/O STORE(Freeing Buffer A)

REQUEST BUFFER

BUFFER A RETURNED

WRITE TO BUFFER A

WRITE TOBUFFER A

WRITE TO BUFFER A

DATA STORE to BUFFER A

(FROM THE CORE’S WRITE BUFFER)

5.2 Avoiding the Race Condition
To avoid this race condition, either use the SDK command cvmx_fpa_free() instead of the
cvmx_fpa_free_nosync() command, or the syncw/syncws instruction before freeing the
buffer.

4-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-23

The CVMX_SYNCWS used in the SDK function cvmx_fpa_free() is shown in the following
code:

static inline void cvmx_fpa_free(void *ptr, uint64_t pool, uint64_t
num_cache_lines)
{
 cvmx_addr_t newptr;

 newptr.u64 = cvmx_ptr_to_phys(ptr);
 newptr.sfilldidspace.didspace =
 CVMX_ADDR_DIDSPACE(CVMX_FULL_DID(CVMX_OCT_DID_FPA,pool));

 /* Make sure that any previous stores to memory go out before we */
 /* free this buffer. This also serves as a memory barrier to prevent */
 /* GCC from reordering operations to after the free. */
 CVMX_SYNCWS;

 /* num_cache_lines is the number of DWB cache lines */
 cvmx_write_io(newptr.u64, num_cache_lines);
}

6 Don’t Write Back (DWB) Operations
Most users won’t need the information in this section: they will meet their performance needs with
the default values set in the API. The information in this section is for users who need optimum
performance and are tuning their system for a specific application.

The Don’t Write Back (DWB) operation is used to clear the dirty bit in a L2 cache line, so that the
cache line contents are not flushed to DRAM. (See the Software Overview chapter in the
“Caching” section for information about caching.)

6.1 DWB Operation Effects
When a buffer is accessed, its contents are loaded from DRAM to the shared L2 cache (if it is not
already in L2 cache) and then into the core-local L1 Dcache. A write to the buffer causes the
corresponding L2 cache line to be marked dirty (the dirty bit is set). The dirty bit tells the L2 cache
controller to write the cache line back to DRAM before the cache line is reused (which can be at
any time, depending on memory access requests from other cores and accelerators).

The Don’t Write Back (DWB) operation tells the L2 Cache Controller to clear the dirty bit in the
corresponding L2 cache line, so that the data in the cache line is not written back to DRAM. For
example, the DWB operation is used to discard the data in Packet Data buffers after the packet has
been transmitted because it is okay to discard data which is no longer needed. This can improve
performance by avoiding unnecessary operations.

The DWB command is most often used when freeing a FPA-managed buffer (such as a Packet
Data buffer). Hardware units such as the PKO can be configured to automatically issue the DWB
commands when freeing FPA-managed buffers.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

DWB command can be initiated using:
1. The buffer_free operation, which includes the number of 128-byte cache lines to not

write back). The buffer_free operation can be issued by:
o software running on the core (via cvmx_fpa_free())
o the DFA hardware unit (for Command buffers)
o the PKO hardware unit (for Packet Data buffers and PKO Command buffers)
o the TIMER hardware unit (for Timer Chunk buffers)
o the PCI/PCIe DMA Engines (for Command buffers)
o the RAID hardware unit (for Command buffers)
o the ZIP hardware unit (for Command buffers)

2. The pref 29 instruction (CVMX_DONT_WRITE_BACK), issued by a core

6.2 The buffer_free Operation and DWB
The I/O Bridge contains a DWB Engine which intercepts buffer_free operations destined for
the FPA. If the buffer_free operation specifies a non-zero number of cache lines to not write
back, then the DWB Engine issues these commands to the L2 cache controller. The L2 cache
controller clears the dirty bit in the selected cache line. After issuing the DWB commands, the
DWB Engine forwards the buffer_free operation to the FPA. (See the HRM (search on
“Don’t-Write-Back Engine” (note the hyphens)) for details on the I/O Bridge’s DWB Engine.)

Note that specifying the number of cached lines to DWB does not guarantee that the dirty bits for
those cache lines will be cleared:

• The DWB Engine can only buffer a limited number of buffer_free operations. If there
is no more space inside the DWB engine, the buffer_free operation is sent to the FPA
without the DWB commands being issued.

• The exact order of the L2 cache-line write and the “clear dirty bit” operations will depend
on system timing. If the DWB command arrives after the cache line is flushed, the DWB
command will be discarded (hardware will ensure that the DWB command will not affect
the cache line after the cache line is flushed, even if it is reused).

See Figure 7 – “Ladder Diagram: buffer_free and DWB” for a ladder diagram showing DWB
operations.

6.2.1 The buffer_free Operation Issued by Cores
Software can use the cvmx_fpa_free() function to free a buffer to the specified FPA pool.
The third argument is the number of cache lines in the buffer to not write back. In the example
below DWB is set to one cache line:

cvmx_fpa_free(buf, CVMX_FPA_PACKET_POOL, 1);

4-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-25

Performance Tips:
• Most applications should not use DWB from software running on the core to avoid extra

DWB transactions on the bus, but a small percentage gain performance by using it. To
avoid using DWB set the DWB argument to cvmx_fpa_free() to zero.

• If buffers are not modified, do not specify DWB for any cache lines: there is no need to
send DWB commands to clear a dirty bit which is not set.

• Various configurations can be tested to determine the best configuration for the application
by conducting performance testing with the anticipated traffic load.

6.2.2 The buffer_free Operation Issued by Other Hardware Units
Hardware Units can be configured (via a CSR field) to specify the number of cache lines to DWB
when executing the buffer_free operation. Simple Executive software configures the DWB
variable for each hardware unit to a default value which provide the best system performance for
most applications.

For example, the PKO automatically frees PKO Command Buffers when it has processed all the
commands contained in the buffer, and may optionally free the Packet Data Buffers when they are
no longer needed. Whether the PKO specifies DWB when freeing these buffers is controlled by
the PKO CSR field PKO_REG_FLAGS[ENA_DWB]. When this field is set to 1, the PKO will
issue DWB command when freeing the buffers. Simple Executive sets this field to 1 by default:

void cvmx_pko_enable(void)
{
 <code omitted>
 flags.s.ena_dwb = 1;
 <code omitted>
}

Performance Tips:

• Enabling the hardware units other than the cores to use DWB is strongly recommended: it
ensures that DRAM bandwidth is not wasted writing discarded data from L2 cache to
memory, and frees the L2 cache line for immediate reuse. For the most commonly used
buffer types, the API will set the DWB to recommended values. Modifying the values from
the default may impact system performance and requires the application developer to have
extensive experience programming OCTEON applications.

