
Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-1

Free Pool Allocator (FPA)

TABLE OF CONTENTS
TABLE OF CONTENTS ... 1
LIST OF TABLES .. 4
LIST OF FIGURES .. 4
1 ... 6 Introduction
2 .. 7 Overview of FPA

2.1 .. 7 Functional Overview
2.2 .. 7 Hardware Blocks Which Use FPA-Managed Buffers
2.3 ... 10 Operations
2.4 ... 10 FPA Registers
2.5 ... 11 Using the FPA

2.5.1 .. 11 Configure the FPA Unit
2.5.2 .. 11 Initialize the FPA Unit
2.5.3 ... 11 Enable the FPA Unit
2.5.4 .. 11 Populate the FPA Pools

2.5.4.1 ... 11 Allocating Memory for FPA-Managed Buffers
3 ... 12 General Pool Configuration and Population Information

3.1 12 Default Simple Executive Pool and Scratchpad Area Configuration
3.2 ... 13 Configuration Overview

3.2.1 ... 13 Rules
3.2.2 .. 14 Is There a Limit on the Number of Buffers?
3.2.3 .. 14 Can a Pool Contain Different-Sized Buffers?
3.2.4 14 Can More Buffers be Added to a Buffer Pool at Any Time?
3.2.5 15 Configuring Hardware Units Which Automatically Use the Buffers
3.2.6 15 Allocating Buffers from Linux and the Affect on Buffer Size

4 .. 17 Packet Data Buffers
4.1 .. 18 Packet Data Buffer Size
4.2 ... 19 Packet Data Buffer Count

4.2.1 19 Calculate the Maximum Number of Packet Data buffers Needed
4.2.1.1 .. 21 What if the Formula Yields a Negative Number?

4.2.2 21 Packet Data Buffer Count and PIP/IPD Congestion Control
4.2.3 21 What if the System Runs Out of Available Packet Data Buffers?
4.2.4 .. 21 Linux and Packet Data Buffer Count

5 .. 23 WQE Buffers
5.1 .. 23 WQE Buffer Size
5.2 ... 23 WQE Buffer Count

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

5.3 .. 24 Other Uses for WQE Buffers
6 .. 25 PKO Command Buffers

6.1 ... 26 PKO Command Buffer Size
6.2 .. 27 PKO Command Buffer Count
6.3 27 More Precise PKO Command Buffer Size and Count Calculations

7 ... 28 Simple Executive API
7.1 ... 28 Limits and other Definitions
7.2 .. 29 Data Structures

7.2.1 29 The cvmx_fpa_pool_info_t (pool_info) Data Structure
7.3 ... 29 Easy-to-Use Executive FPA API Functions

7.3.1 .. 30 Pool Information Functions
7.3.1.1

 ... 31
Example Code: cvmx_fpa_get_block_size(),

cvmx_fpa_get_name(), cvmx_fpa_get_base()
7.3.1.2 .. 32 Example Code: cvmx_fpa_is_member()

7.3.2 ... 32 Easy-to-Use Initialize, Allocate, and Free Functions
7.3.2.1 33 Example Code: cvmx_helper_initialize_fpa()
7.3.2.2 ... 35 Example Code: cvmx_fpa_alloc()
7.3.2.3 ... 36 Example Code: cvmx_fpa_async_alloc()
7.3.2.4 .. 36 Example Code: cvmx_fpa_free()
7.3.2.5 36 Example Code: cvmx_helper_free_packet_data()

7.4 ... 38 Advanced Functions
7.4.1.1 .. 39 cvmx_fpa_enable()
7.4.1.2 39 Example Code: Calling cvmx_fpa_setup_pool()
7.4.1.3 ... 40 The cvmx_fpa_free_nosync() Function
7.4.1.4 .. 40 Example Code: cvmx_fpa_shutdown_pool()

8 ... 42 Basic Code Review Checklist
9 .. 44 Internal Details

9.1 .. 44 Buffer Organization
9.2 .. 45 In-Unit Buffer Address Cache (Address Cache)
9.3 .. 49 Watermarks for the In-Unit Buffer Address Cache

10 ... 53 Debugging
10.1 ... 54 Interrupts and Detected Error Conditions

10.1.1 .. 54 Permission Error (PERR)
10.1.2 .. 54 Page Count Off (Incorrect) Error (COFF)
10.1.3 .. 54 Underflow (UND)
10.1.4 ... 55 Single and Double Bit Memory Errors (SBE, DBE)

10.2 ... 55 Debugging and Status Information
10.3 .. 55 Common Mistakes

10.3.1 .. 56 Buffer Alignment: Bad Alignment at Start of Buffer
10.3.2 ... 56 Buffer Alignment: Bad Alignment at End of Buffer
10.3.3 ... 57 Buffer Size and Don’t Write Back (DWB)
10.3.4 ... 59 Buffer Freed to the Wrong Pool

10.4 ... 60 Buffer Freed More than Once
11 ... 61 Performance Tuning

11.1 ... 61 Enough Buffers

5-2 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-3

11.2 .. 61 Prefetch Buffers
11.3 61 Initializing the Per-Pool Address Cache Allotment or Watermarks
11.4 ... 63 Don’t Write Back (DWB)
11.5 ... 63 Pool Number
11.6 ... 63 Performance Tuning Checklist

12 ... 64 Advanced Code Review Checklist
13 .. 65 Beyond the SDK – When not Using the Provided API

13.1 .. 65 Design Considerations
13.2 .. 65 Enable the FPA and Populating the Pools
13.3 .. 65 Synchronous Buffer Allocation
13.4 .. 66 Asynchronous Buffer Allocation
13.5 ... 66 Freeing a buffer

14 ... 66 FPA Registers
15 ... 70 Configuring Units Which Allocate/Free FPA Buffers

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

 LIST OF TABLES
Table 1: Units Allocating/Freeing Buffer Addresses, or Accessing Buffers 9
Table 2: Default Simple Executive Pool Configuration .. 12
Table 3: Default Simple Executive Scratchpad Configuration .. 13
Table 4: Packet Data Buffers Overview .. 17
Table 5: Packet Data Buffer Requirements ... 18
Table 6: Work Queue Entry Buffers Overview ... 23
Table 7: WQE Buffer Requirements ... 23
Table 8: PKO Command Buffers Overview .. 26
Table 9: PKO Command Buffers Requirements ... 26
Table 10: Pool Information Functions ... 30
Table 11: Easy-to-Use Functions ... 32
Table 12: Advanced FPA Functions .. 38
Table 13: Basic Code Review Checklist ... 42
Table 14: Defaults for Configurable Per-Pool Buffer Cache and Watermarks 45
Table 15: Fixed Per-Pool Watermarks and Size (If No Configuration Registers) 46
Table 16: Watermark Facts .. 50
Table 17: Status and Debugging Registers .. 55
Table 18: Advanced Initialization Registers .. 62
Table 19: Performance Tuning Checklist .. 63
Table 20: Advanced Code Review Checklist .. 64
Table 21: FPA Registers used in Buffer Allocate and Free Operations .. 66
Table 22: FPA Register Summary ... 67
Table 23: FPA Key Register Field Summary .. 68
Table 24: DFA Unit ... 70
Table 25: IPD Unit ... 70
Table 26: PCI/PCIe DMA Engine ... 70
Table 27: PKO Unit ... 71
Table 28: RAID Unit ... 71
Table 29: TIMER Unit ... 72
Table 30: ZIP Unit ... 72

LIST OF FIGURES
Figure 1: Units Allocating or Freeing FPA-Managed Buffers .. 8
Figure 2: A Free Buffer used as a Page of Free Buffer Addresses .. 44
Figure 3: FPA In-Unit Buffer Address Cache – Simplified Internal View 47
Figure 4: FPA Buffer Pool: Simplified Internal View .. 48
Figure 5: FPA Read Watermark: Simplified Internal View ... 51
Figure 6: FPA Write Watermark – Simplified Internal View ... 52
Figure 7: Overwriting Memory: Buffer Not Cache Line Size Aligned ... 56
Figure 8: Overwriting Memory: Buffer not a Multiple of Cache Line Size 57
Figure 9: DWB and Why Buffers Need to be a Multiple of Cache Line Size 58
Figure 10: Buffer Freed to the Wrong Pool ... 59
Figure 11: Buffer Accidentally Freed More Than Once ... 60

5-4 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-5

Figure 12: Flowchart - FPA Unit Start-Up .. 62

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Fr
ol

A
lloc

FPA
)

ee Po
ator (1 Introduction
This chapter provides details about the Free Pool Allocator (FPA) unit. The FPA manages pools of
pre-allocated memory buffers, for example Packet Data buffers or WQE buffers. Software running
on the cores and also some hardware units may allocate and free buffers from/to the FPA pools.

Everyone who is writing or debugging code running on OCTEON processors should read this
chapter, although some material toward the end is targeted to readers who are adding to the Simple
Executive API or writing a custom API.

Before reading this chapter, please read the OCTEON Programmer’s Guide, Volume 1 and the
Configuration and Advanced Topics chapters before reading this chapter. The Configuration
chapter provides basic information on how to configure the FPA pools, but additional information
is provided here.

This chapter provides:

• Configuration information
• Details on easy-to-use API data structures and functions
• Basic code review checklist
• Details on advanced API functions
• Debugging information
• Performance tuning information

Note that a downloadable simple example (fpa_simplified) of using the FPA API is provided
at the Cavium Networks Technical Support Site in the same directory where an electronic copy of
this chapter may be found. The downloadable file is a tar file. Untar it into the examples
directory of the SDK. To build and run the example, follow the directions in the README.txt
file provided with the example.

Note that the fpa_simplified example code only shows the FPA API, and is not useful for
doing any actual work. The passthrough example code supplied with the SDK provides a
realistic example of using the FPA to do packet processing.

Other example code can be found in the examples directory, in the SDK.

5-6 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-7

2 Overview of FPA

2.1 Functional Overview
As described in the Packet Flow chapter, the FPA supplies hardware units with Packet Data
buffers, Work Queue Entry (WQE) buffers, and PKO Command buffers (the three pools essential
for packet processing). All applications performing packet I/O will require these three types of
buffers. The FPA may also supply buffers for TIM, DFA, RAID, PCI DMA Engines, and ZIP
hardware units as well as user-defined buffers for use by the cores. (Note that the code supplied in
the SDK configures PCI DMA Engines, RAID, and ZIP units to use the PKO Command buffers.
Each of these engines frees the PKO Command buffer back to the FPA after it has been used.)

Hardware acceleration includes some buffer allocation and free by hardware units. For example,
PIP/IPD and PKO both make use of FPA Pool 0 in order to support high-speed packet I/O without
burdening the cores with a lot of buffer management overhead. PIP/IPD automatically allocates
available Packet Data buffers from FPA pool 0 to contain new ingress packets, and the PKO can
optionally free Packet Data buffers back to FPA pool 0 after it egresses the content of the Packet
Data buffer.

On startup, the application enables the FPA, and then populates the FPA pools by allocating
memory for each type of buffer (such as Packet Data buffer or Work Queue Entry buffer) and
freeing the buffers to the FPA to create buffer pools for subsequent use. The FPA manages these
pre-allocated buffer pools.

Once the FPA and associated hardware units are correctly initialized, use of FPA-managed buffers
is efficient, easy and convenient.

2.2 Hardware Blocks Which Use FPA-Managed Buffers
In the figure below the blocks highlighted in yellow are hardware units, including the cores, which
allocate, use, and/or free FPA-managed buffers.

FPA-managed buffers are used by almost every unit in the OCTEON processor:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Figure 1: Units Allocating or Freeing FPA-Managed Buffers
OCTEON® and OCTEON® Plus Architecture Superset

On-Chip Hardware Units Which Allocate and/or Free Buffers

TCP/IP Acceleration
Block

Up to 16 Cores

Simplified Packet
Interface Block

PKI: Packet Input Block

FPA: Free Pool
Allocator: Buffer

management
(Manages allocate
and free requests)

SSO: Schedule/
Synchronization

/Order
(Accesses WQE

whichever
buffer it is in)

IPD: Input Packet Data
(Allocates WQE buffers

and Packet Data
buffers)

PIP: Packet Input
Processor

PKO: Packet Output
Unit (Frees PKO

Command buffers and,
optionally, Packet Data

buffers)

IOB:
I/O Bridge

Interface
RX Port

Interface
TX Port

DRAM

L2 Cache Controller
(L2C)

DRAM
Controller

(LMC)

Pattern Matching and Regular
Expression Engine* (DFA): Pattern

matching, content inspection, regular
expressions

(Frees instruction buffers)

RNG: Random
Number Generator

KEY*: Key Memory
(Secure Vault)

TIM: Timer Unit
(Frees timer

buffers)

ZIP*: Compression /
Decompression Unit

(Frees instruction
buffers)

FAU: Fetch and
Add Unit

PCI DMA Engines*
(Frees instruction

buffers)

IOBI and
IOBO

CORE
(Allocates and
frees buffers)

MIO: UARTs, USB*,
TDM/PCM*, TWSI,
SMI/MDIO, MII*,
Boot Bus, GPIOs,

LEDs

Pattern
Memory

CMB

Note: OCTEON model-specific hardware components are marked with an asterisk (*).

IP
D

B

P
K

O
B

POB

Receive

Transmit

Pattern
Memory

Controller*

PCIe / PCI /PCI-X
CTL*

IOBI /
IOBO

Color/Pattern KEY
Units which can
allocate and/or
free FPA buffers

RAID Engine*
(Frees instruction

buffers)

The SSO accesses the WQE,
whatever buffer it is in, but
does not allocate or free
buffers.

The IPD allocates Packet
Data buffers and WQE
buffers.

The PIP unit accesses the
WQE buffers and the Packet
Data buffers allocated by
IPD, but does not allocate
or free buffers.

The PKO may be optionally
configured to free Packet
Data buffers.

TIMER buffers are used to
create timer buckets for
the TIMER unit. The timer
unit is responsible for
freeing the timer buffers.

In the following units,
buffers are used to create
an instruction (command)
queue. Buffers are
allocated by software; the
unit is responsible for
freeing them. If the
instruction buffer contains
a WQE address, then the
unit will submit the WQE to
the SSO (via add_work())
when the instruction is
complete:

DFA
PCI DMA Engines
PKO
RAID
TIMER
ZIP

In the default SDK, the
following units use PKO
Command buffers:

PCI DMA Engines
PKO
RAID
ZIP

5-8 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-9

Table 1: Units Allocating/Freeing Buffer Addresses, or Accessing Buffers

Unit Populate
Pools

Manage
Allocate
and Free
Requests

Allocate
Buffer Free Buffer Access Buffer

Submit
WQE to

SSO

Cores
(via
software)

Yes No Yes Yes Yes - all buffers Yes

DFA No No No Yes - Note1 Yes - See Note3 Yes -
Note2

FPA No Yes No No Yes - all buffers No
IPD No No Yes - Packet

Data Buffers
and WQE

buffers

No Yes - Packet Data
buffers and WQE

buffers

Yes

PCI
DMA
Engines

No No No Yes - Note1 Yes - See Note3 Yes -
Note2

PKO No No No Yes - PKO Command
buffers and optionally
Packet Data buffers

Yes - PKO Command
buffers and Packet

Data buffers

No

RAID
Engine

No No No Yes - Note1 Yes - See Note3 Yes -
Note2

SSO No No No No Yes - WQE Buffers N/A
TIM No No No Yes - Note1 Yes - See Note3 Yes -

Note2
ZIP No No No Yes - Note1 Yes - See Note3 Yes -

Note2
Notes
Note1: Frees the Instruction buffer when all instructions in it have been processed
Note2: Optionally submits the WQE buffer address to the SSO to be scheduled to a core.
Note3: This unit accesses the instruction buffer

This is why correct FPA configuration and careful use of FPA-managed buffers are essential to a
healthy system. If something goes wrong with the FPA-managed buffers, the entire system may be
affected, including errors which can be very distant from the original problem, and therefore very
tricky to debug.

Despite the large number of units using the FPA-managed buffers, only a few buffer pools are
needed:

• Packet Data buffers
• WQE buffers
• PKO Command buffers (in the default SDK, these are used by the PCI DMA Engines,

PKO, RAID, and ZIP units)
• TIMER buffers
• DFA buffers

Hardware units which automatically allocate, use, and free buffers from the FPA must be correctly
initialized. Incorrect hardware unit initialization can result in:

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

F
 Pool

A
llocator (FPA

)
ree • over-writing buffers (For example, if the mbuf size provided to the IPD is incorrectly set to

larger than the amount of available space in the Packet Data buffer, then the IPD will
overwrite adjacent memory at the end of the buffer. The term mbuf stands for memory
buffer. See the Glossary for more information.)

• allocating buffers from the wrong pool
• freeing buffers to the wrong pool

For these reasons, care must be taken when initializing the hardware units.

More information on hardware unit initialization is provided in Section 3 – “General Pool
Configuration and Population Information”.

2.3 Operations
The FPA supports three operations:

• buffer_allocate (synchronous): The core waits until the address of an available
buffer is returned (or NULL if no buffers are available)

• buffer_allocate (asynchronous): The core does not wait for the buffer address to
be returned. At a later time, the core retrieves the address from the specified scratchpad
area.

• buffer_free (synchronous): This operation returns the specified buffer address to the
specified pool.

Either the cores or some of the hardware units can perform these operations.