• Various configurations can be tested to determine the best configuration for the application
by conducting performance testing with the anticipated traffic load.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Figure 6: Don’t Write Back Commands from IOB

L2 Cache Controller (L2C)

L2 Cache
Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

DDR Buffer
(DRAM)

DRAM Controller
(LMC)

DWB Commands from DWB Engine In IOB

IOB:
I/O Bridge

Don’t Write Back (DWB)
Engine

NO: DON’T
WRITE DATA

BACK TO
DRAM

C
M

B

The DWB commands are
sent on the CMB from
the IOB to the L2 Cache
Controller. Cache lines
highlighted in green have
been marked “Don’t
Write Back” by having
their dirty bit cleared.

Cl
ea
r
Di
rt
y
Bi
t

Cl
ea
r
Di
rt
y
Bi
t

Cl
ea
r
Di
rt
y
Bi
t

CORE

6.3 The pref Instruction and DWB
A core can also issue a DWB command to the L2 Cache Controller by executing the Cavium
Networks-specific pref 29 (prefetch) instruction. This instruction does not perform the normal
prefetch action of reading data from DRAM to cache, but instead causes the L2 Cache Controller

4-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-27

to clear the dirty bit for the targeted cache block (only one cache block). The Simple Executive
define CMVX_DONT_WRITE_BACK is used to issue this instruction.

Performance Tips:

• This instruction generally does not improve system performance because it adds
transactions to the CMB, unnecessarily offloading the bus from L2 to DRAM.

• When using the pref instruction to issue DWB commands from software, only issue DWB
instructions for cache lines which are dirty. (If the cache line has not been written to (is not
dirty), then no DWB instruction is needed to clear the dirty bit.) For instance, if the buffer
is four cache lines in size (512 bytes), but only the first two cache lines (256 bytes) are
dirty, then only two pref 29 instructions are needed, not four. This may improve system
performance by limiting the number of DWB commands sent.

• If buffers are not modified, do not specify DWB for any cache lines: there is no need to
send DWB commands to clear a dirty bit which is not set.

• Various configurations can be tested to determine the best configuration for the application
by conducting performance testing with the anticipated traffic load.

For details on the Cavium Networks-specific pref (prefetch) instruction, see the HRM in the
section on “CPU Load, Store, Memory, and Control Instructions”. Also see the Essential Topics
chapter for an example of using a similar instruction, the pref 0 (CVMX_PREFETCH)
instruction, to load data from DRAM to both L1 Dcache and L2 cache. The pref instruction will
convert the virtual address into a physical address (the instruction description in the HRM does into
detail).

6.4 DWB and the syncws Instruction
The following ladder diagram shows how DWB can be used to prevent writes from being flushed
to DRAM:

• The core writes to the buffer
• The core issues a syncws instruction causing writes which are buffered in the Write

Buffer to flush to L2 cache
• The core performs the buffer_free operation, specifying the number of cache lines to

DWB
• The I/O Bridges DWB Engine intercepts the buffer_free operation, and issues DWB

commands to the L2 Cache Controller, then forwards the buffer_free operation to the
FPA

• The DWB commands clear each L2 cache line’s dirty bit so that the buffer contents are not
written from L2 cache to DRAM

(Note that issuing DWB commands does not guarantee that the cache line will not be flushed. The
exact system timing may result in the cache line being flushed before the DWB commands arrive.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Figure 7: Ladder Diagram: buffer_free and DWB

SYNCWS will
guarantee

writes are not
stuck in Core’s

Write Buffer

TI
M

E

Core Write
Buffer

IOB
DWB

Engine FPA L2
Cache

DATA STORE (write)

I/O STORE (Free Buffer)

I/O Store (Free Buffer)

WRITE TO BUFFER

SYNCWS

DDR Buffer
(DRAM)

DWB (clear dirty bit)
DWB (clear dirty bit)
DWB (clear dirty bit)

I/O Store (Free Buffer)

DWB will prevent
a write from L2

Cache to DRAM
for specified
cache lines.

Buffer Free and DWB Ladder Diagram

6.5 DWB and Buffer Alignment and Size
This issue does not usually apply because users use the SDK APIs to allocate buffers. This
information is provided for users who are creating a custom API.

If the SDK is not used to allocate buffers, and the user did not take care to allocate a buffer which
is aligned on cache-line size and also a multiple of cache-line size, then problems can occur when
DWB is used. DWB used with the buffer_free operation is specified in 128-byte cache lines,
and will clear the dirty bit on an entire cache line in L2 cache. If non-buffer data (other data) is
sharing the cache line with the buffer, and the other data is dirty, the other data will not be flushed
to DRAM because the dirty bit for the entire cache line was cleared by the DWB operation.

4-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-29

Figure 8: DWB and Buffer Alignment and Size
DWB is one of the Reasons Why The Buffer Must be a Aligned on the 128-Byte Boundary,

and a Multiple of Cache-Line Size

DWB instructions affect an entire cache line, so buffers must be cache-line aligned and
multiples of cache line size. Otherwise, other data might share the cache line.

The other data (data not in the buffer) which shares the cache line will not be flushed to
DRAM if the dirty bit for the entire cache line is cleared, leading to data corruption.

L2 CacheByte
127

Byte
0

Other
Data Other Data

(One 128-Byte L2 Cache Line

0

Dirty Bit
Cleared

Buffer is not aligned and not a multiple of cache-line
size

Other Data is not flushed to DRAM because the dirty bit is cleared

The FPA chapter and PIP/IPD chapters provide other reasons why the buffer must be 128-byte
aligned and a multiple of cache line size.

7 Scratchpad and IOBDMA Details
See the Essential Topics chapter for an introduction to the scratchpad and IOBDMA. This section
provides more information for readers who need technical details. (The Cavium Networks-specific
CVMSEG segment, scratchpad memory, and IOBDMA operations were first introduced in the
Software Overview chapter, with an emphasis on their place in the virtual memory map.)

The Simple Executive function cvmx_send_single() will initiate an IOBDMA operation.
The I/O Bridge will DMA the result of the IOBDMA operation from the selected hardware source
(such as the FPA unit) to the selected core-specific scratchpad area (which was allocated via the
configuration utility). (Note that specifying an incorrect target scratchpad area address in the
command may corrupt Dcache.)

IOBDMA operations must always target a scratchpad address which is 64-bit (8 byte) aligned, so
the user can only define 16 scratchpad areas used for IOBDMA per cache line.

The scratchpad is byte addressable by the cores (for either read or write).

See Section 11 – “Access to CSRs and Memory via xkphys, and CVMSEG” for more information.

7.1 Scratchpad Access: CVMSEG LM and CVMSEG IO
Scratchpad memory is accessed via the memory segment cvmseg.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

The special cvmseg memory consists of two segments:
• CVMSEG LM (“Local Memory”, the scratchpad)
• CVMSEG IO (a store instruction to this address initiates an IOBDMA operation)

CVMSEG IO has only one valid address: 0xFFFF FFFF FFFF A200. A store instruction to
this address starts an IOBDMA operation.