These operations are discussed in detail in the Configuration and Advanced Topics chapters.

2.4 FPA Registers
The FPA registers may be used to customize the FPA configuration and retrieve status information.
For instance, the register FPA_QUEn_AVAILABLE has a field QUE_SIZ which contains the
number of available buffers in the specified pool (“n” is a number [0-7] which specifies the pool,
as in FPA_QUE2_AVAILABLE.) (The register/field combination is written:
FPA_QUEn_AVAILABLE[QUE_SIZ].)

When customizing the SDK by accessing registers, use the API provides functions to read and
write the registers safely and conveniently:

• cvmx_read_csr()
• cvmx_write_csr()

Race conditions which may otherwise occur are discussed in the Configuration and Advanced
Topics chapters.

Note: Do not modify these registers after the FPA is enabled. See Figure 12 –
“Flowchart - FPA ”.

5-10 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-11

2.5 Using the FPA
Before the FPA can be used, it must be:

1. Configured
2. Initialized
3. Enabled
4. Pools must be populated with buffers

These concepts were introduced in the Configuration chapter. This section provides FPA-specific
information. Functions mentioned in this section are discussed in more detail in Section 7 –
“Simple Executive API”.

2.5.1 Configure the FPA Unit
Simple Executive configuration is done at build time. See Section 3 – “General Pool Configuration
and Population Information” for FPA-specific configuration information. See the Configuration
chapter for more information.

2.5.2 Initialize the FPA Unit
Unit initialization is done at runtime. The Simple Executive API will manage any basic
initialization items. Advanced initialization items are covered in the Advanced Section of this
chapter, which begins with Section 11.3 – “Initializing the Per-Pool Address Cache Allotment or
Watermarks”.

2.5.3 Enable the FPA Unit
Unit enable is done at runtime. The FPA hardware unit is enabled via either the fpa_enable()
function or cvmx_helper_initialize_fpa() (which calls the fpa_enable() function.
The FPA must be enabled before the pools are populated, or runtime errors will occur (such as an
incorrect available buffer count).

2.5.4 Populate the FPA Pools
Pool population is done at runtime. For easy pool population, see Section 7.3.2.1 – “Example
Code: cvmx_helper_initialize_fpa()”, for advanced pool population, see Section
7.4.1.2 – “Example Code: Calling cvmx_fpa_setup_pool()”.

See Section 3.2.4 – “Can More Buffers be Added to a Buffer Pool at Any Time?” for more
information.

2.5.4.1 Allocating Memory for FPA-Managed Buffers
If the Cavium Networks Ethernet driver is used with the application, then the Ethernet driver is
responsible for allocating memory for the Packet Data buffers, WQE buffers, and PKO Command
buffers.

Both SE-S and SE-UM applications must allocate memory for FPA-managed buffers using
cvmx_bootmem_alloc(). This function will return memory which is suitable for DMA
operations.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FP

The Linux function malloc() cannot be used: malloc() does not return memory suitable for
DMA: the virtual address is not mapped to physical memory. The DMAs would go to some
unknown address and corrupt memory.

A
) 3 General Pool Configuration and Population Information

The Configuration chapter provides information on how to configure FPA pools and scratchpad
areas. This section provides guidelines for making configuration and population (buffer count)
choices for the three FPA pools essential for packet processing:

• Packet Data buffer pool
• Work Queue Entry buffer pool (Note that some OCTEON models can store the WQE data

structure in the Packet Data buffer. If this feature is used, the WQE buffers are not needed
for packet processing.)

• PKO Command buffer pool

The default SDK uses PKO Command buffers for the following hardware unit’s instruction queues.
This reduces the number of FPA pools needed:

• PCI DMA Engines
• PKO
• RAID
• ZIP

3.1 Default Simple Executive Pool and Scratchpad Area Configuration
The following table shows the default Simple Executive pool and scratchpad area configuration. In
the default Simple Executive, PCI DMA Engines, PKO, RAID, and ZIP all use the PKO Command
buffers pool. Separate pools can be configured for these uses if required.

Table 2: Default Simple Executive Pool Configuration
DFA Buffers Pool (ifdef CVMX_ENABLE_DFA_FUNCTIONS)
Name CVMX_FPA_DFA_POOL
Descriptive String "DFA command buffers"
Pool Number (Default value) 4
Buffer Size (Default value) 2 * cache line size (256 bytes)
Protected / Permanent Yes
Packet Data Buffers Pool (ifdef CVMX_ENABLE_PKO_FUNCTIONS)
Name CVMX_FPA_PACKET_POOL
Descriptive String "Packet buffers"
Pool Number (Default value) 0 (cannot be changed)
Buffer Size (Default value) 16 * cache line size (2048 bytes)
Protected / Permanent Yes
PKO Command Buffers Pool (ifdef CVMX_ENABLE_PKO_FUNCTIONS)
Name CVMX_FPA_OUTPUT_BUFFER_POOL
Descriptive String "PKO queue command buffers"
Pool Number (Default value) 2

5-12 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-13

Buffer Size (Default value) 8 * cache line size (1024 bytes)
Protected / Permanent Yes
Timer Buffers Pool (ifdef CVMX_ENABLE_TIMER_FUNCTIONS)
Name CVMX_FPA_TIMER_POOL
Descriptive String "TIM command buffers"
Pool Number (Default value) 3
Buffer Size (Default value) 8 * cache line size (1024 bytes)
Protected / Permanent Yes
Work Queue Entry Buffers Pool (ifdef CVMX_ENABLE_HELPER_FUNCTIONS)
Name CVMX_FPA_WQE_POOL
Descriptive String "Work queue entries"
Pool Number (Default value) 1
Buffer Size (Default value) 1 * cache line size (128 bytes)
Protected / Permanent Yes

Table 3: Default Simple Executive Scratchpad Configuration
Scratchpad 1 - generic - used for cvmx_fpa_async_alloc() (ifdef
CVMX_ENABLE_PKO_FUNCTIONS)
Name CVMX_SCR_SCRATCH
Descriptive String "Generic scratch iobdma area"
Size (Default value) 8 bytes
Protected / Permanent No

3.2 Configuration Overview

3.2.1 Rules
The following rules must be followed when creating buffer pools. The Simple Executive APIs
ensure these requirements and recommendations are met:

• All buffers must be aligned on a 128-byte boundary (the cache line size) (see Section 10.3.1
– “Buffer Alignment: Bad Alignment at Start of Buffer”).

• All buffers must be at least 128 bytes (one cache line size) because they are also used to
maintain the internal FPA pool structure (see Section 9.1 – “Buffer Organization” for
details).

• Packet Data buffers must be a minimum size of 256 bytes (2 * cache line size) and a
maximum buffers size of 16 Kbytes (128 * cache line size). (Note that this is a PIP/IPD
hardware requirement, but the hardware does not check or enforce this requirement.)

• Packet Data buffers must also be a multiple of cache line size (see Section 10.3.2 – “Buffer
Alignment: Bad Alignment at End of Buffer”). All other buffers are strongly
recommended to be a multiple of cache line size (see Section 10.3.3 – “Buffer Size and
Don’t Write Back (DWB”).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

F
 Po

A
llocator (

)
ree • Packet Data buffers must always be in FPA pool 0. This is a hardware requirement: the

IPD and PKO units automatically allocate and free buffers from/to pool0.

ol
FPA 3.2.2 Is There a Limit on the Number of Buffers?

The size of the buffer pool is not limited by the hardware; it is only limited by the amount of
physical memory available. (When using Linux, the configuration system imposes a maximum
limit of 8192 Packet Data buffers, but there is no limit imposed by the OCTEON processor. See
Section 4.2.4 – “Linux and Packet Data Buffer Count” for more information.)

3.2.3 Can a Pool Contain Different-Sized Buffers?
Although more than one size of buffer can be in the same pool, this configuration is incredibly
difficult to manage and creates an impossibly complex debugging environment. For example, if
the IPD requests a Packet Data Buffer and receives a buffer which is smaller than the expected
mbuf size (IPD_PACKET_MBUFF_SIZE[MB_SIZE]), when it writes the packet data to the
buffer, it may overwrite adjacent memory. This error can also occur when buffers are freed to the
wrong pool (for example, a smaller buffer is mistakenly freed to the Packet Data buffer pool). See
Section 10.3.4 – “Buffer Freed to the Wrong Pool” for an illustration of this problem.

3.2.4 Can More Buffers be Added to a Buffer Pool at Any Time?
The pools are typically populated at runtime right after the FPA has been initialized and enabled.

Note: Future processors may provide optional FPA hardware range checking on buffer
addresses provided to the FPA via the buffer_free operation. If this feature is used,
then buffer pools should only be populated once so that the buffer addresses all fall
within the same range.

The question often arises whether buffers may be added at any time, for instance if the buffer pool
is low in buffers after the system has been running for a while:

• If the Cavium Networks Ethernet driver is not being used, then buffers can be added at any
time by any core, given some caveats.

• If the Cavium Networks Ethernet driver is being used:
o Packet Data buffers: More buffers cannot be added to the Packet Data buffer pool

because the Linux kernel initializes Packet Data buffers to contain the sk_buff
data structure, which allows the driver to receive packets without copying them (for
faster performance).1 The Linux kernel uses the sk_buff data structure for
network buffers and queues, and relies on information which it put into the

1 Note that, for performance reasons USE_SKBUFS_IN_HW is automatically set to TRUE when possible. If this
variable is TRUE, then 32-bit SE-UM applications cannot access Packet Data buffers, so if the menuconfig variable
CONFIG_CAVIUM_RESERVE32 is TRUE (1), then USE_SKBUFS_IN_HW is automatically set to FALSE (0),
otherwise USE_SKBUFS_IN_HW is automatically set to TRUE (1). (For SDK 1.9 and SDK 2.0, this variable is
defined in ethernet-defines.h, in the Linux kernel directory:
$OCTEON_ROOT/linux/kernel_2.6/drivers/net. For SDK 1.9, the Cavium Ethernet driver code is in the
cavium-ethernet sub-directory. For SDK 2.0, the driver code is in the octeon sub-directory.

5-14 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-15

sk_buff. If a core which is not running Linux allocates buffers and adds them to
the pool, they will not contain the information needed by the Linux kernel.

o WQE buffers: More buffers should not be added because the ratio of WQE buffers
to Packet Data buffers is carefully configured to prevent exhaustion of Packet Data
buffers (no more buffers available in the pool). If the PIP/IPD congestion control
mechanisms depend on the number of WQE buffers available, and this number is
increased, then the Packet Data buffer pool could become exhausted.

o PKO Command buffers: Although as of SDK 2.0 there is no restriction on adding
more PKO Command buffers, future SDKs may add performance improvements
affecting the content of the buffers. Thus, applications should not depend on adding
more PKO Command buffers.

Buffers may not be added at any time by any core if:

• The Cavium Networks Ethernet driver is in use (to Packet Data buffers, WQE buffers, or
PKO Command buffers (see details, above)).

• The function fpa_is_member()is used (determines if a buffer address is within the
address range of the original chunk of memory allocated for the pool).

• The function fpa_get_base() is used (returns the start address of the original chunk of
memory allocated for the pool).

• Custom software is used to track whether a buffer belongs to a pool or provide the starting
address of the memory allocated for the pool.

Note that the underlying hardware does not care about any relationship or lack of it
between all the addresses in the pool. It is the application which may care, and this is
what imposes the constraint on adding more buffers to a pool at any time.

Note that it is best to allocate the maximum required amount of memory when the application
initially populates the FPA pools because there is more chance the request will be filled from a
contiguous block of memory, especially when allocating large blocks of memory.
Also note that some applications rely on the fact that all buffers that reside in a particular FPA pool
belong to a single contiguous memory region for additional functionality, such as verification that
the received buffer is valid by checking that its address is within the original allocated memory
range (fpa_is_member()). For SDK 1.X, the Cavium Networks Ethernet driver performs this
check on each received Packet Data buffer to check whether it is valid.

3.2.5 Configuring Hardware Units Which Automatically Use the Buffers
When configuring the FPA, the interaction between the FPA and other hardware units must be
considered. For example, if a hardware unit is configured to automatically free buffers to pool 5,
but the buffers actually came from pool 4, then at runtime pool 4 will run out of buffers. More
information on hardware units which automatically free and allocate buffers is provided in Section
15 – “Configuring Units Which Allocate/Free FPA Buffers”.

3.2.6 Allocating Buffers from Linux and the Affect on Buffer Size
When running the Cavium Networks Ethernet driver (for example, linux-filter), then the
Ethernet driver allocates the memory for FPA-managed buffers and creates the buffer pools.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

For kernel 2.6 and previous kernel versions, slab allocation is done. In this type of allocation, the
size of the requested memory is rounded up to the nearest available power of 2.

Linux can add overhead to the requested size. For example, in SDK 2.0, if the requested buffer
size is 2048, Linux adds 256 bytes to that request for a sk_buff data structure, increasing the size
to 2304 bytes (in SDK 1.9, Linux adds 8 bytes). In this case, the slab memory allocator will
allocate the next power of two size buffer: 4096. One work-around is to request a buffer size
which is a multiple of 128 bytes, but less than 2048 (such as 1536 bytes), to allow room for kernel
additions.

Depending on the configuration, Linux may increase the size for other purposes. If the user starts
with a large buffer size, the added space can tip the buffer size into the 32,768-byte or even 65,536-
byte buffer size.

To check on the allocated buffer size, after booting Linux on the target board, cat
/proc/slabinfo to see which size was allocated for the buffers. If necessary, adjust the size of
the original request until the amount of memory consumed is acceptable.

Performance Tip: The standard MMU/TLB page size for Linux is 4096 bytes. If buffers
are larger than 4096 bytes, performance may be improved by changing the MMU/TLB
page size to be large enough so that large buffers do not consume multiple pages.
OCTEON hardware supports MMU/TLB page sizes up to 256 MBytes.

5-16 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-17

4 Packet Data Buffers
Packet Data buffers are used to receive packet data. If one Packet Data buffer is not large enough
to hold all the packet data, then Packet Data buffers will be chained together automatically by the
PIP/IPD.

Table 4: Packet Data Buffers Overview
Packet Data Buffers

Default Pool Name CVMX_FPA_PACKET_POOL

Default Pool String "Packet Data Buffers"
Unit Allocating Buffer IPD (always Pool 0)
What controls the
allocation and use?

In the Simple Executive, the function cvmx_helper_global_setup_ipd()
sets the value of
IPD_PACKET_MBUFF_SIZE[MB_SIZE]. The IPD always allocates Packet Data
Buffers from pool 0.

Recommended Buffer
Size

Up to 2048 bytes (sixteen cache lines) (MTU of 1500 bytes)

Recommended Number
of Buffers

Depends on the application and the expected system load.

Unit Freeing Buffer PKO or core
SDK Function to
Configure Timers to Use
the Correct Pool

The PKO will optionally free the buffer to the specified pool (usually pool 0). The
core may also optionally free the buffer.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Table 5: Packet Data Buffer Requirements
Buffer Size Multiple
Size is Multiple of Cache-Line Size: Buffer size is required to be a multiple of the cache line
size (128 bytes). The IPD always writes packet data in complete 128-byte blocks, including the
last data in the packet. Since the IPD will write 128 bytes even if that would exceed the end of
the buffer, it is important that the buffer is large enough and that the end of the buffer is
correctly aligned to the 128-byte boundary. This size restriction also provides support for
“Don’t Write Back” (DWB) functionality (see the Advanced Topics chapter for details.) Note
that hardware does not enforce this requirement: if the buffer is incorrectly configured,
difficult-to-debug problems will occur.
Minimum Buffer Size
PIP/IPD configuration rules impose minimum buffer size of 256 bytes (2 * cache line size) and
a maximum buffers size of 16 Kbytes (128 * cache line size). The default configured size is
2048 bytes (16 * cache line size). Note that hardware does not enforce this requirement: if the
buffer is incorrectly configured, difficult-to-debug problems will occur.

Pool Number
This pool is required to be FPA Pool 0, because the IPD always gets Packet Data buffers from
pool 0 (not configurable). Note that hardware does not enforce this requirement: if the buffer is
incorrectly configured, difficult-to-debug problems will occur.
Buffer Count
Assuming packet data will fit into one Packet Data buffer:
min_buffers = [max_burst_size *
(1 – (num_cores * core_processing_rate / max_burst_rate))] + prefetch
(prefetch is the number of buffers prefetched by IPD (about 130 buffers)). Congestion
control mechanisms can be used to ensure that low priority traffic does not consume all of the
available buffer space (see the PIP/IPD chapter).

4.1 Packet Data Buffer Size
For optimum performance, most packets should fit inside a single packet data buffer. The required
size of the packet data buffer doesn’t only depend on the size of the packet, it also depends on
configurable options and other factors. See the “Packet Storage” section in the PIP/IPD chapter
for more information.

For any packet, the incoming packet data is not required to fit into a single Packet Data buffer. If
the data cannot fit into one Packet Data buffer, multiple Packet Data buffers will be allocated and
linked together automatically by the PIP/IPD (the format of the scatter list is chained buffers). For
best performance, most traffic should fit into a single buffer; chained buffers incur higher
overhead, and also require more FPA bandwidth. Therefore, it is recommended that the Packet
Data buffer size be set to large enough to accommodate the packet size of most of the traffic.

For example, on an Ethernet most frames will be a maximum of 1500 bytes of payload, unless
jumbo frames are in use. When the MTU is 1500, the buffer size should be set to 2048 bytes,
allowing each frame to be stored in a single buffer. When jumbo frames are in use, a 2048 byte

5-18 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-19

buffer size is still often a good balance between memory consumption and system performance,
depending on how frequently jumbo frames are seen.

See also Section 3.2.6 – “Allocating Buffers from Linux and the Affect on Buffer Size”.

4.2 Packet Data Buffer Count
The required number of Packet Data buffers is application dependent. This section provides a
formula for calculating the number of packet data buffers needed.

In the following formula, one Packet Data buffer per ingress packet is assumed. This formula will
need to be adjusted if this is not the ratio used by the application. The PIP/IPD chapter explains
packet storage and variations on packet storage. Here are a few items to be aware of (see the
PIP/IPD chapter for details):

• The entire Packet Data buffer is not available to store data due to mbuf overhead and
configuration options.

• If the packet data will not fit into one Packet Data buffer, it is automatically stored in
multiple Packet Data buffers by PIP/IPD.

• Dynamic shorts can optionally be configured, allowing short packets (less than approx 90
bytes) to be stored completely stored in the WQE buffer: no Packet Data buffer is used in
this case.

Note that users sometimes increase the number of Packet Data buffers unnecessarily when the
underlying problem is per-core throughput (the core_processing_rate in the formula
below, which is measured in Million packets per second (Mpps)). When tuning a system,
examining the per-core throughput, identifying, and fixing any bottlenecks in the code can be
helpful.

System tuning is a complex process which can require a deep knowledge and understanding of the
hardware architecture and application requirements. The following chapters provide information
which can help with system tuning:

• Information on how to measure the number of cycles consumed by a section of code is
provided in the Essential Topics chapter.

• Packet processing math is provided in the Software Overview chapter.
• Congestion control information provided in the PIP/IPD chapter. This section provides a

system-level view of common causes for congestion and proposed solutions.

4.2.1 Calculate the Maximum Number of Packet Data buffers Needed
The following calculation can help determine the minimum number of Packet Data buffers needed
in order to support a given traffic profile without unpredictable loss due to congestion control
mechanisms. The formula calculates the number of Packet Data buffers needed for a given
maximum burst rate and burst size. This example assumes a single QoS level for all ingress
packets, and that packets can be egressed “immediately” once initial core processing is complete.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free
A

llocator (FPA
)

The maximum number of Packet Data buffers needed depends on: Pool • The time needed for a core to process a packet
• The ingress burst rate

• The time for the core or PKO to free the Packet Data buffer
• The number of cores processing packets
• Whether the average packet will fit into only one Packet Data buffer

Note that the FPA pool 0 should be configured with a slightly greater amount (the prefetch
amount shown in the formula below) of roughly 130 buffers to allow for variations in system
dynamic performance, buffers being pre-allocated by PIP/IPD, PKO transmit backlog (delay in
freeing the buffer), and other variables.

The following formula assumes that the average packet will fit into only one Packet Data buffer:

min_buffers = [max_burst_size *
(1 – (num_cores * core_processing_rate / max_burst_rate))] + prefetch

Where min_buffers is the number of Packet Data buffers needed to hold the backlog.

(The core_processing_rate/max_burst_rate = the amount of the burst a single core
can handle. This number multiplied by the number of cores is the amount of the burst the set of
cores can handle. (1 – (the number of packets all the cores can handle)) is the fraction of the whole
which is not being handled “real time” by the cores (a backlog of work to do). This fraction will be
stored in the Packet Data buffers until the cores process the backlog.)

(Packets are received at max_burst_rate for a short period; the duration is defined by the ratio
of the max_burst_size (number of packets received at max_burst_rate) to the actual
max_burst_rate.)

Example:
This example is for a TCP/IP Toolkit IP forwarding example program:

• core_processing_rate = 2Mpps (2 million packets per second) per core (the
throughput is approximately 2Mpps per core @ 800MHz)

• max_burst_rate = 16 Mpps (ie roughly a 10 G line)
• max_burst_size = 4Mp (4 million packets)
• Each packet will fit into only one Packet Data buffer, so multiple Packet Data buffers per

packet are not needed

So if:
core_processing_rate = 2Mpps (pps=packets per second)
max_burst_rate = 16Mpps
max_burst_size = 4Mp (p=packets)

then:
1 core: min_buffers = 4Mp * (1 – 1 core * 2Mpps / 16Mpps) = 3.5M + prefetch
2 cores: min_buffers = 4Mp * (1 – 2 cores * 2Mpps / 16Mpps) = 3.0M + prefetch
4 cores: min_buffers = 4Mp * (1 – 4 cores * 2Mpps / 16Mpps) = 2.0M + prefetch

5-20 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-21

8 cores: min_buffers = 4Mp * (1 – 8 cores * 2Mpps / 16Mpps) = 0.0M + prefetch

Note that since 8 cores can process 16Mpps, a burst of 16Mpps will not build a back-log, so the
formula reports 0.0M + prefetch buffers are needed.

4.2.1.1 What if the Formula Yields a Negative Number?
If the formula yields a negative value for the number of buffers (excluding the prefetch amount),
this indicates that the cores are able to process the incoming traffic at a rate faster than the
max_burst_rate (they are keeping up with the traffic). In this scenario, the number of buffers
needed is much smaller and is dependent on the maximum processing time needed for an
individual packet (for example, an error condition can result in a longer processing time).

The following formula gives a worst case minimum buffer requirement to be used when the
formula above yields a negative number (excluding the prefetch amount):

min_buffers = max_burst_rate / core_processing_rate

Using the numbers from the example, that is:

min_buffers = 16Mpps / 2Mpps = 8 buffers

4.2.2 Packet Data Buffer Count and PIP/IPD Congestion Control
Many PIP/IPD congestion control mechanisms are based on the number of available Packet Data
buffers so if the WQE buffers are exhausted first, the congestion control mechanism will not detect
the buffer exhaustion and take correct action. If these mechanisms are used, the number of Packet
Data buffers should be in the correct ratio with the number of WQE buffers to prevent WQE buffer
exhaustion. For example, if there are 2048 WQE buffers, and 8192 Packet Data buffers, with only
one Packet Data buffer needed per packet, then the WQE buffers will be exhausted while there are
still 6144 Packet Data buffers available (wasted, because they cannot be used).

If the number of Packet Data buffers was 2048, then the PIP/IPD congestion control mechanisms
can prevent both Packet Data buffer and the WQE buffer exhaustion (assuming dynamic shorts are
not configured), and no Packet Data buffers are unused.

4.2.3 What if the System Runs Out of Available Packet Data Buffers?
If PIP/IPD runs out of Packet Data buffers, it will stop receiving packets (critical buffer
exhaustion). When more buffers are available, it will resume receiving packets. PIP/IPD
congestion control mechanisms should be used to prevent critical buffer exhaustion. See the
PIP/IPD chapter for details. Note that PIP/IPD congestion control mechanisms focus on the
number of Packet Data buffers, not WQE buffers. Be sure to configure sufficient WQE buffers
(there should be more WQE buffers than Packet Data buffers).

4.2.4 Linux and Packet Data Buffer Count
When the Cavium Networks Ethernet driver is used, the number of Packet Data buffers is
configured via the Linux make menuconfig command. The Cavium SDK Linux kernel
configuration imposes an arbitrary maximum of 8,192 Packet Data buffers. This limit is imposed
in order to maintain compatibility with the many different configuration permutations and to avoid

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

excessive use of the kseg0/DRAM0 memory block which can occur in some SDK 1.X based
configurations. It is expected that this number should be sufficient for standard Linux applications.

If more buffers are required for a standard Linux application, or a hybrid system (Linux cores +
SE-S cores is being designed), a detailed review is required in order to understand why so many
buffers are required, and to select the appropriate system design/kernel configuration. See the
packet processing math figure in the Software Overview chapter. Also see the Essential Topics
chapter for information on how to measure the number of cycles consumed by a section of code.

5-22 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-23

5 WQE Buffers
The WQE buffers are used to store the WQE data structure. (The WQE data structure may
optionally be stored at the start of the Packet Data buffer instead of in a WQE buffer for some
OCTEON models.)

Table 6: Work Queue Entry Buffers Overview
WQE Buffers

Default Pool Name CVMX_FPA_WQE_POOL

Default Pool String "Work queue entries"
Unit Allocating Buffer IPD or the core (via software)
What controls the
allocation and use?

In the Simple Executive, the function cvmx_helper_global_setup_ipd()
configures the IPD to use the correct pool.

Recommended Buffer
Size

128 bytes (one cache line)

Recommended Number
of Buffers

Depends on the system design.

Unit Freeing Buffer core (via software)
How does the system
know which pool the
buffer returns to?

The pool number is in the WQE data structure. The core will free the buffer.

Table 7: WQE Buffer Requirements

Buffer Size Multiple
Buffer size is strongly recommended to be a multiple of the cache line size (128 bytes).
Minimum Buffer Size
 128 bytes (1 * cache line size)
Pool Number
The pool number can be any unused pool number from [1-7]. The pool number by default is
"1".
Buffer Count
This pool must never run out of buffers (see “buffer exhaustion" and "critical backpressure” in
the PIP/IPD chapter). If WQE buffer exhaustion occurs, then the packet interfaces will not be
able to receive new packets, stopping all traffic regardless of priority.

5.1 WQE Buffer Size
The WQE is usually configured to be 128 bytes (the minimum size). Users may increase the size
to allow for application-specific data storage after the hardware-defined WQE fields (two 64-bit
words are required as a minimum by the SSO).

5.2 WQE Buffer Count
Tuning the number of WQE buffers is a complex process. The number needed depends on the
system architecture, expected load, and the congestion control mechanism being used. The

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

discussion below presents different options. See Section 4.2 – “Packet Data Buffer Count” for
more discussion. The number of Packet Data buffers relative to WQE buffers is essential.

Factors which can drive the WQE buffer count include:

1. Determine whether PIP/IPD generates WQEs separately from Packet Data buffers, or stores
the WQE in the Packet Data buffer. (On some OCTEON models, PIP/IPD may be
configured to not use WQE buffers. See the PIP/IPD chapter for details.)

2. If PIP/IPD generates WQEs separate from the Packet Data buffers, then allocate at least 1
WQE for every packet ingressed and awaiting processing. See the PIP/IPD chapter for
more information on packet storage.

3. Account for WQE buffers used by other accelerators and/or core software. (See Section 5.3
– “Other Uses for WQE Buffers”).

5.3 Other Uses for WQE Buffers
 The WQE buffers are not only used for ingress packets. Here are some things to consider during
system tuning:

1. Are other accelerators such as TIMER, ZIP, HFA, RAID used? (All require WQEs to
provide results back to the cores.)

2. Are there other custom software uses for WQE buffers in the application? (In addition to
the automatic allocation by the IPD, cores may allocate these buffers and send them to other
cores via the SSO (using the add_work and get_work operations).)

3. Are PKO 3-word commands used? (These commands are used to instruct the PKO to
submit a WQE after packet transmission).

4. Analyze carefully the use of PCI/PCIe packet I/O and high performance DMA transfer.
(WQEs can be used to notify the core of operation completion.)

5-24 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-25

6 PKO Command Buffers
The PKO Command buffers are used to create command (instruction) queues. Software allocates a
PKO Command buffer, and adds commands to it. At the end of each command buffer, there is a
pointer to the next command buffer. When the first PKO Command buffer is full, software
allocates another one and links it into the command queue. This creates a PKO
command/instruction queue. The hardware unit (such as the PKO) is given the address of the first
buffer in the chain. When new commands are put into the command queue, the hardware unit is
notified, so it can track the number of outstanding commands to process. When the hardware unit
has processed all the commands in one PKO Command buffer, it frees the buffer back to the FPA
pool.

PKO Command buffers are used by other hardware units in addition to the PKO: they are
optionally used by the PCI DMA engines, RAID, and/or ZIP units (this is the default configuration
in the SDK). They may also be used by the DFA unit and TIMER unit. All of these units use
buffers to create a list of commands/instructions. All of these units automatically free the buffers
back to the FPA pool when the commands in them have been processed. The
cvmx_cmd_queue*() functions provide a single API that allows applications to queue
commands to any of the hardware units listed above.

The PKO Command buffer pool can become depleted if:

• One or more PKO ports are backlogged (packets are submitted to the PKO for egress at a
rate faster than the port’s physical egress rate)

• Other hardware units are using the PKO Command buffer pool, and one of these hardware
units has a backlog of commands.

Applications must therefore check whether the allocation command failed and handle the error.

If the application needs to prevent PKO Output Queues from using up an unfair share of PKO
command buffers, then the application code must monitor the length of each PKO Output Queue
and limit the maximum commands appropriately. The FAU hardware can help monitor the number
of packet sent to the PKO Output Queue versus the number the PKO has sent. See the FAU
section in the Essential Topics chapter for an overview of how this is done.

There is no need for the application to monitor the PKO Output Queue length to prevent doorbell
overflow: the doorbell register accommodates a maximum of 220 words (a maximum of 219
commands), so the cvmk_pko_doorbell*() functions already monitor the queue size.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Table 8: PKO Command Buffers Overview
PKO Command

Buffers

Default Pool Name CVMX_FPA_OUTPUT_BUFFER_POOL

Default Pool String "PKO queue command buffers"
Unit Allocating Buffer core (via software)
What controls the
allocation and use?

In the Simple Executive, the function cvmx_fpa_alloc(pool) will return a
buffer pointer; the function cvmx_fpa_async_alloc(scratch_address,
pool) will write the buffer address to the scratchpad.

Recommended Buffer
Size

1024 bytes (eight cache lines)

Recommended Number
of Buffers

4 buffers per each user is recommended, assuming there is no specific requirement to
support a defined number of backlogged commands. One user is 1 PKO Output
Queue, RAID, ZIP, or 1 PCI DMA Engine.

Unit Freeing Buffer Unit using the buffer, such as the PKO.
How does the system
know which pool the
buffer returns to?

PKO: cvmx_pko_initialize_global()
PCI DMA Engines: cvmx_dma_engine_initialize()
RAID: cvmx_raid_initialize()
ZIP: cvmx_zip_initialize()
configure the unit to know the pool and to enable DWB or set the DWB count
(depending on the unit being configured)

Table 9: PKO Command Buffers Requirements
Buffer Size Multiple
Buffer size is strongly recommended to be a multiple of the cache line size (128 bytes).
Minimum Buffer Size
128 bytes (1 * cache line size)
Maximum Buffer Size
The max size is 511 cache lines, dictated by the PKO register field
PKO_REG_CMD_BUF[SIZE]. This is the number of 8-byte command words in each PKO
Command buffer. The largest number this register can hold is 8,191. 511 cache lines provide
8,176 8-byte command words.
Pool Number
The pool number can be any unused pool number from [1-7]. The pool number by default is
"2".
Buffer Count
It is okay for this pool to run out of buffers: software must check for this condition when
allocating buffers.

6.1 PKO Command Buffer Size
The recommended size is 1024 bytes (8 cache lines). The minimum size allowed by the hardware
unit is 128 bytes. See Section 6.3 – “More Precise PKO Command Buffer Size and Count
Calculations” for more details.

5-26 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-27

6.2 PKO Command Buffer Count
Note that it is okay for this pool to run out of buffers. Software is responsible for handling error
conditions for the buffer allocation commands (cvmx_fpa_alloc() returns NULL if there are
not enough available buffers to satisfy the request).

The default SDK configuration is for the following units to use the PKO Command buffers: PCI
DMA Engines, PKO, RAID, and ZIP.

The minimum is 2 PKO Command buffers for every user of them, plus 1 per core that may be
generating commands. An optimum value is 4. So, if PKO has 256 output ports, ZIP and RAID
are being used, and there are 8 PCI DMA Engines, the minimum is:

(4 PKO Command buffers) * ((DMA * 8 engines) + RAID + (PKO * 256 ports) + ZIP)
= (4 * 266) = 1064 PKO Command buffers

(The number of PKO output ports and PCI DMA Engines varies with the OCTEON processor
model.)

See Section 6.3 – “More Precise PKO Command Buffer Size and Count Calculations” for more
details.

6.3 More Precise PKO Command Buffer Size and Count Calculations
This section details the math involved if more precise calculations are needed.

Calculate Number of Packets Accommodated by Each PKO Command Buffer:

1. Assume PKO Command buffer size is 1024 bytes.
2. This provides space for 128 8-byte command words.
3. Reserve one command word to point to the next PKO Command buffer in the linked list,

leaving 127 command words for use by PKO commands.
4. Determine how many command words are needed for each PKO command. The maximum

PKO command size is 3 command words (many are only 2 command words).
5. Calculate the number of PKO commands which are accommodated by each PKO

Command buffer: 42 command words / (command words per PKO command). For
example, if there are 3 PKO command words needed per PKO command, each buffer will
accommodate: truncate (127 command words / 3 words per command = 42 3-word PKO
commands, plus 1 command word left over).

6. If there are 4 PKO Command buffers per PKO Output Queue, then the maximum number
of packets which can be held in the queue at one time is ((4 buffers * 42 PKO commands) +
1 PKO command) = 169 PKO commands, enough PKO commands for 169 packets.

In the calculation shown above, commands for 169 queued packets will fit into each PKO Output
Queue. C

av
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Fr
ol

A
lloc

FPA
)

ee Po
ator (7 Simple Executive API
Before the FPA API functions can be used Simple Executive must be configured to support the
FPA functions.