In the SDK, the function cvmx_send_single() (cvmx-access-native.h) is used to
initiate an IOBDMA operation:

static inline void cvmx_send_single(uint64_t data)
{
 // set CVMX_IOBDMA_SENDSINGLE to the address of CVMSEG IO
 const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;

 // write the IOBDMA command to CVMSEG IO
 cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
}

4-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-31

Figure 9: CVMSEG and 64-bit Virtual Memory Map

First Cache Line

Second Cache Line

kseg3

SE-S 64-Bit Virtual Address Space (not drawn to scale)
(Only the relevant subset of the virtual memory map is shown.)

0xFFFF FFFF FFFF BFFF

SE-S 64-Bit Virtual Memory Map Showing Only CVMSEG

CVMSEG IO
(only valid address =

0xFFFF FFFF FFFF A200)

CVMSEG LM
(Allocated from Dcache

memory. In this example, only
2 cache lines are allocated for

scratchpad.)

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

If CvmMemCtl[CVMK/S/U] is set,
loads and stores to this address
range are treated specially by the
cnMIPS cores.

CVMX_SCRATCH_BASE

The remainder of the scratchpad (if
any is allocated) may be used by
software, but this is rarely useful.

CVMSEG LM memory is allocated from Dcache, and only contains as many cache lines as were
allocated. Typically 2-4 cache lines are allocated.

Limiting the number of lines allocated for scratchpad will conserve cache lines for Dcache use.

IOBDMAs are limited to 16 cache lines (specified by the 13-bit scraddr field in the IOBDMA
operation.

If an illegal address is provided in an IOBDMA instruction, or the requested number of bytes will
exceed the allocated cache lines for the scratchpad, but is within the range of CVMSEG LM in the
virtual address map, then the adjacent Dcache memory may be overwritten. (An address error will
occur, but stores to these illegal addresses may not be stopped by the hardware, so they may
corrupt the Dcache.)

Legal CVMSEG LM addresses start at virtual address 0xFFFF FFFF FFFF 8000 and may
increase up to 0xFFFF FFFF FFFF9AF, depending on the number of cache lines allocated in
CvmMemCtl[LMEMSZ]. References above the range allocated by CvmMemCtl[LMEMSZ] (but
at 0xFFFF FFFF FFFF 9FFF or below) cause an address error, but stores to these illegal
addresses may not be stopped by the hardware, so can cause Dcache corruption.

See Section 11 – “Access to CSRs and Memory via xkphys, and CVMSEG” for more information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

The IOBDMA instruction includes the CVMSEG LM offset (scraddr) where the result of the
IOBDMA operation should be stored. The format of the result is shown below.

Figure 10: IOBDMA Operation (Store Data) Format
IOBDMA Operation: Store Data Format

scraddr: bits 3-10 of the scratchpad address where the core puts the result of the IOBDMA
operation
len: the number of 64-bits words in the result. The results are placed sequentially in
CVMSEG LM from the starting address.
Major DID: (Major Device ID) – Directs the request to the correct hardware block (as in
physical addresses)
Sub DID: Directs the request within the hardware block selected by Major DID
offset: Interpreted by the hardware on the I/O bus in the same way as a normal physical
address.

Hardware Constraints:
len must not be 0
If len is 2 or 3, then scraddr<1:0> must not be 3
If len is >= 4, then scraddr<0> must be 0

63 0

M
aj

or
 D

ID

(5
 b

its
)

len
(8 bits)

scraddr
(8 bits)

(4
 b

its
)

Su
b

D
ID

(3

 b
its

)

offset
(36 bits)

3539424755 4856

4-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-33

Figure 11: Scratchpad Address Calculation for IOBDMA Operation
Scratchpad Address Calculation for IOBDMA Operation

Since all IOBDMA operations must be 64-byte aligned, the low 3
bits are always 0.

The 8-bit scraddr field is provided in the IOBDMA operation
instruction, and is used select the 64-bit aligned address within
the 2048-byte block selected by IOBDMASCRMSB (16 128-byte
cache lines).

IOBDMASCRMSB (default=0) is provided by the
CvmMemCtl[IOBDMASCRMSB] register field. Since the largest
amount of Dcache allocated for CVMSEG LM is 6912 bytes (54
128-byte cache lines), if IOBDMASCRMSB==3, then an entire
2KBytes of legal address space is not available (only 768 bytes
remains of the 6192 bytes maximum).

Note that usually only 4 cache lines are allocated for CVMSEG
LM. The actual highest legal address in CVMSEG LM is
((num_cache_lines_allocated * 128 bytes/cache line) -1).

12 0
scraddr

Color Key

IOBDMASCRMSB

Always 0 (64-bit
aligned addresses)

2048 bytes

2048 bytes

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

2048 bytes

768 bytes

Address used in IOBDMA operation

M
axim

um
 of 54

C
ache Lines

CVMSEG LM

IOBDMASCRMSB==0

IOBDMASCRMSB==1

IOBDMASCRMSB==2

IOBDMASCRMSB==3
0xFFFF FFFF FFFF 9B00

For example: cvmx_fpa_alloc_async() will start an IOBDMA operation which will instruct
the FPA unit to allocate an available buffer, and store the buffer’s physical address in the CVMSEG
LM (scratchpad) memory.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Note: If an illegal address is provided in an IOBDMA instruction, or the requested number
of bytes will exceed the allocated cache lines in CVMSEG LM, but within the range shown in
the virtual address map, then the adjacent Dcache memory may be overwritten. (An address
error will occur, but stores to these illegal addresses may not be stopped by the hardware, so
they may corrupt the Dcache.)

7.2 Example IOBDMA Details
This is an example of an asynchronous get_buffer operation which will result in an IOBDMA
from the FPA to the scratchpad.

7.2.1 Starting the IOBDMA Operation
In this example, the user uses the cvmx_fpa_async_alloc() function to start the IOBDMA
operation. This function hides the details from the user. Note that Device IDs (or DIDs) are
discussed in the HRM, and are most easily found in the hardware unit-specific chapter where the
IOBDMA operation data structure is presented.

cvmx_fpa_async_alloc(CVMX_SCR_SCRATCH, CVMX_MY_FIRST_POOL);

static inline void cvmx_fpa_async_alloc(uint64_t scr_addr, uint64_t pool)
{
 cvmx_fpa_iobdma_data_t data;

 /* Hardware only uses 64 bit aligned locations, so convert from byte address
 ** to 64-bit index
 */
 data.s.scraddr = scr_addr >> 3;
 data.s.len = 1;
 data.s.did = CVMX_FULL_DID(CVMX_OCT_DID_FPA, pool);
 data.s.addr = 0;
 cvmx_send_single(data.u64);
}

In the SDK, a data structure is defined to hold the data used in this particular IOBDMA operation.
(This software data structures matches the information shown in Figure 10 – “IOBDMA Operation
(Store Data) Format”.)

typedef union
{
 uint64_t u64;
 struct {
 uint64_t scraddr : 8; // Offset of scratchpad to write data to
 uint64_t len : 8; // The number of 64-bit words of data to write
 uint64_t did : 8; // Source Address (Major DID << 3) | Sub-DID)
 uint64_t addr :40; // The remainder of the physical address
 } s;
} cvmx_fpa_iobdma_data_t;

The user must ensure that a user-defined scratchpad area has been configured and is in cvmx-
config.h before using the cvmx_fpa_async_alloc() function. The target scratchpad area

4-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-35

name is passed as an argument to the function. Note that the default configuration provides 4 128-
byte cache lines for scratchpad. These cache lines can be configured to contain data which smaller
than a whole cache line, for example two cache lines can be configured to contain four 64-bit
scratchpad areas. See Figure 12: “Example of Two Scratchpad Areas”. (Configuration
information is in the Configuration chapter.)