Note that all cores may allocate and free buffers, but only one core should initialize and
enable the FPA. Usually all of the FPA pools are populated by the same core during the
application initialization routine.

Example code showing use of each function, is shown here, and is also in the fpa_simplified
example provided at the Cavium Networks Technical Support Site in the same directory where an
electronic copy of this chapter may be found.

The following useful non-FPA functions are shown in the example code contained in this section:

• cvmx_dprintf()
• cvmx_bootmem_alloc()
• cvmx_sysinfo_get()
• cvmx_coremask_first_core()
• cvmx_helper_get_version()
• cvmx_coremask_barrier_sync()

7.1 Limits and other Definitions
The maximum number of pools (eight) is a hardware limit. The other limits shown below are
strongly recommended limits defined by the Simple Executive software.

Note that CACHE_LINE_SIZE = 128 bytes. (The API uses this as a minimum size. When
not using the API the user could erroneously create a buffer which is smaller and try to use it. The
FPA hardware would not object, but the system would malfunction. See Section 10.3 – “Common
Mistakes”.)

Key limits are defined in cvmx-fpa.h:

#define CVMX_FPA_NUM_POOLS 8 // maximum of 8 pools: a
 // hardware limit
#define CVMX_FPA_MIN_BLOCK_SIZE 128 // (bytes) an API-provided limit
#define CVMX_FPA_ALIGNMENT 128 // (bytes) an API-provided limit

CVMX_FPA_MIN_BLOCK_SIZE: The minimum block size is set to 128 bytes to match
CACHE_LINE_SIZE.

CMVX_FPA_ALIGNMENT: The CVMX_FPA_ALIGNMENT define is used as an argument to
cvmx_bootmem_alloc(). This will cause the memory allocated for FPA-managed buffers to
be aligned on CACHE_LINE_SIZE, which is ideal. See – Section 10.3 – “Common Mistakes”
for a discussion on why these two defines are important.

5-28 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-29

Note that the buffer size must be an integer multiple of CACHE_LINE_SIZE. This will allow the
aligned memory to be divided up into buffers which are also aligned on CACHE_LINE_SIZE. If
the buffer size is not a unit of CACHE_LINE_SIZE, when the memory is divided into buffers, the
buffers will not be properly aligned.

7.2 Data Structures
The following data structure is created and maintained by software: it is not part of the FPA
hardware.

7.2.1 The cvmx_fpa_pool_info_t (pool_info) Data Structure
The cvmx_fpa_pool_info_t data structure (the pool_info data structure) is added by the
Simple Executive, and is defined in cvmx-fpa.h. The fields in this data structure are filled in
when the pool is populated by either cvmx_helper_initialize_fpa() or
cvmx_fpa_setup_pool().

/**
 * Data structure describing the current state of a FPA pool.
 */
typedef struct
{
 const char *name; // The Name of the pool specified by
 // cvmx_helper_initialize_fpa() or
 // cvmx_fpa_setup_pool()
 // when creating the pool – used for debugging
 uint64_t size; // Size of the buffers in the pool (bytes)
 void *base; // The base memory address of whole block
 uint64_t starting_element_count; // The number of elements in
 // the pool at creation
} cvmx_fpa_pool_info_t;

Note that the pool_info data structure includes pool names which are specified in the
cvmx-resources.config file. These names are only used to help programmers remember
which pool is used for which purpose.

7.3 Easy-to-Use Executive FPA API Functions
The easy-to-use API functions include the pool information functions, the helper function used to
set up the typical FPA pool, and allocate and free functions.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Fr
ool

A
lloca

(FPA
)

ee P
tor 7.3.1 Pool Information Functions

The following functions access the pool_info data structure.

Note: If the Cavium Networks Ethernet driver is in use, the FPA functions
cvmx_fpa_is_member(), cvmx_fpa_get_base(),cvmx_fpa_get_block_size(),
and cvmx_fpa_get_name() will not work because the driver does not call the API function
(cvmx_fpa_setup_pool()) which fills in the cvmx_fpa_pool_info data structure. All
of these functions depend on that data structure (see the FPA chapter for more information).

The functions cvmx_fpa_is_member(), cvmx_fpa_get_base()will not work if the
more than one chunk of memory is divided into the buffers used to populate the pool. See the
Essential Topics chapter, in the “Pool Population” section.

Example code showing the use of these functions follows the table.

Table 10: Pool Information Functions
Pool Information Retrieval Functions

const char *cvmx_fpa_get_name(uint64_t pool)

Accesses the pool_info data structure to get the name of the specified pool. The name is set
up in cvmx_helper_initialize_fpa() or cvmx_helper_initialize_fpa_pool().
The argument is:
pool: specify which pool
Returns the name of the pool (a string).
Note this function will not work if the Cavium Networks Ethernet driver is used to populate the
pool.
void *cvmx_fpa_get_base(uint64_t pool)

Accesses the pool_info data structure to get the starting physical address of the specified
pool's chunk of system memory.
The argument is:
pool: specify which pool
Returns the start of the physical address of the chunk of memory allocated for the pool.
Note this function will not work if the Cavium Networks Ethernet driver is used to populate the
pool, or if more than one chunk of memory is divided into the buffers used initialize the pool.

int cvmx_fpa_is_member(uint64_t pool, void *ptr)

Accesses the pool_info data structure to determine if the buffer belongs in the specified pool
by checking whether the buffer's virtual address is within the block of memory allocated for the
pool.
The arguments are:
pool: specify which pool
ptr: a pointer containing the buffer's virtual address
Non-zero if the buffer belongs in the pool; otherwise returns zero.
Note this function will not work if the Cavium Networks Ethernet driver is used to populate the
pool, or if more than one chunk of memory is divided into the buffers used initialize the pool.

5-30 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-31

Pool Information Retrieval Functions
uint64_t cvmx_fpa_get_block_size(uint64_t pool);

Gets the configured (#define) size for the pool to get the buffer size for the specified pool. For
example, will print the value of CVMX_FPA_POOL_0_SIZE.
The argument is:
pool: specify which pool
If the pool has been configured into Simple Executive, returns the configured buffer size (block
size) for the pool (the value of the #define buffer size for the pool). Otherwise, returns zero.
Note this function will not work if the Cavium Networks Ethernet driver is used to populate the
pool.

7.3.1.1 Example Code: cvmx_fpa_get_block_size(), cvmx_fpa_get_name(),
cvmx_fpa_get_base()

The following code is from the fpa_simplified example:

/**
 * Prints the information for each pool
 *
 * pool_num: Pool number (0-7) (no check for illegal pool number)
 * returns void
 */
void application_print_pool_data(uint64_t pool_num)
{
 const char *pool_name;
 void *pool_base;
 uint64_t pool_buffer_size;

 pool_buffer_size = cvmx_fpa_get_block_size(pool_num);
 if (pool_buffer_size > 0) /* pool in use */
 {
 printf("Pool %lu\n", pool_num);
 pool_name = cvmx_fpa_get_name(pool_num);
 printf(" name = %s\n", (char *)pool_name);

 pool_base = cvmx_fpa_get_base(pool_num);

 printf(" base = %p\n", pool_base);
 printf(" block_size = %lu\n", pool_buffer_size);

 // there is currently no API function to get the original total
 // number of buffers (starting element count)
 printf(" Initial buffer count = %lu\n",
 cvmx_fpa_pool_info[pool_num].starting_element_count);
 }
 else
 {
 printf("Pool %lu is not configured in the system.\n", pool_num);
 }
 printf("\n");
}

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

F
 Pool

A
llo

or (FPA
)

ree
cat 7.3.1.2 Example Code: cvmx_fpa_is_member()
The following code is from the fpa_simplified example:

// this function should return "yes"
printf("\nTesting whether buffer %p belongs in my FIRST pool\n",

 my_buffer);
printf("Expecting the answer to be 'yes'\n");
result = cvmx_fpa_is_member(CVMX_MY_FIRST_POOL, my_buffer);
if (result == 1)
{
 printf("Yes, buffer %p is a member of my pool\n", my_buffer);
}
else
{
 printf("No, buffer %p is NOT a member of my pool.\n", my_buffer);
}

7.3.2 Easy-to-Use Initialize, Allocate, and Free Functions
The functions in the next table are easy-to-use. Example code showing the use of these functions
follows the table.

Table 11: Easy-to-Use Functions
Easy-to-Use Functions

int cvmx_helper_initialize_fpa(int packet_buffers, int
work_queue_entries, int pko_buffers, int tim_buffers, int
dfa_buffers);

This function:
1) calls cvmx_fpa_enable()
2) populates the five commonly used pools using the buffer sizes set in cvmx-config.h.
Note: if the number of buffers passed to the function is zero, the function will not create a
matching pool.
Calls cvmx_bootmem_alloc() to allocate memory for each pool. Memory will be aligned
on CVMX_CACHE_LINE_SIZE.
Calls cvmx_fpa_setup_pool() for each pool.
The arguments are the number of buffers for each of 5 pools. To not populate any pool, set the
number of buffers for that pool to 0:
packet_buffers: number of packet data buffers
work_queue_entries: number of WQE buffers
pko_buffers: number of PKO command buffers
tim_buffers: number of TIM buffers
dfa_buffers: number of DFA buffers
Returns 0 on success. Returns non-zero if out of memory.
void *cvmx_fpa_alloc(uint64_t pool)

This function gets a buffer from the pool, synchronously.
On success, returns a pointer to the buffer's virtual address, otherwise returns NULL.

5-32 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-33

void cvmx_fpa_async_alloc(uint64_t scr_addr, uint64_t pool)

Gets a buffer from the specified pool asynchronously; and puts the buffer's physical address
into the core's scratchpad memory. Before reading the address from the scratchpad, issue a
SYNCIOBDMA instruction to force the operation to complete.
The arguments are:
scr_addr: the scratchpad offset to write the buffer address
pool: specify which pool to get the buffer from
Returns void. Side Effect: writes buffer's address to the scr_addr, or writes all zeroes to
scr_addr if the pool is empty.

void cvmx_fpa_free(void *ptr, uint64_t pool, uint64_t
num_cache_lines)

Frees the buffer back to the specified pool. Issues the syncws instruction to flush the data
from the write buffer before the buffer free operation. This function is the most convenient and
safest way to free a buffer. The num_cache_lines argument specifies the number of cache
lines to DWB (Don't Write Back - see the Essential Topics chapter). Note that this function
will not verify that the buffer belongs in the pool it is being freed to!! The arguments are:
ptr: A pointer containing the virtual address of the buffer
pool: specify which pool to free the buffer to
num_cache_lines: The number of 128-byte cache lines to Don't Write Back (DWB)
Returns void. Side Effects: 1) flushes the data from the write buffer, 2) frees the buffer back to
the specified FPA pool.
static inline void cvmx_helper_free_packet_data(cvmx_wqe_t *work)

Free all of the Packet Data buffers for the Work Queue Entry. If multiple Packet Data buffers
are needed to hold all of the packet data, then these buffers are connected into a chain. This
routine will free all Packet Data buffers in the chain. Note that the Work Queue Entry buffer is
NOT freed. This function hides a lot of complexity: it handles the case of a dynamic short (the
packet data fits into the WQE and there is no Packet Data buffer), the case where the WQE is in
the Packet Data buffer, and the math to locate the start of the buffer. The argument is:
work: A pointer to the Work Queue Entry buffer associated with the packet.

7.3.2.1 Example Code: cvmx_helper_initialize_fpa()
There are five commonly used pools, one for each type of buffer:

1. Packet Data Buffers
2. Work Queue Entry Buffers
3. PKO Command Buffers
4. Timer Buffers
5. DFA Buffers

If only one or more of the five commonly used pools are needed, call
cvmx_helper_initialize_fpa() to populate the pools. Note that this function uses
default values set in cvmx-resources.config. The default values can be changed by editing
a local copy of cvmx-resources.config. See the Configuration chapter for more
information.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

To use the helper function cvmx_helper_initialize_fpa(), include cvmx-helper.h.

Note: If this function is called, do not call cvmx_fpa_enable().

Note that two of the pools are not populated in this example: the argument to the function is “0”
for these pools.

The following code is from the fpa_simplified example:

/**
 * Populate the Packet Data buffer, WQE buffer, and PKO Command
 * buffer pools
 *
 * num_packet_buffers is the
 * number of outstanding packets to support
 * returns Zero on success
 */
static int application_init_simple_exec(int num_packet_buffers)
{
 uint64_t pool_num; // used in for loop at the end
 int result = 0;

 // Setup the 3 of the 5 commonly used pools
 // make the number of WQE buffers = number of Packet Data Buffers
 // make the number of PKO Command Buffers depend on the number
 // of PKO output queues
 result = cvmx_helper_initialize_fpa(num_packet_buffers,
 num_packet_buffers,
 (CVMX_PKO_MAX_OUTPUT_QUEUES * 4), 0, 0);

 // print data for each pool
 for (pool_num = 0; pool_num < CVMX_FPA_NUM_POOLS; pool_num++)
 {
 application_print_pool_data(pool_num);
 }
 return result;
}

All system initialization should be done by one core only, usually the first core in the core mask for
the application. For example, in the fpa_simplified example main() function: check if the
code is running the first core in the core mask, if so then do the initialization. The following code
also shows use of the cvmx_sysinfo_get(), cvmx_coremask_first_core(),
cvmx_helper_get_version(), and cvmx_coremask_barrier_sync() functions.

The following code is from the fpa_simplified example:

 sysinfo = cvmx_sysinfo_get();
 coremask_example = sysinfo->core_mask;

 // use the first core to initialize the simple executive, enable
 // the FPA, and populate the FPA pools

5-34 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-35

 if (cvmx_coremask_first_core(coremask_example))
 {
 printf("SDK Version: %s\n", cvmx_helper_get_version());
 printf("FIRST CORE: INITIALIZING THE SIMPLE EXEC\n\n");

 result = application_init_simple_exec(number_of_packet_buffers);
 if (result != 0)
 {
 printf("Simple Executive initialization failed.\n");
 printf("TEST FAILED\n");
 // set this flag to cause all the cores to exit
 g_error_flag=1;
 }
 }
 else
 {
 printf("I am NOT the first core: it is NOT MY JOB to initialize"
 " the exec.\n");
 }

 printf("Board type = %d\n", sysinfo->board_type);

 // wait for all cores to get to this point
 printf("Wait for all cores to get to the same point\n");
 cvmx_coremask_barrier_sync(coremask_example);

 // if I don't check for initialization failure, then all the
 // cores will hang in the barrier sync: the first core has
 // exited so they cannot ALL reach the barrier sync
 if (g_error_flag)
 {
 printf("g_error_flag is set: initialization failed – exiting\n");
 return g_error_flag;
 }

 // run the application on each core
 printf("All cores ready: have each core run the application\n");

 application_play(coremask_example);

7.3.2.2 Example Code: cvmx_fpa_alloc()
The following code is from the fpa_simplified example:

 // Allocate a buffer from my pool
 printf("\nAllocating a buffer synchronously\n");

 my_buffer = cvmx_fpa_alloc(CVMX_FPA_OUTPUT_BUFFER_POOL);
 printf("Buffer returned from synchronous allocation = %p\n",
 my_buffer);
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Fr
ool

A
lloc

(FPA
)

ee P
ator 7.3.2.3 Example Code: cvmx_fpa_async_alloc()
The following code is from the fpa_simplified example:

 // Asynchronously allocate a buffer
 printf("\nGet buffer using the asynchronous allocate function\n");
 cvmx_fpa_async_alloc(CVMX_SCR_SCRATCH, CVMX_FPA_OUTPUT_BUFFER_POOL);

 // force the async operation to complete
 CVMX_SYNCIOBDMA;

 async_buffer = (void *)cvmx_scratch_read64(CVMX_SCR_SCRATCH);
 printf("Buffer returned from asynchronous allocate = %p\n",
 async_buffer);

 if (cvmx_unlikely(!async_buffer))
 {
 // no available buffers
 printf("Expect one ERROR message that pool is out of buffers\n");
 printf("ERROR: Out of buffers in CVMX_FPA_OUTPUT_BUFFER_POOL (pool
%d)\n",
 CVMX_FPA_OUTPUT_BUFFER_POOL);
 }

7.3.2.4 Example Code: cvmx_fpa_free()
The following code is from the fpa_simplified example:

 // free the buffer
 printf("\nFreeing the buffer I just got (%p) back to my pool\n",my_buffer);

 if (my_buffer != NULL)
 {
 cvmx_fpa_free(my_buffer, CVMX_MY_FIRST_POOL, 0);
 }

7.3.2.5 Example Code: cvmx_helper_free_packet_data()
The following code from the passthrough example shows the use of helper functions to
simplify coding. In this example, software:

• detects an error in the packet
• discards the packet by freeing all of the packet’s Packet Data buffers
• frees the WQE buffer.

The routine cvmx_helper_free_packet_data() will free the entire Packet Data buffer
chain (more than one Packet Data buffer is linked together if the size of the data exceeds the size
available in one Packet Data buffer). (More information on the specific error condition can be
found in the PIP/IPD chapter.)

Note: The Packet Data buffer must be freed before the WQE because the WQE contains
the address of the Packet Data buffer.

5-36 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-37

The following code is from the fpa_simplified example:

 /* Check for errored packets, and drop. If sender does not respond
 ** to backpressure or backpressure is not sent, packets may be truncated if
 ** the GMX fifo overflows. We ignore the CVMX_PIP_OVER_ERR error so we
 ** can support jumbo frames */
 if (cvmx_unlikely(work->word2.snoip.rcv_error) &&
 (work->word2.snoip.err_code != CVMX_PIP_OVER_ERR))
 {
 // Work has error, so free the packet data buffers
 // The WQE buffer (work) contains the Packet Data buffer address
 cvmx_helper_free_packet_data(work);

 /* Free the work queue entry */
 cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, 0);
 continue;
 }

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

7.4 Advanced Functions
Table 12: Advanced FPA Functions

Advanced Functions Used for Special Customization
void cvmx_fpa_enable(void)

This function should only be used if cvmx_helper_initizlize_fpa() is not called. This
function must be called before the pools are populated, otherwise errors will occur. Returns
void.
int cvmx_fpa_setup_pool(uint64_t pool, const char *name, void
*buffer, uint64_t block_size, uint64_t num_blocks);

Steps:
1) Before calling this function, call cvmx_fpa_enable() (only once for all pools)
2) then call cvmx_bootmem_alloc() with the amount of total memory you need for the pool,
and the alignment value of CVMX_CACHE_LINE_SIZE;
3) call cvmx_fpa_setup_pool()
The arguments are:
pool: the pool number (0-7)
name: string describing the pool
buffer: chunk of aligned memory (large enough to be divided into block_size *
num_blocks buffers)
block_size: size of buffers;
num_blocks: number of buffers the memory should be divided into
This routine will assume that the chunk of memory is large enough to hold (block_size *
num_blocks).
This routine will set up the pool_info data structure, then call cvmx_fpa_free() to load the
buffers into the pool.
Returns 0 on success. Otherwise, returns a negative number which represents the error (bad
pool number; block size is less than CVMX_FPA_MIN_BLOCK_SIZE; buffer pointer is NULL;
buffer is not aligned properly).
void cvmx_fpa_free_nosync(void *ptr, uint64_t pool, uint64_t
num_cache_lines)

Free the buffer back to the pool without saving the buffer contents (does not issue the SYNCWS
instruction). Note that improper use of this function can result in data corruption.
The arguments are:
ptr: a pointer containing the virtual address of the buffer to be freed
pool: which pool to free the buffer to
num_cache_lines: the number of 128-byte cache lines to Don't Write Back (DWB)
No return value. Side Effect: frees the buffer back to the specified FPA pool.

5-38 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-39

unit64_t cvmx_fpa_shutdown_pool(uint64_t pool)

Shutdown a memory pool, and perform health checks on the pool during the shutdown. Report
pool health check result back to user via return code.
The argument is:
pool: specify which pool to shutdown
Returns zero on success, otherwise returns non-zero. A positive return value is the number of
missing buffers. A negative return value specifies there were too many buffers or the buffer
pointers are corrupted.
Note: buffers are prefetched by the IPD or other hardware units. This function can return a
positive number, meaning some buffers have not returned to the pool. If some are missing, it
may be because they were prefetched. See the passthrough example for sample code which
checks whether missing buffers were prefetched.

Note: It is not necessary to call this function to gracefully shutdown the application. To restart
the application, the chip must be reset. Since there is no graceful shutdown/restart, there is no
requirement to use this function. Because the IPD and cores may have prefetched buffers, this
function might add confusion in reporting buffers “missing” when there is no actual error.

7.4.1.1 cvmx_fpa_enable()
It is rare for an application to need to call this function, so no example code is included. The
cvmx_helper_initialize_fpa() code calls fpa_enable() at the appropriate time. For
an example, see the code in the executive directory.

This function should only be called once, before populating the pools. Do NOT call
cvmx_fpa_enable() if cvmx_helper_initialize_fpa() will be called
because this helper function calls cvmx_fpa_enable().

7.4.1.2 Example Code: Calling cvmx_fpa_setup_pool()
The cvmx_fpa_setup_pool() is an advanced function which should only be used for
configuring additional pools beyond the customary 5 pools. Before populating the pools, configure
the Simple Executive to support the needed pools, and enable the FPA. The FPA can be enabled
by calling cvmx_helper_initialize_fpa() before populating the additional pools, as
shown in the example code below. This example also shows the use of
cvmx_boomem_alloc() and cvmx_dprintf().

For each pool, first allocate the memory using cvmx_bootmem_alloc(), then call
cvmx_fpa_setup_pool(). The following code is from the fpa_simplified example:

 // Setup the 5 commonly used pools
 // make the number of WQE buffers = number of Packet Data Buffers
 // make the number of PKO Command Buffers depend on the number
 // of PKO output queues

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

 status = cvmx_helper_initialize_fpa(num_packet_buffers, num_packet_buffers,
 (CVMX_PKO_MAX_OUTPUT_QUEUES * 4), 0, 0);

 result |= status;

 // or else you can create your own, allocating a chunk of memory
 // aligned on cache line size, then creating the pool
 memory = cvmx_bootmem_alloc(pool_buffer_size_1 *
 pool_number_of_buffers_1, CVMX_CACHE_LINE_SIZE);

 if (memory == NULL)
 {
 cvmx_dprintf("ERROR: Out of memory initializing pool number %lu(%s)\n",
 pool_num_1, pool_name_1);
 status = 1;
 }
 else
 {
 status = cvmx_fpa_setup_pool(pool_num_1, pool_name_1, memory,
 pool_buffer_size_1, pool_number_of_buffers_1);
 }
 result |= status;

7.4.1.3 The cvmx_fpa_free_nosync() Function
The function cvmx_fpa_free_nosync() requires an understanding of what the syncws
instruction does and why it is important. This function does not issue the syncws instruction.
See the Configuration chapter for a discussion on the different synchronization instructions
available, why and when they should be used. Note that using this function improperly can result
in data corruption.

This function can be used to free multiple buffers, then issue one syncws instruction.

7.4.1.4 Example Code: cvmx_fpa_shutdown_pool()
The following code (from the passthough example) calls cvmx_fpa_shutdown_pool():

/**
 * Clean up and properly shutdown the simple exec libraries.
 *
 * @return Zero on success. Non zero means some resources are
 * unaccounted for. In this case error messages will have
 * been displayed during shutdown.
 */
static int application_shutdown_simple_exec(void)
{
 int result = 0;
 int status;
 int pool;

 cvmx_pko_shutdown();

 for (pool=0; pool<CVMX_FPA_NUM_POOLS; pool++)
 {

5-40 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-41

 // check whether pool is in use
 if (cvmx_fpa_get_block_size(pool) > 0)
 {
 status = cvmx_fpa_shutdown_pool(pool);

 // Special check to allow PIP to lose packets due to
 // hardware prefetch
 if ((pool == CVMX_FPA_PACKET_POOL) && (status > 0) &&
 (status < CVMX_PIP_NUM_INPUT_PORTS))
 {
 status = 0;
 }

 result |= status;
 } // end if this pool is in use
 } // end for all pools

 return result;
} // end application_shutdown_simple_exec()

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Fr
ol

A
lloc

FPA
)

ee Po
ator (8 Basic Code Review Checklist
This basic checklist is for all users, including those using the FPA API.

Table 13: Basic Code Review Checklist
Basic Code Review Checklist

Simple Executive Initialization:
□ Verify that all needed functionality is enabled, pools are correctly configured, and that there are enough
scratchpad areas.
Basic Hardware Unit Configuration:
□ Verify that all configuration register writes have completed before enabling the FPA. Use the
cvmx_write_csr() function to write configuration registers to avoid potential race conditions (see
the Configuration chapter for details).

□ Verify that no FPA configuration registers are modified after the FPA is enabled. (Note that the FPA
configuration register fields are only used to adjust the In-Unit Buffer Address Cache Size and the
Watermarks.)

Configuration of Other Hardware Units:
□ Verify that all the hardware units which use the FPA-managed buffers were correctly configured.
Hardware Unit Enable:
□ Verify cvmx_fpa_enable() is called only once, and only by the initializing core.
□ Verify cvmx_fpa_enable() is called before the pools are populated.
□ Verify that the FPA is enabled after the FPA registers are configured.
Hardware Unit Initialization:
□ Verify the amount of memory allocated is sufficient for the
(number of buffers) * (buffer size).
Buffer Size:
□ Verify the PIP/IPD configuration variable IPD_PACKET_MBUFF_SIZE[MB_SIZE] is correctly set.
If the value of this variable is larger than the size of the Packet Data buffer, the IPD will write beyond the
end of the buffer, corrupting memory.

Buffer Alignment:
□ Verify the buffers allocated for each pool are aligned on 128 bytes at the beginning (When using
cvmx_bootmem_alloc(), specify CVMX_CACHE_LINE_SIZE as the second argument).

□ Verify the buffer end alignment is correct: allocate buffers in multiples of
CVMX_CACHE_LINE_SIZE.
Buffer Count:
□ Verify sufficient Packet Data buffers (pool 0) so that the Packet Data buffer pool will not run out of
buffers. Use the PIP/IPD congestion control mechanisms to limit the maximum number of Packet Data
buffers used.
□ Verify sufficient Work Queue Entry buffers so the WQE buffer pool will not run out of buffers. Use
the PIP/IPD congestion control mechanisms to limit the maximum number of queued packets (limit use of
WQE buffers) used by PIP/IPD.

5-42 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-43

Buffer is Freed Correctly:
□ Verify the buffer is not freed more than once.
□ Verify the buffer is freed eventually (no memory leaks).
□ Verify cvmx_fpa_free() was not given a NULL or illegal pointer as an argument.
□ Verify the buffer was not freed to the wrong pool. (For example, freeing a 128-byte buffer to pool 0
(the Packet Data buffer pool) can cause the IPD to have a smaller buffer than expected (if
IPD_PACKET_MBUFF_SIZE[MB_SIZE] is configured for a buffer larger than 128 bytes, when IPD
writes the packet data to the buffer, it may overwrite adjacent memory).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Fr
ol

A
lloc

FPA
)

ee Po
ator (9 Internal Details
The following information is helpful for advanced initialization, debugging, and performance
tuning. It is not necessary to read this section to use basic FPA functions. This section describes
the internal buffer organization, the In-Unit Buffer Address Cache, and Watermarks.

9.1 Buffer Organization
The FPA uses some of the free buffers to create an internal data structure: a free list of the
available buffers. In the Hardware Reference Manual, each buffer is referred to as a page.

Each page contains an array of 32 physical addresses. The 7 least significant bits are not stored
because the address must always be 128-byte aligned, so 32 bits is enough to store the physical
address of each buffer. Of the 32 addresses, 31 contain buffer addresses, and one is used to point
to the next page. (Note that 32 addresses * 4 bytes per address = 128 bytes. This is one reason
why buffers must be at least 128 bytes long.)

Figure 2: A Free Buffer used as a Page of Free Buffer Addresses

Note that overwriting memory adjacent to a buffer might cause a whole page of buffer
addresses to be overwritten, resulting in a serious malfunction.

Each page is identified by its page index (the page index is created and managed by the FPA). The
first page into the pool (the last page out of the pool) is index number “0”. This information is
used by the FPA to check for memory corruption. When the FPA reports an error, it may include
the page number in the report. See Section 10.1 – “Interrupts and Detected Error Conditions”.

5-44 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-45

The FPA register FPA_QUEn_PAGE_INDEX contains the current page index for the pool (the
highest index available). This value can be used to help in debugging and tuning whether the
number of pages in the pool matches expectations.

Because the internal structure is a linked list of pages created by the free buffers, there is no limit to
the number of buffers in a pool. (See Figure 4 – “FPA Buffer Pool: Simplified Internal View”.)

The buffers pointed to by a page are all part of the same block of DRAM allocated by the pool, but
are otherwise unrelated: they are not necessarily contiguous.

WARNING: Writing beyond the end of the buffer will corrupt memory. It may corrupt a
page of addresses, which would cause a serious problem.

9.2 In-Unit Buffer Address Cache (Address Cache)
There is an In-Unit Buffer Address Cache (Address Cache) of buffer addresses in the FPA
memory, which is divided between the pools (per-pool allotment). On some OCTEON models, the
per-pool allotment is fixed; on other OCTEON models it is configurable.

Processors which allow configuration of this unit have the following registers: FPA_FPFx_SIZE
and FPA_FPFx_MARKS. On these OCTEON models, the per-pool allotment and the per-pool
watermarks are configurable. (Watermarks are discussed in the next section.) See the following
table for the default values for CN38XX, CN54XX, CN55XX, CN56XX, CN57XX, CN58XX,
CN63XX, and CN68XX):

Table 14: Defaults for Configurable Per-Pool Buffer Cache and Watermarks

Pool Buffer Cache Size Per-Pool Allotment
(H/W Default)

Write
Watermark

(H/W Default)

Read
Watermark

(H/W Default)
Pool 0 2048 32-bit entries 256 (0x100) entries 196 (0xC4) 64 (0x40)
All others
(See
Note1)

2048 32-bit entries 256 (0x100) entries 196 (0xC4) 64 (0x40)

Notes

Note1: These values are for CN38XX, CN54XX, CN55XX, CN56XX, CN57XX, CN58XX, and
CN63XX. For other OCTEON models, check the HRM for the default FPA register values.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

If the FPA_FPFx_SIZE and FPA_FPFx_MARKS registers are not present (for example, the
CN31XX, CN50XX, and CN52XX), then the size of the buffer cache is fixed, as shown in the
following table:

Table 15: Fixed Per-Pool Watermarks and Size (If No Config. Registers)

Pool Buffer Cache Size
Per-Pool

Allotment
(Fixed)

Write
Watermark

(Fixed)

Read
Watermark

(Fixed)
All pools 512 32-bit entries 64 entries 56 16

Notes
Note1: These values are for CN31XX, CN50XX, and CN52XX.

If the specific model of OCTEON being used does not have configurable Address Cache
allotments and watermarks, the other information contained in this section is still relevant.
Understanding the Address Cache internals will provide insight into the impact of memory
corruption on the pool. This information can help prevent/locate coding errors.

5-46 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-47

Figure 3: FPA In-Unit Buffer Address Cache – Simplified Internal View

32-bit Buffer_Address0 32-bit Buffer_Address

Reserved Reserved

For some processors, such as the CN58XX, the FPA’s In-Unit Buffer Address Cache holds
2048 32-bit entries, and the amount of cache (per-pool allotment) reserved for each pool is
configurable. This example shows the CN58XX Address Cache configuration (2048 entries).
Each buffer address is 32 bits long.
For each pool, the amount of buffer pointers in the Address Cache is configurable via the
FPA_FPFx_SIZE[FPF_SIZ] register field.
The total of all the sizes for all the pools cannot exceed the Address Cache size.
For each pool, two of the 32-bit entries are reserved.
Higher priority queues can have larger per-pool allotments.

P
oo

l 0
 B

uf
fe

r A
dd

re
ss

 C
ac

he FPA_FPF0_SIZE[FPF_SIZ]
(divisible by 2). This pool is used
by the PIP – if it is empty, no
packets can be received.

32-bit Buffer_Address 32-bit Buffer_Address

Reserved Reserved P
oo

l 1
 B

uf
fe

r A
dd

re
ss

C

ac
he

FPA_FPF1_SIZE[FPF_SIZ]
(divisible by 2)

32-bit Buffer_Address 32-bit Buffer_Address

Reserved Reserved P
oo

l 2
 B

uf
fe

r A
dd

re
ss

C

ac
he

FPA_FPF2_SIZE[FPF_SIZ]
(divisible by 2)

Caches for Pools 3, 4, 5, and 6
(not shown in detail)

32-bit Buffer_Address 32-bit Buffer_Address

Reserved Reserved

P
oo

l 7
 B

uf
fe

r
A

dd
re

ss
 C

ac
he

FPA_FPF7_SIZE[FPF_SIZ]
(divisible by 2)

2046

FPA In-Unit Buffer Address Cache With Configurable Per-Pool Allotments

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Figure 4: FPA Buffer Pool: Simplified Internal View

DRAM MEMORY ALLOCATED FOR THIS POOL

Internal Pool Data Structure
Page of Buffer Addresses
(first 128 bytes of buffer).

Index = n

32-bit Buffer_Address

32-bit Buffer_Address

Buffer

32-bit Address to
First buffer in next

Page

Buffer Buffer

32-bit Buffer_Address

1

0

1 2 30

Buffer Set Buffer Set

31

Any space left after
128 Bytes

Buffer Buffer

LAST Buffer Set
Buffer
(page

index =
0)

Pool 0 Buffer Address Cache0

512

Pool 1 Buffer Address Cache

Pool 2 Buffer Address Cache

Pool 7 Buffer Address Cache

O
ve

rfl
ow

 (“
Fi

ll
an

d
S

pi
ll”

)

The amount of Address Cache for each pool is
configurable for some OCTEON models.

Spill: When out of space in Buffer Address Cache, a
whole page of buffers is stored to the Overflow
Buffer Address Cache

Fill: When a whole page of space is available in the
Internal Buffer Address Cache, a whole page of
buffer addresses is loaded.

FPA Buffer Pool Technical Details

Pool 3 Buffer Address Cache

Pool 4 Buffer Address Cache

Pool 5 Buffer Address Cache

Pool 6 Buffer Address Cache

In-Unit Buffer
Address Cache

The size of the In-Unit Buffer Address Cache depends on the OCTEON model.