In cvmx_fpa_async_alloc(), set len to 1 (one 64-bit word). (Note: requesting more than
one buffer can cause problems. If the entire request cannot be satisfied, no buffers are returned (all
addresses returned are zeros). We recommend only requesting one buffer at a time.)

The did is set to the Device ID for the appropriate pool. For example, the Source Device for pool
0 is Major DID=5, Sub-DID = 0. See Table 3 – “Converting a DID and Sub-DID into a Physical
Address (CN58XX Example)”.

Table 4: Major Device ID (DID) and Sub-DID used in FPA IOBDMA
Hardware

Unit
Major DID
(Decimal)

Sub-DID Note

FPA 5 Pool number (0-7) Sub-DID 0 addresses Pool 0.
Sub-DID 1 addresses Pool 1, etc.

7.2.2 Verifying the IOBDMA Operation is Complete
To verify the IOBDMA operation is complete, either CVMX_SYNCIOBDMA can be used, or polling
can be used.

7.2.2.1 Using CVMX_SYNCIOBDMA
Users can use CVMX_SYNCIOBDMA instruction to force completion of the IOBDMA operation.
The CVMX_SYNCIOBDMA instruction will stall the core until all prior IOBDMA operations for the
core have completed. (See the Essential Topics chapter for information about
CVMX_SYNCIOBDMA.)

7.2.2.2 Using Polling
In the case of the asynchronous get_work operation, users can initialize the scratchpad area to 0,
and use polling to check if the IOBDMA operation has completed (is complete if non-zero value is
present). (An example of this is shown in the asynchronous get_work example in the Essential
Topics chapter.) In the case of the asynchronous FAU operation, the sequence “ACEDC0DE” was
used in the Essential Topics chapter (again assuming this will never be a legal value.) Note that
initializing the scratchpad area to zero won’t work for the asynchronous get_work operation,
where a return value of zero means “not enough buffers are available to satisfy the request”.

7.2.3 Reading the Scratchpad
When the IOBDMA completes, it writes len number of buffer addresses to the scratchpad (or
NULLs if insufficient free buffers exist to satisfy the request). Later, the buffer address(es) may be
retrieved from the scratchpad address. The SDK API functions to read and write from scratchpad

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

addresses are defined in cvmx-scratch.h. Software access to the scratchpad is byte-
addressable. The following code retrieves the buffer returned by the IOBDMA command:

CVMX_SYNCIOBDMA; // guarantee that IOBDMA command has completed
newbuf = (void *)cvmx_scratch_read64(CVMX_SCR_SCRATCH);

Note that if len is larger than the number of available addresses in the selected pool, then all
(len) addresses returned for the IOBDMA operation are NULL, indicating that the pool does not
have enough addresses to satisfy the request.
To read the scratchpad, call cvmx_scratch_read64(offset)(defined in
cvmx-scratch.h). The offset is converted from a byte offset to a virtual address inside the
function.

The code calls cvmx_scratch_read64() to read 64 bytes from the specified scratchpad. This
function hides the details from the user:

newbuf = (void *)cvmx_scratch_read64(CVMX_SCR_SCRATCH);

Details (SDK 1.9):
In hal.c:

#define CASTPTR(type, v) ((type *)(long)(v))

In cvmx-scratch.h:
#define CVMX_SCRATCH_BASE (-32768L) // 0xffffffffffff8000

In cvmx_config.h, the scratchpads are defined as an offset from the CVMX_SCRATCH_BASE:
#define CVMX_SCR_SCRATCH 0 // IOBDMA must be 64-bit
aligned
#define CVMX_SCR_REG_AVAILABLE_BASE 16

/**
 * Reads a 64 bit value from the processor local scratchpad memory.
 *
 * @param address byte address to read from
 *
 * @return value read
 */
static inline uint64_t cvmx_scratch_read64(uint64_t address)
{
 return *CASTPTR(volatile uint64_t, CVMX_SCRATCH_BASE + address);
}

4-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-37

Figure 12: Example of Two Scratchpad Areas

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

7.3 Modifying the Allocated Scratchpad Size
For Linux and SE-UM applications, the scratchpad size is configured via the make
menuconfig option CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE (see the Software Overview
chapter for details). This section applies to SE-S applications.

The Cavium Networks-specific CVMSEG segment is configured when
cvmx_user_app_init() is called. Users cannot modify this configuration using Simple
Executive configuration variables. To modify the configuration, edit the code shown below.

When using the default Simple Executive configuration, a minimum of at least 1 cache line is
required for scratchpad: 8 bytes of this cache line are used as a generic IOBDMA area
(CVMX_SCR_SCRATCH). If this scratchpad area is not used, CVMSEG can be configured to 0
cache lines. By default, Simple Executive allocates 4 cache lines from Dcache for the scratchpad
(512 bytes), even though only 1 cache line is used.

In cvmx_user_app_init()(located in executive/cvmx-app-init.c), the CSR is first
read into a local variable (tmp) using the CVMX_MF_CVM_MEM_CTL macro, the local value
modified, then the modified value is written to the CSR using the CVMX_MT_CVM_MEM_CTL
macro:

 // Set up 4 cache lines of local memory, make available from
 // Kernel space
 // Bit 8 = CVMSEGNAK (access CVMSEG from kernel/debug mode)
 // Bit 7 = CVMSEGENAS (access CVMSEG from supervisor mode)
 // Bit 6 = CVMSEGENAU (access CVMSEG from user mode)
 // Bits 0-5 = LMEMSZ – size of local memory in 128-byte cache blocks
 CVMX_MF_CVM_MEM_CTL(tmp); // read CvmMemCtl register into tmp
 tmp &= ~0x1ffull; // clear low 9 bits in CvmMemCtl value
 tmp |= 0x104ull; // CVMSEGNAK=1, size=4 cache lines, all others=0
 CVMX_MT_CVM_MEM_CTL(tmp);
 CVMX_DCACHE_INVALIDATE; // invalidate existing Dcache entries

Note: For safety, always follow any change of CVMSEG LM size with
CVMX_DCACHE_INVALIDATE to invalidate the Dcache. This will invalidate any data which is
stored in the portion of Dcache now reserved for scratchpad.

The following figure shows the relevant portion of the CvmMemCtl register. For more
information, see the HRM.