When the cache for the pool is running low on free buffer addresses, another page of
buffer addresses is read into the cache from a page of buffer addresses stored in DRAM.

5-48 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-49

On OCTEON models with configurable Address Cache thresholds, configuring the Address Cache
properly will improve performance:

• No Wasted Resources: Address Cache space is not wasted on unused pools
• Faster:

o Buffers addresses are available in the Address Cache when a buffer_allocate
request is made instead of needing to bring in another page of buffers from
L2/DRAM

o Freed buffer addresses are not stored to DRAM unnecessarily

Address Cache Configuration Reminders:

• Sum of Sizes: The sum of all per-pool Buffer Address Cache allotments (sizes) cannot
exceed the Address Cache size. (The Address Cache size varies with OCTEON model (for
example 512 or 2048).)

• Assign Sizes in Order: The sizes must be assigned in order: pool [0, 1, 2, 3, 4, 5, 6, 7]
without gaps (not pool [0, 1, 4], omitting [2, 3, 5, 6, 7]). Initialize the size of any unused
pool to 0.

• Set Size for Unused Pools to 0: The per-pool allotment for unused pools should be set to 0.
When the chip is reset, the per-pool allotment non-zero default values are set for all pools:
configuration software should change this. This will allow the entries to be re-allocated to
an in-use pool.

• Adjust Size by Need: The greatest per-pool allotment should be used for the highest-
priority pool (one which needs the greatest number of addresses fastest).

• Size Divisible by Two: The per-pool allotment per pool must be divisible by two.
• Account for Overhead: For every in-use pool, two of the per-pool Buffer Address Cache

entries are reserved for internal use, as shown in Figure 3 – “FPA In-Unit Buffer Address
Cache – Simplified Internal View”.

WARNING: Remember to set the FPA_FPFx_SIZE[FPF_SIZ] field to 0 for unused
pools. Otherwise, they will waste space in the Address Cache. Also, if the per-pool
allotments for unused pools are not set to zero, then an error can occur if the user forgets to
include the unused pool’s allotment in the sum of all per-pool allotments, which can cause
the total per-pool allotments to exceed the Address Cache size.

9.3 Watermarks for the In-Unit Buffer Address Cache
For each pool, the In-Unit Buffer Address Cache has a read and a write watermark

When the cache for the pool is running low on free buffer addresses (hits the read watermark),
another page of buffer addresses is read into the cache from a page of buffer addresses stored in
DRAM.

When the cache for the pool is overflowing with too many free buffer addresses (hits the write
watermark), it stores a page of buffer addresses out to DRAM.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Table 16: Watermark Facts
Item Requrements and Recommendations

Read Watermark:
Recommended

25% of the pool’s Address Cache allotment (25% *
FPA_FPFx_SIZE[FPF_SIZE]).

Read Watermark: Minimum >= 16

Read Watermark: Maximum FPA_FPFx_SIZE[FPF_SIZE] – 34

Write Watermark:
Recommended

75% of the pools’ Address Cache allotment (75% *
FPA_FPFx_SIZE[FPF_SIZE]).

Write Watermark: Maximum <= (FPA_FPFx_SIZE[FPF_SIZE] – 2).

Difference Between Two
Watermarks

>= 34 (See Note1) (FPA_FPFx_MARKS[FPF_WR] –
FPA_FPFx_MARKS[FPF_RD] >= 34).

Notes
Note1: If the two watermarks are not at least 34 entries apart, then the system will bring in
addresses only to write them out again immediately.

5-50 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-51

Figure 5: FPA Read Watermark: Simplified Internal View

DRAM

32-bit Buffer_Address0 32-bit Buffer_Address

Reserved Reserved

P
oo

l 0
 B

uf
fe

r A
dd

re
ss

 C
ac

he

FPA_FPFx_SIZE == 66

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address
NEW (READ

WATERMARK) NEW

NEW NEW

NEW NEW

NEW NEW

NEW NEW

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

NEW NEW

NEW NEW

NEW NEW

NEW NEW

NEW NEW

NEW NEW

32

34

36

38

40

42
Page of
Buffer

Addresses

Load another Page of

Buffer Addresses

NEW NEW

NEW NEW

NEW NEW

NEW NEW

NEW NEW

NULL NULL

44

46

48

50

52

54

For Example,
if FPA_FPFx_MARKS[FPF_RD] == 22

(66 – 34), there is room for a whole page of
buffer addresses (shown as “NEW” in the
figure)..

NULL NULL

NULL NULL

NULL NULL

NULL NULL

56

58

60

62

64

FPA Read Watermark: Simplified Internal View

The read watermark should be 25% of
the pool’s Address Cache allotment
(25% *
FPA_FPFx_SIZE[FPF_SIZE]).

The minimum read watermark is 16.

The maximum read watermark is
(FPA_FPFx_SIZE[FPF_SIZE] –
34).

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Figure 6: FPA Write Watermark – Simplified Internal View

DRAM

32-bit Buffer_Address0 32-bit Buffer_Address

Reserved Reserved

P
oo

l 0
 B

uf
fe

r A
dd

re
ss

 C
ac

he

FPA_FPFx_SIZE = 66

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address 32-bit Buffer_Address

32-bit Buffer_Address

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

32

34

36

38

40

42
Page of
Buffer

Addresses

Store a Page of Buffer

Addresses to DRAM

FPA_FPFx_MARKS[FPF_RD] == 22

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

Okay to store Okay to store

44

46

48

50

52

54

FPA_FPFx_MARKS[FPF_WR] == 56
(FPF_RD + 34 (22 + 34))

NULL

NULL NULL

NULL NULL

NULL NULL

56

58

60

62

64

32-bit Buffer_Address
(READ WATERMARK)

NULL
(WRITE WATERMARK)

FPA Write Watermark: Simplified Internal View
This is a simplified example, not a real-
world example.

The write watermark should be 75% of
the pools’ Address Cache allotment
(75% *
FPA_FPFx_SIZE[FPF_SIZE]).

The maximum write watermark is no
larger than
(FPA_FPFx_SIZE[FPF_SIZE] – 2).

The difference between the two
watermarks is no less than 34 (or the
system will bring in addresses, only to
write them out again):
(FPA_FPFx_MARKS[FPF_WR] –
FPA_FPFx_MARKS[FPF_RD] >=
34).

Note a 34-entry gap between the read
and write watermarks is not really large
enough: as shown here, of the 32
buffers read in due to the read
watermark, only 2 are not then stored
due to the write watermark.

5-52 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-53

10 Debugging
OCTEON application programmers must be knowledgeable about OCTEON configuration
capabilities, application requirements, and how different elements can interact to change valid limit
scenarios.

The hardware accelerators do not perform any form of error checking on configured values.

The Simple Executive library can be built with additional built-in code that performs various sanity
checks on parameter values. To enable these checks for logical errors, run env-setup with the
--checks option (source env-setup –checks <OCTEON_MODEL>) and test with all
expected combinations of traffic flows and events. The –-checks option enables various
consistency and programming checks. To see the effect of enabling these checks, type env on the
command line:

host$: env | grep GLOBAL_ADD
OCTEON_CPPFLAGS_GLOBAL_ADD= -DUSE_RUNTIME_MODEL_CHECKS=1
-DCVMX_ENABLE_PARAMETER_CHECKING=1 -DCVMX_ENABLE_CSR_ADDRESS_CHECKING=1
-DCVMX_ENABLE_POW_CHECKS=1

The most common errors are:

• Freeing the same buffer more than once
• Freeing an invalid pointer.

This section discusses these and other common errors. See Section 9 – “Internal Details”, and also
the Configuration and Advanced Topics chapters, where race conditions are discussed. Another
place to look for common errors is the Congestion Control section of the PIP/IPD chapter.

If the FPA detects memory corruption, it will send an interrupt to the Central Interrupt Unit (CIU).
From there the interrupt will go to the cores. Memory errors in the buffer pool may be caused by
overwriting memory, by freeing a pointer more than once, or by passing an incorrect value to
cvmx_fpa_free(). The FPA detects some, but not all, error conditions, and sends an interrupt
to the CIU.

Read the FPA registers to get debugging information such as the number of buffers free, or the
number of free pages of buffers (discussed below), to see if the pool has more or less buffers than
expected. For example, use FPA_QUEn_AVAILABLE to find out how many free buffers are
currently in the pool.

One way to check for problems in the pools is to use cvmx_fpa_shutdown_pool(), which
checks each pool, verifies that each buffer belongs in the pool, and that all buffers have been
returned to the pool, before it disables the FPA.

Note: Packet Data buffers and WQE buffers are prefetched by the PIP/IPD. The
cvmx_fpa_shutdown_pool() function can return a positive number, meaning some buffers
have not returned to the pool. If some are missing, it may be because they were prefetched. See
Section 7.4.1.4 – “Example Code: cvmx_fpa_shutdown_pool()” for example code
showing a check for buffers missing due to prefetch.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

10.1 Interrupts and Detected Error Conditions
The FPA will detect some types of memory corruption in the pools and send an interrupt to the
CIU and from there to the cores. It will not detect all errors. The types of errors which are
detected are listed below.

The interrupts are used to detect memory corruption, which can be caused by improperly designed
or coded software. For code inspection suggestions, see Section 12 – “Advanced Code Review
Checklist”.

All the interrupts may be enabled: it does not matter if interrupts are enabled for unused pools. No
spurious interrupts will occur for the unused pools.

If interrupts are not enabled, the interrupt status may be retrieved by reading the FPA_INT_SUM
register.

Note: There is no interrupt for “Pool is out of buffers”. You must populate the pools so that
they do not run out of buffers. If the pool is out of buffers, an address value of zero will be
returned. The function cvmx_fpa_alloc() will return NULL.

10.1.1 Permission Error (PERR)
PERR: The page of buffer addresses in memory is marked as owned by the FPA. It also has its
page index, and an owner (which pool owns it) stored inside (this information is not shown in the
figures). This information helps the FPA check for memory corruption. The PERR (Permission
error) interrupt means that, when the FPA tried to read in a new page of addresses, either the FPA
permission bit was not set, the page belongs to the wrong pool, or the page index did not match the
expected value. This might happen if the page’s memory had become overwritten.

If a PERR interrupt occurs, the FPA_QUE_ACT register (fields ACT_QUE and ACT_INDX) will be
set to the actual values of the pool number and page index number read from memory. The
FPA_QUE_EXP register (fields EXP_QUE and EXP_INDX) will be set to the values the FPA
expected to find on the read. To get this debugging information, read these registers from
software.

10.1.2 Page Count Off (Incorrect) Error (COFF)
COFF: The FPA marks the last page of buffer addresses (the first one in) with a “stack end tag” (no
more pages available). If the “Count Off” error is set then we have reached the pool’s “stack end
tag” but the FPA_QUEn_PAGE_INDEX[PG_NUM] (the index of the current page) is not 0 (the
PG_NUM count is incorrect). This might happen if a page’s memory had become overwritten.

10.1.3 Underflow (UND)
UND: The last page of addresses can become corrupted. If this happens, then the “stack end tag”
might be incorrect, causing the FPA to not detect the end of the pool correctly. In that case, then
FPA_QUEn_PAGE_INDEX[PG_NUM] (the index of the current page) would become negative. If
that happens, the UND error is asserted.

5-54 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-55

10.1.4 Single and Double Bit Memory Errors (SBE, DBE)
FED1_DBE, FED1_SBE, FED0_DBE, and FED1_SBE: These errors indicate OCTEON internal
hardware conditions which should not normally occur: an internal memory error has been
detected. Software cannot cause these failures. A Single Bit Error will be corrected by the
hardware: no software action is needed, other than noting the occurrence of this unusual problem.
Double Bit errors cannot be corrected by the hardware. Software will need to manage Double Bit
errors, usually by resetting the system or raising an alarm. Typical causes of this type of error are
power supply noise or droop (a temporary drop in power level).

10.2 Debugging and Status Information
Debugging and status information can be obtained by reading the following registers:

Table 17: Status and Debugging Registers
Brief Description Register Fields

Debugging and Statistics Registers
The number of free buffers available in the pool. FPA_QUEx_PAGES_AVAILABLE QUE_SIZ

The index of the current page (is also the number of pages of buffer
addresses in the pool).

FPA_QUEx_PAGE_INDEX PG_NUM

Expected page index read from memory (latched on PERR). The page
index is an FPA-internal number.

FPA_QUE_EXP EXP_INDX

Expected FPA Pool number (queue) read from memory (latched on
PERR)

FPA_QUE_EXP EXP_QUE

Actual page number index (latched on PERR). The page index is an FPA-
internal number.

FPA_QUE_ACT ACT_INDX

Actual FPA pool number (queue) read from L2C (latched on PERR) FPA_QUE_ACT ACT_QUE

Note: For Packet Data buffers, the best register to read to retrieve the number of
available buffers is the IPD register IPD_QUE0_FREE_PAGE_CNT [Q0_PCNT],
which is on the I/O bus. The value of the FPA register field
FPA_QUE0_AVAILABLE[QUE_SIZ] will be less accurate because it is on the much
slower RSL bus, so the snapshot value will be older than the value of
IPD_QUE0_FREE_PAGE_CNT[Q0_PCNT].

10.3 Common Mistakes
This section provides information on common mistakes which can cause difficult to debug errors.
For other common mistakes, see Section 8 – “Basic Code Review Checklist” and Section 12 –
“Advanced Code Review Checklist”.

In addition to the examples shown here, software can also cause difficult to debug errors by freeing
either NULL or invalid pointers.

The FPA hardware does not have knowledge of which buffer addresses are valid, which pool they
belong in, or the expected buffer size.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

F
 Pool

A
llo

or (FPA
)

ree
cat 10.3.1 Buffer Alignment: Bad Alignment at Start of Buffer
The start of the buffer needs to be aligned on the cache line size boundary. If it is not, adjacent
memory can be overwritten as shown below.

Figure 7: Overwriting Memory: Buffer Not Cache Line Size Aligned
The Buffer Must be a Aligned on the 128-Byte Boundary

The size of this buffer is correct: a multiple of cache-line size, but the alignment is
incorrect.

The FPA only returns aligned addresses, so a write to the returned address will not
start at the true start of the buffer.

Instead, the write will start at the aligned address, which is not part of the buffer,
overwriting adjacent memory.

128 bytes (Cache Line Size)

64-bytes

64 bytes (True start of
buffer (not aligned))

NOT MY BUFFER!
(overwritten)

This buffer is not 128-byte aligned

NOT MY BUFFER!

Address returned by FPA

True Address

MEMORY
OVERWRITTEN!!!!

WARNING: It is critical to verify that the memory allocated for each buffer is aligned on a
128-byte boundary at the start. Otherwise, the FPA (which assumes buffer memory is 128-
byte aligned) will not return the address of the true start of the buffer. When a write to the
buffer occurs, adjacent memory will be corrupted.

10.3.2 Buffer Alignment: Bad Alignment at End of Buffer
Some buffers, especially Packet Data buffers, must be whole units of cache line size. If the end of
the buffer is not correctly aligned, adjacent memory can be overwritten as shown in the following
figure.

5-56 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-57

Figure 8: Overwriting Memory: Buffer not a Multiple of Cache Line Size

128 bytes (Cache Line Size)

The Buffer Must be a Multiple of 128 Bytes

PIP/IPD always writes 128 bytes. It has
no way to know that, in this case, it wrote
past the end of this Packet Data buffer.

This becomes a big problem when the
adjacent buffer is part of the pool’s free
list, especially if it is a page used to hold
multiple buffer addresses.

128 bytes (Cache Line Size)

128 bytes (Cache Line Size)

64 bytes
NOT MY BUFFER!
(overwritten by PIP/

IPD)

This Packet Data buffer is not
a multiple of 128 bytes

MEMORY
OVERWRITTEN!!!!

WARNING: For PIP/IPD, It is critical to verify that the Packet Data buffer size is a
multiple of the cache line size (128 bytes). The PIP/IPD always writes packet data in
complete 128-byte blocks, including the last data in the packet. Since PIP/IPD will write 128
bytes even if that exceeds the end of the buffer, the adjacent memory will become corrupted.

Memory corruption can occur if, as shown above, the write occurs before the beginning or after the
end of the buffer.

The details shown in Section 9 – “Internal Details” provide insight into the impact of coding errors
on the system. For instance, overwriting a buffer can cause a pool to become corrupted if the
adjacent memory contains a page of buffer addresses in use by the same or a different pool.
Corrupting the page of buffer addresses corrupts the pool’s internal data structure, severely
damaging the pool. The resultant system error can be difficult to track to the original cause of the
problem.

10.3.3 Buffer Size and Don’t Write Back (DWB)
If the buffer is not a multiple of cache line size and Don’t Write Back (DWB) is used, then data
stored in the same cache line might not be stored to DRAM. This problem can be difficult to
debug because sometimes the flush of the cache line to DRAM occurs before the dirty bit is
cleared. See the Advanced Topics chapter for more information.
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Figure 9: DWB and Why Buffers Need to be a Multiple of Cache Line Size

L2 Cache Controller (L2C)

L2 Cache
Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

Cache Line

DDR Buffer
(DRAM)

DRAM Controller
(LMC)

Buffers Need to be Multiples of Cache Line Size When Using DWB

IOB:
I/O Bridge

Don’t Write Back (DWB)
Engine

NO: DON’T
WRITE DATA

BACK TO
DRAM

C
M

B

This can create difficult-
to-debug problems.