4-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-39

Figure 13: Modifying CVMSEG Configuration
Bits in CvmMemCtl Register Which Control CVMSEG

Bits shown in gray are not part of CVMSEG configuration.
CVMSEGENAK: If set, CVMSEG is available for load/store operations in kernel/debug mode

(CVMSEG ENAble Kernel).
CVMSEGENAS: If set, CVMSEG is available for load/store operations in supervisor mode

(CVMSEG ENAble Supervisor).
CVMSEGENAU: If set, CVMSEG is available for load/store operations in user mode

(CVMSEG ENAble User).
LMEMSZ: The size of local memory (scratchpad) in cache blocks (0-54)

63 0

(54 bits)
LMEMSZ
(6 bits)

CVMSEGENAK CVMSEGENAS CVMSEGENAU

In cvmx_user_app_init(), the CVMSEG control fields are set to 0x104, enabling access for kernel-mode
and setting LMEMSZ to 4 cache lines:

1 0 0 0 0 0 1 0 0

We do not recommend setting LMEMSZ to greater than four because the memory for
scratchpad comes from Dcache memory, diminishing the memory used for Dcache
operations.

08

8 Asynchronous CSR Read
It is possible to asynchronously read the some CSRs via the cvmx_read_csr_async()
function (which uses IOBDMA to the scratchpad).

The asynchronous read can be used to hide I/O load latencies by allowing the software to continue
to execute instructions while the value of a CSR is being asynchronously transferred to the core’s
scratchpad memory.

If this level of performance tuning is essential for the application, then carefully test to see whether
asynchronous access to the target CSR works and actually improves performance. In general, the
time is better spent on easier optimizations which will have a larger return on the investment.

9 “Unprotected” Buffer Pools
This section is provided to explain the dangers of using unprotected pools, which can be configured
via the Simple Executive configuration. Users may then decide whether unprotected pools are
necessary in the application.

We recommend that protected always be set to 1 (TRUE). The “unprotected pools” feature should
not be used. Information about unprotected pools is provided in this section to illustrate the type of
difficult-to-debug problems which can occur if this configuration keyword is not set appropriately.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

If the “protected” field is set to “false” (0), AND two or more pools have the same buffer size, then
multiple #define macros can refer to the same pool. This is sometimes used if there are more than
8 different uses for FPA pools. In the example below, both CVMX_MY_POOL and
CVMX_MY_THIRD_POOL will refer to pool number three.

For example, given my-config.h with the following contents:

cvmxconfig
 {
 fpa CVMX_MY_POOL // shared with CVMX_MY_THIRD_POOL
 size = 2 // must be identical with shared pool
 protected = 0 // not protected
 description = "MY CUSTOM POOL";
 fpa CVMX_MY_SECOND_POOL
 size = 4
 protected = 1 // protected
 description = "MY SECOND CUSTOM POOL";
 fpa CVMX_MY_THIRD_POOL // shared with CVMX_MY_POOL
 size = 2 // must be identical with shared pool
 protected = 0 // not protected
 description = "MY THIRD CUSTOM POOL";
 }

The cvmx-config.h file will contain:
/************************* FPA allocation *********************************/
/* Pool sizes in bytes, must be multiple of a cache line */
#define CVMX_FPA_POOL_0_SIZE (16 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_1_SIZE (10 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_2_SIZE (8 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_3_SIZE (2 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_4_SIZE (4 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_5_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_6_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_7_SIZE (0 * CVMX_CACHE_LINE_SIZE)

/* Pools in use */
#define CVMX_FPA_PACKET_POOL (0) /**< Packet buffers*/
#define CVMX_FPA_PACKET_POOL_SIZE CVMX_FPA_POOL_0_SIZE
#define CVMX_FPA_WQE_POOL (1) /**< Work queue entrys */
#define CVMX_FPA_WQE_POOL_SIZE CVMX_FPA_POOL_1_SIZE
#define CVMX_FPA_OUTPUT_BUFFER_POOL (2) /**< PKO queue command
buffers*/
#define CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE CVMX_FPA_POOL_2_SIZE
#define CVMX_MY_POOL (3) /**< MY CUSTOM POOL*/
#define CVMX_MY_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_THIRD_POOL (3) /**< MY THIRD CUSTOM POOL */
#define CVMX_MY_THIRD_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_SECOND_POOL (4) /**< MY SECOND CUSTOM POOL */
#define CVMX_MY_SECOND_POOL_SIZE CVMX_FPA_POOL_4_SIZE

Note: If protected = false, and there more than one pool is defined with the same buffer size,
these pools will be shared. If this is not planned, then difficult-to-debug errors may occur.

4-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-41

Another error can occur if it is intended that the pools be shared, but different buffer sizes
were specified during configuration. An example of this type of error is shown in the next
section.

Example of Configuration Error:
Note: The pool will not be shared unless the buffer sizes are identical. If they are not identical, the
config utility (host/bin/cvmx-config) will quietly create different #defines for the pools:
they will not be shared.

cvmxconfig
 {
 fpa CVMX_MY_POOL // shared with CVMX_MY_THIRD_POOL
 size = 6 // ERROR: size does not match!
 protected = 0 // not protected
 description = "MY CUSTOM POOL";
 fpa CVMX_MY_SECOND_POOL
 size = 4
 protected = 1 // protected
 description = "MY SECOND CUSTOM POOL";
 fpa CVMX_MY_THIRD_POOL // shared with CVMX_MY_POOL
 size = 2 // ERROR: size does not match!
 protected = 0 // not protected
 description = "MY THIRD CUSTOM POOL";
 }

The cvmx-config.h file will contain:

/************************* FPA allocation *********************************/
/* Pool sizes in bytes, must be multiple of a cache line */
#define CVMX_FPA_POOL_0_SIZE (16 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_1_SIZE (10 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_2_SIZE (8 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_3_SIZE (6 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_4_SIZE (4 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_5_SIZE (2 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_6_SIZE (0 * CVMX_CACHE_LINE_SIZE)
#define CVMX_FPA_POOL_7_SIZE (0 * CVMX_CACHE_LINE_SIZE)

/* Pools in use */
#define CVMX_FPA_PACKET_POOL (0) /**< Packet buffers*/
#define CVMX_FPA_PACKET_POOL_SIZE CVMX_FPA_POOL_0_SIZE
#define CVMX_FPA_WQE_POOL (1) /**< Work queue entrys */
#define CVMX_FPA_WQE_POOL_SIZE CVMX_FPA_POOL_1_SIZE
#define CVMX_FPA_OUTPUT_BUFFER_POOL (2) /**< PKO queue command
buffers*/
#define CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE CVMX_FPA_POOL_2_SIZE
#define CVMX_MY_POOL (3) /**< MY CUSTOM POOL*/
#define CVMX_MY_POOL_SIZE CVMX_FPA_POOL_3_SIZE
#define CVMX_MY_SECOND_POOL (4) /**< MY SECOND CUSTOM POOL */
#define CVMX_MY_SECOND_POOL_SIZE CVMX_FPA_POOL_4_SIZE
#define CVMX_MY_THIRD_POOL (5) /**< MY THIRD CUSTOM POOL */
#define CVMX_MY_THIRD_POOL_SIZE CVMX_FPA_POOL_5_SIZE

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

If it is absolutely needed to refer to the same pool by different names, for ease in debugging it is
better to simply use a simple #define instead of configured-in sharing:

#define NAME_1 NAME2

10 Pass_N Specific Code in the SDK
The OCTEON_MODEL string (passed to the env_setup script) can contain a PASS substring.
Setting the OCTEON_MODEL to include a PASS substring can cause conditional compilation of
additional code and/or additional run-time conditional code needed to work around issues with
some versions of some chips

Application designers should aim to write code that will run on the production-released OCTEON,
and only add PASS_N-specific code where they are aware of a specific need to support systems
built with earlier versions of their OCTEON device.