The entire cache line is
affected by the dirty bit
having been cleared due
to DWB.

If a cache line contains
non-buffer data, then that
data is also not flushed to
DRAM, and can be
overwritten when the
cache line is reused.

Cl
ea
r
Di
rt
y
Bi
t

Cl
ea
r
Di
rt
y
Bi
t

Cl
ea
r
Di
rt
y
Bi
t

CORE
Cache Line

Buffer Non-Buffer Data

The buffer only consumes half of this
cache line: its size is not a multiple
of cache line size.

Code which depends on the non-buffer data can
then read the incorrect contents. The data may
sometimes be correct, and other times may not,
because sometimes the cache line will be
flushed to DRAM before the dirty bit is cleared,
and sometimes the cache line will not be reused
before the data is read.

5-58 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-59

10.3.4 Buffer Freed to the Wrong Pool
If a buffer is freed to the wrong pool, then two problems can occur:

• The original pool can unexpectedly run out of buffers.
• If the freed buffer is smaller than other buffers in the pool, the requester can receive a

buffer too small for the purpose and overwrite adjacent memory.

A similar problem can occur when one pool has different sizes of buffers, and the requester
assumes they are all a larger size. Debugging these situations is not worth the effort: have each
FPA pool contain only one buffer size, and be careful to not free buffers to the wrong pool.

Figure 10: Buffer Freed to the Wrong Pool

Buffer

Buffer

If a buffer is freed to the wrong pool, such as the Packet Data buffer pool,
then if the buffer is too small for the purpose, adjacent memory can be
overwritten.

If the adjacent memory contains part of the internal FPA pool data
structure, then multiple buffer pointers are corrupted, resulting in difficult-
to-debug errors.

Freeing a Buffer to the Wrong Pool Can Result in Corrupted Memory

NOT MY
BUFFER!

Expected
Buffer Size

Too-Small
Buffer

MEMORY
OVERWRITTEN!!!!

To avoid this, be careful when configuring hardware units which automatically free buffers (see
Section 15 – “Configuring Units Which Allocate/Free FPA Buffers”), and examine software to
verify that buffers freed by software are freed to the correct pool. Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

10.4 Buffer Freed More than Once
If the same buffer is accidentally freed more than once, then the buffer may later be allocated more
than once, causing multiple units to write data to it. This will result in unpredictable system
behavior.

Figure 11: Buffer Accidentally Freed More Than Once

If the same buffer is accidentally freed more than once:
Case 1: It can then be allocated to more than one new owner. The data in the buffer
then become corrupted as multiple owners write to it.

Case 2: Worse yet, if one owner frees it and it becomes a page of buffers used by
the FPA to manage the pool, and then an owner writes to it, the corruption affects not
just one buffer, but the internal pool data structure.

Accidentally Freeing the Same Buffer More than Once
Can Lead to Memory Corruption

Too many
owners!

MEMORY
OVERWRITTEN!!!!

Owner 1 Owner 2

Writes ABC Write
s F

FF

Case 1: Two Owners

MEMORY
OVERWRITTEN!!!!

On FPA
Freelist Owner 2

Used to create

freelist Write
s F

FF

Case 2: FPA Writes to Buffer

(Page of buffer
addresses)

FFF

32-bit Buffer_Address

32-bit Buffer_Address

0

Next page pointer31
Any space left after

128 Bytes

5-60 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-61

11 Performance Tuning
In this section, advanced initialization items used in performance tuning are discussed.

Performance tuning includes adjusting the In-Unit Buffer Address Cache sizes and watermarks;
ensuring the PIP/IPD will not run out of packets; and tuning the DWB counts. It is also
worthwhile to prefetch buffers whenever possible (see the passthrough example for an example of
prefetching), and to verify that there are sufficient Packet Data buffers.

For information on how to access registers and register fields, see the Advanced Topics chapter.

11.1 Enough Buffers
Verify that enough Packet Data buffers and Work Queue Entry buffers were allocated so that the
IPD does not run out of buffers. If the IPD runs out of Work Queue Entry buffers, it will stop
receiving packets on all ports until more buffers become available. See the PIP/IPD chapter for
information on congestion causes and congestion-control mechanisms. For example, per-port
backpressure and per-QoS RED/WRED can be used to help the highest-priority traffic continue to
flow, while lower-priority traffic is backpressured or dropped.

11.2 Prefetch Buffers
Use the cvmx_fpa_async_alloc() function to prefetch buffers. This will prevent the core
from stalling while waiting for the cvmx_fpa_alloc() function to return.

11.3 Initializing the Per-Pool Address Cache Allotment or Watermarks
In addition to the normal FPA initialization, the per-pool Address Cache allotment and watermarks
may be initialized on some OCTEON models. This initialization is done by writing to the FPA
Initialization Registers for each pool, including for the unused pools. (The default size is non-zero
for unused pools, so they consume space unless the default value is changed.) Functions to set
cache allotment or watermarks are not provided by SDK 2.0 API or earlier SDKs. Future SDKs
may provide this support.

A larger address cache can be reserved for pools which have more frequent and/or large number of
buffers requested, such as the Packet Data buffer pool or the WQE buffer pool (IPD prefetches
about 128 of these at a time).

Remember that for each pool, two of the addresses are reserved for system use.

To initialize the per-pool Address Cache allotment and watermarks, modify the following registers:
 Cav

ium
 C

on
fid

en
tia

l F
or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Table 18: Advanced Initialization Registers
Brief Description Register Fields

Per-Pool Allotment of In-Unit Buffer Address Cache
The number of 32-bit entries in the In-Unit Buffer Address Cache
(Address Cache) allocated for this pool. The sum of all the sizes for all
pools cannot exceed the total size of the Address Cache.

FPA_FPFx_SIZ
(one per FPA pool) FPF_SIZ

Per-Pool Watermarks

When to read in more buffers into a too-empty Address Cache. FPA_FPFx_MARKS
(one per FPA pool) FPF_RD

When to write out buffers from a too-full Address Cache. FPA_FPFx_MARKS
(one per FPA pool) FPF_WR

The initialization steps are shown in the following figure. (See Section 7.4.1.2 – “Example Code:
Calling cvmx_fpa_setup_pool()” for an example of Step 3.):

Figure 12: Flowchart - FPA Unit Start-Up

Start FPA Setup

FPA Setup
(The Order of the Setup Steps)

END FPA Setup

Step 1: Call cvmx_write_csr() to initialize
the registers

The cvmx_write_csr() function will prevent race
conditions which can occur (see the Advanced Topics
chapter for more information.)

Step 2: Call cvmx_fpa_enable() to enable
the FPA

Step 3: For each pool:
Use cvmx_bootmem_alloc() to allocate a chunk of
contiguous memory for buffers
Call cvmx_fpa_setup_pool() function which will:
o Check for errors
o Set up the pool info data structure
o Free each buffer to the pool using the

cvmx_fpa_free() function (dividing the memory
into buffers during this operation)

Do not call either cvmx_helper_fpa_intialize()
or cvmx_fpa_enable() until after initializing the
registers.

Do not modify the CSRs after the FPA is enabled.

SE-S and SE-UM applications must both
allocate memory using
cvmx_bootmem_alloc().

The malloc() function cannot be used:
malloc() does not return memory suitable
for DMA: the virtual address is not mapped
to physical memory. The DMAs would go to
some unknown address and corrupt
memory.

5-62 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-63

11.4 Don’t Write Back (DWB)
See the Advanced Topics chapter for more information on Don’t Write Back (DWB).

11.5 Pool Number
Pool numbers are assigned when Simple Executive is configured. Pool numbers do not affect
performance.

11.6 Performance Tuning Checklist
The following checklist is used for performance tuning. JBefore tuning performance, verify that
the application does not make logical errors running env-setup with the –-checks option.
See Section 10 – “Debugging” for more information.

Table 19: Performance Tuning Checklist
PERFORMANCE TUNING CHECKLIST

Enough Buffers
□ Verify there are sufficient Packet Data Buffers and Work Queue Entry Buffers so the IPD will not run
out of buffers.
Prefetch Buffers
□ Prefetch buffers before they are needed (see the Configuration chapter).
In-Unit Buffer Address Cache
□ Verify all of the available In-Unit Buffer Address Cache space has been used. Make sure unused pools
are not consuming any space.
□ The default size of each pool’s In-Unit Buffer Address Cache is 256 addresses. If a pool has fewer
than 254 addresses, then reconfigure the size to fit the number of buffers in the pool plus 2 reserved
addresses.

□ Verify the highest priority pool has the largest In-Unit Buffer Address Cache.
Watermarks
□ Verify the watermarks for each pool are tuned for best performance with your application.
□ Verify the read watermark has been adjusted so that new buffers read into the In-Unit Buffer Address
Cache are always present when needed (no delay waiting for buffers to arrive).
Don't Write Back (DWB)
□ Verify DWB is being used appropriately. Using DWB on buffer free may or may not improve system
performance by providing more clean L2 Cache Lines, and also by preventing some unnecessary writes
to DRAM. It is recommended that you do not use DWB until you have analyzed the performance
bottlenecks.

□ Verify DWB count matches the number of cache lines which may have been modified (is not higher
than necessary). See the Advanced Topics chapter for more information.

 Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

F
Pool

A
llo

r (FPA
)

ree
cato 12 Advanced Code Review Checklist
This checklist is for advanced users, including those who have gone beyond the Simple Executive.
See Section 8 – “Basic Code Review Checklist”, which also contains items for the advanced user
to review.

Table 20: Advanced Code Review Checklist
ADVANCED CODE REVIEW CHECKLIST

Advanced Hardware Unit Configuration: In-Unit Buffer Address Cache and Watermarks:

□ Verify the configuration registers for per-port Address Cache allotment and watermarks were set up in
order (Pool 0, 1, 2…).
□ Verify the sum of all the FPA_FPFx_SIZ values for all the pools is <= the size of the In-Unit Buffer
Address Cache.
□ Verify FPA_FPFx_SIZ is divisible by 2.
□ Verify the read watermark (FPA_FPFx_MARKS[FPF_RD]) is at least 16.
□ Verify the write watermark (FPA_FPFx_MARKS[FPF_WR]) is at least FPA_FPFx_SIZ – 34.

□ Verify the read watermark (FPA_FPFx_MARKS[FPF_RD]) is not higher than FPA_FPFx_SIZ.

□ Verify the write minus read watermark is at least 34.
□ Verify that pools with an In-Unit Buffer Address Cache size of zero are not being used.
Hardware Unit Enable:
□ Verify that all configuration register writes have completed before enabling the FPA. Use the The
cvmx_write_csr() function to write configuration registers to avoid potential race conditions (see
the Advanced Topics chapter for details).

DWB Counts Correctly Configured:
□ Verify DWB count does not exceed the number of cache lines in the buffer. Setting the count too high
could cause neighboring L2 cache line(s) to not be written to L2/DRAM.
□ Do not set DWB count higher than number of cache lines modified in the buffer. Setting the count too
high may affect the system performance by causing the IOB to send unneeded DWB commands.

5-64 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-65

13 Beyond the SDK – When not Using the Provided API
Although ninety percent of users are able to use the SDK as described in Section 7.3 – “Easy-to-
Use Executive FPA API Functions”, the following information is provided only for the few users
who need further customization. Note that a thorough understanding of design issues is necessary
or the custom application may fail. Such failures can be difficult to debug.

A through understanding of the hardware architecture and related issues is critical to writing
correct code for OCTEON processors.

Note that all OCTEON hardware units require physical addresses, not virtual addresses.

13.1 Design Considerations
Before beginning the custom software, certain design issues need to be understood. If at all
possible, use the Simple Executive, or modify the Simple Executive to meet the application
requirements. There are many possible errors which can occur in custom software (see Table 20 –
“Advanced Code Review Checklist).

13.2 Enable the FPA and Populating the Pools
1. Enable the FPA (FPA_CTL_STATUS[ENB]).
2. Then read one of the RSL registers, such as FPA_QUEn_AVAILABLE, to force the register

write to complete. Now the FPA is ready for use. See the Advanced Topics chapter for
more information about this requirement.

3. For each pool:
• Allocate DRAM memory: Allocating memory is easiest to do by multiplying the

size of the buffers and number of buffers. BUF_SIZE should be (N * 128 bytes):
an integer multiple of CVMX_CACHE_LINE_SIZE in size.

• pool_memory = BUF_SIZE * NUM_BUFS

• Note that PIP/IPD always gets its Packet Data buffers from pool 0: this is not
configurable.

4. For each pool, populate the pool by freeing the buffers one at a time to the pool.
5. Initialize the registers for hardware units using the FPA pools as needed (see Section 15 –

“Configuring Units Which Allocate/Free FPA Buffers”). If these registers are not set up
properly, the FPA-managed buffers will not be allocated from or freed to the correct pool,
and the DWB counts will be incorrect.

6. Once the buffers are in the pool, the core and the other hardware units may use them.

13.3 Synchronous Buffer Allocation
To allocate a buffer synchronously, read the register corresponding to the pool. Note that the
address returned is a physical address, not a virtual address.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Table 21: FPA Registers used in Buffer Allocate and Free Operations
Pool Physical Address Range for Each Pool

(used for allocate and free operations)
Pool 0 0x1 2800 0000 0000 - 0x1 280F FFFF FFFF

Pool 1 0x1 2900 0000 0000 - 0x1 290F FFFF FFFF

Pool 2 0x1 2A00 0000 0000 - 0x1 2A0F FFFF FFFF

Pool 3 0x1 2B00 0000 0000 - 0x1 2B0F FFFF FFFF

Pool 4 0x1 2C00 0000 0000 - 0x1 2C0F FFFF FFFF

Pool 5 0x1 2D00 0000 0000 - 0x1 2D0F FFFF FFFF

Pool 6 0x1 2E00 0000 0000 - 0x1 2E0F FFFF FFFF

Pool 7 0x1 2F00 0000 0000 - 0x1 2F0F FFFF FFFF

13.4 Asynchronous Buffer Allocation
To allocate a buffer asynchronously, use the IOBDMA operation. It is essential to set up
scratchpad memory which will be the target of the IOBDMA. See the Configuration and Advanced
Topics chapters for more information on IOBDMA. Asynchronous allocation can result in more
efficient code: the code does not stall waiting for the allocation request to return.

13.5 Freeing a buffer
When freeing a buffer, the address for the store operation is a combination of the base address of
the pool register used in the free operation and a bitwise OR of the DRAM address of the buffer.
The resultant address contains the address of the buffer to be freed in bits <39:0>. The pool is
selected by bits <42:40>. Bits <48:43> tell the chip that it's an FPA operation.

The data written with the store is the number of cache lines in the buffer to be marked for DWB.

For example, to free the buffer at DRAM address 0x0 0004 1000 0000 in which 2 cache lines are
dirty to FPA pool 3, write the value 0x2 to address 0x1 2B04 1000 0000.

See Table 21 – “: FPA Registers used in Buffer Allocate and Free Operations” for the base address
of the pool register used in the free operation.

Before freeing the buffer, be sure to issue the syncws instruction to make sure all writes to the
buffer complete before the buffer is freed. See the Configuration and Advanced Topics chapters
for more information on syncws.

14 FPA Registers
The FPA Registers provide additional functionality beyond the API. See Section 14 – “FPA
Registers” and the Advanced Topics chapter for more information on accessing registers and
register fields.

The registers are documented in greater detail in the Hardware Reference Manual. An overview is
provided here. Note that for some registers, one is provided for each pool. In this case the name of

5-66 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-67

the register appears in the table containing an “n”. For example: FPA_QUEn_AVAILABLE. “n”
can be any value between 0-7, inclusive.

Note that in some OCTEON models, the In-Unit Buffer Address Cache is configurable. OCTEON
models which allow configuration of this unit have the following registers:

FPA_FPFx_SIZE and
FPA_FPFx_MARKS

If these registers are not present (for example: CN30xx and CN31XX), then the In-Unit Buffer
Address Cache is 512 addresses, with each pool using 64 addresses. The Read watermark is set to
16. The write watermark is set to 56. None of these values are configurable.

More information about the system’s memory and registers can be found in the Advanced Topics
chapter.

To access the registers:

• The FPA’s Major DID = 5.
• The FPA has eight Sub-DIDs (0-7), one for each pool.
• The Major DID and Sub-DID, combined, provide the physical address of the registers (see

the Advanced Topics chapter for more information.
• To convert the address to virtual memory:

For xkphys:
(Virtual_address = (1 << 63) | Physical Address)

• The CSRs are shown in Table 22 - “FPA Register Summary”. For exact field bits, refer to
the Hardware Reference Manual (HRM).

The following two tables show the register and register field definitions provided by the Hardware
Reference Manual.