4-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-43

11 Access to CSRs and Memory via xkphys, and CVMSEG
If you are using the OCTEON SDK, these details are handled directly and it is not expected there
needs to be any modification other than setting Linux kernel configuration variables as needed:

For SE-UM applications, these accesses are configured via Linux make menuconfig options:

• Access to CSRs: CONFIG_CAVIUM_OCTEON_USER_IO
• Access to Physical Memory: CONFIG_CAVIUM_OCTEON_USER_MEM
• Access to Scratchpad (cvmseg): CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE (if size is

non-zero, the kernel will set access permissions appropriately for the application)

This section provides more detail on the access issues and how they are resolved.

Note that this section provides basic information on this topic to help users understand
the underlying issues. This section is not intended to provide complete information on
this topic. For complete information, refer to the Hardware Reference Manual.

The Software Overview chapter presented the virtual memory maps: Linux kernel mode, SE-UM
64-bit, SE-UM 32-bit, SE-S 64-bit, and SE-S 32-bit. This section provides more information on
how CSRs and memory can be accessed via the xkphys address segment, and also how the Cavium
Networks-specific CVMSEG is accessed. In particular, how user-mode applications access the
kernel segment xkphys and cvmseg addresses, and how 32-bit SE-S and SE-UM applications can
access CSRs via 64-bit xkphys addresses. As an example, to enable 32-bit SE-UM applications to
read and write CSRs in the kernel xkphys segment, they must have access to CSR addresses in the
kernel xkphys segment, 64-bit addressing, and 64-bit operations.

Note that xkphys addresses and cvmseg virtual addresses are not translated through the TLB.
Permission for user-mode applications to access these addresses is granted via Cavium Networks-
specific Coprocessor 0 (CP0) CvmMemCtl register fields, bypassing the usual MIPS protection
that prevents user-mode processes from accessing kernel segments.

Once the kernel configuration variables are set properly, SE-UM applications access the
scratchpad via the API functions, including cvmx_scratch_read*(), and access
CSRs via cvmx_read_csr() and cvmx_write_csr(). The default API
configuration allows SE-S applications to run correctly using the same functions without
modifying the API.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

11.1 Accessing Kernel Address Ranges from User-Mode Applications
Cavium Networks provides the following CP0 CvmMemCtl register fields to:

• Permit SE-UM applications to access specific address ranges that lie within the privileged
xkphys kernel segment (xkphys accesses to I/O space where CSRs are located, and xkphys
accesses to physical memory)

• Allow kernel-mode, supervisor-mode, or user-mode processes to access kseg3 addresses in
the cvmseg address range, and treat these accesses as specially as accesses to the
scratchpad.

Table 5: Configuring CSR, xkphys Memory, and CVMSEG Access

CvmMemCtl[Field] Description
XKIOENAU Allow user-mode program to access CSRs (I/O Space in xkphys:) If

set (and Status[UX] is set), user-level loads/stores can use xkphys
addresses with VA<48>==1 (provides access to CSRs in I/O space).
See Note1.

XKMEMENAU Allow user-mode program to access memory (via xkphys segment
addresses): If set (and Status[UX] is set), user-level loads/stores
can use xkphys addresses with VA<48>==0 (provides access to
physical memory). See Note2.

CVMSEGENA[K/S/U] Access CVMSEG (K=kernel, U=user, S=supervisor). See Note3.
Notes
Note1: For SE-UM applications, set via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_USER_IO. SE-S applications do not need to set this bit because
they run in kernel mode.

Note2: For SE-UM applications, set via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_USER_MEM. SE-S applications do not need to set this bit
because they run in kernel mode.
Note3: For SE-UM applications, set via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE. If the CVMSEG size is non-zero,
CVMSEGENA[K/S/U] is set. SE-S applications set this bit when they set the size of CVMSEG
LM.

4-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-45

The Linux make menuconfig options shown in the following table were introduced with SDK
1.9. These options can be set to allow, per-process, or disable. Whether a SE-UM process can get
access to the xkphys addresses depends on the values of both variables, as shown in the following
table:

Table 6: Configuring SE-UM Access to xkphys Addresses
 CONFIG_CAVIUM_OCTEON_USER_IO

 allow per-process disable

C
O

N
FI

G
_C

A
V

IU
M

_O
C

T
E

O
N

_U
SE

R
_M

E
M

allow I/O - Y
Mem - Y

I/O - C
Mem - Y

I/O - N
Mem -Y

per-
process

I/O - Y
Mem - C

I/O - C
Mem - C

I/O - N
Mem - C

disable I/O - Y
Mem - N

I/O - C
Mem Access - N

I/O - N
Mem - N

NOTES

Y - Access unconditionally allowed
C - Access can be enabled on a per-process basis.
N - Access unconditionally denied.

Access is enabled with the sysmips() system call as shown in the
cvmx_linux_enable_xkphys_access() function. The third argument to
sysmips() specifies the access:
bit-0 controls OCTEON_USER_MEM
bit-1 controls OCTEON_USER_IO

The cvmx_linux_enable_xkphys_access() function tries to enable both
OCTEON_USER_MEM and OCTEON_USER_IO. If either fails due to the restrictions
shown in the table above, neither will be enabled.

11.2 Running in a 64-Bit Environment
All processes running on OCTEON run in a 64-bit environment, including 32-bit processes (see
Section 11.2.1 – “32-Bit Applications in 64-Bit Environment”). This 64-bit environment is created
by setting standard MIPS register fields which enable 64-bit operations, and 64-bit addressing, as

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

shown in the following table. All of these fields (PX, [UX or KX]) are set for all processes running
on OCTEON, providing them with a 64-bit environment (64-bit operations and 64-bit addressing).

Table 7: Configuring 64-Bit Operations and Addressing
Register[Field] Description
Status[PX] Enables 64-bit operations in user mode without enabling 64-bit

addressing.
Status[UX] Enables 64-bit addressing for user segments (required for 64-bit

addressing). Allows user-mode processes to execute instructions
which perform 64-bit operations. The XTLB refill vector is used for
references to user segments. This bit is used for user-mode processes.

Status[KX] Enables 64-bit addressing for kernel segments (required for 64-bit
addressing). The XTLB refill vector is used for references to kernel
segments. This bit is used for kernel-mode processes.

See MIPS® Architecture For Programmers, Volume III: The MIPS64® and microMIPS64™
Privileged Resource Architecture, available at http://www.mips.com for more information on these
fields.

11.2.1 32-Bit Applications in 64-Bit Environment
Both Status[UX] (64-bit addressing via XTLB) and Status[PX] (64-bit operations such as
sd (store double word) are set for 32-bit applications, creating a 64-bit environment. The creation
of a 64-bit environment does not turn a 32-bit application into a 64-bit application. The 64-bit
environment is a hardware-level concept. The 32-bit application is a compiler-level concept: the
compiler creates a 32-bit pointer for 32-bit applications, and 64-bit pointer for 64-bit applications.

Thus, the significant difference between 64-bit applications and 32-bit applications running on
OCTEON processors is in how the compiler handles pointers. 64-bit addresses cannot be accessed
via pointers from 32-bit applications at the C-code level because the pointer data type is only 32-
bits.

Because the Status[UX] and Status[PX] fields are set, 64-bit addresses can be used as long
as they are not stored in a pointer data type. They can be accessed by 64-bit operation such as sd
or ld. For a description of using the 64-bit environment to work-around the 32-bit pointer
limitation, see Section 11.3.2 – “32-Bit SE-S or SE-UM Applications” and Section11.5.1 – “32-Bit
Application Access to Scratchpad via”.

4-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

http://www.mips.com/

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-47

11.3 CSR Access
Access to CSRs is via xkphys addresses.

Figure 14: Accessing CSRs via the xkphys Segment

xkphys

CSR Access

Permission to Access CSRs via xkphys:
Linux SE-UM applications which run in user mode gain access to xkphys addresses via
the make menuconfig option CONFIG_CAVIUM_OCTEON_USER_IO.

32-Bit Application Access to CSRs via xkphys:
32-Bit access to 64-bit addresses is via inline assembly code.

Unmapped I/O Space (accessed
through xkphys addresses via in-

line assembly code).
(Discontiguous where there is no

matching I/O device.)0x8001 0000 0000 0000

0x8001 6700 0000 03FF

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Table 8: Accessing CSRs via the xkphys Segment
Application

Type
Runs

in CSR Access in xkphys segment

64-bit SE-S Kernel
Mode Access is automatically enabled: process runs in kernel mode.

64-bit SE-UM User
Mode

Set Status[XKIOENAU] to enable access to CSRs in xkphys. (For
SE-UM applications, set via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_USER_IO.)

32-bit SE-S Kernel
Mode

Access is automatically enabled: process runs in kernel mode.

To solve 32-bit process, 64-bit address problem: Applications use
cvmx_csr*() API functions. These functions use inline assembly to
create 64-bit addresses used in load and store to CSRs because 32-bit
pointers cannot hold the 64-bit xkphys addresses.

32-bit SE-UM User
Mode

Set Status[XKIOENAU] to enable access to CSRs in xkphys. (For
SE-UM applications, set via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_USER_IO.)

To solve 32-bit process, 64-bit address problem: Applications use
cvmx_csr*() API functions. These functions use inline assembly to
create 64-bit addresses used in load and store to CSRs because 32-bit
pointers cannot hold the 64-bit xkphys addresses.

11.3.1 User-Mode Application Access to xkphys CSR Addresses
Access to kernel segments such as xkphys is not normally allowed when the processor is operating
in user mode. SE-UM application access can be configured as shown in Table 5 – “Configuring
CSR, xkphys Memory, and CVMSEG Access” and Table 6- “Configuring SE-UM Access to xkphys
Addresses”. Note that xkphys segment accesses bypass the TLB.

11.3.2 32-Bit SE-S or SE-UM Applications Access to CSRs
How do 32-bit SE-S or SE-UM applications access CSRs, which are outside of the 32-bit address
space?

32-bit SE-S and SE-UM applications run in a 64-bit environment with 64-bit registers, addresses,
and operations. (The Status[PX] bit and Status[UX | KX] fields are set, enabling 64-bit
operations and addresses.)

Although the compiler stores pointers in 32-bits, in assembly language numbers can be stored in 64
bits. CSRs are generally read or written (load or store), but are not accessed by a program through
C-language pointers. Instead of using pointers, the API accesses CSRs using inline assembly
language code to generate the instruction sequence that creates a 64-bit CSR address in a 64-bit
general-purpose register and then issues the 64-bit load (ld) (load doubleword) instead of the 32-
bit load (lw) (load word) used by the 32-bit application.

4-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-49

11.4 Memory Access (Accessing FPA-Managed Buffers)
Physical memory (including FPA-managed buffers) can be accessed via TLB-mapped virtual
addresses, or for 64-bit applications, access can be via addresses in the xkphys segment.

11.4.1 64-Bit Application Memory Access
For the Linux kernel, 64-bit SE-S and 64-bit SE-UM applications, access to physical memory
(including FPA-managed buffers) is via xkphys addresses.

Figure 15: Accessing memory via xkphys -Linux kernel, 64-bit (SE-S, SE-UM)

xkphys

Memory Access via xkphys Addresses

Unmapped system memory
(accessed through xkphys)

(discontiguous where system
memory is not present)

0x8000 0000 0000 0000

0x8000 0004 1FFF FFFF

Permission to Access to Physical Memory via xkphys:
Linux SE-UM applications which run in user mode gain access to physical memory in
xkphys via the make menuconfig option
CONFIG_CAVIUM_OCTEON_USER_MEM.

32-Bit Application Access to CSRs via xkphys:
32-32-bit applications do not usually access physical memory via xkphys addresses
because programs usually use pointers to access memory, and 32-bit pointers are not
large enough to hold xkphys addresses.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Table 9: Accessing Memory via the xkphys Segment
Application

Type
Runs in Memory access in xkphys segment

64-bit SE-S Kernel
Mode

Access is automatically enabled: process runs in kernel mode.

64-bit SE-UM User
Mode

Set Status[XKMEMENAU] to enable access to physical memory via
xkphysaddresses. (For SE-UM applications, set via the Linux make
menuconfig option:
CONFIG_CAVIUM_OCTEON_USER_MEM.)

32-bit SE-S Kernel
Mode

32-bit SE-S applications do not access memory via xkphys addresses
because programs usually access memory via pointers. See the Software
Overview chapter for the virtual memory map and details on memory
access.

32-bit SE-UM User
Mode

32-bit SE-UM applications do not access memory via xkphys addresses
because programs usually access memory via pointers. See the Software
Overview chapter for the virtual memory map and details on memory
access.

11.4.1.1 User-Mode Application Access to xkphys Memory Addresses
Access to kernel segments such as xkphys is not normally allowed when the processor is operating
in user mode. SE-UM application access can be configured as shown in Table 5 – “Configuring
CSR, xkphys Memory, and CVMSEG Access” and Table 6- “Configuring SE-UM Access to xkphys
Addresses”. Note that xkphys segment accesses bypass the TLB.