Table 22: FPA Register Summary
Register Address Detailed Description

FPA_FPF0_MARKS 0x0001180028000000 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF1_MARKS 0x0001180028000008 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF2_MARKS 0x0001180028000016 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF3_MARKS 0x0001180028000024 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF4_MARKS 0x0001180028000032 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF6_MARKS 0x0001180028000040 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF6_MARKS 0x0001180028000048 Set watermarks for this pool's Buffer Pointer Cache
FPA_FPF7_MARKS 0x0001180028000038 Set watermarks for this pool's Buffer Pointer Cache
FPA_INT_SUM 0x0001180028000040 Interrupt Summary (reason for interrupt)
FPA_INT_ENB 0x0001180028000048 Interrupt Enable
FPA_CTL_STATUS 0x0001180028000050 Control and Status register
FPA_FPF0_SIZE 0x0001180028000058 Set size of this pool's In-unit Buffer Pointer Cache
FPA_FPF1_SIZE 0x0001180028000060 Set size of this pool's In-unit Buffer Pointer Cache

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free Pool
A

llocator (FPA
)

Register Address Detailed Description
FPA_FPF2_SIZE 0x0001180028000068 Set size of this pool's In-unit Buffer Pointer Cache
FPA_FPF3_SIZE 0x0001180028000070 Set size of this pool's In-unit Buffer Pointer Cache
FPA_FPF4_SIZE 0x0001180028000078 Set size of this pool's In-unit Buffer Pointer Cache
FPA_FPF5_SIZE 0x0001180028000080 Set size of this pool's In-unit Buffer Pointer Cache
FPA_FPF6_SIZE 0x0001180028000088 Set size of this pool's In-unit Buffer Pointer Cache
FPA_FPF7_SIZE 0x0001180028000090 Set size of this pool's In-unit Buffer Pointer Cache
FPA_QUE0_AVAILABLE 0x0001180028000098 Number of Free Buffers Available for this Pool
FPA_QUE1_AVAILABLE 0x00011800280000A0 Number of Free Buffers Available for this Pool
FPA_QUE2_AVAILABLE 0x00011800280000A8 Number of Free Buffers Available for this Pool
FPA_QUE3_AVAILABLE 0x00011800280000B0 Number of Free Buffers Available for this Pool
FPA_QUE4_AVAILABLE 0x00011800280000B8 Number of Free Buffers Available for this Pool
FPA_QUE5_AVAILABLE 0x00011800280000C0 Number of Free Buffers Available for this Pool
FPA_QUE6_AVAILABLE 0x00011800280000C8 Number of Free Buffers Available for this Pool
FPA_QUE7_AVAILABLE 0x00011800280000D0 Number of Free Buffers Available for this Pool
FPA_BIST_STATUS 0x00011800280000E8 Status of Power On Self-Test - zero = no problems
FPA_QUE0_PAGE_INDEX 0x00011800280000F0 The index of the current page of pointers for this pool.
FPA_QUE1_PAGE_INDEX 0x00011800280000F8 The index of the current page of pointers for this pool.
FPA_QUE2_PAGE_INDEX 0x0001180028000100 The index of the current page of pointers for this pool.
FPA_QUE3_PAGE_INDEX 0x0001180028000108 The index of the current page of pointers for this pool.
FPA_QUE4_PAGE_INDEX 0x0001180028000110 The index of the current page of pointers for this pool.
FPA_QUE5_PAGE_INDEX 0x0001180028000118 The index of the current page of pointers for this pool.
FPA_QUE6_PAGE_INDEX 0x0001180028000120 The index of the current page of pointers for this pool.
FPA_QUE7_PAGE_INDEX 0x0001180028000128 The index of the current page of pointers for this pool.
FPA_QUE_EXP 0x0001180028000130 Set if the read page owner or index is wrong.
FPA_QUE_ACT 0x0001180028000138 Set if the read page owner or index is wrong.

In the table below, the fields used to initialize the pools are highlighted in yellow.

Table 23: FPA Key Register Field Summary
Register

 (key configuration
registers are highlighted)

Field
Name

Default
SDK
Value

Field Description

FPA_CTL_STATUS MEM0_ERR 0 Used in manufacturing to verify memory tests work.
FPA_CTL_STATUS MEM1_ERR 0 Used in manufacturing to verify memory tests work.
FPA_CTL_STATUS ENB 0 Enable FPA functionality.
FPA_CTL_STATUS USE_STT 0 When 0, the FPA stores pointers to DRAM using

STT, bypassing L2 cache (this is preferred).
FPA_CTL_STATUS USE_LDT 0 When 0, the FPA loads pointers from DRAM using

LDT, bypassing L2 cache (this is preferred).

5-68 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-69

Register
 (key configuration

registers are highlighted)

Field
Name

Default
SDK
Value

Field Description

FPA_CTL_STATUS RESET 0 We don't support use of this reset. Instead, reset the
whole chip.

FPA_FPFx_SIZE FPF_SIZ 256 The size of the In-unit Buffer Address Cache for
this pool. The sum of all the sizes cannot exceed
2048.

FPA_FPFx_MARKS FPF_RD 64 When to read in more buffers into a too-empty
cache.

FPA_FPFx_MARKS FPF_WR 196 When to write out buffers from a too-full cache.
FPA_INT_ENB FED0_SBE 0 Enable the interrupt
FPA_INT_ENB FED0_DBE 0 Enable the interrupt
FPA_INT_ENB FED1_SBE 0 Enable the interrupt
FPA_INT_ENB FED1_DBE 0 Enable the interrupt
FPA_INT_ENB Qn_UND 0 Enable the interrupt
FPA_INT_ENB Qn_COFF 0 Enable the interrupt
FPA_INT_ENB Qn_PERR 0 Enable the interrupt
FPA_INT_SUM FED0_SBE n/a Used in manufacturing. Should not fail in the field.
FPA_INT_SUM FED0_DBE n/a Used in manufacturing. Should not fail in the field.
FPA_INT_SUM FED1_SBE n/a Used in manufacturing. Should not fail in the field.
FPA_INT_SUM FED1_DBE n/a Used in manufacturing. Should not fail in the field.
FPA_INT_SUM Qn_UND n/a Set when the pool's page count available goes

negative (The pool is corrupted).
FPA_INT_SUM Qn_COFF n/a Set when the pool's stack end tag is present and the

count available is greater than pointers present in
the FPA. (The pool is corrupted.)

FPA_INT_SUM Qn_PERR n/a Set when the pool's address read from the stack in
the L2C does not have the FPA ownership bit set.
(The pool is corrupted.)

FPA_QUEn_PAGES_AVAILABLE QUE_SIZ n/a The number of free buffers available in the pool.
FPA_QUEn_PAGE_INDEX PG_NUM n/a The index of the current page (is also the number of

pages of buffer pointers in the pool).
FPA_QUE_EXP EXP_INDX n/a Expected page index read from memory (latched on

PERR). The page index is an FPA-internal number.
FPA_QUE_EXP EXP_QUE n/a Expected FPA Pool number (queue) read from

memory (latched on PERR)
FPA_QUE_ACT ACT_INDX n/a Actual page index (latched on PERR). The page

index is an FPA-internal number.
FPA_QUE_ACT ACT_QUE n/a Actual FPA pool number (queue). (latched on

PERR)
FPA_BIST_STATUS FDR n/a Used in manufacturing to test internal memory.
FPA_BIST_STATUS FFR n/a Used in manufacturing to test internal memory.
FPA_BIST_STATUS FPF1 n/a Used in manufacturing to test internal memory.
FPA_BIST_STATUS FPF0 n/a Used in manufacturing to test internal memory.
FPA_BIST_STATUS FRD n/a Used in manufacturing to test internal memory.

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

Free

A
llocator (FPA

)

Pool 15 Configuring Units Which Allocate/Free FPA Buffers
The following table shows the hardware-level requirements for CN54/55/56/57XX. (The DFA
information is from CN58XX.) To get requirements for a specific OCTEON model, see the HRM.

Table 24: DFA Unit
DFA
API Function cvmx_initialize_dfa()
Pool DFA_DIFCTL[POOL] Used to free buffers (CVMX_FPA_DFA_POOL)
Size DFA_DIFCTL[SIZE] (CVMX_FPA_DFA_POOL_SIZE / 8)

Minimum Size 128 bytes (required by FPA) A minimum of 128 bytes. Size should be a
multiple of 128.

DWB DFA_DIFCTL[DWBCNT] Number of cache lines to DWB in each buffer
(CVMX_FPA_DFA_POOL_SIZE / 128)

First command
buffer in linked
list

DFA_DIFRDPTR[RDPTR]

Table 25: IPD Unit

IPD WQE Buffers
API Function cvmx_helper_global_setup_ipd()
Pool IPD_WQE_FPA_QUEUE[WQE_QUE] Used to allocate buffers
Size n/a
Minimum Size 128 bytes
DWB n/a
IPD Packet Data Buffers
API Function cvmx_helper_global_setup_ipd()
Pool always required to be 0 Used to allocate buffers

Size
IPD_PACKET_MBUFF_SIZE[MB_SIZE]
(actual buffer can be larger, see the PIP/IPD
chapter for details).

DWB n/a

Table 26: PCI/PCIe DMA Engine
PCI/PCIe DMA (SDK uses PKO Command Buffers for PCI/PCIe DMA)
API
Function cvmx_dma_engine_initialize()

Pool NPEI_DMA_CONTROL[FPA_QUE] Used to free buffers
(CVMX_FPA_OUTPUT_BUFFER_POOL)

Size NPEI_DMA_CONTROL[CSIZE] (CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE / 8)
Minimum
Size 128 bytes (16 64-bit words) Size should be a multiple of 128; otherwise, don't use

DWB.
DWB NPEI_DMA_CONTROL[DWB_ICHK] (CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE / 128)
First
command
buffer in
linked list

NPEI_DMA(0..4)_IBUFF_SADDR

5-70 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

Fr
ee

 P
oo

l
A

llo
ca

to
r

(F
PA

) OCTEON Programmer’s Guide

CN_OCTEON_PRG_GUIDE_Vol2A Cavium Networks Proprietary and Confidential - DO NOT COPY 5-71

Table 27: PKO Unit
PKO Packet Data Buffers
API Function cvmx_helper_global_setup_ipd()
Pool Set by hardware to pool 0 Used to free buffers. Always required to be 0.
Size Size is derived from the instruction
Minimum Size n/a

DWB PKO_REG_FLAGS[ENA_DWB] Enables DWB. Unit reads command buffer to
get DWB count

PKO Command Buffers
API Function cvmx_pko_initialize_global()

Pool PKO_REG_CMD_BUF[POOL] Used to free buffers
(CVMX_FPA_OUTPUT_BUFFER_POOL)

Size PKO_REG_CMD_BUF[SIZE]

Note: In the SDK, the size of the PKO
command buffers is set to an odd number of 64-
bit words. This allows the normal two-word
command to stay aligned and never span a
command word buffer.
((CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE /
8) -1)

Minimum Size 128 bytes (16 64-bit words) Size should be a multiple of 128; otherwise,
don't use DWB.

DWB PKO_REG_FLAGS[ENA_DWB] (CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE /
128)

Table 28: RAID Unit

RAID Instruction Buffers - (SDK uses PKO Command Buffers for RAID)
API Function cvmx_raid_initialize()

Pool RAD_REG_CMD_BUF[POOL] Used to free buffers
(CVMX_FPA_OUTPUT_BUFFER_POOL)

Size RAD_REG_CMD_BUF[SIZE] (CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE / 8)
Minimum Size 128 bytes (16 64-bit words) Size should be a multiple of 128.
DWB RAD_REG_CMD_BUF[DWB] (CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE / 128)
First command
buffer in linked
list

RAD_REG_CMD_BUF[PTR]

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

 OCTEON Programmer’s Guide

5-72 Cavium Networks Proprietary and Confidential - DO NOT COPY CN_OCTEON_PRG_GUIDE_Vol2A

Free Pool
A

llocator (FPA
)

Table 29: TIMER Unit
Timer
API Function cvmx_tim_setup()

Pool TIM_MEM_RING1[CPOOL] Used to free buffers (CVMX_FPA_TIMER_POOL)

Size TIM_MEM_RING1[CSIZE] (CVMX_FPA_TIMER_POOL_SIZE / 8)

Minimum Size 128 bytes (16 64-bit words) Size should be a multiple of 128. Otherwise, don't use
DWB.

DWB TIM_REG_FLAGS[ENA_DWB]
First command
buffer in linked
list

TIM_MEM_RING0[BASE]

Number of
buckets in the
ring

TIM_MEM_RING0[BSIZE]

Table 30: ZIP Unit

ZIP Instruction Buffers - (SDK uses PKO Command Buffers for ZIP)
API Function cvmx_zip_initialize()
Pool ZIP_CMD_BUF[POOL] Used to free buffers

(CVMX_FPA_OUTPUT_BUFFER_POOL)
Size ZIP_CMD_BUF[SIZE] Minimum size = 9 64-bit words

(CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE / 8)
Minimum Size 128 bytes (required by FPA) Size should be a multiple of 128; otherwise, don't use DWB.
DWB ZIP_CMD_BUF[DWB] (CVMX_FPA_OUTPUT_BUFFER_POOL_SIZE / 128)
First command
buffer in linked
list

ZIP_CMD_BUF[PTR]

Cav
ium

 C
on

fid
en

tia
l F

or

Dav
id

Arn
old

M
an

ta
ra

09
/0

6/
20

12

	1 Introduction
	2 Overview of FPA
	2.1 Functional Overview
	2.2 Hardware Blocks Which Use FPA-Managed Buffers
	2.3 Operations
	2.4 FPA Registers
	2.5 Using the FPA
	2.5.1 Configure the FPA Unit
	2.5.2 Initialize the FPA Unit
	2.5.3 Enable the FPA Unit
	2.5.4 Populate the FPA Pools
	2.5.4.1 Allocating Memory for FPA-Managed Buffers

	3 General Pool Configuration and Population Information
	3.1 Default Simple Executive Pool and Scratchpad Area Configuration
	3.2 Configuration Overview
	3.2.1 Rules
	3.2.2 Is There a Limit on the Number of Buffers?
	3.2.3 Can a Pool Contain Different-Sized Buffers?
	3.2.4 Can More Buffers be Added to a Buffer Pool at Any Time?
	3.2.5 Configuring Hardware Units Which Automatically Use the Buffers
	3.2.6 Allocating Buffers from Linux and the Affect on Buffer Size

	4 Packet Data Buffers
	4.1 Packet Data Buffer Size
	4.2 Packet Data Buffer Count
	4.2.1 Calculate the Maximum Number of Packet Data buffers Needed
	4.2.1.1 What if the Formula Yields a Negative Number?

	4.2.2 Packet Data Buffer Count and PIP/IPD Congestion Control
	4.2.3 What if the System Runs Out of Available Packet Data Buffers?
	4.2.4 Linux and Packet Data Buffer Count

	5 WQE Buffers
	5.1 WQE Buffer Size
	5.2 WQE Buffer Count
	5.3 Other Uses for WQE Buffers

	6 PKO Command Buffers
	6.1 PKO Command Buffer Size
	6.2 PKO Command Buffer Count
	6.3 More Precise PKO Command Buffer Size and Count Calculations

	7 Simple Executive API
	7.1 Limits and other Definitions
	7.2 Data Structures
	7.2.1 The cvmx_fpa_pool_info_t (pool_info) Data Structure

	7.3 Easy-to-Use Executive FPA API Functions
	7.3.1 Pool Information Functions
	7.3.1.1 Example Code: cvmx_fpa_get_block_size(), cvmx_fpa_get_name(), cvmx_fpa_get_base()
	7.3.1.2 Example Code: cvmx_fpa_is_member()

	7.3.2 Easy-to-Use Initialize, Allocate, and Free Functions
	7.3.2.1 Example Code: cvmx_helper_initialize_fpa()
	7.3.2.2 Example Code: cvmx_fpa_alloc()
	7.3.2.3 Example Code: cvmx_fpa_async_alloc()
	7.3.2.4 Example Code: cvmx_fpa_free()
	7.3.2.5 Example Code: cvmx_helper_free_packet_data()

	7.4 Advanced Functions
	7.4.1.2 Example Code: Calling cvmx_fpa_setup_pool()
	7.4.1.4 Example Code: cvmx_fpa_shutdown_pool()

	8 Basic Code Review Checklist
	9 Internal Details
	9.1 Buffer Organization
	9.2 In-Unit Buffer Address Cache (Address Cache)
	9.3 Watermarks for the In-Unit Buffer Address Cache

	10 Debugging
	10.1 Interrupts and Detected Error Conditions
	10.1.1 Permission Error (PERR)
	10.1.2 Page Count Off (Incorrect) Error (COFF)
	10.1.3 Underflow (UND)
	10.1.4 Single and Double Bit Memory Errors (SBE, DBE)

	10.2 Debugging and Status Information
	10.3 Common Mistakes
	10.3.1 Buffer Alignment: Bad Alignment at Start of Buffer
	10.3.2 Buffer Alignment: Bad Alignment at End of Buffer
	10.3.3 Buffer Size and Don’t Write Back (DWB)
	10.3.4 Buffer Freed to the Wrong Pool

	10.4 Buffer Freed More than Once

	11 Performance Tuning
	11.1 Enough Buffers
	11.2 Prefetch Buffers
	11.3 Initializing the Per-Pool Address Cache Allotment or Watermarks
	11.4 Don’t Write Back (DWB)
	11.5 Pool Number
	11.6 Performance Tuning Checklist

	12 Advanced Code Review Checklist
	13 Beyond the SDK – When not Using the Provided API
	13.1 Design Considerations
	13.2 Enable the FPA and Populating the Pools
	13.3 Synchronous Buffer Allocation
	13.4 Asynchronous Buffer Allocation
	13.5 Freeing a buffer

	14 FPA Registers
	15 Configuring Units Which Allocate/Free FPA Buffers