11.4.2 32-Bit Application Memory Access
Because physical memory access is usually via pointers, the simple inline functions used to load
and store to CSR addresses are not appropriate. See the Software Overview chapter for details on
how 32-bit SE-S and SE-UM applications access physical memory (including FPA-managed
buffers).

4-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-51

11.5 Accessing the Scratchpad via cvmseg Addresses
The figure below shows the CVMSEG virtual address space.

Figure 16: Accessing the Scratchpad via cvmseg

kseg3

0xFFFF FFFF FFFF BFFF

Access to CVMSEG Virtual Address Space

CVMSEG IO
(only valid address =

0xFFFF FFFF FFFF A200)

CVMSEG LM
(part of Dcache)

0xFFFF FFFF FFFF 8000

0xFFFF FFFF FFFF 9FFF

0xFFFF FFFF FFFF A000

When access is enabled, loads and stores to CVMSEG addresses are treated specially by
the cnMIPS cores. For example:
o A store to 0xFFFF FFFF FFFF A200 in CVMSEG IO will start an IOBDMA

operation
o A load from the CVMSEG LM address range will result in a read of scratchpad memory

Permission to Access CVMSEG:
Linux SE-UM applications which run in user mode gain access to cvmseg addresses when
the make menuconfig option CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE is non-
zero.

32-Bit Application Access to CVMSEG:
32-Bit access to 64-bit addresses is via inline assembly code.

If the CP0 register CvmMemCtl[CVMSEGENA[K/S/U]] is set, the cores treat loads and stores to
the CVMSEG address range specially: a store to 0xFFFF FFFF FFFF A200 is really needed to
start an IOBDMA operation, not a store to 0xFFFF A200. (K=access for kernel-mode processes,
S=access for supervisor-mode processes, and U=access for user-mode processes.)

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

 OCTEON Programmer’s Guide A
dvanced T

opics

Table 10: Accessing CVMSEG
Application

Type
Runs in CVMSEG Access in cvmseg (kseg3) segment

64-bit SE-S Kernel
Mode

Set CvmMemCtl[CVMSEGENAK]

64-bit SE-UM User Mode Set CvmMemCtl[CVMSEGENAU]. (For SE-UM applications, set
via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE.)

32-bit SE-S Kernel
Mode

Set CvmMemCtl[CVMSEGENAK]

Applications use cvmx_scratch*() API functions to access
CVMSEG. These functions use sign-extension of 32-bit CVMSEG
addresses to create the 64-bit address used in load and store because
32-bit pointers cannot hold the 64-bit CVMSEG addresses.

32-bit SE-UM User Mode Set CvmMemCtl[CVMSEGENAU]. (For SE-UM applications, set
via the Linux make menuconfig option:
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE.)

Applications use cvmx_scratch*() API functions to access
CVMSEG. These functions use sign-extension of 32-bit CVMSEG
addresses to create the 64-bit address used in load and store because
32-bit pointers cannot hold the 64-bit CVMSEG addresses.

For SE-S applications, CVMSEG size and access are configured by the Simple Executive. See
Section 7.3 – “Modifying the Allocated Scratchpad Size” for more information.

11.5.1 32-Bit Application Access to Scratchpad via cvmseg
How do 32-bit applications access CVMSEG, which are outside of the 32-bit address space? This
access is managed for the user by the API functions, such as the cvmx_scratch_read*()
functions.

32-bit applications run in a 64-bit environment with 64-bit registers, addresses, and operations.
(The Status[PX] bit and Status[UX | KX] fields are set, enabling 64-bit operations and
addresses.)

Instead of using pointers, the API accesses CVMSEG addresses via 64-bit numbers stored in 64-bit
general-purpose registers. The 64-bit address stored in the 64-bit general-purpose register is then
used in the load/store operation.

The creation of the 64-bit CVMSEG address from a 32-bit address is automatic: the load/store unit
sign-extends bit 31 of the address register to a 64-bit length (sign extension is done for 32-bit
values regardless of the mode of the processor). So, because bit 31 is set for 32-bit CVMSEG

4-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

A
dv

an
ce

d
T

op
ic

s OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 4-53

references, all of bits <63:32> are set, generating the required 64-bit CVMSEG address. For
example, 0xFFFF XXXX becomes 0xFFFF FFFF FFFF XXXX.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

08
/1

4/
20

12

	1 Introduction
	2 Configuration and Status Registers (CSRs)
	2.1 CSR Name Definitions
	2.2 CSR Data Structures
	2.3 Accessing CSRs via CSR Definitions and Data Structures
	2.3.1 Accessing CSR Fields Via OCTEON Model-Specific Typedefs

	2.4 Types of Control and Status Registers (CSRs)
	2.4.1 CSRs on the Register Slave Logic (RSL) Bus
	2.4.2 CSRs on the I/O Bus

	3 Physical Address Map and Device ID (DID)
	4 Race Condition Accessing CSRs
	4.1 Technical Details of the Race Condition
	4.2 Avoiding the Race Condition

	5 Race Condition if buffer_free before Buffer Writes Complete
	5.1 Technical Details about the Race Condition
	5.2 Avoiding the Race Condition

	6 Don’t Write Back (DWB) Operations
	6.1 DWB Operation Effects
	6.2 The buffer_free Operation and DWB
	6.2.1 The buffer_free Operation Issued by Cores
	6.2.2 The buffer_free Operation Issued by Other Hardware Units

	6.3 The pref Instruction and DWB
	6.4 DWB and the syncws Instruction
	6.5 DWB and Buffer Alignment and Size

	7 Scratchpad and IOBDMA Details
	7.1 Scratchpad Access: CVMSEG LM and CVMSEG IO
	7.2 Example IOBDMA Details
	7.2.1 Starting the IOBDMA Operation
	7.2.2 Verifying the IOBDMA Operation is Complete
	7.2.2.1 Using CVMX_SYNCIOBDMA
	7.2.2.2 Using Polling

	7.2.3 Reading the Scratchpad

	7.3 Modifying the Allocated Scratchpad Size

	8 Asynchronous CSR Read
	9 “Unprotected” Buffer Pools
	10 Pass_N Specific Code in the SDK
	11 Access to CSRs and Memory via xkphys, and CVMSEG
	11.1 Accessing Kernel Address Ranges from User-Mode Applications
	11.2 Running in a 64-Bit Environment
	11.2.1 32-Bit Applications in 64-Bit Environment

	11.3 CSR Access
	11.3.1 User-Mode Application Access to xkphys CSR Addresses
	11.3.2 32-Bit SE-S or SE-UM Applications Access to CSRs

	11.4 Memory Access (Accessing FPA-Managed Buffers)
	11.4.1 64-Bit Application Memory Access
	11.4.1.1 User-Mode Application Access to xkphys Memory Addresses

	11.4.2 32-Bit Application Memory Access

	11.5 Accessing the Scratchpad via cvmseg Addresses
	11.5.1 32-Bit Application Access to Scratchpad via cvmseg

